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ABSTRACT
To make knowledge-supported decisions, industrial actors often
need to examine available data for suggestive patterns. As indus-
trial data are typically unlabeled and involve multiple object types,
unsupervised multi-relational (MR) data mining methods are partic-
ularly suitable for the task. Current MR association miners merely
produce singleton-conclusions rules hence might miss multi-way
dependencies. Our novel MR miner builds upon a relational ex-
tension of concept analysis to extract general associations. While
successfully dealing with circularity in data, it avoids producing
cyclic rules by limiting the description depth of relational concepts.
Our rules’ relevance was validated by an application to aluminum
die casting.
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1 INTRODUCTION
Understanding the domain behind the data is a key to business
growth and competitiveness. Knowledge discovery from data (KDD)
helps addresses that concern by distilling trends and patterns that
are intelligible to human experts[5]. In industry, data objects are
typically unlabeled and often comprise both proper features and
object-to-object links. Such datasets fit the unsupervised multi-
relational data mining (MRDM) mode [4], i.e. clustering and associa-
tion discovery. However, existingMRDM associationminers [3, 6, 8]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7008-0/19/11. . . $15.00
https://doi.org/10.1145/3360901.3364446

restrict their output format to singleton-premise rules, hence they
fail to capture more subtle associations.

Formal concept analysis (FCA) [7] has been proven as a versa-
tile framework for KDD [12] in many practical applications [2].
It extracts knowledge as a compact set of association rules [10].
Relational concept analysis (RCA) [11] is MRDM extension of FCA.
However, straightforwardly-defined relational association rules
may easily contain circular references or references from conclu-
sion to premise, thus preventing a meaningful interpretation. In
this article, we illustrate an untangling method to avoid definition
cycles that trims concept descriptions in RCA.

As a validation, we applied our method on industrial manufac-
turing data. The goal was to assist a domain expert who examines
the production process for potential optimizations. At a first step,
the expert searches for causality links between process factors
and product anomalies. Our method supports the task by provid-
ing associations between machine state descriptors and product
(qualitative) metrics. In a concrete experiment, a fair number of
the discovered rules were deemed unexpected yet relevant by the
experts involved.

In the remainder of the paper, section 2 motivates our study.
Then, section 3 provides background while sections 4 and 5 de-
scribe our association mining approach and the experimental study,
respectively. Section 6 discusses our results and section 7 concludes.

2 MOTIVATION
In many industrial contexts, the root challenge is finding the best
trade-off between product quality, working time and manufactur-
ing costs. In looking for a solution, it is crucial to reflect the risk
factor [13], which can be assessed by constantly monitoring the
machining process, e.g. with sensors and data analysis. Our case
study covers an aluminum die casting process whose output is
door/window handles and frames. In the partner workshop, pro-
cess monitoring consists in regularly controlling product metrics.
For instance, when a product is discarded for non-compliance to
quality standards, the operator halts the machine, fixes the observed
problem, and restarts the production whereby the product is melted
again and reprocessed. As shown below, an in-depth analysis of pro-
duction logs reveals regularities in the form of associations between
variations in product measures, machine state and production is-
sues. While few associations reflect true causality, many others still
help understanding and, potentially, avoid machine failures and
reduce costs.
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K1 sko cst smL tcL

12 × ×

13 × ×

14 × × ×

15 × ×

д P0 P1 P2

12 × ×

13 ×

14 × ×

15 ×

K2 t5 stp qlt mld cost

P0 × × × ×

P1 × × ×

P2 × × ×

Table 1: Relational Context Family of the machine part
dataset.

(a) Without scaling. (b) After one step of scaling.

Figure 1: Machined part lattices (K1).

3 BACKGROUND ON FCA AND RCA
Formal concept analysis [7] is an algebraic approach for eliciting
the conceptual structure of a dataset. Input data format is a triple
K = (O,A, I ) called a (formal) context, e.g. K1 in Table 1. Here O
is a set of objects (machined parts 12 to 15), A a set of attributes
(sko for inadequate thickness, smL for thickness, tcL for pressure
below threshold, cst for need recasting) and I ⊆ O × A an inci-
dence relation listing valid pairs (o,a) (object o has the attribute
a). FCA reveals all pairs of sets (X ,Y ) ∈ ℘(O) × ℘(A) strongly cor-
related, meaning that all objects having the attributes in Y are in
X and vice-versa. Such pair is a (formal) concepts with an extent
X and intent Y . For instance, ({13, 14}, {sko, cst}) is a concept, but
({14, 15}, {sko, cst, smL}) is not. Concepts are partially ordered w.r.t.
extent inclusion (X1,Y1) ≤K (X2,Y2) iff X1 ⊆ X2 whereby the un-
derlying hierarchy is a complete lattice. Fig. 1a depicts the Hasse
diagram of the lattice derived from Table 1. It uses reduced con-
cept labeling: Extent-wise (resp. intent-wise), a concept “inherits”
the objects located at any sub-concept (resp. super-concept). For
instance, the conceptmp5 is ({14, 15}, {smL, cst}).

An association rule is a pair (Y ,Z ) ∈ ℘(A) × ℘(A) written Y →

Z [1]. It embodies information about co-occurrences of Y and Z in
objects from O . Two classical evaluation metrics for associations
are support (percentage of objects incident toY ∪Z ) and confidence
(percentage of objects with Z among those with Y ). Here, we focus
on 100% confidence rules (a.k.a. implications). Furthermore, our
rules optimized in that they have the form Y → Z − Y where Z is
a concept intent whereas Y is a minimal subset of Z with the same
support (a.k.a. generator) [10].
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Table 2: Extended problem context.
Relational concept analysis [11] assumes datasets are made of

several contexts, one per type of object, and context-to-context
relations, i.e. sets of object-level links. Within our production case,
Table 1 depicts such a dataset (called relational context family): Here,
K2 describes production problems via attributes such as “fixing
time less than 5 min” (t5), “machine stopped” (stp), “quality-related”
(qlt ), “mould defect” (mld), or “medium financial impact” (cost ). A
relation “generates” (д) links machine parts to observed problems.
RCA uses propositionalization [9] to turn links into dedicated sort
of attributes called relational. In doing that, it uses scaling operators
akin to value restrictions in description logics and concepts from
the relation’s range context. The underlying format is q r : (c)
where q ∈ {∃,∀,∀∃, . . .} (with intuitive semantics [11]), r is the
relation and c a concept. Incidence between objects of the domain
context and its new relational attributes depends on the scaling
operator used. Table 2 illustrates the extension of K2 after scaling
with ∀∃ upon “is-generated-by” (denoted д−1). Each concept from
K1 yielded a relational attribute incident to specific objects in K2.
For instance, problem P2 is related to parts 12, 14, and 15, whose
common concepts aremp0 andmp3 (see Fig. 1a). Thus, two new
attributes, ∀∃д−1 : (mp0) and ∀∃д−1 : (mp3), are assigned to P2.

After scaling relations with constructors, their respective domain
contexts get extended. This knowingly leads to a set of new concepts
popping up in the lattices of the updated contexts (see Figs. 1b
and 2a). Since they represent additional abstractions, a scaling step
will turn new concepts into yet newer attributes, and the whole
cycle would go on. The overall iterative method of RCA provably
reaches a fixpoint made of a set of inter-related lattices [11].

4 RCA-BASED KNOWLEDGE DISCOVERY
RCA is yet to be provided with a generic notion of association
rule: The difficulty here lies in the references between relational
concepts which might lead to circular dependencies. For instance,
a rule extracted from pb4 would be qlt → ∀∃д−1 : mp3,∀∃д−1 :
mp0, when replacing a reference by the concept intent,mp3 would
become smL, ∃д : pb6, ∃д : pb0, ∃д : mp2, ∃д : mp4, the latter
attribute would be replaced by pb4 intent, establishing a circularity.

To prevent this, we modify slightly the original algorithm by ex-
ploiting the iterative nature of RCA which is cycle-free. At creation
time, the intent of a content can only hold static attributes and
relational ones referring to concepts created at previous iterations.
Therefore, when replacing a reference to concept c in a relational
attribute, we use only the “birth” intent. If any relational attributes
exists in the birth intent c , then we recursively use the birth descrip-
tion of the referred concept, which has necessarily been created in
a previous iteration. Finally, any relational intent can be described
with only non relational attributes. Such expansion avoids circular
dependencies, even if one may exist between full intents.



(a) Direct references. (b) Disentangled references.

Figure 2: Problem lattices after one scaling step.

On the same example, the obvious circularity is avoided ifmp3 is
replaced by its intent at the end of its creation iteration (see Fig. 1a).
The resulting intent of pb4 is drawn in Fig. 2b.

5 EXPERIMENTAL STUDY
We now focus on an industrial case of aluminum die casting, whose
data have been provided byMaster Italy SRL, a company specialized
in the manufacture of handles and frames for doors and windows.

Given the size of its activities, controlling, cleaning andmanaging
fixes for the machine are costly operations. Thus, the manufacturer
wishes to minimize these actions. To do so, instead of targetting
the machines, the data focus on the products themselves. When a
machined part fails to reach the required standards, it is put aside
and eventually recast. Whenever the operator assesses the number
of defective parts as being too high, the machine is stopped for a fix.
Such policy allows the number of stops to be kept low. However, if
the causality dependencies for problems could be identified, e.g. in
terms of variations in parts properties, potential failure could be
anticipated or completely avoided, along with the recasting.

To find such causality links, correlations between problems and
part features are measured. Since the relation between machined
parts and problems is many-to-many, a MRDM approach seems
a natural choice, and since data are unlabeled, only descriptive
approaches such as clustering or association mining are possible,
hence our focus on RCA.

5.1 Dataset and experimental setting
Our experimental data cover one month of production, i.e. approxi-
mately 58.000 parts. In the present experiments, we focus on the
5.134 parts that relate to at least one problem. The raw data is as
follows. A first table represents defective machined parts together
with their static attributes, i.e. a total of 25 features tracked, among
those, the production period, the mould, the product dimensions,
the piston state at the end of each manufacturing step. A second
table stores the 19 problems categories: Each is described by its
nature (mechanical wear, machine calibration, etc.), the induced
financial and time losses. A third table gathers the relational links
(many-to-many) between the two previous tables: It indicates, given
a machined part, all the related problem.

The two first tables have been scaled to form binary formal con-
texts: Categorical values are divided into all possible categories and
numerical value are divided into five equal intervals. It resulted in

134 attributes for the machined part context and 26 for the problem
one. Attributes are of the form ai_j_k , where a is the target feature,
i is the manufacturing process step, j is the interval (1 being the
lowest value, 5 the highest). A final element k , optional depending
on a (valued ko, ok or check), is a complementary description for the
interval j. It indicates whether values in j should induce problems
(ko) or not (ok), whereby check provides no systematic information.

The relation “generates” is scaled with ∃: If a concept c has
∃дen : (c̄) in its intent, then every machined part in the extent of
c generates at least one problem that has all the attributes in the
intent of c̄ . The inverse relation “is_generated_by” is scaled with
the ∀∃ operator. If a concept c has ∀∃дen−1 : (c̄) then every problem
of c is only related to machined parts having the attributes in the
intent of c̄ . The operator ∀∃ was chosen to provide a summary of
the features shared by related parts (rather than multiple cases as
with ∃).

Next, only association rules of sufficient support (threshold set
to 20) were extracted. Moreover, further filters on rules eliminated
those with no relational attribute. Finally, at this preliminary step,
we only examined 100% confidence rules.

5.2 Analysis outcome
Among the 133.821 rules output by our RCA tool, we selected a
small number that seemed to be the most valuable from an expert
point of view. Table 3 shows some of the selected rules which are
split into groups for which we provide expert interpretation.

Multiple problems related to the same machined parts. RCA found
3.950 rules reflecting the fact that machined parts may be related
to multiple problems. This is a rather rare situation, hence it was
interesting for the expert to see typical co-occurrences between
problems and their characteristics, as well as those of the related
machined parts. For instance, the first rule in Table 3 has a 7%
support. It states that any machined part which reaches the lower
bound (min_sm(< LimLow)) of the lowest interval for the thickness
(sm_1_ko) will have to be recast. Unsurprisingly, it will generate an
alert as the thickness lays below the 14mm threshold (the problem
will be recorded as such). Less trivially, the rule indicates that, in-
variably, a micro-stop will be triggered to deal with thickness issues,
which was judged by the machine operator as being predictable.

Recasting conditions. Another point of interest were combina-
tions of machined part attributes that could be an indicator for
future recasting needs. As a first, and rather direct approach, we
selected all rules comprising the pdt_recast attribute. Within the
resulting set of 42.060 rules, we found a number of subsets of com-
mon concept. Lot #2 in Table 3 is an example of such subset whose
support, 14%, speaks in favor of a recurrent phenomenon that de-
serves attention. While discussing the complete interpretation of
the situation is beyond the scope here, it might be summarized as
follows. A first remark is that very low temperature (t2_1_ko ) is
a constant in the premise. It must be combined with either very
high speed of piston at step one (v1_5_ko ) or piston course in the
lowest values at step two (c2_1_ko ). The remainder of the premise
brings the recast information. The conclusion invariably presents
the piston course at step one in the highest interval (c1_5_ko ). Tak-
ing into account the specific combinations of attributes involved in
the rules, both those present and some of the missing ones, led the
expert team to the following hypothesis: After restarting, it takes



Lot # Premise Conclusion
1 sm_1_ko,min_sm(< LimLow) pdt_recast, ∃ gen pbs : (sm ≤ 14),

∃ gen pbs : (microstop − smLimLow,predictable)
2.1 c2_1_ko, t2_1_ko,pdt_recast c1_5_ko,v1_5_ko, ∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast ))
2.2 c2_1_ko, t2_1_ko, ∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast )) c1_5_ko,v1_5_ko,pdt_recast
2.3 v1_5_ko, t2_1_ko,pdt_recast c1_5_ko, c2_1_ko, ∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast ))
2.4 v1_5_ko, t2_1_ko, ∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast )) c1_5_ko, c2_1_ko,pdt_recast
3 ∃дen pbs : (rul_component,down_time_1h+,phm) pdt_conf orm
4 v2_4, f c2_ok , ∃ gen pbs : (∀∃ gen−1 parts: (10A026, c1_5_ko,

c2_1_ko,v1_5_ko, t2_1_ko, cc_2_ok ,pm1, sm2_check ))
10A026, c1_5_ko, c2_1_ko,v1_5_ko, t2_1_ko, cc_2_ok ,pm1, sm2_check ,
pdt_conf orm

Table 3: Sample rules from RCA output.

some time for the machine to reach the optimal temperature. Even
if the metal is completely molten, the piston is not dilated enough,
hence friction is low and speed high. This often results in extreme
values for its course, hence the non conform parts that need recast.

Conform parts related to problems. Given that not all rules apply
on products so defective that they need a recast, experts were
also eager to examine the circumstances under which machined
parts, albeit associated to problems, still remained conform to the
norms. This is a valuable question, as answers may help identify
indicators for upcoming issues. Indeed, some produced parts, while
still conform, tend to have some of their feature values ever closer
to the conformity limits. Identifying typical combinations of such
values per problem category would be a significant advancement.
We looked at rules with the pdt_conf orm attribute (53.008 rules).
For instance, rule #3 in Table 3 indicates that if a machined part
relates to a mechanical problem (rul_component ) which entails
an hour or longer downtime (down_time_1h+) and to a preventive
maintenance (phm), then the product would be necessarily conform.
This is coherent because the machine stop is caused by amechanical
component failure and the last product manufactured is put in
relation to the observed problem. This yields key insight into the
state of the machine just before the problem showed up.

Problem description precision Finally, while looking for the con-
form parts, we discovered a small percentage of rules which, rather
than bringing new insights, point out to deficiencies in the problem
description. For instance, rule #4 in Table 3 (of support just below
1%) comprises a number of features which seem plausible plus a
reference to a concept of problems. The latter, however, comprises
a single relational attribute pointing to a super-concept of the one
the rule is stemming from (carrying a strict subset of the static
attributes). It is noteworthy that the absence of static attributes
in that intent means at least two problems are in the extent. Now,
our experts found it surprising that these problems, despite the
highly similar profiles of the related parts (eight shared attributes)
do not share a single static feature themselves. This is potential
indication for missing such features in problem description (e.g.
outside temperature that might influence the entire process).

6 DISCUSSION
RCA arguably succeeded in finding correlations of features between
machined parts and problems. From its output, experts could detect
rules discriminating problems that invariably force a recasting of
the related parts from those which do not impede correct manu-
facturing. In a different vein, relational attributes naturally cluster

machined parts that relate to the same category of problems, which
highlights non relational attributes connected to a problem cat-
egory. This narrowing of the search scope facilitates the task of
detecting causality links between events for the experts.

Finally, while our rules yielded non trivial insights on machined
parts and the way they relate to problems, the knowledge about
problems gleaned from them was rather coarse-grained. Given the
granularity of problem descriptions, this came as no surprise. Still,
even such imperfect description was enough for RCA to extract
hints for the industrial team, e.g. as to where new sensors, if in-
stalled, could have the biggest impact on analysis scope and depth.

7 CONCLUSION
We define relational association rules in a way that avoids improper
references in rule parts without restricting their size. This unlocked
the entire spectrum of FCA-based association mining mechanisms
to arbitrary MR datasets. Validation study indicates that our method
is capable of detecting non-trivial facts that are beyond the reach
of competing approaches. Still, a larger evaluation effort will be
necessary to solidify these preliminary findings, e.g. focusing on
rules with less than 100% confidence.
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