
HAL Id: hal-02377403
https://hal.science/hal-02377403

Submitted on 23 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategy logic with simple goals: Tractable reasoning
about strategies

Francesco Belardinelli, Wojciech Jamroga, Vadim Malvone, Aniello Murano

To cite this version:
Francesco Belardinelli, Wojciech Jamroga, Vadim Malvone, Aniello Murano. Strategy logic with
simple goals: Tractable reasoning about strategies. 28th International Joint Conference on Artificial
Intelligence (IJCAI 2019), Aug 2019, Macao, China. pp.88–94. �hal-02377403�

https://hal.science/hal-02377403
https://hal.archives-ouvertes.fr

Strategy Logic with Simple Goals: Tractable Reasoning about Strategies
Francesco Belardinelli1,2 , Wojciech Jamroga3,4 , Damian Kurpiewski3 ,

Vadim Malvone2 and Aniello Murano5

1 Imperial College London, UK
2 Université d’Evry, France

3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
4 Interdisciplinary Centre for Security, Reliability, and Trust, SnT, University of Luxembourg

5 Università degli studi di Napoli ”Federico II”, Italy
francesco.belardinelli@imperial.ac.uk, w.jamroga@ipipan.waw.pl, d.kurpiewski@ipipan.waw.pl,

vadim.malvone@univ-evry.fr, murano@na.infn.it

Abstract
In this paper we introduce Strategy Logic with
Simple Goals (SL[SG]), a fragment of Strategy
Logic that strictly extends Alternating-time Tem-
poral Logic ATL by introducing arbitrary quantifi-
cation over the agents’ strategies. Our motivation
comes from game-theoretic applications, such as
expressing Stackelberg equilibria in games, coer-
cion in voting protocols, as well as module check-
ing for simple goals. We prove that model checking
SL[SG] is P-complete, the same as ATL. Thus, the
extra expressive power comes at no computational
cost as far as verification is concerned.

1 Introduction
Formal verification of multi-agent systems (MAS) has been
a thriving area of investigation in the last two decades,
which has led to a wealth of logics to specify the tempo-
ral, epistemic, and strategic capabilities of agents, including
Alternating-time Temporal Logic [Alur et al., 2002], possi-
bly enriched with strategy contexts [Laroussinie and Markey,
2015], irrevocable strategies [Ågotnes et al., 2007], or op-
erators for individual and group knowledge [Jamroga and
van der Hoek, 2004; Hoek and Wooldridge, 2003]; Coali-
tion Logic [Pauly, 2002]; and Strategy Logic [Chatterjee et
al., 2010; Mogavero et al., 2014]. Besides theoretical results,
some model checking tools have also been developed [Alur
et al., 2001; Cimatti et al., 2002; Kacprzak et al., 2008;
Huang and van der Meyden, 2014; Lomuscio et al., 2015;
Cermák et al., 2015; Cermák et al., 2018].

The verification of MAS generates a tension between two
conflicting demands. On the one hand, we need an ex-
pressive language to capture subtle temporal, epistemic, and
game-theoretic notions such as reachability, common and dis-
tributed knowledge, and solution concepts in games. On the
other hand, we need formalisms with a tractable model check-
ing problem, for which efficient verification algorithms can
be implemented. The same tension appears in the seminal pa-
per [Alur et al., 2002] that introduced Alternating-time Tem-
poral Logic. Two variants of the logic are presented: ATL∗ is

rather expressive, but with 2EXPTIME verification com-
plexity. Its fragment ATL has less expressivity, but allows to
model check strategic properties in polynomial time. This
leads to a nice balance of expressivity and computational
complexity – indeed, ATL model checking is supported by
a number of tools [Alur et al., 2001; Kacprzak et al., 2008;
Lomuscio et al., 2015]. The question is: can we use a lan-
guage that is more expressive than ATL, and still retains its
polynomial-time complexity of model checking? We answer
the question affirmatively in this paper.

Our starting point is Strategy Logic (SL) [Mogavero et al.,
2014], an expressive extension of ATL∗ that allows to char-
acterize sophisticated game-theoretic solution concepts, e.g.,
Nash equilibria, dominant strategies, subgame-perfect equi-
libria, etc. Unfortunately, its model checking complexity is
non-elementary, and hence highly unlikely to enable efficient
implementation. Even restricted variants of SL, such as SL
with memoryless strategies [Cermák et al., 2014], nested-
goal, Boolean-goal, and one-goal SL [Mogavero et al., 2012]
do not help much, as their model checking problems range
from 2EXPTIME-complete to non-elementary [Mogavero
et al., 2014; Bouyer et al., 2015; Gardy et al., 2018].

We then propose to take one-goal SL, and further restrict
goals to simple LTL formulas of type Xφ (next φ), φUφ′

(φ until φ′), and φRφ′ (φ releases φ′), similarly to the re-
striction of ATL∗ to ATL in [Alur et al., 2002]. The re-
sult, Strategy Logic with simple goals (SL[SG]), can also be
seen as the extension of ATL to arbitrary quantification on
the agents’ strategies. We use SL[SG] to capture Stackel-
berg equilibria in games, express coercion-resistance in vot-
ing protocols [Tabatabaei et al., 2016], and characterize mod-
ule checking for simple goals [Jamroga and Murano, 2014].
These are all relevant agent-related concepts, that cannot be
expressed in ATL. Hence, SL[SG] is provably more expres-
sive than ATL. Most importantly, we show that reasoning
about SL[SG] is no more complex as ATL, as it also enjoys
polynomial-time model checking. This is achieved by gen-
eralising the fixed-point procedures for ATL model checking.
In consequence, Strategy Logic with simple goals offers an
arguably better balance between expressivity and complexity
than ATL. We further show the advantages by means of a case
study, based on a simple voting scenario.

2 Logics for Strategies
We begin by recalling Strategy Logic (SL) [Mogavero et al.,
2014], as well as its relevant syntactic fragments. Then, we
provide an interpretation to these languages by means of con-
current game structures (CGS), as it is customary.

Strategy Logic. Fix an infinite set AP of atomic proposi-
tions (atoms), a finite set Ag of agents, and an infinite set Var
of variables x0, x1, . . . for strategies. Formulas in Strategy
Logic are defined as follows, for p ∈ AP, x ∈ Var, a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ∃xϕ | (x, a)ϕ

Next X and until U are temporal operators. The strategy
quantifier ∃x reads as “for some strategy x, . . . ”, and the
binding operator (x, a) intuitively means that “by using strat-
egy x, agent a can achieve . . . ”. Hereafter we use stan-
dard abbreviations, e.g., ∀xϕ for ¬∃x¬ϕ, as well as temporal
operators releases R, globally G, and eventually F. We as-
sume the standard definition of set free(ϕ) of free agents and
variables appearing in a formula ϕ [Mogavero et al., 2014].
Moreover, shr(x, ϕ) denotes the set of agents that use strat-
egy x in the evaluation of formula ϕ.

Models. Given sets Ag of agents and AP of atoms, a
concurrent game structure (CGS) is a tuple G = 〈S, s0,
{Acta}a∈Ag, τ, L〉 such that: S is a non-empty finite set of
states and s0 ∈ S is the initial state of G; for every agent a ∈
Ag, Acta is a finite non-empty set of actions, and ACT =∏
a∈Ag Acta is the set of joint actions; τ : S × ACT → S is

the transition function; finally, L : S → 2AP is the labelling.
A path is a (finite or infinite) sequence π ∈ S∗ ∪ Sω such
that for every j ≥ 1, πj+1 = τ(πj , ~αj) for some joint action
~αj ∈ ACT . We distinguish between finite paths, or histories,
and infinite paths, or computations. For a path π and j ≥ 1,
π≤j denotes the initial history of length j, and last(h) is last
element in history h.

Strategies. A memoryfull strategy for an agent a ∈ Ag, or
a-strategy, is a function σ : S+ → Acta. The set of all
strategies, for all agents, is denoted as Σ(G). A joint strat-
egy σAg assigns a strategy for a to every agent a ∈ Ag. By
the above definitions, given a strategy σ for an agent a, if a
different agent b is such that the range of strategy σ is a sub-
set of Actb (i.e., ran(σ) ⊆ Actb), then intuitively also agent
b can use strategy σ. Finally, an assignment is a function
χ : Var ∪ Ag → Σ(G) such that for every agent a ∈ Ag,
χ(a) is a strategy for a. For z ∈ Var ∪ Ag and σ ∈ Σ(G),
the variant χzσ is the assignment that maps z to σ and coin-
cides with χ on all other variables and agents. Given a his-
tory h ∈ S+, an assignment χ defines a unique computation

λ(h, χ) = h
〈χ(a)(h)〉a∈Ag−−−−−−−−→ s1

〈χ(a)(h·s1)〉a∈Ag−−−−−−−−−−→ s2 . . . starting
with h and consistent with χ.

Semantics. Given a CGS G, we inductively define the sat-
isfaction relation (G, h, χ) |= ϕ where h is a history, ϕ is a
formula, and χ is an assignment such that for every x ∈ Var,
χ(x) is a strategy for all agents in shr(x, ϕ) (we omit the
standard clauses for Boolean operators):

(G, h, χ) |= p iff p ∈ L(last(h))
(G, h, χ) |= Xϕ iff (G, λ(h, χ)≤|h|+1, χ) |= ϕ

q10

q11vote1,1 q12 vote1,2

q13

vote1,1
q14

vote1,1
q15

vote1,2
q16

vote1,2

q17

finish1vote1,1

q18

finish1vote1,1
pun1

q19

finish1vote1,1

q110

finish1vote1,1
pun1

q111

finish1vote1,2
pun1

q112

finish1vote1,2

q113

finish1vote1,2
pun1

q114

finish1vote1,2

(vot
e1,−

) (vote2 ,−)

(g
iv
e,
−)

(n
g,−

)

(give,−
)(n

g,
−)

(−
, n
p)

(−
, pu

n
) (−

, n
p)

(−
, pu

n
)

(−
, n
p)

(−
, p
u
n
)(−

, n
p)

(−
, p
u
n
)

(wait,−)

(wait,−) (wait,−)

Figure 1: A simple model of voting and coercion

(G, h, χ) |= ϕ1 Uϕ2 iff for some i≥|h|, (G, λ(h, χ)≤i, χ) |=ϕ2,
and for all j, |h| ≤ j < i implies
(G, λ(h, χ)≤j , χ) |= ϕ1

(G, h, χ) |= ∃xϕ iff for some strategy σ for every agent
in shr(x, ϕ), (G, h, χxσ) |= ϕ

(G, h, χ) |= (x, a)ϕ iff (G, h, χaχ(x)) |= ϕ

We write (G, h) |= ϕ iff (G, h, χ) |= ϕ for every assign-
ment χ, and G |= ϕ iff (G, s0) |= ϕ.

Relevant Fragments. One-Goal Strategy Logic (SL[1G]) is
the syntactic fragment of SL where each temporal subformula
is preceded by a binding prefix that mentions all agents in
Ag, and by a quantification prefix1 referring to all the preced-
ing strategy variables [Mogavero et al., 2012]. Furthermore,
ATL∗ can be seen as the fragment of SL[1G] that admits at
most one alternation of strategic quantifiers (either ∃∀ or ∀∃),
and does not allow to bind different agents to the same vari-
able. Finally, ATL is the fragment of ATL∗ where each group
of strategic quantifiers is followed by exactly one temporal
operator. Interestingly, SL[1G] has been proved strictly more
expressive than ATL∗, while having the same complexity of
the model checking problem [Mogavero et al., 2014]. In this
paper, we look for an analogous extension of ATL.

Example 1 (Simple Voting) Consider a simple model of
voting, inspired by [Jamroga et al., 2017a]. There are k vot-
ers v1, . . . , vk and a single coercer c. At the beginning, each
voter decides to wait or cast her vote for one of the n candi-
dates. Then, she can wait again, give her vote receipt to the
coercer or refuse to give it. Finally, the coercer can either
punish the voter, or refrain from punishment. The interaction
between the coercer and different voters is independent. The
CGS SV1,2 for k = 1 and n = 2 is presented in Figure 1.

An example formula that holds in SV2,2 is
∀xc∃xv1∀xv2(xc, c)(xv1 , v1)(xv2 , v2) F(votedv,1 ∧ ¬pun),
expressing that, for every strategy of c, the first voter has a
counterstrategy ensuring that she can vote for candidate 1
without getting punished, regardless of the other voter. The
counterstrategy is simply to vote for 1, and then execute wait.

1We will formally introduce both notions in the next section.

3 Strategy Logic with Simple Goals
Inspired by the relationship between the Alternating-time
Temporal Logics ATL∗ and ATL, we introduce a novel re-
striction of SL[1G] to “simple” goals.

3.1 The Formal Language
We begin with some terminology. A binding prefix over
sets A ⊆ Ag of agents and V ⊆ Var of variables is a fi-
nite sequence [∈ {(x, a) | a ∈ A and x ∈ V }|A| of
length |[| = |A|, such that every agent a ∈ A occurs ex-
actly once in [. In contrast, the same variable x ∈ V can
occur several times in [, i.e., intuitively, the same strategy
denoted by x can be used by several agents in A. A quan-
tification prefix over a set V ⊆ Var of variables is a finite
sequence ℘ ∈ {∃x, ∀x | x ∈ V }|V | of length |℘| = |V | such
that every variable x ∈ V occurs exactly once in ℘. Then,
Qnt(V) ⊂ {∃x, ∀x | x ∈ V }|V | and Bnd(A) ⊂ {(x, a) | a ∈
A and x ∈ Var}|A| denote the sets of all quantification and
binding prefixes over variables in V and agents in A.

Definition 2 (SL[SG]) The formulas in Strategy Logic with
simple goals are defined in BNF as follows, where [∈
Bnd(Ag), ℘ ∈ Qnt(free([ϕ)):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ℘[Xϕ | ℘[(ϕUϕ)

By Def. 2, SL[SG] restricts SL[1G] to simple LTL objectives
of type Xϕ, ϕUϕ′, and ϕRϕ′ (the latter can be introduced
by using U and dual quantification). We also consider the
fragment SL−[SG], for which Def. 2 is restricted to binding
prefixes [where every variable occurs at most once. That is,
one cannot bind different agents with the same strategy. Fur-
ther, we define fragments SLn[SG], for which quantification
prefixes ℘ are restricted to at most n alternations of existen-
tial and universal quantifiers. Finally, we introduce fragments
SL−n [SG] as the intersection of SL−[SG] and each SLn[SG].

Example 3 Clearly, the formula in Example 1 is a formula
of SL[SG], more precisely of SL−2 [SG].

In Fig. 2 we summarize the main syntactic inclusions be-
tween our fragments. We also remark that ATL can be
thought of as the fragment of SL[SG] in which the clauses for
formulas of type ℘[Xϕ and ℘[(ϕUϕ) are restricted to quan-
tification prefixes ℘ with at most one alternation, as well as
binding prefixes [where every variable occurs at most once.
In fact, ATL corresponds exactly to SL−1 [SG], whereas Com-
putation Tree Logic (CTL) corresponds to SL−0 [SG].

3.2 Expressiveness
An important observation that formally justifies our study is
that SL[SG] is strictly more expressive than ATL. That is,
SL[SG] allows to characterize all the properties expressible in
ATL, but not vice versa. We also show that SL[SG], SL−[SG],
and SL1[SG] all differ with respect to their expressiveness.

Consider two logical systems L1 and L2. L1 is at least as
expressive as L2 (written L2 �e L1) if every formula of L2

can be equivalently translated to some formula of L1. More-
over, L1 is at least as distinguishing as L2 (L2 �d L1) if
every pair of models that can be distinguished by a formula
of L2 can also be distinguished by some formula of L1.

SL

SL[1G]

SL[SG]ATL∗

SL−[SG]
SLn[SG]

SLn−1[SG]

SL2[SG]

SL−n [SG]

SL−n−1[SG]

SL−2 [SG] SL1[SG]

ATL = SL−1 [SG]

CTL = SL−0 [SG]

SL0[SG]

CTL∗

Figure 2: Syntactic inclusions for fragments of SL

Theorem 4 SL−2 [SG] (and thus also SL[SG]) has strictly
greater expressive and distinguishing power than ATL.

Proof. The embedding of ATL into SL−2 [SG] is straightfor-
ward. To show that ATL does not cover the distinguishing
power (and hence also the expressive power) of SL−2 [SG], we
can use the counterexample from the proof of [Mogavero et
al., 2014, Theorem 4.3]. �

s0s1

p

s′1
(α, α) (α, β)

(β, α)
(β, β)

(∗, ∗) (∗, ∗)

s0s1

p

s′1
(α, β) (α, α)

(β, α)
(β, β)

(∗, ∗) (∗, ∗)

Figure 3: Models M1 and M2 in the proof of Theorem 5

Interestingly, we also have that for every n ∈ N, SLn[SG]
is strictly more expressive than SL−n [SG]. That is, being able
to bind the same strategy to different agents strictly increases
the expressive power of Strategy Logic with simple goals.
Theorem 5 For every n ≥ 0, we have:

1. SL−n [SG]≺eSLn[SG], and therefore SL−n [SG]≺dSLn[SG];
2. SL−[SG]≺eSL[SG], and therefore SL−[SG] ≺d SL[SG];

Proof. We adapt the proof of [Belardinelli et al., 2018,
Lemma 32.1]. Clearly, SL−n [SG] �e SLn[SG] and therefore
also SL−n [SG] �d SLn[SG]. Since SL0[SG] �d SLn[SG] and
SL−n [SG] �d SL−[SG], to show that SLn[SG] 6�d SL−n [SG],
we prove that:

SL0[SG] 6�d SL−[SG] (1)

To do so, we provide two models that satisfy the same
formulas in SL−[SG] but are distinguished by a formula of
SL0[SG]. Consider the CGS’s M1 and M2 with Ag = {1, 2},
depicted in Fig. 3. Since SL−[SG] can be shown invari-
ant under renaming of action labels, both models satisfy
the same formulas of SL−[SG]. However, M1 satisfies the
SL0[SG]-formula ∃x(x, 1)(x, 2) X p, while M2 does not.
Thus, SL0[SG] 6�d SL−[SG] and therefore also SLn[SG] 6�d
SL−n [SG] and SLn[SG] 6�e SL−n [SG] for every n ∈ N.

As regards 2., clearly, SL−[SG] �e SL[SG], and there-
fore SL−[SG] �d SL[SG]. Since SL0[SG] �d SL[SG] and
SL0[SG] 6�d SL−[SG] (item (1)), then SL[SG] 6�d SL−[SG].
So, SL−[SG]≺eSL[SG], and thus SL−[SG] ≺d SL[SG]. �

The discussion above highlights logics SL0[SG] and
SL1[SG] as variants of CTL = SL−0 [SG] and ATL = SL−1 [SG]
that allow for strategy sharing. Such extensions have not been
considered in the literature. Nonetheless, by Theorem 5, they
are strictly more expressive than CTL and ATL respectively.

3.3 Motivating Examples and Applications
Strategy Logic enables to address complex interaction be-
tween strategies of different players, who may pursue adver-
sarial, collaborative, or uncorrelated goals. Also, the goals
can be based on sophisticated temporal patterns. This expres-
sivity comes at the expense of tractability, or even decidability
of decision problems for SL. At the other end, we have ATL
where only a single alternation is allowed in strategy quan-
tification. Moreover, the agents’ goals can only be phrased in
terms of reachability. This results in a somewhat rigid speci-
fication language, albeit one with a big advantage: the model
checking problem becomes tractable.

With SL[SG], we extend ATL by allowing arbitrarily many
alternations of strategy quantifiers. We argue that the extra
expressivity is useful, i.e., it allows for specification of rel-
evant properties of agent interaction in multi-agent systems.
To this end, we propose a number of motivating examples.

Example 6 (Stackelberg equilibria) Stackelberg games
concern scenarios where one player (the leader) exposes his
strategy first, and the other player (the follower) adapts to
that strategy by choosing her best response. For example,
coercion in voting often has a Stackelberg structure: the
coercer must lay out his coercion strategy in a believable way
to force the voter to vote as requested. A desirable property
in voting systems is that the voter can resist coercion, i.e.,
for every strategy of the coercer (c) there exists a response
of the voter (v) such that for every run of the environment
(e) the voter will have voted as she intended without being
punished [Tabatabaei et al., 2016]. This is captured by the
following formula of SL[SG]:
∀xc∃xv∀xe (xc, c)(xv, v)(xe, e) F(votedv,i ∧ ¬punished).

Example 7 (Coercion in voting, ctd.) A more realistic
model of coercion allows the coercer to split his strategy
into a public and a private part. We can simulate that by
splitting the model of the coercer into two agents: cpub and
cprv, each responsible for different parts of the coercion
strategy. Moreover, some voting protocols include a process
that can add decoy votes after the election to deceive the
coercer. This can be incorporated into our specification of
coercion-resistance as follows:
∀xc1∃xv∀xc2∃xd∀xe (xc1 , cpub)(xv, v)(xc2 , cprv)

(xd, d)(xe, e)F (votedv,i ∧ ¬punished).

This specification can intuitively be read as: for every pub-
lic strategy of the coercer (xc1), there exists a response by
the voter (xv) such that, no matter what the coercer does pri-
vately (xc2), the decoy process d can use decoy votes to make
sure that the voter votes as she likes without being punished.

Example 8 (Module checking for strategic abilities) The
problem of module checking asks, for an open system
embedded in a nondeterministic environment, whether the
correctness specification holds for every possible strategy of
the environment2. It has been proved that module checking
of either temporal or strategic specifications cannot be
expressed in ATL [Jamroga and Murano, 2014]. The ability
of an autonomous taxi (t) to serve an unbounded stream of
customers (e) so that no accident occurs, regardless of what
the agents a1, . . . , ak do, can be captured as
∀xe∃xt∀xa1 ...∀xak (xe, e)(xt, t)(xa1 , a1)...(xak , ak) G¬crash.

A careful reader may notice that the results in Section 3.2
indeed apply to the above specifications. That is, the formulas
in Examples 6–8 cannot be equivalently expressed in ATL.

4 Model Checking
Given a CGS G and a formula φ in language L, the model
checking problem w.r.t. L consists in determining whether
G |= φ. In this section we study model checking for Strat-
egy Logic with simple goals and its fragments. These results
are essential for applications of SL[SG] to the verification of
multi-agent systems, including the specifications in Exam-
ples 6–8. Our main theoretical result is that verification of
SL[SG] is tractable with respect to the size of the CGS (i.e.,
the number of its transitions) and the length of the formula.

We first prove that the fixed-point characterisation of ATL
carry over to SL[SG].
Proposition 9 The following formula is a validity in SL[SG]:

℘[(ϕ1 Uϕ2) ↔ ϕ2 ∨ (ϕ1 ∧ ℘[X℘[(ϕ1 Uϕ2))

Proof. The proof makes use of the preimage function Pre()
that is defined in Algorithm 2 and will be described in detail
in the proof of Theorem 10. As regards the implication from
left to right, suppose that ℘[(ϕ1 Uϕ2) holds in some state s.
Then, if ϕ2 does not hold in s, ϕ1 does. Moreover, consider
set Y ⊆ S such that s ∈ Pre(℘, [, Y, ε), i.e., the successors
of s that are consistent with the quantification and binding
prefixes. Since (G, s) |= ℘[(ϕ1 Uϕ2) and (G, s) 6|= ϕ2, for
every s′ ∈ Y , we have (G, ss′) |= ℘[(ϕ1 Uϕ2): indeed ev-
ery strategy σi witnessing an existential quantifier Qi in ℘ at
s, also witnesses Qi in history ss′. In particular, (G, ss′) |=
℘[(ϕ1 Uϕ2), and finally, (G, s) |= ℘[X℘[(ϕ1 Uϕ2) by the
way s′ was chosen.

As for the implication from right to left, if ϕ2 holds at state
s, then ℘[(ϕ1 Uϕ2) is also the case. On the other hand, sup-
pose that (G, s) |= ϕ1 ∧ ℘[X℘[(ϕ1 Uϕ2). In particular, ev-
ery existential quantifier Qi in ℘ is witnessed in s by some
strategy σi, and in every “successor” state s′ ∈ Y , Qi is
witnessed in history ss′ by some (possibly different) strategy
σ′i. Then, define strategies σ′′i such that σ′′i (s) = σi(s) and
σ′′i (s · h) = σ′i(h) for all h ∈ S+. In particular, each σ′′i wit-
nesses Qi at s, that is, (G, s) |= ℘[(ϕ1 Uϕ2). Observe the
essential use of perfect recall in the construction of strategy
σ′′i from σi and σ′i. �

2Admittedly, to represent module checking properly we need
CGSs with non-deterministic transitions. Nonetheless, the charac-
terization of module checking in SL[SG] would remain the same.

Algorithm 1 SL[SG] Model Checking
procedure MODELCHECKING(G,ϕ)

for all ϕ′ in Sub(ϕ) do
case ϕ′ = p: [ϕ′] := Reg(p);
case ϕ′ = ¬θ: [ϕ′] := S \ [θ];
case ϕ′ = θ1 ∧ θ2: [ϕ′] := [θ1] ∩ [θ2];
case ϕ′ = ℘[X θ: [ϕ′] := Pre(℘, [, [θ], ε);
case ϕ′ = ℘[(θ1 U θ2):
Y := ∅; Z := [θ2];
while Z 6⊆ Y do
Y := Y ∪ Z;
Z := Pre(℘, [, Y, ε) ∩ [θ1];

end while
[ϕ′] := Y ;

end for
return [ϕ];

end procedure

By using Prop. 9 we can prove the main theoretical result.
Theorem 10 Model checking SL[SG] is P-complete.

Proof. Recall that CTL corresponds to the SL−0 [SG] fragment
of SL[SG]. Then, the lower bound follows immediately from
the P-hardness of model checking CTL [Katoen, 2008].

As for the upper bound, Algorithm 1 shows a procedure for
model checking SL[SG], which manipulates sets of states in
S. The procedure is inspired by the standard model check-
ing algorithm for ATL [Alur et al., 2002], but the preimage
operator for the ATL modality 〈〈A〉〉X is now replaced by the
Pre operator in Algorithm 2 for an arbitrary block of strat-
egy quantifiers. Specifically, Algorithm 1 uses the following
primitive operations:
• The function Sub returns a sequence of syntactic subfor-

mulas of a given formula ϕ.
• The function Reg returns the set {s ∈ S | p ∈ L(s)} of

states s ∈ S labelled with a given atom p ∈ AP .
• The function Pre, when given a quantification

prefix ℘ = Q1x1 . . . Qkxk, a binding prefix [=
(x1, a1,1) . . . (x1, a1,m1

) . . . (xk, ak,1) . . . (xk, ak,mk)3,
a set Y ⊆ S of states, and a tuple ~α of actions for
all agents a ∈ Ag such that (x, a) appears in [and x
does not appear in ℘, returns the set of states s ∈ S
from which there exist transitions consistent with ℘, [,
and ~α, ending up in Y . Formally, Pre is a recursive
function defined on the length of ℘. For the base case
℘ = ε, notice that ~α is a joint action for all agents
in Ag, and therefore Pre returns the set of states
s ∈ S such that τ(s, ~α) ∈ Y . As for the recursive
step, s ∈ Pre(℘, [, Y, ~α) iff for ℘1 = ∃ (resp. ∀),
for some (resp. every) action β, it is the case that
s ∈ Pre(℘>1, [, Y, update([, ~α, var(℘1), β)), where
function update([, ~α, x, β), given a binding [, a tuple ~α
of actions, variable x, and action β, returns a tuple ~α′ of
actions such that for every a ∈ Ag, if (x, a) appears in [
then ~α′a = β, otherwise ~α′a = ~αa. For more details on
function Pre, see Algorithm 2.

• Union, intersection, difference, and inclusion test for
sets of states.

3The parameter mi represents the number of agents assigned to
variable xi, for each 1 ≤ i ≤ k.

Algorithm 2 Preimage of a set Y of states
procedure Pre(℘, [, Y, ~α)

if ℘ = ε then return {s ∈ S | τ(s, ~α) ∈ Y };
else if ℘1 = ∃ then return⋃

β∈
⋂
(var(℘1),a)∈[Acta

Pre(℘>1, [, Y, update([, ~α, var(℘1), β));

else return⋂
β∈

⋂
(var(℘1),a)∈[Acta

Pre(℘>1, [, Y, update([, ~α, var(℘1), β));

end if
end procedure

Algorithm 1 works bottom-up on the structure of the for-
mula; the cases of interest are for strategy formulas. For
ϕ′ = ℘[X θ, the procedure calls function Pre to compute the
set of states that are “bound” to end up in satisfaction set [θ].
As regard ϕ′ = ℘[(θ1 U θ2), the procedure computes the least
fixed-point of operator F (Z) = [θ2] ∪ ([θ1] ∩ ℘[X℘[(Z)).
We observe that, since F is monotone, such a fixed-point al-
ways exists. Further, Algorithm 1 runs in polynomial time in
the size of the CGS and the size of the formula4. Termination
of Algorithm 1 is guaranteed, as the state space S is finite.
Soundness and completeness can be proved by induction on
the structure of the input formula ϕ by using Proposition 9
for the case ϕ′ = ℘[(θ1 U θ2). �

By Theorem 10 we immediately obtain that for all frag-
ments of SL[SG] in Fig. 2 model checking is P-complete.

5 Experimental Evaluation
With SL[SG], we propose a logic that enhances the expres-
sivity of ATL while enjoying the same, polynomial-time
complexity of model checking. Alternatively, we sacrifice
some expressiveness of SL[1G] in order to reduce the veri-
fication complexity from highly intractable (2EXPTIME-
complete) to tractable. In consequence, one would expect that
the verification algorithm for SL[SG], presented in Section 4,
should perform better than the general algorithm that handles
the whole “one-goal” fragment of SL [Cermák et al., 2015].

However, theoretical complexity results rely on worst
case complexity. Thus, it can be that the practical perfor-
mance of SL[1G] model checking is much better than the
2EXPTIME classification suggests. In particular, one may
ask if the specialized SL[SG] algorithm of the previous sec-
tion performs significantly better than the general algorithm
in [Cermák et al., 2015] on the formulas of SL[SG]. To an-
swer this question, we have conducted a series of experiments
with a scalable benchmark, based on the simple voting and
coercion scenario of Examples 1 and 6.

We consider models ESVk,n (Extended Simple Voting
with k voters and n candidates), constructed as follows. The
initial state q0 is handled by a new election authority ea, who
decides whether to implement low or high anti-coercion pro-
tection. The former choice leads to a copy of the SVk,n CGS.
The latter proceeds to a modified copy of the same model,
with proposition puni satisfied only in the states where the
coercer has decided to punish the voter and the voter gave
him her voting receipt.

4Notice, however, that the number of transitions in a CGS can be
exponential w.r.t. the number of agents.

#v #states SL[SG] SL[1G] SLK
tgen tverif tg+tv tg+tv

1 29 0.001 0.002 0.42 0.04
2 395 0.02 0.17 27.76 0.08
3 5573 0.98 45.31 5247.65 530.40
4 79187 30.40 8502.12 timeout timeout
5 1130669 805.38 timeout timeout timeout

Table 1: Experimental results for the simple voting model

Moreover, we consider the formula:
∃xea∀xc∃xv1∀xv2 . . .∀xvk (xea, ea)(xc, c)(xv1 , v1) . . . (xvk , vk)

F(finish1 ∧ voted1,1 ∧ ¬pun1)

expressing that the election authority can make sure that, for
every strategy of the coercer, voter 1 has a strategy to eventu-
ally complete her participation in the election, having voted
for candidate 1 without getting punished. Clearly, the formula
is true in every model ESVk,n (the strategy for e being high
protection, and for the voter to never give away her vote).
In the experiments, we have only used models with n = 2.
Thus, the number of voters (k) was the sole scaling factor.

We implemented the model checking algorithm in Sec-
tion 4 in Python 3, using explicit representation of states and
transitions. The tool is available on-line5. For the general
SL[1G] algorithm, we used the MCMAS-SL[1G] extension
of MCMAS [Cermák et al., 2015] and the MCMAS-SLK ex-
tension. The experiments were conducted on an Intel Core i7-
6700 CPU with dynamic clock speed of 2.60–3.50 GHz and
32 GB RAM, running under 64bit Windows 10. The timeout
was set to 5 hours. The experimental results are presented in
Tab. 1. All times are given in seconds. The first two columns
describe the model configuration and its size. The next two
columns show the model generation time and the verification
time for our algorithm. Finally, the last column presents the
performance of the general SL[1G] tool.

The results show significant improvement in running time
when using the specialized algorithm (by orders of magni-
tude). Moreover, our implementation was able to verify mod-
els of up to nearly 80, 000 states, while the more general tool
handled only 10 times smaller models.

6 Conclusions
In this paper we advanced the state of the art on tractable
logics for strategic reasoning in MAS. Inspired by the restric-
tion of the Alternating-time Temporal Logic ATL∗ to ATL,
we introduced Strategy Logic with simple goals (SL[SG]), a
fragment of Strategy Logic that only allows for simple goals
of form Xφ, φUφ′, and φRφ′. Alternatively, SL[SG] can be
seen as the extension of ATL to arbitrary quantification on the
agents’ strategies. Such an extension is motivated by relevant
specification requirements in Game Theory, voting protocols,
and formal verification. In particular, we showed that subtle
notions, such as Stackelberg equilibria, coercion-resistance,
module checking, can all be naturally represented in SL[SG].

Then, we analysed the comparative expressivity of SL[SG],
and introduced the family of logics SLn[SG] and SL−n [SG],
for n ∈ N, inbetween CTL and SL[SG]. We pointed out

5 https://github.com/slsgijcai19/StrategyLogicSimpleGoals.

that ATL is strictly less expressive than SL[SG] and even
SL−2 [SG] (Theorem 4). We showed that strategy binding
strictly increases the expressive power of our fragments (The-
orem 5). Most importantly, the enhanced expressivity of
SL[SG] w.r.t. ATL comes at no extra computational cost:
model checking SL[SG] is P-complete, the same complexity
as ATL (Theorem 10). Because of its tractable model check-
ing problem, SL[SG] lends itself to an efficient implementa-
tion. As an evidence, in Section 5 we presented an implemen-
tation of the proposed SL[SG] model checking algorithm and
conducted a series of experiments that have showed striking
improvements in running time with respect to the implemen-
tation of the SL[1G] algorithm in [Cermák et al., 2015].
Related Work. Logics for strategies are a powerful tool for
strategic reasoning in MAS. Their major bottleneck is the
high complexity of the related decision problems. To over-
come this, two main lines of research have been followed
recently. One deals with semantical restrictions, mainly by
limiting the number of strategies to evaluate [Chatterjee et
al., 2014; Vester, 2013; Brihaye et al., 2009; Jamroga et al.,
2017b; Bruyère et al., 2013]; while the other deals with the
syntax, e.g., by looking at “simpler” fragments [Alur and La
Torre, 2004; Pauly, 2002; Mogavero et al., 2014]. In this
paper, we focused on this second line. Among such frag-
ments, one of the most studied is ATL, a proper sublanguage
of ATL∗ [Alur et al., 2002]. Recently, the syntactic restriction
to simple goals behind the success of ATL has also been in-
vestigated in the context of more powerful logics for strategic
reasoning. In [Malvone et al., 2018] the authors consider the
simple vanilla fragment of Graded SL[1G] (GSL[1G]), but
for two agents only. Hence, their contribution is orthogonal
to ours: it is more general, as they can count strategies, but
also more restricted, since it only considers two agents. Fur-
ther, in [Laroussinie and Markey, 2015] the authors consider
the ATL-like restriction of ATL∗ with strategy contexts. How-
ever, this restriction does not reduce the expressive power nor
the complexity of the related decision problems.
Future Work. A natural direction for future work is to look
for more expressive, yet tractable, formalisms. For instance,
[Bulling and Jamroga, 2010] introduced ATL+ that sits be-
tween ATL and ATL∗. This fragment includes only formu-
las where each temporal operator is followed by a state for-
mula, and allows cooperation modalities to be followed by
a Boolean combination of path formulas. Notably, model
checking ATL+ is PSPACE-complete. We envisage an exten-
sion of SL[SG] similar to ATL+, hopefully with a PSPACE-
complete model checking problem too. We also plan to re-
lease our model checking prototype as a verification tool.

Acknowledgements
F. Belardinelli acknowledges the support of the ANR JCJC
Project SVeDaS (ANR-16-CE40-0021). W. Jamroga and
D. Kurpiewski acknowledge the support of the National
Centre for Research and Development NCBiR, Poland,
and the National Research Fund FNR, Luxembourg, un-
der the PolLux/FNR-INTER project VoteVerif (POLLUX-
IV/1/2016).

https://github.com/slsgijcai19/StrategyLogicSimpleGoals

References
[Ågotnes et al., 2007] T. Ågotnes, V. Goranko, and W. Jamroga.

Alternating-Time Temporal Logics with Irrevocable Strategies.
In TARK’07, pages 15–24, 2007.

[Alur and La Torre, 2004] R. Alur and S. La Torre. Deterministic
generators and games for LTL fragments. ACM Trans. Comput.
Log., 5(1):1–25, 2004.

[Alur et al., 2001] R. Alur, L. de Alfaro, R. Grosu, T. Henzinger,
A. Thomas, M. Kang, C. Kirsch, R. Majumdar F. Mang, and B-
Y. Wang. jMocha: A model checking tool that exploits design
structure. In ICSE’01, pages 835–836. IEEE, 2001.

[Alur et al., 2002] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. J. ACM, 49(5):672–713, 2002.

[Belardinelli et al., 2018] F. Belardinelli, C. Dima, and A. Murano.
Bisimulations for logics of strategies: A study in expressiveness
and verification. In KR’18, pages 425–434, 2018.

[Bouyer et al., 2015] P. Bouyer, P. Gardy, and N. Markey. Weighted
strategy logic with boolean goals over one-counter games. In
FSTTCS’15, pages 69–83, 2015.

[Brihaye et al., 2009] T. Brihaye, A. Da Costa Lopes,
F. Laroussinie, and N. Markey. ATL with strategy contexts
and bounded memory. In LFCS’09, pages 92–106, 2009.

[Bruyère et al., 2013] V. Bruyère, E. Filiot, M. Randour, and J. F.
Raskin. Meet your expectations with guarantees: Beyond worst-
case synthesis in quantitative games. CoRR,abs/1309.5439, 2013.

[Bulling and Jamroga, 2010] N. Bulling and W. Jamroga. Verifying
agents with memory is harder than it seemed. AI Communica-
tions, 23:380–403, 2010.

[Cermák et al., 2014] P. Cermák, A. Lomuscio, F. Mogavero, and
A. Murano. MCMAS-SLK: A model checker for the verification
of strategy logic specifications. In CAV’14, pages 525–532, 2014.

[Cermák et al., 2015] P. Cermák, A. Lomuscio, and A. Murano.
Verifying and synthesising multi-agent systems against one-goal
strategy logic specifications. In AAAI’15, pages 2038–2044,
2015.

[Cermák et al., 2018] P. Cermák, A. Lomuscio, F. Mogavero, and
A. Murano. Practical verification of multi-agent systems against
SLK specifications. I&C, 261(Part 3):588–614, 2018.

[Chatterjee et al., 2010] K. Chatterjee, T.A. Henzinger, and
N. Piterman. Strategy Logic. I&C, 208(6):677–693, 2010.

[Chatterjee et al., 2014] K. Chatterjee, L. Doyen, S. Nain, and
M. Y. Vardi. The complexity of partial-observation stochastic
parity games with finite-memory strategies. In ICFSSCS’14,
pages 242–257, 2014.

[Cimatti et al., 2002] A. Cimatti, E. M. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tac-
chella. NUSMV2: An open-source tool for symbolic model
checking. In CAV’02, pages 359–364, 2002.

[Gammie and van der Meyden, 2004] P. Gammie and R. van der
Meyden. MCK: Model checking the logic of knowledge. In
CAV’04, pages 479–483, 2004.

[Gardy et al., 2018] P. Gardy, P. Bouyer, and N. Markey. Depen-
dences in strategy logic. In STACS’18, pages 34:1–34:15, 2018.

[Hoek and Wooldridge, 2003] W. van der Hoek and
M. Wooldridge. Cooperation, knowledge, and time: Alternating-
time temporal epistemic logic and its applications. Studia
Logica, 75(1):125–157, 2003.

[Huang and van der Meyden, 2014] X. Huang and R. van der Mey-
den. Symbolic model checking epistemic strategy logic. In
AAAI’14, pages 1426–1432, 2014.

[Jamroga and Bulling, 2011] W. Jamroga and N. Bulling. Compar-
ing variants of strategic ability. In IJCAI’11, pages 252–257,
2011.

[Jamroga and Murano, 2014] W. Jamroga and A. Murano. On mod-
ule checking and strategies. In AAMAS’14, pages 701–708, 2014.

[Jamroga and van der Hoek, 2004] W. Jamroga and W. van der
Hoek. Agents that know how to play. Fundamenta Informati-
cae, 62:1–35, 2004.

[Jamroga et al., 2017a] W. Jamroga, M. Knapik, and
D. Kurpiewski. Fixpoint approximation of strategic abilities
under imperfect information. In AAMAS’17, pages 1241–1249,
2017.

[Jamroga et al., 2017b] W. Jamroga, V. Malvone, and A. Murano.
Reasoning about natural strategic ability. In AAMAS’17, pages
714–722, 2017.

[Kacprzak et al., 2008] M. Kacprzak, W. Nabialek, A. Niewiadom-
ski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna, and
A. Zbrzezny. Verics 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae, 85(1):313–328, 2008.

[Katoen, 2008] C. Baier J. P. Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[Laroussinie and Markey, 2015] F. Laroussinie and N. Markey.
Augmenting atl with strategy contexts. I&C, (245):98–123, 2015.

[Lomuscio et al., 2015] A. Lomuscio, H. Qu, and F. Raimondi.
MCMAS: A model checker for the verification of multi-agent
systems. Software Tools for Technology Transfer, 2015.

[Malvone et al., 2018] V. Malvone, F. Mogavero, A. Murano, and
L. Sorrentino. Reasoning about graded strategy quantifiers. I&C,
259:390 – 411, 2018.

[Mogavero et al., 2012] F. Mogavero, A. Murano, G. Perelli, and
M. Vardi. What makes ATL* decidable? a decidable fragment of
strategy logic. In CONCUR’12, pages 193–208, 2012.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli, and
M. Y. Vardi. Reasoning about strategies: On the model-checking
problem. ACM Trans. Comput. Log., 15(4):34:1–34:47, 2014.

[Mogavero et al., 2017] F. Mogavero, A. Murano, G. Perelli, and
M. Y. Vardi. Reasoning about strategies: on the satisfiability
problem. Logical Methods in Computer Science, 13(1), 2017.

[Pauly, 2002] M. Pauly. A modal logic for coalitional power in
games. J. Log. Comput., 12(1):149–166, 2002.

[Tabatabaei et al., 2016] M. Tabatabaei, W. Jamroga, and Pe-
ter Y. A. Ryan. Expressing receipt-freeness and coercion-
resistance in logics of strategic ability: Preliminary attempt. In
PrAISe@ECAI 2016, pages 1:1–1:8, 2016.

[Vester, 2013] S. Vester. Alternating-time temporal logic with
finite-memory strategies. In GandALF’13, pages 194–207, 2013.

	Introduction
	Logics for Strategies
	Strategy Logic with Simple Goals
	The Formal Language
	Expressiveness
	Motivating Examples and Applications

	Model Checking
	Experimental Evaluation
	Conclusions

