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Some classical problems in random geometry

Pierre Calka

Abstract This chapter is intended as a first introduction to selected topics in random
geometry. It aims at showing how classical questions from recreational mathematics
can lead to the modern theory of a mathematical domain at the interface of prob-
ability and geometry. Indeed, in each of the four sections, the starting point is a
historical practical problem from geometric probability. We show that the solution
of the problem, if any, and the underlying discussion are the gateway to the very rich
and active domain of integral and stochastic geometry, which we describe at a basic
level. In particular, we explain how to connect Buffon’s needle problem to integral
geometry, Bertrand’s paradox to random tessellations, Sylvester’s four-point prob-
lem to random polytopes and Jeffrey’s bicycle wheel problem to random coverings.
The results and proofs selected here have been especially chosen for non-specialist
readers. They do not require much prerequisite knowledge on stochastic geometry
but nevertheless comprise many of the main results on these models.

Introduction: geometric probability, integral geometry,
stochastic geometry

Geometric probability is the study of geometric figures, usually from the Euclidean
space, which have been randomly generated. The variables coming from these ran-
dom spatial models can be classical objects from Euclidean geometry, such as a
point, a line, a subspace, a ball, a convex polytope and so on.

It is commonly accepted that geometric probability was born in 1733 with Buf-
fon’s original investigation of the falling needle. Subsequently, several open ques-
tions appeared including Sylvester’s four-point problem in 1864, Bertrand’s paradox
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related to a random chord in the circle in 1888 and Jeffreys’s bicycle wheel prob-
lem in 1946. Until the beginning of the twentieth century, these questions were all
considered as recreational mathematics and there was a very thin theoretical back-
ground involved which may explain why the several answers to Bertrand’s question
were regarded as a paradox.

After a course by G. Herglotz in 1933, W. Blaschke developed a new domain
called integral geometry in his papers Integralgeometrie in 1935-1937, see e.g. [17].
It relies on the key idea that the mathematically natural probability models are those
that are invariant under certain transformation groups and it provides mainly formu-
las for calculating expected values, i.e. integrals with respect to rotations or trans-
lations of random objects. Simultaneously, the modern theory of probability based
on measure theory and Lebesgue’s integral was introduced by S. N. Kolmogorov in
[74].

During and after the Second World War, people with an interest in applications in
experimental science - material physics, geology, telecommunications, etc.- realized
the significance of random spatial models. For instance, in the famous foreword to
the first edition of the reference book [31], D. G. Kendall narrates his own experi-
ence during the War and how his Superintendent asked him about the strength of a
sheet of paper. This question was in fact equivalent to the study of a random set of
lines in the plane. Similarly, J. L. Meijering published a first work on the study of
crystal aggregates with random tessellations while he was working for the Philips
company in 1953 [84]. In the same way, C. Palm who was working on telecommu-
nications at Ericsson Technics proved a fundamental result in the one-dimensional
case about what is nowadays called the Palm measure associated with a stationary
point process [96]. All of these examples illustrate the general need to rigorously
define and study random spatial models.

We traditionally consider that the expression stochastic geometry dates back to
1969 and was due to D. G. Kendall and K. Krickeberg at the occasion of the first
conference devoted to that topic in Oberwolfach. In fact, I. Molchanov and W. S.
Kendall note in the preface of [135] that H. L. Frisch and J. M. Hammersley had
already written the following lines in 1963 in a paper on percolation: Nearly all
extant percolation theory deals with regular interconnecting structures, for lack of
knowledge of how to define randomly irregular structures. Adventurous readers may
care to rectify this deficiency by pioneering branches of mathematics that might be
called stochastic geometry or statistical topology.

For more than 50 years, a theory of stochastic geometry has been built in con-
junction with several domains, including

- the theory of point processes and queuing theory, see notably the work of J.
Mecke [81], D. Stoyan [124], J. Neveu [95], D. Daley [35] and [42],

- convex and integral geometry, see e.g. the work of R. Schneider [112] and W.
Weil [129] as well as their common reference book [114],

- the theory of random sets, mathematical morphology and image analysis, see the
work of D. G. Kendall [69], G. Matheron [80] and J. Serra [117],

- combinatorial geometry, see the work of R. V. Ambartzumian [3].
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It is worth noting that this development has been simultaneous with the research
on spatial statistics and analysis of real spatial data coming from experimental sci-
ence, for instance the work of B. Matérn in forestry [79] or the numerous papers in
geostatistics, see e.g. [134].

In this introductory lecture, our aim is to describe some of the best-known his-
torical problems in geometric probability and explain how solving these problems
and their numerous extensions has induced a whole branch of the modern theory
of stochastic geometry. We have chosen to embrace the collection of questions and
results presented in this lecture under the general denomination of random geome-
try. In Section 1, Buffon’s needle problem is used to introduce a few basic formulas
from integral geometry. Section 2 contains a discussion around Bertrand’s paradox
which leads us to the construction of random lines and the first results on selected
models of random tessellations. In Section 3, we present some partial answers to
Sylvester’s four-point problem and then derive from it the classical models of ran-
dom polytopes. Finally, in Section 4, Jeffrey’s bicycle wheel problem is solved and
is the front door to more general random covering and continuum percolation.

We have made the choice to keep the discussion as non-technical as possible
and to concentrate on the basic results and detailed proofs which do not require
much prerequisite knowledge on the classical tools used in stochastic geometry.
Each topic is illustrated by simulations which are done using Scilab 5.5. This chap-
ter is intended as a foretaste of some of the topics currently most active in stochastic
geometry and naturally encourages the reader to go beyond it and carry on learning
with reference to books such as [31, 114, 135].

Notation and convention. The Euclidean space Rd of dimension d ≥ 1 and with ori-
gin denoted by o is endowed with the standard scalar product 〈·, ·〉, the Euclidean
norm ‖·‖ and the Lebesgue measure Vd . The set Br(x) is the Euclidean ball centered
at x∈Rd and of radius r > 0. We denote by Bd (resp. Sd−1, Sd−1

+ ) the unit ball (resp.
the unit sphere, the unit upper half-sphere). The Lebesgue measure on Sd−1 will be

denoted by σd . We will use the constant κd = Vd(Bd) = 1
d σd(Sd−1) = π

d
2

Γ ( d
2 +1)

. Fi-

nally, a convex compact set of Rd (resp. a compact intersection of a finite number of
closed half-spaces of Rd) will be called a d-dimensional convex body (resp. convex
polytope).

1 From Buffon’s needle to integral geometry

In this section, we describe and solve the four century-old needle problem due to
Buffon and which is commonly considered as the very first problem in geometric
probability. We then show how the solution to Buffon’s original problem and to one
of its extensions constitutes a premise to the modern theory of integral geometry.
In particular, the notion of intrinsic volumes is introduced and two classical integral
formulas involving them are discussed.
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1.1 Starting from Buffon’s needle

In 1733, Georges-Louis Leclerc, comte de Buffon, raised a question which is nowa-
days better known as Buffon’s needle problem. The solution, published in 1777
[20], is certainly a good candidate for the first-ever use of an integral calculation in
probability theory. First and foremost, its popularity since then comes from being
the first random experiment which provides an approximation of π .

Buffon’s needle problem can be described in modern words in the following way:
a needle is dropped at random onto a parquet floor which is made of parallel strips
of wood, each of same width. What is the probability that it falls across a vertical
line between two strips?

Let us denote by D the width of each strip and by ` the length of the needle. We
assume for the time being that ` ≤ D, i.e. that only one crossing is possible. The
randomness of the experiment is described by a couple of real random variables,
namely the distance R from the needle’s mid-point to the closest vertical line and
the angle Θ between a horizontal line and the needle.

The chosen probabilistic model corresponds to our intuition of a random drop:
the variables R and Θ are assumed to be independent and both uniformly distributed
on (0,D/2) and (−π/2,π/2) respectively.

Now there is intersection if and only if 2R≤ `cos(Θ). Consequently, we get

p =
2

πD

∫ π
2

− π
2

∫ 1
2 `cos(θ)

0
drdθ =

2`
πD

.

This remarkable identity leads to a numerical method for calculating an approximate
value of π . Indeed, repeating the experiment n times and denoting by Sn the number
of hits, we can apply Kolmogorov’s law of large numbers to show that 2`n

DSn
converges

almost surely to π with an error estimate provided by the classical central limit
theorem.

In 1860, Joseph-Émile Barbier provided an alternative solution for Buffon’s nee-
dle problem, see [6] and [73, Chapter 1]. We describe it below as it solves at the
same time the so-called Buffon’s noodle problem, i.e. the extension of Buffon’s nee-
dle problem when the needle is replaced by any planar curve of class C1.

Let us denote by pk, k ≥ 0, the probability of exactly k crossings between the
vertical lines and the needle. Henceforth, the condition ` ≤ D is not assumed to be
fulfilled any longer as it would imply trivially that p= p1 and pk = 0 for every k≥ 2.
We denote by f (`) = ∑k≥1 kpk the mean number of crossings. The function f has
the interesting property of being additive, i.e. if two needles of respective lengths `1
and `2 are pasted together at one of their endpoints and in the same direction, then
the total number of crossing is obviously the sum of the numbers of crossings of
the first needle and of the second one. This means that f (`1 + `2) = f (`1)+ f (`2).
Since the function f is increasing, we deduce from its additivity that there exists a
positive constant α such that f (`) = α`.

More remarkably, the additivity property still holds when the two needles are not
in the same direction. This implies that for any finite polygonal line C , the mean
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Fig. 1 Simulation of Buffon’s needle problem with the particular choice `/D = 1/2: over 1000
samples, 316 were successful (red), 684 were not (blue).

number of crossings with the vertical lines of a rigid noodle with same shape as C ,
denoted by f (C ) with a slight abuse of notation, satisfies

f (C ) = αL (C ) (1)

where L (·) denotes the arc length. Using both the density of polygonal lines in
the space of piecewise C1 planar curves endowed with the topology of uniform
convergence and the continuity of the functions f and L on this space, we deduce
that the formula (1) holds for any piecewise C1 planar curve.

It remains to make the constant α explicit, which we do when replacing C by the
circle of diameter D. Indeed, almost surely, the number of crossings of this noodle
with the vertical lines is 2, which shows that α = 2

πD . In particular, when K is a
convex body of R2 with diameter less than D and p(K) denotes the probability that
K intersects one of the vertical lines, we get that

p(K) =
1
2

f (∂K) =
L (∂K)

πD
.

Further extensions of Buffon’s needle problem with more general needles and lat-
tices can be found in [18]. In the next subsection, we are going to show how to
derive the classical Cauchy-Crofton’s formula from similar ideas.
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1.2 Cauchy-Crofton formula

We do now the opposite of Buffon’s experiment, that is we fix a noodle which has
the shape of a convex body K of R2 and let a random line fall onto the plane. We
then count how many times in mean the line intersects K.

This new experiment requires to define what a random line is, which means intro-
ducing a measure on the set of all lines of R2. We do so by using the polar equation
of such a line, i.e. for any ρ ∈ R and θ ∈ [0,π), we denote by Lρ,θ the line

Lρ,θ = ρ(cos(θ),sin(θ))+R(−sin(θ),cos(θ)).

Noticing that there is no natural way of constructing a probability measure on the set
of random lines which would satisfy translation and rotation invariance, we endow
the set R× [0,π) with its Lebesgue measure. The integrated number of crossings of
a line with a C1 planar curve C is then represented by the function

g(C ) =
∫

∞

−∞

∫
π

0
#(Lρ,θ ∩C )dθdρ.

The function g is again additive under any concatenation of two curves so it is
proportional to the arc length. A direct calculation when C is the unit circle then
shows that

g(C ) = 2L (C ). (2)

This result is classically known in the literature as the Cauchy-Crofton formula [28,
34]. Going back to the initial question related to a convex body K, we apply (2) to
C = ∂K and notice that #(Lρ,θ ∩C ) is equal to 21{Lρ,θ∩K 6= /0}. We deduce that

L (∂K) =
∫

∞

−∞

∫
π

0
1{Lρ,θ∩K 6= /0}dθdρ. (3)

1.3 Extension to higher dimension

We aim now at extending (3) to higher dimension, that is we consider the set K d

of convex bodies of Rd , d ≥ 2, and for any element K of K d , we plan to calculate
integrals over all possible k-dimensional affine subspaces Lk of the content of Lk∩K.
This requires to introduce a set of fundamental functionals called intrinsic volumes
on the space of convex bodies of Rd . This is done through the rewriting of the
volume of the parallel set (K +Bρ(o)) as a polynomial in ρ > 0. Indeed, we are
going to prove that there exists a unique set of d functions V0, · · · ,Vd−1 such that

Vd(K +Bρ(o)) =
d

∑
k=0

κd−kρ
d−kVk(K). (4)
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The identity (4) is known under the name of Steiner formula and was proved by
Steiner for d = 2 and 3 in 1840 [122]. In particular, the renormalization with the
multiplicative constant κd−k guarantees that the quantity Vk(K) is really intrinsic to
K, i.e. that it does not depend on the dimension of the underlying space. We explain
below how to prove (4), following closely [113, Section 1].

In the first step, we start by treating the case when K is a convex polytope P.
We denote by F the set of all faces of P and by Fk, 0 ≤ k ≤ d, the subset of F
consisting of the k-dimensional faces of P. For any face F ∈F \{P}, the open outer
normal cone of F denoted by NP(F) is the set of x ∈ Rd \{o} such that there exists
an affine hyperplane H with normal vector x satisfying H∩P = F and 〈x,y−h〉 ≤ 0
for every y ∈ P and h ∈ H. In particular, when F ∈Fk, 0 ≤ k ≤ (d− 1), NP(F) is
a (d− k)-dimensional cone. Moreover, (F +NP(F)) is the set of points outside P
whose nearest point in P lies in F and no other lower-dimensional face. The set of
all sets (F +NP(F)), often called the normal fan of P, is a partition of Rd \P, see
Figure 2. Consequently, from the decomposition of (P+Bρ(o))\P combined with
Fubini’s theorem, we get

Vd(P+Bρ(o)) =Vd(P)+ ∑
F∈F\{P}

Vd(F +(NP(F)∩Bρ(o)))

=Vd(P)+
d−1

∑
k=0

∑
F∈Fk

Vk(F)γ(F,P)ρd−k
κd−k (5)

where γ(F,P) is the normalized area measure on the unit sphere Sd−k−1 of NP(F)∩
Sd−k−1. In particular, we deduce from (5) that (4) holds for K = P as soon as

Vk(P) = ∑
F∈Fk

Vk(F)γ(F,P).

P

F1

F2

F2 +NP (F2)

F1 +NP (F1)

Fig. 2 A two-dimensional convex polygon P (gray), the region (P+Br(o)) \P (pink), the sets
(F +NP(F)) with two examples for the edge F1 and the vertex F2 (striped regions).
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In the second step, we derive the Steiner formula for any convex body K. In order
to define Vk(K), we use the trick to rewrite (4) for a polytope P and for several values
of ρ , namely ρ = 1, · · · ,(d + 1). The (d + 1) equalities constitute a Vandermonde
system of (d+1) equations in (κdV0(P), · · · ,κ0Vd(P)). These equations are linearly
independent because the Vandermonde determinant of n pairwise distinct real num-
bers is different from zero. When solving the system by inverting the Vandermonde
matrix, we construct a sequence αk,l , 0≤ k ≤ d, 1≤ l ≤ (d +1) such that for every
polytope P and 0≤ k ≤ d,

Vk(P) =
d+1

∑
l=1

αk,lVd(P+Bl(o)).

It remains to check that the set of functions Vk(·) = ∑
d+1
l=1 αk,lVd(·+Bl(o)), 0≤ k ≤

d, defined on K d satisfies (4). This follows from the continuity of Vd , and hence of
all Vk on the space K d endowed with the Hausdorff metric and from the fact that
(4) holds on the set of convex polytopes which is dense in K d .

For practical reasons, we extend the definition of intrinsic volumes to K = /0 by
taking Vk( /0) = 0 for every k ≥ 0. Of particular interest are:
- the functional V0 equal to 1{K 6= /0},
- the functional V1 equal to the so-called mean width up to the multiplicative constant
dκd/(2κd−1),
- the functional Vd−1 equal to half of the Hausdorff measure of ∂K.
Furthermore, Hadwiger’s theorem, which asserts that any additive, continuous and
motion-invariant function on K d is a linear combination of the Vk’s, provides an
alternative way of characterizing intrinsic volumes [51].

We now go back to our initial purpose, i.e. extending the Cauchy-Crofton formula
to higher dimension. We do so in two different ways:

First, when K ∈K 2, an integration over ρ in (3) shows that

L (∂K) = 2V1(K) =
∫

π

0
V1(K|L0,θ )dθ

where (K|L0,θ ) is the one-dimensional orthogonal projection of K onto L0,θ . When
K ∈K d , d ≥ 2, Kubota’s formula asserts that any intrinsic volume Vk can be re-
covered up to a multiplicative constant as the mean of the Lebesgue measure of the
projection of K onto a uniformly distributed random k-dimensional linear subspace.
In other words, there exists an explicit positive constant c depending on d and k but
not on K such that for every K ∈K d ,

Vk(K) = c
∫
SOd

Vk(K|R(L))dνd(R) (6)

where L is a fixed k-dimensional linear subspace of Rd , SOd is the usual special
orthogonal group of Rd and νd is its associated normalized Haar measure.

Secondly, with a slight rewriting of (3), we get for any K ∈K 2
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L (∂K) =
∫∫

R×(0,π)
Vo(K∩ (rotθ (L0,0)+ρ(cos(θ),sin(θ))))dρdθ ,

where rotθ is the rotation around o and of angle θ . When K ∈ K d , d ≥ 2, for
any 0≤ l ≤ k≤ d and any fixed (d−k+ l)-dimensional linear subspace Ld−k+l , the
Crofton formula states that the k-th intrinsic volume of K is proportional to the mean
of the l-th intrinsic volume of the intersection of K with a uniformly distributed
random (d−k+ l)-dimensional affine subspace, i.e. there exists an explicit positive
constant c′ depending on d, k and l but not on K such that

Vk(K) = c′
∫
SOd

∫
L⊥d−k+l

Vl(K∩ (RLd−k+l + t))dtdνd(R), (7)

where Ld−k+l is a fixed (d− k+ l)-dimensional affine subspace of Rd .
For the proofs of (6) and (7) with the proper explicit constants and for a more

extensive account on integral geometry and its links to stochastic geometry, we refer
the reader to the reference books [111, Chapters 13-14], [110, Chapters 4-5] and
[114, Chapters 5-6]. We will show in the next section how some of the formulas
from integral geometry are essential to derive explicit probabilities related to the
Poisson hyperplane tessellation.

2 From Bertrand’s paradox to random tessellations

In this section, we recall Bertrand’s problem which leads to three different and per-
fectly correct answers. This famous paradox questions the several potential models
for constructing random lines in the Euclidean plane. The fundamental choice of
the translation-invariance leads us to the definition of the stationary Poisson line
process. After that, by extension, we survey a few basic facts on two examples of
stationary random tessellations of Rd , namely the Poisson hyperplane tessellation
and the Poisson-Voronoi tessellation.

2.1 Starting from Bertrand’s paradox

In the book entitled Calcul des Probabilités and published in 1889 [12], J. Bertrand
asks for the following question: a chord of the unit circle is chosen at random. What
is the probability that it is longer than

√
3, i.e. the edge of an equilateral triangle

inscribed in the circle?
The paradox comes from the fact that there are several ways of choosing a chord

at random. Depending on the model that is selected, the question has several pos-
sible answers. In particular, there are three correct calculations which show that the
required probability is equal to either 1/2, or 1/3 or 1/4. Still a celebrated and well-
known mathematical brain-teaser, Bertrand’s problem questions the foundations of
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the modern probability theory when the considered variables are not discrete. We
describe below the three different models and solutions.
Solution 1: random radius. We define a random chord through the polar coordi-
nates (R,Θ) of the orthogonal projection of the origin onto it. The variable Θ is
assumed to be uniformly distributed on (0,2π) because of the rotation-invariance of
the problem while R is taken independent of Θ and uniformly distributed in (0,1).
The length of the associated chord is 2

√
1−R2. Consequently, the required proba-

bility is
p1 = P(2

√
1−R2 ≥

√
3) = P(R≤ 1/2) = 1/2.

Solution 2: random endpoints. We define a random chord through the position Θ of
its starting point in the anticlockwise direction and the circular length Θ ′ to its end-
point. Again, Θ is uniformly distributed on (0,2π) while Θ ′ is chosen independent
of Θ and also uniformly distributed in (0,2π). The length of the associated chord is
2sin(Θ ′/2). Consequently, the required probability is

p2 = P(2sin(Θ ′/2)≥
√

3) = P(Θ ′/2 ∈ (π/3,2π/3)) =
4π

3 −
2π

3
2π

=
1
3
.

Solution 3: random midpoint. We define a random chord through its midpoint X .
The random point X is assumed to be uniformly distributed in the unit disk. The
length of the associated chord is 2

√
1−‖X‖2. Consequently, the required probabil-

ity is

p3 = P(‖X‖ ≤ 1/2) =
V2(Bo(1/2))

V2(Bo(1))
=

1
4
.

Fig. 3 Simulation of Bertrand’s problem with 100 chords: (a) Solution 1 (left): 54 successful (plain
line, red), 46 unsuccessful (dotted line, blue) (b) Solution 2 (middle): 30 successful (c) Solution 3
(right): 21 successful.

In conclusion, as soon as the model, i.e. the meaning that is given to the word
random, is fixed, all three solutions look perfectly correct. J. Bertrand considers the
problem as ill-posed, that is he does not decide in favor of any of the three. Neither
does H. Poincaré in his treatment of Bertrand’s paradox in his own Calcul des prob-
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abilités in 1912 [101]. Actually, they build on it a tentative formalized probability
theory in a continuous space. Many years later, in his 1973 paper The well-posed
problem [68], E. T. Jaynes explains that a natural way for discriminating between
the three solutions consists in favoring the one which has the most invariance prop-
erties with respect to transformation groups. All three are rotation invariant but only
one is translation invariant and that is Solution 1. And in fact, in a paper from 1868
[34], long before Bertrand’s book, M. W. Crofton had already proposed a way to
construct random lines which guarantees that the mean number of lines intersecting
a fixed closed convex set is proportional to the arc length of its boundary.

Identifying the set of lines Lρ,θ with R× [0,π), we observe that the previous dis-
cussion means that the Lebesgue measure dρdθ on R× [0,π) plays a special role
when generating random lines. Actually, it is the only rotation and translation invari-
ant measure up to a multiplicative constant. The construction of a natural random
set of lines in R2 will rely heavily on it.

2.2 Random sets of points, random sets of lines and extensions

Generating random geometric shapes in the plane requires to generate random sets
of points and random sets of lines. Under the restriction to a fixed convex body K,
the most natural way to generate random points consists in constructing a sequence
of independent points which are uniformly distributed in K. Similarly, in view of
the conclusion on Bertrand’s paradox, random lines can be naturally taken as inde-
pendent and identically distributed lines with common distribution

1
µ2(K)

1{Lρ,θ∩K 6= /0}dρdθ

where
µ2(·) =

∫∫
R×(0,π)

1{Lρ,θ∩· 6= /0}dρdθ .

These constructions present two drawbacks: first, they are only defined inside
K and not in the whole space and secondly, they lead to undesired dependencies.
Indeed, when fixing the total number of points or lines thrown in K, the joint distri-
bution of the numbers of points or lines falling into several disjoint Borel subsets of
K is multinomial. Actually, there is a way of defining a more satisfying distribution
on the space of locally finite sets of points (resp. lines) in the plane endowed with
the σ -algebra generated by the set of functions which to any set of points (resp.
lines) associates the number of points falling into a fixed Borel set of R2 (resp. the
number of lines intersecting a fixed Borel set of R2). Indeed, for any fixed λ > 0,
there exists a random set of points (resp. lines) in the plane such that:
- for every Borel set B with finite Lebesgue measure, the number of points falling
into B (resp. the number of lines intersecting B) is Poisson distributed with mean
λV2(B) (resp. λ µ2(B))
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- for every finite collection of disjoint Borel sets B1, · · · ,Bk, k ≥ 1, the numbers of
points falling into Bi (resp. lines intersecting Bi) are mutually independent.

This random set is unique in distribution and both translation and rotation invari-
ant. It is called a homogeneous Poisson point process (resp. isotropic and stationary
Poisson line process) of intensity λ . For a detailed construction of both processes,
we refer the reader to e.g. [114, Section 3.2].

The Poisson point process can be naturally extended to Rd , d ≥ 3, by replacing
V2 with Vd . Similarly, we define the isotropic and stationary Poisson hyperplane
process in Rd by replacing µ2 by a measure µd which is defined in the following
way. For any ρ ∈R and u ∈ Sd−1

+ , we denote by Hρ,u the hyperplane containing the
point ρu and orthogonal to u. Let µd be the measure on Rd such that for any Borel
set B of Rd ,

µd(B) =
∫∫

R×Sd−1
+

1{Hρ,u∩B 6= /0}dρdσd(u). (8)

Another possible extension of these models consists in replacing the Lebesgue
measure Vd (resp. the measure µd) by any locally finite measure which is not a
multiple of Vd (resp. of µd). This automatically removes the translation invariance
in the case of the Poisson point process while the translation invariance is preserved
in the case of the Poisson hyperplane process only if the new measure is of the form
dρdνd(u) where νd is a measure on Sd−1

+ . For more information on this and also
on non-Poisson point processes, we refer the reader to the reference books [95, 36,
72, 31]. In what follows, we only consider homogeneous Poisson point processes
and isotropic and stationary Poisson hyperplane processes, denoted respectively by
Pλ and P̂λ . These processes will constitute the basis for constructing stationary
random tessellations of the Euclidean space.

2.3 On two examples of random convex tessellations

The Poisson hyperplane process P̂λ induces naturally a tessellation of Rd into con-
vex polytopes called cells which are the closures of the connected components of
the set Rd \

⋃
H∈P̂λ

H. This tessellation is called the (isotropic and stationary) Pois-
son hyperplane tessellation of intensity λ . In dimension two, with probability one,
any crossing between two lines is an X-crossing, i.e. any vertex of a cell belongs
to exactly 4 different cells while in dimension d, any k-dimensional face of a cell,
0≤ k≤ d, is included in the intersection of (d−k) different hyperplanes and belongs
to exactly 2d−k different cells almost surely.

Similarly, the Poisson point process Pλ also generates a tessellation in the fol-
lowing way: any point x of Pλ , called a nucleus, gives birth to its associated cell
C(x|Pλ ) defined as the set of points of Rd which are closer to x than to any other
point of Pλ for the Euclidean distance, i.e.
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C(x|Pλ ) = {y ∈ Rd : ‖y− x‖ ≤ ‖y− x′||∀x′ ∈Pλ}.

This tessellation is called the Voronoi tessellation generated by Pλ or the Poisson-
Voronoi tessellation in short. In particular, the cell C(x|Pλ ) with nucleus x is
bounded by portions of bisecting hyperplanes of segments [x,x′], x′ ∈Pλ \ {x}.
The set of vertices and edges of these cells constitute a graph which is random and
embedded in Rd , sometimes referred to as the Poisson-Voronoi skeleton. In dimen-
sion two, with probability one, any vertex of this graph belongs to exactly three
different edges and three different cells while in dimension d, any k-dimensional
face of a cell, 0≤ k ≤ d, is included in the intersection of (d +1− k)(d− k)/2 dif-
ferent bisecting hyperplanes and belongs to exactly (d+1−k) different cells almost
surely.

Fig. 4 Simulation of the Poisson line tessellation (left) and the Poisson-Voronoi tessellation (right)
in the square.

The Poisson hyperplane tessellation has been used as a natural model for the tra-
jectories of particles inside bubble chambers [46], the fibrous structure of paper [85]
and the road map of a city [56]. The Voronoi construction was introduced in the first
place by R. Descartes as a possible model for the shape of the galaxies in the Uni-
verse [37]. The Poisson-Voronoi tessellation has appeared since then in numerous
applied domains, including telecommunication networks [5] and materials science
[103, 76].

In both cases, stationarity of the underlying Poisson process makes it possible
to do a statistical study of the tessellation. Indeed, let f be a translation-invariant,
measurable and non-negative real-valued function defined on the set Pd of convex
polytopes of Rd endowed with the topology of the Hausdorff distance. For r > 0,
let Cr and Nr be respectively the set of cells included in Br(o) and its cardinality.
Then, following for instance [33], we can apply Wiener’s ergodic theorem to get
that, when r→ ∞,



14 Pierre Calka

1
Nr

∑
C∈Cr

f (C)→ 1
E(Vd(Co)−1)

E
(

f (Co)

Vd(Co)

)
almost surely (9)

where Co is the almost-sure unique cell containing the origin o in its interior.
This implies that two different cells are of particular interest: the cell Co, often

called the zero-cell, and the cell C defined in distribution by the identity

E( f (C )) =
1

E(Vd(Co)−1)
E
(

f (Co)

Vd(Co)

)
. (10)

The convergence at (9) suggests that C has the law of a cell chosen uniformly at
random in the whole tessellation, though such a procedure would not have any clear
mathematical meaning. That is why C is called the typical cell of the tessellation
even if it is not defined almost surely and it does not belong to the tessellation
either. In particular, the typical cell is not equal in distribution to the zero-cell and is
actually stochastically smaller since it has a density proportional to Vd(Co)

−1 with
respect to the distribution of Co. Actually, it is possible in the case of the Poisson
hyperplane tessellation to construct a realization of C which is almost surely strictly
included in Co [82]. This fact can be reinterpreted as a multidimensional version of
the classical bus waiting time paradox, which says the following: if an individual
arrives at time t at a bus stop, the time between the last bus he/she missed and the bus
he/she will take is larger than the typical interarrival time between two consecutive
busses.

Relying on either (9) or (10) may not be easy when calculating explicit mean
values or distributions of geometric characteristics of C . Another equivalent way of
defining the distribution of C is provided by the use of a so-called Palm distribution,
see e.g. [96], [92, Section 3.2], [114, Sections 3.3,3.4] and [75, Section 9]. For sake
of simplicity, we explain the procedure in the case of the Poisson-Voronoi tessella-
tion only. Let f be a measurable and non-negative real-valued function defined on
Pd . Then, for any Borel set B such that 0 <Vd(B)< ∞, we get

E( f (C )) =
1

λVd(B)
E

(
∑

x∈Pλ∩B
f (C(x|Pλ )− x)

)
. (11)

where C(x|Pλ )− x is the set C(x|Pλ ) translated by −x. The fact that the quantity
on the right-hand side of the identity (11) does not depend on the Borel set B comes
from the translation invariance of the Poisson point process Pλ . It is also remark-
able that the right-hand side of (11) is again a mean over the cells with nucleus in B
but contrary to (9) there is no limit involved, which means in particular that B can
be as small as one likes, provided that Vd(B)> 0.

Following for instance [92, Proposition 3.3.2], we describe below the proof of
(11), i.e. that for any translation-invariant, measurable and non-negative function
f , the Palm distribution defined at (11) is the same as the limit of the means in
the law of large numbers at (9). Indeed, let us assume that C be defined in law
by the identity (11) and let us prove that (10) is satisfied, i.e. that C has a density
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proportional to Vd(·)−1 with respect to Co. By classical arguments from measure
theory, (11) implies that for any non-negative measurable function F defined on the
product space Pd×Rd ,

λ

∫
E(F(C ,x))dx = E

(
∑

x∈Pλ

F(C(x|Pλ )− x,x)

)
.

Applying this to F(C,x) = f (C)
Vd(C)1{−x∈C} and using the translation invariance of f ,

we get

λE( f (C )) = E

(
∑

x∈Pλ

f (C(x|Pλ ))

Vd(C(x|Pλ ))
1o∈C(x|Pλ )

)
= E

(
f (Co)

Vd(Co)

)
. (12)

Applying (12) to f = 1 and f =Vd successively, we get

E(Vd(C )) =
1

E(Vd(Co)−1)
=

1
λ
. (13)

Combining (12) and (13), we obtain that the typical cell C defined at (11) satisfies
(10) so it is equal in distribution to the typical cell defined earlier through the law of
large numbers at (9).

In addition to these two characterizations of the typical cell, the Palm definition
(11) of C in the case of the Poisson-Voronoi tessellation provides a very simple
realization of the typical cell C : it is equal in distribution to the cell C(o|Pλ ∪{o}),
i.e. the Voronoi cell associated with the nucleus o when the origin is added to the set
of nuclei of the tessellation. This result is often called Slivnyak’s theorem, see e.g.
[114, Theorem 3.3.5].

The classical problems related to stationary tessellations are mainly the follow-
ing:

(a)making a global study of the tessellation, for instance on the set of vertices or
edges: calculation of mean global topological characteristics per unit volume,
proof of limit theorems, etc;

(b)calculating mean values and whenever possible, moments and distributions of
geometric characteristics of the zero-cell or the typical cell or a typical face;

(c)studying rare events, i.e. estimating distribution tails of the characteristics of the
zero-cell or the typical cell and proving the existence of limit shapes in some
asymptotic context.

Problem (a). As mentioned earlier, R. Cowan [33] showed several laws of large
numbers by ergodic methods which were followed by second-order results from the
seminal work due to F. Avram and Bertsimas on central limit theorems [4] to the
more recent additions [55] and [57]. Topological relationships have been recently
established in [130] for a general class of stationary tessellations.
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Problem (b). The question of determining mean values of the volume or any com-
binatorial quantity of a particular cell was tackled early. The main contributions
are due notably to G. Matheron [80, Chapter 6] and R. E. Miles [87, 88] in the
case of the Poisson hyperplane tessellation and to J. Møller [90] in the case of the
Poisson-Voronoi tessellation. Still, to the best of our knowledge, some mean val-
ues are unknown like for instance the mean number of k-dimensional faces of the
Poisson-Voronoi typical cell for 1≤ k ≤ (d−1) and d ≥ 3. Regarding explicit dis-
tributions, several works are noticeable [11, 22, 23] but in the end, it seems that very
few have been computable up to now.

Problem (c). The most significant works related to this topic have been rather re-
cent: distribution tails and large-deviations type results [44, 58], extreme values [29],
high dimension [59]... Nevertheless, many questions, for instance regarding precise
estimates of distribution tails, remain open to this day. One of the most celebrated
questions concerns the shape of large cells. A famous conjecture stated by D. G.
Kendall in the forties asserts that large cells from a stationary and isotropic Poisson
line tessellation are close to the circular shape, see e.g. the foreword to [31]. This
remarkable feature is in fact common to the Crofton cell and the typical cell of both
the Poisson hyperplane tessellation and the Poisson-Voronoi tessellation in any di-
mension. It was formalized for different meanings of large cells and proved, with
an explicit probability estimate of the deviation to the limit shape, by D. Hug, M.
Reitzner and R. Schneider in a series of breakthrough papers, see e.g. [63, 64, 60].

Intentionally, we have chosen to skip numerous other models of tessellations.
Noteworthy among these are those generated by non-Poisson point processes [45],
Johnson-Mehl tessellations [91] and especially STIT tessellations [94].

In the next subsection, we collect a few explicit first results related to Problem
(b), i.e. the mean value and distribution of several geometric characteristics of either
the zero-cell Co or the typical cell C .

2.4 Mean values and distributional properties of the zero-cell and
of the typical cell

This subsection is not designed as an exhaustive account on the many existing results
related to zero and typical cells from random tessellations. Instead, we focus here on
the basic first calculations which do not require much knowledge on Poisson point
processes. For more information and details, we refer the reader to the reference
books [92], [114, Section 10.4] and to the survey [23].
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2.4.1 The zero-cell of a Poisson hyperplane tessellation

We start with the calculation of the probability for a certain convex body K to be
included in Co the zero-cell or the typical cell. In the case of the planar Poisson
line tessellation, let K be a convex body containing the origin - if not, K can be
replaced by the convex hull of K∪{o}. Since the number of lines from the Poisson
line process intersecting K is a Poisson variable with mean λ µ2(K), we get

P(K ⊂Co) = P({Lρ,θ ∩K = /0 ∀Lρ,θ ∈Pλ )

= exp(−µ2(K))

= exp(−L (∂K)),

where the last equality comes from the Cauchy-Crofton formula (3) and is obviously
reminiscent of Buffon’s needle problem. For d ≥ 3, we get similarly, thanks to (7)
applied to k = 1 and l = 0,

P(K ⊂Co) = exp(−µd(K)) = exp(−κd−1V1(K)). (14)

The use of Crofton formula for deriving the probability P(K ⊂Co) may explain why
the zero-cell of the isotropic and stationary Poisson hyperplane tessellation is often
referred to as the Crofton cell.

Applying (14) to K = Br(o), r > 0, and using the equality V1(Bd) = dκd
κd−1

, we
obtain that the radius of the largest ball centered at o and included in Co is exponen-
tially distributed with mean (dκd)

−1.

2.4.2 The typical cell of a Poisson hyperplane tessellation

Let us denote by f0(·) the number of vertices of a convex polytope. In the planar
case, some general considerations show without much calculation that E( f0(C )) is
equal to 4. Indeed, we have already noted that with probability one, any vertex of
a cell belongs to exactly 4 cells and is the highest point of a unique cell. Conse-
quently, there are as many cells as vertices. In particular, the mean 1

Nr
∑C∈Cr f0(C)

is equal, up to boundary effects going to zero when r→∞, to 4 times the ratio of the
total number of vertices in Br(o) over the total number of cells included in Br(o),
i.e. converges to 4. Other calculations of means and further moments of geometric
characteristics can be found notably in [80, Chapter 6] and in [85, 86, 87].

One of the very few explicit distributions is the law of the inradius of C , i.e.
the radius of the largest ball included in C . Remarkably, this radius is equal in
distribution to the radius of the largest ball centered at o and included in Co, i.e. is
exponentially distributed with mean (dκd)

−1. This result is due to R. E. Miles in
dimension two and is part of an explicit construction of the typical cell C based
on its inball [88], which has been extended to higher dimension since then, see e.g.
[24].
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2.4.3 The typical cell of a Poisson-Voronoi tessellation

In this subsection, we use the realization of the typical cell C of a Poisson-Voronoi
tessellation as the cell C(o|Pλ ∪{o}), as explained at the end of Subsection 2.3. We
follow the same strategy as for the zero-cell of a Poisson hyperplane tessellation, i.e.
calculating the probability for a convex body K to be contained in C and deducing
from it the distribution of the inradius of C .

Let K be a convex body containing the origin. The set K is contained in C(o|Pλ ∪
{o}) if and only if o is the nearest nucleus to any point in K, which means that for
every x ∈ K, the ball B‖x‖(x) does not intersect Pλ . Let us consider the set

Fo(K) =
⋃
x∈K

B‖x‖(x)

that we call the Voronoi flower of K with respect to o, see Figure 5.

o

K

Fo(K)

Fig. 5 Voronoi Flower (red) of the convex body K (black) with respect to o.

Using the fact that the number of points of Pλ in Fo(K) is Poisson distributed
with mean λVd(Fo(K)), we get

P(K ⊂C(o|Pλ ∪{o})) = exp(−λVd(Fo(K))).

Applying this to K = Bo(r), r > 0, we deduce that the radius of the largest ball cen-
tered at o and included in C(o|Pλ ∪{o}) is Weibull distributed with tail probability
equal to exp(−λ2dκdrd), r > 0.

Similarly to the case of the typical cell of a Poisson line tessellation, some direct
arguments lead us to the calculation of E( f0(C )) in dimension two: any vertex of
a cell belongs to exactly 3 cells and with probability one, is the either highest or
lowest point of a unique cell. Consequently, there are as twice as many vertices as
cells. In particular, the mean 1

Nr
∑C∈Cr f0(C) is equal, up to boundary effects going

to zero when r→ ∞, to 3 times the ratio of the total number of vertices in Br(o)
over the total number of cells included in Br(o), i.e. equal to 6. This means that
E( f0(C )) = 6.

In the next section, we describe a different way of generating random polytopes:
they are indeed constructed as convex hulls of random sets of points.
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3 From Sylvester’s four-point problem to random polytopes

This section is centered around Sylvester’s four-point problem, another historical
problem of geometric probability which seemingly falls under the denomination of
recreational mathematics but in fact lays the foundations of an active domain of
today’s stochastic geometry, namely the theory of random polytopes. We aim at
describing first Sylvester’s original question and some partial answers to it. We then
survey the topic of random polytopes which has been largely investigated since the
sixties, partly due to the simultaneous development of computational geometry.

3.1 Starting from Sylvester’s four-point problem

In 1864, J. J. Sylvester published in The Educational Times [125] a problem which
is nowadays known under the name of Sylvester’s four-point problem and can be
rephrased in the following way: given a convex body K in the plane, what is the
probability that 4 random points inside K are the vertices of a convex quadrilateral?

Fig. 6 Simulation of Sylvester’s four-point problem in the triangle: the convex hull of the 4 uniform
points (red) is either a convex quadrilateral (left) or a triangle (right).

Let us denote by p4(K) the probability that 4 random points which are indepen-
dent and uniformly distributed in K are the vertices of a convex quadrilateral. If not,
one of the 4 points is included in the triangle whoses vertices are the 3 other points.
Denoting by A(K) the mean area of a random triangle whoses vertices are 3 i.i.d.
uniform points in K, we get the identity

p4(K) = 1−4
A(K)

V2(K)
. (15)
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Solving Sylvester’s problem is then equivalent to calculating the mean value A(K).
In particular, the quantity A(K)

V2(K) is scaling invariant and also invariant under any
area-preserving affine transformation.

3.1.1 Calculation of Sylvester’s probability in the case of the disk

In this subsection, we provide an explicit calculation of p4(D) where D is the unit
disk. As in the next subsection, we follow closely the method contained in [70, pages
42-46].

Step 1. We can assume that one of the points is on the boundary of the disk. In-
deed, isolating the farthest point from the origin, we get

V2(D)3A(D) = 3
∫
D

[∫∫
D2

1{‖x1‖,‖x2‖∈(0,‖x3‖)}V2(Conv({x1,x2,x3})))dz1dz2

]
dz3.

Now for a fixed z3 ∈D\{o}, we apply the change of variables z′i =
zi
‖z3‖

, i = 1,2, in
the double integral and we deduce that

A(D) =
3

π3

∫
D
‖z3‖6

[∫∫
D2

V2(Conv({z′1,z′2,
z3

‖z3‖
})))dz′1dz′2

]
dz3.

(16)

Since the double integral above does not depend on z3, we get

A(D) =
3

4π2 I (17)

where
I =

∫∫
D2

V2(Conv({z0,z1,z2}))dz1dz2,

z0 being a fixed point on the boundary of D.

Step 2. Let us now calculate I, i.e. π2 times the mean area of a random triangle
with one deterministic vertex on the unit circle and two random vertices indepen-
dent and uniformly distributed in D.

For sake of simplicity, we replace the unit disk D by its translate D+(0,1) and
the fixed point on the boundary of D+(0,1) is chosen to be equal to o. This does
not modify the integral I. The polar coordinates (ρi,θi) of zi, i = 1,2, satisfy ρi ∈
(0,2sin(θi)) and

V2(Conv({o,z1,z2})) =
1
2

ρ1ρ2|sin(θ2−θ1)|. (18)

Consequently, we obtain
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I =
∫∫

0<θ1<θ2<π

[∫ 2sin(θ1))

0
ρ

2
1 dρ1

∫ 2sin(θ2)

0
ρ

2
2 dρ2

]
sin(θ2−θ1)dθ1dθ2

=
64
9

∫∫
0<θ1<θ2<π

sin3(θ1)sin3(θ2)sin(θ2−θ1)dθ1dθ2

=
35π

36
.

Conclusion. Combining this result with (17) and (15), we get

p4(D) = 1− 35
12π2 ≈ 0.70448...

3.1.2 Calculation of Sylvester’s probability in the case of the triangle

In this subsection, we calculate the probability p4(T) where the triangle T is the
convex hull of the three points o, (1,1) and (1,−1). We recall that the calculation
of p4(K) is invariant under any area-preserving affine transformation.

Step 1. We can assume that one of the points is on the edge facing o. Indeed, denot-
ing by (xi,yi) the Cartesian coordinates of zi, i = 1,2,3, we get

V2(T)3A(T) = 3
∫
T

[∫∫
T2

1{x1,x2∈(0,x3)}V2(Conv({z1,z2,z3}))dz1dz2

]
dz3.

Now for a fixed z3 ∈ T \ {o}, we apply the change of variables z′i =
zi
x3

, i = 1,2, in
the double integral. We get

A(T) = 3
∫ 1

x3=0

∫ x3

y3=−x3

[∫∫
T2

x6
3V2(Conv({z′1,z′2,

z3

x3
}))dz′1dz′2

]
dz3

= 6
∫ 1

x3=0

∫ x3

y3=0
x6

3

[∫∫
T2

V2(Conv({z′1,z′2,
x3

x3
}))dz′1dz′2

]
dz3.

Finally, for fixed x3, we apply the change of variables h = y3
x3

. Since the double
integral in square brackets above does not depend on x3, we get

A(T) = 6
∫ 1

0
x7

3dx3

∫ 1

h=0

[∫∫
T2

V2(Conv({z1,z2,(1,h)}))dz1dz2

]
dh

=
3
4

∫ 1

h=0
I′(h)dh (19)

where I′(h) =
∫∫

T2 V2(Conv({z1,z2,(1,h)}))dz1dz2.

Step 2. Let us now calculate I′(h), 0 < h < 1, i.e. the mean area of a random triangle
with one deterministic vertex at (1,h) on the vertical edge and two random vertices
independent and uniformly distributed in T. The point (1,h) divides T into two sub-
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triangles, the upper triangle T+(h) = Conv({o,(1,h),(1,1)}) and the lower triangle
T−(h) = Conv({o,(1,h),(1,−1)}). Let us rewrite I′(h) as

I′(h) = 2I′+,−(h)+V2(T+(h))2Â(T+(h))+V2(T−(h))2Â(T−(h)) (20)

where

I′+,−(h) =
∫

z1∈T+(h),z2∈T−(h)
V2(Conv({z1,z2,(1,h)})))dz1dz2 (21)

and Â(T ), for a triangle T , is the mean area of a random triangle which shares a
common vertex with T and has two independent vertices uniformly distributed in T .

We start by making explicit the quantity Â(T ) for any triangle T . It is invariant
under any area-preserving affine transformation and is multiplied by λ 2 when T is
rescaled by λ−1. Consequently, it is proportional to V2(T ), i.e.

Â(T ) = Â(T)V2(T ). (22)

We now calculate

Â(T) =
∫
T2

V2(Conv({o,z1,z2}))dz1dz2.

The polar coordinates (ρi,θi) of xi, i = 1,2, satisfy ρi ∈ (0,cos−1(θi)) and equality
(18). Consequently, we obtain

Â(T) =
∫ π

4

− π
4

∫ π
4

− π
4

[∫ cos−1(θ1)

0
ρ

2
1 dρ1

∫ cos−1(θ2)

0
ρ

2
2 dρ2

]
sin(θ2−θ1)dθ1dθ2

=
1
9

∫∫
− π

4 <θ1<θ2<
π
4

sin(θ2−θ1)

cos3(θ1)cos3(θ2)
dθ1dθ2

=
4

27
. (23)

Combining (22) and (23), we obtain in particular that

Â(T+(h)) =
2(1−h)

27
, and Â(T−(h)) =

2(1+h)
27

. (24)

We turn now our attention to the quantity I′+,−(h) defined at (21). Using the rewriting
of the area of a triangle as half of the non-negative determinant of two vectors and
introducing g+(h) (resp. g−(h)) as the center of mass of T+(h) (resp. T−(h)), we
obtain
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I′+,−(h) =
1
2

∫
z1∈T+(h),z2∈T−(h)

det(z1− (1,h),z2− (1,h))dz1dz2

=
1
2

∫
z1∈T+(h)

det
(
(z1− (1,h)),

∫
z2∈T−(h)

(z2− (1,h))
)

dz1

=
V2(T−(h))

2
det
(∫

z1∈T+(h)
(z1− (1,h))dz1,(g−(h)− (1,h))

)
=V2(T−(h))V2(T+(h))V2(Conv({g+(h),g−(h),(1,h)}))

=
(1−h)(1+h)

4
V2(T)

9
=

1−h2

36
. (25)

Inserting (24) and (25) into (20), we get

I′(h) =
1−h2

18
+

(1−h)3

54
+

(1+h)3

54
=

5+3h2

54
. (26)

Conclusion. Combining (26) with (19) and (15), we get A(T) = 1
12 and

p4(T ) =
2
3
= 0.66666...

3.1.3 Extremes of p4(K)

In 1917, W. Blaschke proved a monotonicity result for Sylvester’s four-point prob-
lem, namely that the probability p4(K) is maximal when K is a disk and minimal
when K is a triangle, see [15] and [16, §24, §25]. Because of (15), this amounts
to saying that the mean area of a random triangle in a unit area convex body K is
minimal when K is a disk and maximal when K is a triangle.

This assertion is due to the use of symmetrization techniques which have be-
come classical since then in convex and integral geometry. We describe below the
main arguments developed by W. Blaschke and also rephrased in a nice way in the
historical note [100].

Let K be a unit area convex body of R2 and let us denote by xmin and xmax the
minimal and maximal projection on the x-axis of a point of K. The boundary of K
is parametrized by two functions f+, f− : [xmin,xmax] −→ R such that f+ ≥ f− with
equality at xmin and xmax. We use the term Steiner symmetrization of K with respect to
the x-axis for the transformation

S :

{
K −→ R2

(x,y) 7−→
(

x,y− f+(x)+ f−(x)
2

)
In other words, S sends any segment which is the intersection of K with a vertical
line to its unique vertical translate which is symmetric with respect to the x-axis; see
Figure 7. In particular, S is area-preserving and the image of K is a convex body
which is symmetric with respect to the x-axis, see e.g. [110, Section 10.3]. Let us
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show that
A(K)≥ A(S (K)) (27)

Let zi = (xi,yi), i = 1,2,3, be three points of K. In particular, we start by noticing
that the area of the parallelogram spanned by the two vectors (z2− z1) and (z3− z1)
is twice the area of the triangle Conv({z1,z2,z3}). Consequently, we get

V2(Conv({z1,z2,z3}) =
1
2
|
∣∣∣∣ x2− x1 x3− x1
y2− y1 y3− y1

∣∣∣∣ |= 1
2
|

∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ |. (28)

We will also use the points z∗i = S (zi) = (xi,y∗i ), zi∗ = (xi,−y∗i ) and wi = (xi,yi−
2y∗i ), i = 1,2,3. In particular, the identity S (wi) = zi∗ is satisfied and the two trian-
gles Conv({z1,z2,z3}) and Conv({w1,w2,w3}) have same area. Consequently,

V2(Conv({z1,z2,z3})+V2(Conv({w1,w2,w3})

≥ 1
2
|

∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣−
∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1−2y∗1 y2−2y∗2 y3−2y∗3

∣∣∣∣∣∣ |
≥ 1

2
|

∣∣∣∣∣∣
1 1 1
x1 x2 x3
2y∗1 2y∗2 2y∗3

∣∣∣∣∣∣ |
= 2V2(Conv({z∗1,z∗2,z∗3})). (29)

Integrating (29) with respect to z1,z2,z3 ∈K and using the fact that both the transfor-
mation S and the reflection with respect to the x-axis preserve the Lebesgue mea-
sure, we obtain (27). It remains to use the fact that the equality in (27) is satisfied
only when K is an ellipse. In fact, for any convex body K, there exists a sequence of
lines such that the image of K under consecutive applications of Steiner symmetriza-
tions with respect to the lines of that sequence converges to a disk [26]. The function
A(·) being continuous on the set of convex bodies, we obtain A(K) ≥ A( 1√

π
D) and

therefore p4(K)≤ p4(D).
We turn now our attention to the proof of p4(K) ≤ p4(T). The method relies

on a transformation T in the same spirit as the Steiner symmetrization, called
Schüttelung or shaking and defined as follows:

T ::
{

K −→ R2

(x,y) 7−→ (x,y− f−(x))

In other words, T sends any segment which is the intersection of K with a vertical
line to its unique vertical translate with a lower-end on the x-axis, see Figure 7. In
particular, T is area-preserving and preserves the convexity.

Using both (28) and the fact that K is a unit-area convex body which satisfies the
equality

K = {(x,y) : x ∈ [xmin,xmax], f−(x)≤ y≤ f+(x)},
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Fig. 7 Two symmetrizations (red) of a convex body delimited by translates of the curves f+(x) =√
x and f−(x) = x(x− 2+

√
2

2 ) on the interval [0,2] (black) and the image of a triangle by sym-
metrization (blue): the Steiner symmetrization (left) and the shaking (right).

we get that

A(K) =
∫∫∫

[xmin,xmax]
I(x1,x2,x3)dx1dx2dx3 (30)

where

I(x1,x2,x3)

=
∫ f+(x1)

f−(x1)

∫ f+(x2)

f−(x2)

∫ f+(x3)

f−(x3)

1
2
|

∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ |dy3dy2dy1

=
∫ f+(x1)

f−(x1)

∫ f+(x2)

f−(x2)

∫ f+(x3)

f−(x3)

1
2
|a1y1 +a2y2 +a3y3|dy3dy2dy1.

and with a1 = a1(x1,x2,x3) = (x3− x2), a2 = a2(x1,x2,x3) = (x1− x3) and a3 =
a3(x1,x2,x3) = (x2− x1). For sake of simplicity, the dependency of the coefficients
ai on the coordinates xi is omitted. When x1,x2,x3 are fixed, the function I calculates
the 4-dimensional volume of the parallelepiped region delimited by the rectangular
basis [ f−(x1), f+(x1)]× [ f−(x2), f+(x2)]× [ f−(x3), f+(x3)]×{0} and the surface of
equation y4 =

1
2 |a1y1 + a2y2 + a3y3| . In particular, if we allow the rectangular ba-

sis to be translated, the integral I only depends on the distance D in R3 from the
midpoint ( f−(x1)+ f+(x1)

2 , f−(x2)+ f+(x2)
2 , f−(x3)+ f+(x3)

2 ) of the rectangular basis to the
set {(y1,y2,y3) : a1y1 + a2y2 + a3y3 = 0} and is even an increasing function of D .
We notice that D satisfies
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D =
|a1( f−(x1)+ f+(x1))+a2( f−(x2)+ f+(x2))+a3( f−(x3)+ f+(x3))|

2
√

a2
1 +a2

2 +a2
3

=
1

2
√

a2
1 +a2

2 +a2
3

|

∣∣∣∣∣∣
1 1 1
x1 x2 x3

f−(x1) f−(x2) f−(x3)

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 1 1
x1 x2 x3

f+(x1) f+(x2) f+(x3)

∣∣∣∣∣∣ |.
Now, the two determinants in the last equality above are two times the algebraic
areas of two triangles whose vertices are on ∂K and have respective x-coordinates
x1, x2 and x3. Because of the convexity of K, they must have opposite signs. Conse-
quently, we get from the triangular inequality ||a|− |b|| ≤ |a−b| that

D ≤ 1

2
√

a2
1 +a2

2 +a2
3

|

∣∣∣∣∣∣
1 1 1
x1 x2 x3

f+(x1)− f−(x1) f+(x2)− f−(x2) f+(x3)− f−(x3)

∣∣∣∣∣∣ |.
In particular, after application of the transformation T , the distance is equal to the
right-hand side of the inequality above. The integral I(x1,x2,x3) being an increasing
function of D , it is greater, which implies thanks to (30) that

A(K)≤ A(T (K)).

It remains to use the fact that there exists a sequence of lines such that the image of
K under consecutive applications of the Schüttelung operations with respect to these
lines converges to a triangle [13]. Therefore, we get the inequality A(K)≤ A(T) and
thanks to (15), the required inequality p4(K)≥ p4(T).

3.2 Random polytopes

There are several ways of extending Sylvester’s initial question:

(a)increasing the number of random points inside K and ask for the probability that
n i.i.d. points uniformly distributed in a two-dimensional convex body K are in
convex position, i.e. are extreme points of their convex hull;

(b)increasing the dimension and ask for the probability that (d + 2) or more i.i.d.
points uniformly distributed in a d-dimensional convex body K are the vertices
of a convex polytope;

(c) increasing the number of random points in any dimension and ask more general
questions, such as the distribution and mean value of the number of extreme
points and of other characteristics of the convex hull;

(d)replacing the uniform distribution in K by another probability distribution in Rd .

The topic of random polytopes has become more popular in the last 50 years and
this is undoubtedly due in part to the birth of computational geometry and the need
to get quantitative information on the efficiency of algorithms in discrete geometry,
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in particular algorithms designed for the construction of the convex hull of multi-
variate data. We describe below the state of the art on each of the problems above.

Problem (a). Let us denote by pn(K) the probability that n i.i.d. points uniformly
distributed in K are in convex position. Using combinatorial arguments, P. Valtr ob-
tained explicit calculations for pn([0,1]2) [126] and pn(T) [127]. More recently,
J.-F. Marckert provided a recursive formula for pn(D), which he implements to de-
rive explicit values up to p8(D) [77]. Though there is no general formula for every
K, the sequences pn(K) for all convex bodies K share a common asymptotic behav-
ior when n→ ∞. In a breakthrough paper [8] in 1999, I. Bárány showed that for
every K with area 1, when n→ ∞,

log pn(K) =−2n log(n)+n log(
1
4

e2pa(K))+o(n)

where f (n) = o(g(n)) means that limn→∞ f (n)/g(n) = 0 and pa(K) is the supremum
of the so-called affine perimeter of all convex bodies included in K, see Section
3.2.2.

Problem (b). Let us denote by p(d)n (K) the probability that n i.i.d. points uniformly
distributed in a convex body K of Rd are in convex position. J. F. C. Kingman
calculated p(d)d+2(B

d) in 1969 [71] and it was shown by H. Groemer in 1973 that

p(d)d+2(K) is minimal when K is the unit ball (or an ellipsoid) [50]. It is still un-

decided whether the d-dimensional simplex should maximize p(d)d+2(K) though W.
Blaschke had claimed that his proof in the case d = 2 could be directly extended
[15]. Regarding the asymptotic behavior of p(d)n (K) when n→ ∞, I. Bárány conjec-
tured a two-term expansion in the spirit of the two-dimensional case and showed the
following one-term expansion [9]:

log pn(K) =− 2
d−1

n log(n)+O(n)

where f (n) = O(g(n)) means that f/g is bounded.

Problem (c). Let K be a convex body of Rd and let Kn be the convex hull of n
i.i.d. points uniformly distributed in K. The natural questions on this model have to
do with the shape of Kn and the distributions of the geometric characteristics of Kn
such as the number of vertices, number of faces or the volume. They can be treated
in the two different contexts of fixed n and n large. This will be the focus of the end
of the section.

Problem (d). There have been several works related to Problem (d). Wendel’s result
described below is one of them in the case of a symmetric distribution with respect
to o. Other papers have focused on isotropic distributions [27] and especially the
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Gaussian distribution, see e.g. [108, 10].

For a more detailed account on the topic of random polytopes, we refer the reader
to [114, Chapter 8], the lecture [60] and the very exhaustive survey [107]. In the rest
of the section, we will present a few results related to Problem (c) in both the non-
asymptotic and asymptotic regimes.

3.2.1 Non-asymptotic results

In this subsection, we describe two of the non-asymptotic results on the convex
hull Kn of n i.i.d. points uniformly distributed in a convex body K of Rd : the Efron
identity relating first moments of functionals of Kn and Wendel’s calculation of the
probability that the origin o belongs to Kn. In the sequel, fk(·) is the number of k-
dimensional faces of a convex polytope. In particular, f0(·) denotes the number of
vertices.

Fig. 8 Simulations of the random polytope K100 (black) when K is a disk (left) and K is a square
(right).

In 1965, B. Efron proved an extension of (15), i.e. he provided an identity which
connects in a very simple way the mean number of vertices of the convex hull of n
points to the mean volume of the convex hull of (n−1) points [40]. The calculation,
which has been extended since then by several identities for higher moments due to
C. Buchta [19], goes as follows. Let X1, · · · ,Xn be the n i.i.d. uniform points in K.
Then almost surely,

f0(Kn) =
n

∑
k=1

1{Xk 6∈Conv(X1,··· ,Xk−1,Xk+1,··· ,Xn)}.

Taking the expectation of this equality, we obtain
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E( f0(Kn)) = nP(Xn 6∈ Conv(X1, · · · ,Xn−1))

= nE(E(1{Xn 6∈Conv(X1,··· ,Xn−1)}|X1, · · · ,Xn−1)

= n
(

1− E(Vd(Kn−1))

Vd(K)

)
.

In 1962, J. G. Wendel showed an explicit formula for the probability that the origin o
lies inside the convex hull of n i.i.d. points with a symmetric distribution with respect
to o [131]. Let X1, · · · ,Xn, n≥ 1, be the random points and we assume additionally
that their common distribution is such that with probability one, all subsets of size
d are linearly independent. We first notice that o is not in the convex hull if and only
if there exists a half-space containing all the points, i.e. there exists y ∈ Rd such
that 〈y,Xk〉 > 0 for every 1 ≤ k ≤ n. This implies in particular that the probability
P(o 6∈ Conv({X1, · · · ,Xn})) equals 1 as soon as n≤ d and 2−(n−1) when d = 1. Now
the calculation for n≥ (d +1)≥ 3 is done by purely combinatorial arguments.

Indeed, each Xk defines a set of authorized y which is a half-space bounded by the
linear hyperplane Hk with normal vector Xk. Consequently, each connected compo-
nent of the complement of

⋃n
k=1 Hk can be coded by a sequence in {−1,1}n where

+1 at the k-th position means that the connected component lies in the authorized
half-space bounded by Hk. There are 2n possible codes and we denote by Nd,n the
total number of connected components. The variable Nd,n is almost surely constant,
as we shall see later on. Recalling from the earlier discussion that a necessary and
sufficient condition to have the origin outside of the convex hull is that the intersec-
tion of all authorized half-spaces bounded by the hyperplanes Hk is not empty, we
obtain the following equivalence: o is not in the convex hull of {X1, · · · ,Xn} if and
only if one of the connected components is coded by (1, · · · ,1). This happens with
probability

P(o 6∈ Conv({X1, · · · ,Xn}) =
Nd,n

2n . (31)

As announced earlier, the variable Nd,n is constant on the event of probability one
that any subset of size d of the n points is linearly independent. We calculate Nd,n
on this event by proving a recurrence relation. For fixed n ≥ 2, the n-th hyperplane
Hn separates into two subparts each connected component of Rd \

⋃n−1
k=1 Hk that it

meets and leaves unchanged the remaining connected components of Rd \
⋃n−1

k=1 Hk.
The number of connected components of Rd \

⋃n−1
k=1 Hk that Hn meets is equal to the

number of connected components of Hn \
⋃n−1

k=1 Hk, i.e. Nd−1,n−1 while the number
of untouched connected components of Rd \

⋃n−1
k=1 Hk is Nd,n−1−Nd−1,n−1. Conse-

quently, we get the relation

Nd,n = Nd−1,n−1 +Nd,n−1.

Using that Nd,1 = 2 for every d ≥ 1, we deduce that Nd,n = 2∑
d−1
k=0

(n−1
k

)
thanks to

Pascal’s triangle. This last equality combined with (31) leads to
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P(o 6∈ Conv({X1, · · · ,Xn}) = 2−(n−1)
d−1

∑
k=0

(
n−1

k

)
.

In particular, when n→ ∞, this probability goes to zero exponentially fast. In the
next section, we investigate the general asymptotic behavior of Kn.

3.2.2 Asymptotic results

When n→ ∞, Kn converges to K itself and studying the asymptotic behavior of Kn
means being able to quantify the quality of the approximation of K by Kn. The first
breakthrough is due to A. Rényi and R. Sulanke in 1963 and 1964 [108, 109]. They
showed in particular that in the planar case, the mean number of vertices of Kn has a
behavior which is highly dependent on the regularity of the boundary of K. Indeed,
when ∂K is of class C 2,

E( f0(Kn)) ∼
n→∞

2
1
3 3−

1
3 Γ

(
5
3

)
Vd(K)−

1
3

∫
∂K

r
− 1

3
s dsn

1
3 . (32)

where rs is the radius of curvature of ∂K at s and f (n) ∼
n→∞

g(n) means that f/g has

limit 1. The quantity
∫

∂K r
− 1

3
s ds is called the affine perimeter of K.

When K is a convex polygon itself, the number of vertices of Kn is expected to
be smaller in mean as, roughly speaking, it does not require many edges to approx-
imate the flat parts of the boundary of K. While the extreme points of Kn are more
or less homogeneously spread along the curve ∂K when it is smooth, they are con-
centrated in the corners, i.e. around the vertices of K when K is a convex polygon.
Consequently, the growth rate of E( f0(Kn)) becomes logarithmic, as opposed to
the polynomial rate from (32). Denoting by r the number of vertices of the convex
polygon K, we get

E( f0(Kn)) ∼
n→∞

2r
3

logn. (33)

The two estimates (32) and (33) have been extended in many directions: asymp-
totic means of fk(Kn), 1≤ k ≤ d and of Vd(Kn) in any dimension and convergences
[7, 106], same for the intrinsic volumes in the smooth case [116, 104], concentra-
tion estimates [128], second-order results [105, 25] and so on. Many basic questions
remain unanswered, like for instance the asymptotic behavior of the mean intrinsic
volumes of Kn when K is a polytope.

In the next section, we generate for the first time non-convex random sets as
unions of translates of a so-called grain.



Some classical problems in random geometry 31

4 From the bicycle wheel problem to random coverings and
continuum percolation

In this section, we start with a practical problem which can be reinterpreted as a
random covering problem on the circle by random arcs with fixed length. We solve
it and discuss possible extensions. This leads us to a classical model of random cov-
ering of the Euclidean space called the Boolean model and we present briefly some
of the questions related to it: covering of a particular set, continuum percolation and
shapes of the connected components of the two phases.

4.1 Starting from the bicycle wheel problem and random covering
of the circle

In 1989, C. Domb tells how his work during the second World War in radar research
for the Admiralty led him to ask H. Jeffreys in 1946 about a covering problem [38].
H. Jeffreys related his question to his own bicycle wheel problem which he had
formulated several years before in the following way: a man is cycling along a road
and passes through a region threwn with tacks. He wishes to know whether one has
entered his tire. Because of the traffic, he can only snatch glances at random times.
At each glance he has covered a fraction x of the wheel. What is the probability that
after n glances, he has covered the whole wheel?. It turns out that the problem had
been solved by W. L. Stevens in 1939 [123], see also [121, Chapter 4]. Surprisingly,
his method that we describe below relies exclusively on combinatorial arguments.

We start by rephrasing the problem in mathematical terms in the following way:
a set of n intervals of length x are placed randomly on a circle of length one and we
aim at calculating the probability qn(x) that the circle is fully covered. The endpoints

Fig. 9 Simulations of the bicycle wheel problem for x = 0.01: the random intervals in the cases
n = 20 (left), n = 50 (middle) and n = 100 (right).

in the anticlockwise direction of the n random intervals of length x are denoted by



32 Pierre Calka

U1, · · · ,Un and are assumed to be n i.i.d. random variables uniformly distributed in
(0,1). For every 1≤ i≤ n, we consider the event denoted by Ai that the endpoint of
the i-th arc is not covered by the other (n−1) random intervals. The key idea consists
in noticing that the circle is fully covered by the n random intervals if and only if
all endpoints are covered. Consequently, using the inclusion-exclusion principle, we
obtain that the probability pcov(n,x) satisfies

1− pcov(n,x) = P(∪n
i=1Ai)

=
n

∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n
P
(
Ai1 ∩Ai2 ∩·· ·∩Aik

)
=

n

∑
k=1

(−1)k+1
(

n
k

)
P(A1∩A2∩·· ·Ak), (34)

where the last equality comes from the fact that the variables U1, · · · ,Un are ex-
changeable. It remains to calculate P(A1∩A2∩·· ·Ak), 1≤ k≤ n, i.e. the probability
that the endpoint of each of the first k random intervals is not covered, not only by
the (k− 1) other intervals from the first bunch but also by the (n− k) remaining
intervals. This means that the event A1∩A2∩·· ·Ak can be rewritten as

A1∩A2∩·· ·Ak = Bk
⋂( n⋂

i=k+1

Ci,k

)
(35)

where Bk is the event that the endpoint of each of the first k random intervals is not
covered by the (k−1) other intervals from the first bunch and Ci,k, k+1≤ i≤ n, is
the event that the i-th random arc does not cover any of the endpoints from the first
k random intervals.

On the event Bk, the k endpoints are at distance at least x from each other. Con-
sequently, P(Bk) is the probability that a random division of the circle into k parts
produces parts of lengths larger than x. This is in particular the exact problem 666
that W. A. Whitworth solves in his book Choice and Chance published in 1870
[132]. By a direct integral calculation, we get

P(Bk) = (1− kx)k−1
+ . (36)

Conditional on the positions of the first k random intervals which satisfy the condi-
tion of the event Bk, the events Ci,k are independent. The set of allowed positions on
the circle for the endpoint of the i-th random arc is then the complement of a union
of k disjoint intervals of length x. Consequently,

P
( n⋂

i=k+1

Ci,k
∣∣Bk
)
= (1− kx)n−k

+ . (37)

Combining (36), (37) with (35) and (34) shows that
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pcov(n,x)(x) =
n

∑
k=0

(−1)k
(

n
k

)
(1− kx)n−1

+ .

In 1982, the formula was extended by A. F. Siegel and L. Holst to the explicit calcu-
lation of pcov(n,µ), i.e. the probabiity to cover the circle with i.i.d. intervals which
have random lengths such that these lengths are i.i.d. µ-distributed variables which
are independent of the positions of the intervals on the circle [120]. They even pro-
vided the distribution of the number of uncovered gaps on the circle in this context.
Following their work, T. Huillet obtained the joint distribution of the lengths of the
connected components [65]. In [119], A. F. Siegel conjectured that pcov(n,µ) sat-
isfies a monotonicity result which is proved in [22] and is the following: if two
probability distributions µ,ν on (0,1) are such that µ ≤ ν for the convex order,
see e.g. [93, Chapter 1], then pcov(n,µ)≤ pcov(n,µ). In particular, thanks to Jensen’s
inequality, this implies that pcov(n,x)≤ pcov(n,µ) where x is the mean of µ .

To the best of our knowledge, the most recent contribution in higher dimension
is due to P. Bürgisser, F. Cucker and M. Lotz [21] and contains on one hand an exact
formula for the probability to cover the sphere with n spherical caps of fixed angular
radius when this radius is larger than π/2 and on the other hand an upper bound for
this probability when the angular radius is less than π/2.

Finally, a related question introduced by A. Dvoretzky in 1956 concerns the cov-
ering of the circle by an infinite number of intervals (In)n with deterministic lengths
(`n)n such that the sequence (`n)n is non-increasing [39]. In 1972, L. A. Shepp
showed that the circle is covered infinitely often with probability 1 if and only if the
series ∑

∞
n=1 n−2 exp(`1 + · · ·+ `n) is divergent [118].

4.2 A few basics on the Boolean model

A natural extension of the bicycle wheel problem consists in considering random
coverings of the Euclidean space by so-called grains with random positions and
possibly random shapes or sizes. Considering the discussion on the translation in-
variance in Section 2, we construct directly such a model in Rd . Let Pλ be a homo-
geneous Poisson point process of intensity λ and let K be a fixed non-empty com-
pact set of Rd , called the grain. Then the associated Boolean model is defined as the
random set

⋃
x∈Pλ

(x+K), sometimes also called the occupied phase of the Boolean
model. In the case when K =Br(o), r > 0, it was introduced by E. N. Gilbert in 1961
as a simplified approximation of the coverage of a radio transmission network where
each individual can send a signal up to distance r [43]. When K is a random grain,
for instance K = BR(o) with R a non-negative random variable, the model can be
extended in the following way: the occupied phase is

⋃
x∈Pλ

(x+Kx) where (Kx)x is
a collection of i.i.d. copies of K and independent of the Poisson point process Pλ .

The Boolean model is well-adapted in a series of applied situations including
flow in porous media [66], conduction in dispersions [78] and the elastic behavior
of composites [133]. In practice, there are of course lots of fundamental statistical
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Fig. 10 Simulation of the Boolean model in the unit square in the case λ = 100 and K = BR(o)
where R is uniform on (0,0.1).

issues related in particular to the estimation of the intensity or of the grain distribu-
tion from the observation of the intersection of the Boolean model with a window
or from sections or projections of this intersection on lower-dimensional subspaces.
We shall omit this aspect and describe only the following probabilistic questions
related to the model:

(a) estimating the covering probability of a particular set;
(b) concentrating on percolation, i.e. looking for the existence of an unbounded con-

nected component of either the occupied or vacant phase;
(c) studying the geometry of the occupied or vacant phase or of their connected

components.

Problem (a). In the eighties, L. Flatto and D. J. Newman followed by S. Janson in-
vestigated the distribution of the number of random balls with fixed radius necessary
to cover a bounded subset of Rd or a Riemannian manifold in two seminal works
[41, 67]. Though this distribution is not explicit, S. Janson showed in particular a
convergence in distribution, when the radius goes to 0, of the renormalized num-
ber to a Gumbel law. Regarding the covering of the whole space Rd , it is shown in
[53, Theorem 3.1] and [83, Proposition 7.3] that Rd =

⋃
x∈Pλ

BR(x) occurs almost
surely when Rd is a non-integrable random variable and if not, the vacant set has
infinite Lebesgue measure almost surely. P. Hall obtained upper and lower bounds
for the probability of not covering Rd when R is deterministic, see [53, Theorem
3.11]. These results have been recently extended by a study of the covering of Rd

by unions of balls Br(x) when the couples (x,r) belong to a Poisson point process
in Rd× (0,∞) [14].

Problem (b) This question has been treated mostly in the case of i.i.d. grains of
type BR(o) where R is a non-negative random variable. In [52], P. Hall shows no-
tably that if E(R2d−1) is finite, then there exists a critical intensity λc ∈ (0,∞) such
that if λ < λc, all the connected components of the occupied phase are bounded al-
most surely. A breakthrough due to J.-B. Gouéré [47] extends P. Hall’s result in the
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following way: there exists a positive critical intensity λc under which all connected
components of the occupied phase are bounded if and only if E(Rd) is finite. We
also refer to [48] for the extension of that result for unions of balls Br(x) when the
couples (x,r) belong to a Poisson point process in Rd× (0,∞).

In the reference book [83] by R. Meester and R. Roy, it is shown that for any such
Poisson Boolean model, the number of unbounded connected components of the oc-
cupied (resp. vacant) phase is either 0 or 1 almost surely, see Theorems 3.6 and 4.6
therein. Moreover, in the particular case of a two-dimensional Boolean model with
almost surely bounded radii, criticality of the occupied and vacant phases coincide,
i.e. there exists λc ∈ (0,∞) such that for λ < λc, there is possible percolation of the
vacant phase and no unbounded component of the occupied phase almost surely, for
λ = λc, neither the occupied phase nor the vacant phase percolates and for λ > λc,
there is possible percolation of the occupied phase and no unbounded component
of the vacant phase, see [83, Theorems 4.4, 4.5]. The equality of the two critical
intensities of the vacant and occupied phases has been proved without the condition
of almost surely bounded radii in two very recent works due to M. Penrose [99] and
to D. Ahlberg, V. Tassion, and A. Teixeira [1].

Problem (c). The first formulas which connect the mean values of the character-
istics of the grain to the mean values of the characteristics of the Boolean model
intersected with a window are available in seminal papers due to R. E. Miles [89]
and P. Davy [30]. A few decades later, [54] investigates large deviation probabilities
for the occupied volume in a window. More recently, in [61], asymptotic covariance
formulas and central limit theorems are derived for a large set of geometric func-
tionals, including intrinsic volumes and so-called Minkowski tensors. We describe
below two very simple examples of questions related to (c).

4.2.1 The spherical contact distribution of the vacant phase

We aim at determining the so-called spherical contact distribution of the vacant
phase, i.e. the distribution of the radius Rc of the largest ball centered at o and
included in the vacant phase, conditional on the event {o 6∈

⋃
x∈Pλ

(x+K)}. We
observe that Rc ≥ r means that there is no point of Pλ at distance less than r from
−K. Consequently, we get

P(R≥ r) = P(Pλ ∩ (−K +Br(o)) = /0)
= exp(−λVd(K +Br(o))).

When K is a convex body, we can use the Steiner formula (4) and get that

P(R≥ r) = exp

(
−λ

d

∑
k=0

κd−kVk(K)rd−k

)
.



36 Pierre Calka

This calculation shows that when the grain K is convex, the quantity log(P(R≥ r))
is a polynomial in r. In [62], it is shown that the converse is not true in general,
unless the spherical contact distribution is replaced by another contact distribution.

4.2.2 The number of grains in a typical connected component of the occupied
phase

Similarly to the construction in Section 2 of the typical cell of a stationary tessella-
tion, there is a way to define a typical connected component of the occupied phase:
we add a deterministic point at the origin to the homogeneous Poisson point process
and consider the connected component containing the origin of

⋃
x∈Pλ∪{o}(x+K).

The aim of the calculation below is to derive a general formula for the distribution
of the number No of grains contained in that connected component. The method
below follows the work by M. Penrose [97], see also [102]. For any n≥ 0, we get

P(No = n+1) = E

 ∑
{x1,··· ,xn}∈P

(n)
λ

F({x1, · · · ,xn},Pλ )

 (38)

where P
(n)
λ

is the set of finite subsets of Pλ with exactly n elements and the
functional F({x1, · · · ,xn},Pλ ) is the indicator function of the event that the union
(o+K)∪(x1+K)∪·· ·∪(xn+K) is connected and all the remaining grains (x+K),
x ∈Pλ \{x1, · · · ,xn} are disconnected from that union. The expectation in (38) can
be made explicit thanks to Mecke’s formula for Poisson point processes, see e.g.
[114, Corollary 3.2.3]. We get indeed, for n≥ 1,

P(No = n+1) =
λ n

n!

∫
E(F({x1, · · · ,xn},Pλ ∪{x1, · · · ,xn})dx1 · · ·dxn

=
λ n

n!

∫
1{⋃0≤k≤n(xi+K) connected}

P(∀x ∈Pλ ,(x+K)∩
⋃

0≤k≤n

(xi +K) = /0)dx1 · · ·dxn

where for sake of simplicity, the origin o has been denoted by x0. Using again the
fact that Pλ is a Poisson point process, we deduce that

P(No = n+1) =
λ n

n!

∫
1{⋃0≤k≤n(xi+K) connected}e

−λVd((
⋃

0≤k≤n(xi+K))+(−K))dx1 · · ·dxn.

When K = Br(o) for fixed r > 0, the previous formula becomes

P(No = n+1) =
λ n

n!

∫
1{⋃0≤k≤n Br(xi) connected}e

−λVd(
⋃

0≤k≤n B2r(xi))dx1 · · ·dxn.

K. Alexander [2] showed that when λ → ∞, this probability satisfies
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logP(No = n+1) =−λκdrd +(d−1)n log(
λ

n
)+O(1)

where f (λ ) = O(g(λ )) means that the function f/g is bounded for large λ . A side
result is the so-called phenomenon of compression which says roughly that in a
high-density Boolean model, the density inside a bounded connected component is
larger than the ambient density.

Acknowledgements. The author warmly thanks two anonymous referees for their
careful reading of the original manuscript, resulting in an improved and more accu-
rate exposition.
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Semin. Hamburg Univ. 2, 69–70 (1923)
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