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1 Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), UPR
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PACS 47.55.np – Contact lines

Abstract. - The dynamics of a contact line under evaporation and to-
tal wetting conditions is studied taking into account the divergent nature
of evaporation near the border of the liquid, as evidenced by Deegan et
al. [Nature 389, 827 (1997)]. Complete wetting is assumed to be due to
Van der Waals interactions. The existence of a precursor film at the edge
of the liquid is shown analytically and numerically. The length of the pre-
cursor film is controlled by Hamacker constant and evaporative flux. Past
the precursor film, Tanner’s law is generalized accounting for evaporative
effects.
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Introduction. – Much work has been de-
voted to contact line dynamics (see [1–3] for re-
views). One of the most difficult problem to ad-
dress may be the case of total wetting, in which
the affinity of the liquid for the solid is such
that a ”precursor film” develops and spreads
ahead of the contact line. The properties of
this film (length, thickness, profile) have been
calculated in the eighties [4,5] but the precur-
sor film (in particular its thickness profile) has
been observed and measured accurately only re-
cently [6].

In the past decade, people showed a great
interest in the dynamics of contact lines involv-
ing evaporation in addition to capillarity and

hydrodynamics. This interest is motivated on
the one hand by specific applications (coating
processes [7, 8], deposition of particles close to
contact lines [9], heat exchangers (see [10] and
references herein) and on the other hand by
fundamental issues [11]. Most related experi-
ments have been developed in the case of total
wetting, where pinning/depinning on the sub-
strate can be eliminated. By monitoring the
evaporation of drops lying on a horizontal sub-
strate [12], Poulard et al. evidenced remarkable
power law behaviors with time of both apparent
contact angle and drop radius whose exponents
remain to be interpreted. In the latter paper, a
model has been developed as well, which relates
the macroscopic contact angle to the capilalry
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number by a generalized ”Tanner’s law” [13].
However this model neglects the divergence of
viscous stresses at contact lines [14] and leads
to a bit surprizingly very tiny precursor film
whose length seems to be independent of the
evaporation rate.

In the present work we reconsider the theo-
retical description of total wetting in the pres-
ence of evaporation. Using the same strategy as
in a previous work of ours in partial wetting sit-
uation [7], we consider a divergent evaporation
field at contact line similar to that evidenced by
Deegan [15], and we solve the lubrication equa-
tions of the flow. The problem that we address
here is of importance not only for understand-
ing drop critical dynamics when the radius van-
ishes [12], but also for its potential applications
to coating [8] in other flow geometries (dip coat-
ing, spin and roll coating [16]...).

The paper is organized as follows. We first
present the problem and establish its govern-
ing equations. After discussing some orders of
magnitude, we perform numerical resolutions of
these equations. We then propose a small scale
analytical solution governed both by evapora-
tion and the disjoining pressure that matches
a large scale logarithmic flow solution. We
eventually find a generalized Tanner’s law that
links the apparent contact angle to the capillary
number for both advancing and receding con-
tact lines. For the first time to our knowledge,
this analytical approach yields the calculation
of the actual length of an evaporative precursor
film together with the induced correction to the
effective Tanner’s law introduced previously by
Poulard et al. [12].

Model and Equations. – The situation
under study is suggested in Fig. 1. A liq-
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Figure 1: Notations of the problem

uid moves at a constant velocity V on a solid
surface, both under the effect of a fluid mo-

tion linked to pressure gradient U(x, z), and of
an evaporation flux J(x). Standard lubrication
theory in the limit of low Reynolds numbers
and small slope of the interface leads to a mean
local velocity of the liquid given by:

〈U〉 =
1

h

∫ h

0

U(x, z) dz = −h2

3η

∂P

∂x
(1)

where h(x) is the liquid thickness, η the liquid
viscosity, and the pressure term reads

P = Pa + Pc + Pd = Pa − γhxx +
A

2πh3
, (2)

Pa being the ambient pressure, Pc the capillary
pressure and Pd the disjoining pressure (we as-
sume van der Waals interactions) playing a role
at the edge of the liquid. Both latter pressures
read respectively

Pc = −γhxx, Pd = +
A

2πh3
. (3)

γ is the surface tension and A < 0 the so-
called Hamaker constant. For a liquid mov-
ing at velocity V , mass conservation imposes
that the local thickness h(x − V t) satisfies
∂th + ∂x(h〈U〉) + J(x) = 0, which leads to:

∂

∂x
[h (〈U〉 − V )] + J(x) = 0 (4)

to be combined with the relation 〈U〉 =
γ
3η h2hxxx found above. To go further, one now
needs an approximation of the local evapora-
tion rate distribution J(x). For a sessile ax-
isymmetric drop, Deegan [9, 15] assumed an
analogy between the vapor diffusion in air and
an electrostatic problem, the vapor concentra-
tion near the liquid surface being supposed to
saturate at the mass concentration in air csat.
In analogy with this work, we will assume that
very near the edge of the liquid J(x) diverges
as J(x) = J0x

−(π/2−θ)/(π−θ) where x is the
distance to the edge of the liquid. This ex-
pression yields for very small values of angle
θ: J(x) ≈ J0/

√
x in which J0 is given by

J0 =
Dg√

λ
csat

ρ where Dg is the diffusion constant

of evaporated solvant in air, and ρ its mass den-
sity. The length scale λ can be either the thick-
ness of a diffusive boundary layer, or the typical
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curvature of the liquid interface. For instance,
for the sessile drops of in-plane radius R with
low contact angle considered in Ref. [15] one
has exactly λ = 2R. For a water drop of milli-
metric size evaporating in ambiant air one has
typically J0 ≈ 10−9 m

3

2 .s−1. Note that we are
here treating the limit of a liquid evaporating
in the presence of air, and not that of a liquid
in the presence of its own vapour only, as in
Ref. [10], in which the divergence of evapora-
tion at contact line disappears.

After integrating once Eq. (4) upon x, one
gets: (< U > −V )h = −2J0

√
x that can be

written as:

V =
2J0

h

√
x +

γ

3η
h2hxxx +

A
6πη

hx

h2
(5)

The local thickness of liquid h(x), is supposed
to vanish or at least reach microscopic values
at the tip of the liquid placed for simplicity at
the location x = 0.

The physical meaning of this equation is that
the recession of a liquid at a given velocity V is
in fact due to both migration of liquid under the
capillary and disjunction pressure gradient and
to evaporation itself. This evaporation term
will add new terms to the ordinary differential
equation governing h(x), considered years ago
by Voinov [17], that reads in this specific case:

hxxx =
3Ca

h2
− 6ηJ0

γ

√
x

h3
− A

2πγ

hx

h4
(6)

where Ca = ηV /γ is the capillary number built
upon the velocity V .

Setting the following nondimensional vari-
ables X = x/x0 and H = h(x)/h0 with

x0 =

( |A|
12πJ0η

)2/3

(7)

h0 = x
1/2
0 ×

( |A|
2πγ

)1/4

(8)

Eq. (6) reads

HXXX = Ca

(

x0

h0

)3
1

H2
− X

1

2

H3
+

HX

H4
. (9)

Setting J0 = 10−9 m3/2 · s−1, A = 10−21 kg ·
m2 · s−2, η = 10−3 kg · m−1 · s−1 yields typi-
cal lengths x0 ≃ 100 nm and h0 ≃ 2 nm. Note

that these values do not have the same order
of magnitude as those recently found experi-
mentally by Kahvehpour et al. [6]. We are in
a totally different situation where the system
undergoes evaporation. Moreover, changing A
and J0 leads to substantial changes in the val-
ues.

Numerical results. – We now turn to the
numerical study of our model. The equation
describing our model is third order in deriva-
tive. We study this equation in the domain
ǫ, Lmax. The full resolution of this equation in-
volves a set of three boundary conditions which
are usually the values of H, H ′ and H ′′ at one
given boundary point (ǫ or Lmax). The main
difficulty lies in choosing consistent boundary
conditions. At macroscopic scale Lmax, one can
choose the curvature to vanish (HXX(Lmax) =
0) and the slope of the interface to be equal to
a given value (HX(Lmax)). We have no apriori
indication on the exact value of H(Lmax) to ful-
fill the set of boundary conditions. Conversely
at microscopic scale ǫ, one can naturally choose
the value of H(ǫ) = 1 (starting at the minimal
height given by Joanny and de Gennes [4] or
that given by Kavehpour expriments [6]) and
consider that we start with a flat precursor film
which yields H ′(ǫ) = 0 but no indication on the
value of H ′′(ǫ) can be inferred. Whatever the
boundary we start from, one bounday condition
is missing. In order to solve properly the equa-
tion, we have to resort to a shooting method.

In order to complete the set of two boundary
conditions at one boundary, we have to choose
one condition at the opposite side of the do-
main. Starting from ǫ, it is natural to assume
that at Lmax we will have H ′′(Lmax) = 0. Con-
versely, starting from Lmax, we will look for so-
lutions with minimum height at ǫ.

The timestepping of our shooting method is
based on adaptive Runge-Kutta method (see
for instance Ref. [18]).

When starting from large distance Lmax, no
precursor film is found and at the tip of the liq-
uid, one numerically recovers a parabolic power
law profile (see Fig. 2) that can be found ana-
lytically (see below Eq. (10)).

Starting from a microscopic length. The cri-
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terion at large distance is that the curvature
vanishes. We obtain a profile with a precursor
film connected to a slowly varying slope inter-
face as can seen in Fig. 2 in which we have cal-
culated solutions with three different capillary
numbers (Ca = 10−7, 0, = 10−7) respectively,
receding, static and advancing situations.
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Figure 2: Top — Shooting starting from large dis-
tance A in arbitrary unit and assuming vanish-
ing height at origin: plot of H(X). Two distinct
regimes are observed: linear and parabolic (see
straight lines). Bottom — Shooting starting from
microscopic distance and assuming vanishing cur-
vature at large distance (here Xmax = 104): plot
of angle Θ versus X (non dimensional unit). Inset:
Corresponding H(X) profile (receding case, same
parameter): a macroscopic wedge is connected to a
flat precursor film.

One can look for the values of Θ(Lmax) at
Lmax both in the advancing and receding cases.
We show the results in Fig. 3. The macroscopic
angle strongly depends on the capillary number
and eventually vanishes in the receding case.

Analytical results. – From the observa-
tion of the numerical results, we can search for
analytical results.
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Figure 3: Given a capillary number Ca, we plot
the values of Θmax at Lmax in the receding and
advancing case.

Tip of the liquid. Searching for solutions
to Eq. (6) vanishing at x = 0 by considering
asymptotic expansion in power of x, one finds
that the solution is at leading order h(x) =
α
√

x with

α4 =
2

3π

|A|
γ

(10)

Connecting this parabolic solution to a macro-
scopic corner hmacro(x) = θx leads to the
crossover length

ℓcross ∼
1

θ2

(

2

3π

|A|
γ

)
1

2

(11)

Note that Poulard et al. [12] found the same
scaling law. By inspection of the latter expres-
sions, one can note that the evaporation term
is absent while one expects a dependance on J0

of the cross-over length ℓcross expected to be re-
lated to the existence of a precursor film. This
solution, validated with numerical simulations
presented previously, excludes the existence of
a precursor film and is in contradiction with
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the small angle assumption yielding the evap-
oration term we use in the framework of our
model. Nevertheless, one can still consider this
crossover length as being the parabolic tip of
the precursor film as stated by Joanny and de
Gennes [4].

Inside the precursor film (heuristic). At
the tip, normally, one should expect zero
height. However, as mentionned by Joanny
and de Gennes [4], the minimum thickness of
the precursor film is bounded from below by
the static thickness e = a(3γ/2S)1/2 with a =
(A/6πγ)1/2 and S = γ − (γSL + γLV) being the
spreading coefficient.

Following the idea that capillary forces can
be neglected near the contact line where dis-
junction pressure effects are dominant, we can
turn Eq. (5) into V = 2J0

h

√
x + A

6πη
hx

h2 . This
Bernoulli equation has the general solution

h(x) =
βh0 exp[23 ( x

x0

)
3

2 ]

1 + βCa
x2

0

h3

0

∫ x

0exp[23 ( y
x0

)
3

2 ] dy
(12)

with constant β insuring the adequate liquid
height at x = 0 (β = 1 corresponds to h(0) =
h0). The typical length of the tip of the film is
x0. Note that at Ca = 0, one gets an elemen-
tary expression of the precursor film. There is
no singularity for Ca > 0 (receding case) where
as for Ca < 0 (advancing case), the denomina-
tor vanishes at a given value of x for given cap-
illary number Ca. The bigger |Ca|, the closer
to x = 0 the singularity occurs, which is remi-
niscent of a shortening of precursor film length
while the liquid advances faster.

However, yet instructive, this solution does
not satisfy the assumption that the capillary
term (third order derivative of function f) can
be neglected close to x = 0.

Inside the precursor film (rigourous ap-
proach). If we now consider that we start
at x = 0 at height h0, assuming that the film
starts flat, one can look for solutions to our
model in term of a power series. As stated
in the previous numerical section, in order to
solve our model, we need the prescription of
the boundary conditions at x = 0 and we will
take advantage of the degree of freedom yielded

by the value of the second order derivative at
x = 0.

In these conditions, one can calculate the so-
lution to Eq. (9) that can be written as a power
series which first terms read

H(X) = 1+λ1X
2+

c

2
X3− 8

105
X

7

2 +
1

12
λ1X

4+o(X4)

(13)
with c = Ca(x0/h0)

3 and λ1/2 the free curva-
ture parameter (depending on c). We can see
that this solution is in excellent agreement with
the numerical simulations (see Fig. 4) and that
the c-dependance of coefficient λ1 scales numer-
ically as (data not shown)

λ1 = λ0
1(1 − 11

3
c) (14)

λ0
1 being the value at zero capillary number.

Inside the liquid corner. The region we fo-
cus on is now the liquid bulk. Following the
same procedure as in our previous work [7], we
consider that the slope of the interface Θ = HX

is slowly variable and writing H(X) ≈ XΘ(X),
we can rewrite the non-dimensional Eq. (9) as

ΘXX ≈ 3Ca

(

x0

h0

)3
1

X2Θ2
− 1

X
5

2 Θ3
+

1

Θ3X4

(15)
Assuming that the contributions due to dis-
junction pressure are negligible and that Θ is
equal to Θm at given microscopic X = λ and
does not deviate much from a mean value, we
can get from Eq. (15) the following expression
for Θ(X)

Θ3 = Θ3
m − 9Ca

(

x0

h0

)3

ln
X

λ
+

4

Θm
(

1

λ
1

2

− 1

X
1

2

)

+ α(X − λ)

(16)

with constant α ensuring the adequate bound-
ary conditions ΘX(Lmax) = 0.

In Fig. 4, we can see the plot of numerical
shooting simulations together with our analyt-
ical results (13) and (16). The agreement is
excellent in both cases (precursor and macro-
scopic parts).
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Figure 4: Matching of numerical simulations with
analytical precursor solution (see Eq. (13)) and far
from zero where we recover the ansatz of partial
wetting (see Eq. (16)). The agreement is excellent
for both receding and advancing cases.

Provided these results one can propose a
Cox-Voinov-like wetting law that reads

Θ3 = Θ3
m−9Ca

(

x0

h0

)3

ln
Lmax

λ
+

4

Θm

1

λ
1

2

(17)

Fig. 5 shows the numerical calculations to-
gether with the analytical prediction. The
agreement is very good. The errors are less
than 5%, except at high Ca in the receding case.

Conclusion. – We have proposed a de-
tailed analysis of contact line dynamics in the
presence of both evaporation and total wetting.
We recovered the solution found by Poulard et
al., but clearly evidenced another solution that
seems better adaptated to the description of
the precursor film, and gives a more realistic
expression of the modified Tanner’s law. We
stressed the fact that our description combines
two divergences at contact line: that of vis-
cous stresses [14] and that of evaporation [9],
which make this problem really non trivial and

-0.01
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Figure 5: Wetting laws for Lmax = 103 and Lmax =
104. Analytical results from our ansatz together
with numerical calculations. We can see by inspec-
tion of the figures that the agreement is really good.

difficult to address. It would be now interest-
ing to examine how this modified Tanner’s law
would affect the dynamics of their evaporating
drops on a solid, and to see if it explains the re-
maining discrepancy between their first model
and experimental data. Experiments are also
underway in our group with liquid evaporat-
ing on another more viscous liquid [Hoang and
Berteloot, unpublished].
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