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A drop of moderate size deposited inside a circular hydraulic jump remains trapped at the shock
front and does not coalesce with the liquid flowing across the jump. For a small inclination of the
plate on which the liquid is impacting, the drop does not always stay at the lowest position and
oscillates around it with a sometimes large amplitude, and a frequency that slightly decreases with
flow rate. We suggest that this striking behavior is linked to a gyroscopic instability in which the
drop tries to keep constant its angular momentum while sliding along the jump.

PACS numbers: 47.55.Ca, 47.55.D-, 45.40.Cc

There is presently a growing interest in the dynamics
of levitating liquids such as in the Leidenfrost effect [1],
or in situation of delayed coalescence between liquids [2–
6]. These conditions arise when a very thin layer of air or
vapor remains trapped at the interface, thus preventing
the liquid from spreading on a solid, or from coalesc-
ing with a free surface of the same liquid. These unusual
situations of non-wetting give rise to surprising liquid dy-
namics, of great fundamental interest. One can refer for
instance to Poincaré’s figures of equilibrium observed by
Aussillous and Quéré for drops coated with hydrophobic
grains rolling down a solid substrate [7], or to the strik-
ing particle/wave duality evidenced by Couder et al., on
drops walking on a vibrated liquid [3–5].

In the present letter we consider a different system. A
drop deposited inside a circular hydraulic jump [8–10] is
pushed by the flow against the jump and remains trapped
if its size is not too large [6]. Owing to the liquid mo-
tion inside the jump and inside the drop, a thin layer
of air trapped in between prevents coalescence when the
two liquids are the same. We show that this situation
also leads to a striking dynamical behavior of the drop,
that tends to rotate around the jump. In the special case
(considered here) of a slightly inclined jump, with respect
to horizontal, the drop does not stay static at the lowest
equilibrium point but rather oscillates in a self-sustained
way around this position, the oscillation reaching very
high amplitudes (nearly 180o) without loosing harmonic-
ity. A model describing this behavior is proposed, based
on a gyroscopic instability: the drop both slides and ro-
tates above the liquid surface, exchanging friction with it
against the air film, while trying to keep constant its large
angular momentum. Although the connections with this
kind of problem is not obvious, this instability is remi-
niscent of others encountered by rotating systems when
a slight amount of dissipation is added to a situation in

FIG. 1. Nearly circular hydraulic jump formed by a vertical
liquid jet of silicone oil impacting a slightly inclined plate. In
the appropriate range of parameters, a drop levitating above
the jump does not stay stationary at the lowest position (ar-
row). It enters an oscillatory motion around this position
along the jump perimeter, shown here by superimposing suc-
cessive frames.

apparent equilibrium [11].

A picture of the experiment is reproduced in Fig. 1. A
jet of silicone oil (viscosity 20 cS) issued from a vertical
tube of diameter 4 mm, hits the surface of a plate placed
3 cm below the outlet. The plate inclination α is fixed to
1.0 ± 0.1o. For this low inclination, the hydraulic jump
is observed to be of Type I (i.e. unidirectional surface
flow), and to remain nearly circular, in a way compara-
ble to what occurs for jumps obtained for slightly oblique
jets [12]. The radius of the jump increases with flow rate
[Fig. 2(a)] and follows a law similar to those reported in
earlier works for a horizontal plate [6, 8, 9]. Millimeter
sized drops of the same fluid as the bath are deposited di-
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FIG. 2. Measured for a plate inclination of α ≈ 1.0±0.1o: (a)
Radius of the hydraulic jump (circle), upstream (square) and
downstream (triangle) fluid heights around the jump, versus
flow rate. (b) Typical law θ(t) for the drop motion, θ being
the drop angular position defined with respect to the lowest
point of the jump (unstable equilibrium position). The line is
a fit with a cosine function.

rectly inside the jump. As reported in [6], small enough
droplets do not cross the jump and remain trapped at
its contact [Fig. 1], without coalescing with the flowing
liquid. Qualitative tests were performed with different
silicone oils to investigate the influence of viscosity. For
high enough viscosities (above 35 cS), the lowest location
of the drop in the circular jump is a stable equilibrium
position, but it turns out that for lower viscosities this
position becomes unstable. The drop, after a transient,
does not remain stationary at the lowest point but enters
a regime of oscillations around this equilibrium position
as suggested in Fig. 1, with a time period of order 1 s.
A typical oscillatory motion is plotted in Fig. 2(b). It
is nearly harmonic, amplitude and frequency being func-
tions of the flow rate. The amplitude of the angular mo-
tion increases dramatically when flow rate is reduced and
can even reach 2π for small enough flow rates.

For the sake of simplicity, it will be assumed thereafter
that the drop, assimilated to a solid sphere, has two con-
tact points a and b with the jump as shown in Fig. 3(a),
and that the contact areas s are both of order πr2, with
r the radius of the drop. As a first stage, only the point
a will be taken into account. The corresponding thick-
ness of the air layer da, that separates the drop from
the flowing liquid entering the jump, is a key point of
the dynamics. This thickness was not measured, but, as
explained in [6], reasonable orders of magnitude can be
obtained by drawing an analogy with standard bearing
theory. Here a scaling argument is given, that simply
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FIG. 3. (a) Sketch of the drop and fluid motion expected in
a radial vertical plane containing the jump central axis. The
drop is rotating very fast because of the shear stress trans-
mitted across the air film. (b) Principle of the instability
viewed in three dimensions. The drop, when pushed from the
lowest point of the jump, tries to keep constant its angular
momentum, which develops an active radial component of the
rotation rate vector that tends to amplify the drop displace-
ment.

replaces this approach. If Ua designates the liquid veloc-
ity when it enters the jump, air is trapped between the
drop and the flowing liquid, and should flow at a typical
velocity Ua inside a gap da. This will develop a pres-
sure gradient of order ηUa/d

2

a in the air film, and thus
a pressure ηrUa/d

2

a where η is the air dynamic viscosity.
Balancing the expected levitation force of order ηr3Ua/d

2

a

with the drop weight leads to

da ∝

(

ηUa

ρg

)1/2

, (1)

where ρ is the mass density of liquid. For a velocity
Ua = 15 cm/s deduced from the fluid height in front of
the jump, this estimate is of order 18µm and is consis-
tent with the estimate of 14µm obtained in [6], while
the minimum thickness expected to observe coalescence
is approximately 200 nm [3].
A possible interpretation of the fact that the low-

est drop position becomes unstable, and of the occur-
rence of this oscillatory motion is as follows. First, be-
cause of the friction between the liquid bath and the
drop (through the thin air film), the drop will never re-
main static and should develop a sizable rotational mo-
tion. This effect is suggested in Fig. 3(a), in which
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the angular velocity of the drop defined in a plane con-
taining the axis of symmetry Oz reads Ωθ. Assum-
ing that the drop and the flowing film, of velocity Ua,
exchange a classical shear stress of approximate value
σ = −η [Ua + rΩθ] /da, the evolution equation for Ωθ

reads J (dΩθ/dt) = −η (rs/da) [Ua + rΩθ ], where J =
(2/5)mr2 is the moment of inertia of the drop of mass
m. This equation can be rewritten as

τa
dΩθ

dt
+Ωθ = −

Ua

r
, (2)

where the time constant reads τa = (8/15)ρrda/η for a
spherical drop. Typically, a drop of radius r = 1.3 mm,
levitating above a jump of velocity Ua = 16 cm/s, on an
air film of thickness da = 18.5µm, reaches a rate of 20
rotations per second in a typical time of order τa that
is comparable to the period of the oscillations. If for
some reason the rotating drop is moved from the lowest
position in the jump to an out-of-equilibrium position,
the angular displacement being called θ (see Fig. 3(b)),
the drop will try to keep constant its angular momentum
L = JΩ. This will develop a radial component of the
rotation rate vector suggested in Fig. 3(b), of amplitude
Ωr = Ωθ sin θ, that will be propulsive, and that will tend
to amplify the drop displacement. The propulsive force
f = η (s/da) (rΩr) has to be compared with a gravity
restoring force p = mg sinα sin θ. The lowest drop posi-
tion is unstable when

η
s

da
Ua > mg sinα (3)

or, equivalently with the relationships s ≈ πr2 and m =
(4/3)πρr3, when

ηUa

ρgrda sinα
& 1. (4)

With the orders of magnitude introduced in the forego-
ing, this ratio is of order 1 for an air film of da = 18.5µm
and even 10 for a thinner film of thickness 1µm, indicat-
ing that the viewpoint adopted here seems to be consis-
tent though it is quite sensitive to the air film thickness.
Having recognized a possible instability mechanism, a

more complete investigation is needed, to check whether
or not this instability may lead to stationary oscillations,
and in that event, to explore the nature of these oscil-
lations. It is assumed that the viscous force due to the
velocity gradients reads

F =
ηs

da

(

U−D
dθ

dt
θ̂ + r×Ω

)

,

where the first and the second r.h.s. terms come from
the relative motion of the drop with respect to the fluid,
and the third one to its own rotational motion. Con-
sidering now both contact points (a, below the drop,
and b, on the jump side), and using that the torque

τ = r × F = JdΩ/dt, it can be shown that the compo-
nents of the rotation introduced in Fig. 3(b) are linked
by the following evolution equations:

dΩr

dt
= −

1

τa

(

R

r

dθ

dt
+Ωr

)

+Ωθ
dθ

dt

dΩθ

dt
= −

1

τa

(

Ua

r
+Ωθ

)

−
1

τb

(

Ub

r
+Ωθ

)

− Ωr
dθ

dt

dΩz

dt
= −

1

τb

(

R

r

dθ

dt
+Ωz

)

, (5)

where R is the radius of the circular trajectory drawn
by the center of the drop. These equations must be
coupled with the evolution equation for θ that can be
deduced from the fundamental principles of the dynam-
ics. Balancing inertiamRd2θ/dt2 with the sum of gravity
−mgR sin θ sinα and friction η(s/da,b) [rΩr −R(dθ/dt)]
forces yields

d2θ

dt2
+

2

5

(

1

τa
+

1

τb

)

dθ

dt
+
( g

R
sinα

)

sin θ =

2

5

r

R

(

Ωr

τa
+

Ωz

τb

)

. (6)

Eq. (6) completed by Eqs. (5), is simply that of a har-
monic oscillator, in which the damping term is balanced
by a gyroscopic effect. As a result, the time period of the
oscillation is close to the estimate

T = 2π

(

R

g sinα

)1/2

. (7)

This value increases with flow rate, in view of the evolu-
tion of the jump radius (R + r).
Characteristic plots of the obtained behaviors are

shown in Fig. 4, for the experimental data introduced
above and α = 1.1o, which implies τa = 0.63 s. Es-
timating that Ub is of order Ua/10, τb is obtained the
same way as τa by using the friction force developed
at point a instead of the drop weight. This leads to
τb = 1.7 s. In the plane (θ, dθ/dt), a well-defined limit cy-
cle is reached regardless of initial conditions (not shown).
Figure 4(a) shows the corresponding oscillations θ(t) at
long time scales. As in the experiment, a nearly per-
fect harmonic oscillation is obtained, even at large am-
plitude, which is due to the sin θ dependence of the restor-
ing force. Plots of the rotation frequencies Ωr(t), Ωθ(t)
and Ωz(t) are reproduced in Figs. 4(b)-(d). The fre-
quency of oscillations of Ωθ(t) is twice that of θ(t) and
Ωr(t). It can be noted that the typical spin-up time of
the drop remains smaller than the period of oscillations

(τa/T = 4r/15π (ρUa sinα/ηR)
1/2

< 0.65), which sup-
ports the consistency of our modeling. Experimental re-
sults and theoretical predictions for time period and am-
plitude are plotted in Fig. 4(e) for the range of flow rates
investigated. The model reproduces quantitatively the
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FIG. 4. Typical solutions of equations (5) and (6) numeri-
cally integrated with τa = 0.63 s, τb = 1.70 s, r/R = 0.25,
Ua/r = 123 s−1 and Ω2

r0 = (g/R) sinα = 36.9 s−2; (a) oscilla-
tory motion θ(t) obtained at long time scales, (b)-(d) related
oscillations of the angular velocities Ωr(t), Ωθ(t) and Ωz(t).
(e) Time period of the drop oscillations versus flow rate. Inset:
amplitude versus flow rate. Lines show theoretical predictions
integrating Eqs. (5) and (6). Straight line α = 1.1o, dashed
line α = 1.0o.

observed features (oscillations, harmonicity, time period,
and amplitude) for α = 1.1o. Nevertheless, the model
is quite sensitive to the plate inclination, and using the
experimental value of α = 1.0o as input leads to a shift
(dashed lines). Moreover, the period increases slightly
with flow rate while it seems almost independent of flow
rate in the experiment.

The relative discrepancy could be attributed to an ad-
ditional restoring force and/or a lessening of friction not
included in the analysis:

- The loss in mechanical energy linked to viscous dis-

sipation inside the drop has been neglected.

- The model ignores the interactions of the drop with
the jump itself. The presence of the drop should affect
the jump structure, with respect to both velocity field
and capillary effects [9], which could in turn modify the
drop dynamics.

- The jump inclination implies an extra draining su-
perimposed on the classical radial flow. This should give
rise to a tangential component of the flow along the jump,
which will exert an extra restoring force on the drop with
the same symmetries as the tangential gravity force con-
sidered here (i.e. proportional to sin θ sinα), and thus
certainly modify the time period. Moreover, the incli-
nation of the plate for a vertical impinging jet implies
an inclination of the jet with respect of the plate itself,
which is known to affect the jump structure [12].

Nontrivial oscillatory dynamics of a single drop
trapped inside a circular hydraulic jump have been con-
sidered, in the case of a jump developing on a slightly
inclined plate. A model has been proposed, based on the
idea that the drop is rapidly rotating while exchanging
friction with the liquid of the jump, which can lead to a
gyroscopic instability. This interpretation provides quan-
titative agreements, both for frequency and amplitude se-
lections. The problem of the inclined circular jump itself
must be investigated, owing to its probable influence on
the drop dynamics. Further studies on this fascinating
phenomenon are underway.

The authors thank T. Bohr for helpful discussions, R.
Bouchekioua for complementary measurements on pulsed
jumps, not reported here, and M. Receveur for technical
assistance.
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