
HAL Id: hal-02377400
https://inria.hal.science/hal-02377400v2

Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong differential observability for sampled systems
Sabeur Ammar, Jean-Claude Vivalda, Basma Zitouni

To cite this version:
Sabeur Ammar, Jean-Claude Vivalda, Basma Zitouni. Strong differential observability for
sampled systems. SIAM Journal on Control and Optimization, 2020, 58 (6), pp.3814-3841.
�10.1137/19M1302867�. �hal-02377400v2�

https://inria.hal.science/hal-02377400v2
https://hal.archives-ouvertes.fr


STRONG DIFFERENTIAL OBSERVABILITY FOR SAMPLED-TIME
SYSTEMS

SABEUR AMMAR∗, JEAN-CLAUDE VIVALDA† , AND BASMA ZITOUNI∗

Abstract. In this paper we prove that, generically, a sampled data system is strongly differ-
entially observable provided that the number of outputs is greater than the number of inputs plus
one.
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1. Introduction. Roughly speaking, observability means that initial data of
a dynamical system can be uniquely determined from the pair (output trajectory,
control). In other words, observability means that the mapping

initial state 7→ output trajectory

is one-to-one for every given control. This concept of observability is the simplest
one but, as noticed in [12], the notion of injectivity is hard to handle mathematically
because it is unstable. This is why it is more relevant to work with stronger notions
of observability: in this work, we will add to the injectivity of the input-output
application the immersivity condition, and we will work with the concept of strong
differential observability.

Before giving a precise definition of this notion, we first present the type of system
we consider and the issue we will address. In this paper, we consider a controlled
continuous time system written as

(1.1)

{
ẋ = f(x, u)

y = h(x) ,

whose state evolves on a compact manifold and the control takes its values on a
bounded set of Rdu . Many physical processes or industrial devices can be modeled
by such systems; from a mathematical viewpoint, the time and the state of this
system vary continuously but in practice, a controlled process is regulated by a digital
computer which is not able to record a continuum of data. This is why control
decisions are restricted to be taken at fixed times 0, T, 2T, . . . ; here T is called the
sampling time; it is (generally) small, and it depends on the instrumentation of the
process, on the computing power and other parameters. For a continuous time system,
the resulting situation can be modeled through the restriction that the applied inputs
are constant on the intervals [0, T ), [T, 2T ), . . . and the state is (partially) measured
only at those fixed times 0, T, 2T, . . . , that is to say we access to the values of the
observation function only at times 0, T, . . .

Thus, given a time T , to system (1.1), we relate the following continuous-discrete-
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time system

(1.2)

{
ẋ(t) = f(x(t), uk), t ∈ [kT, (k + 1)T )

yk = h(x(kT ))

where the control u is maintained constant (equal to uk) on the intervals [kT, (k+1)T )
and the measurements of the state are made only at each of the times 0, T, 2T, . . .
System (1.2) is called the sampled data system related to (1.1).

Two questions can be investigated about observability and sampled systems. The
first one is the problem of the preservation of the observability: if the continuous
time system (1.1) is observable for any inputs, is it also the case for the sampled
system (1.2)? Concerning this question, one has to be careful: if we deal with non-
linear systems, one would think that the observability of the continuous time system
involves the observability of the sampled one, at least if the sampling time is cho-
sen small enough. Surprisingly, this is not the case when working with non-linear
systems,, the reader is referred to [7] or [3, 5] for results and counter-examples.

The second question is more “philosophical” and is the subject of this paper: given
a sampling time T , are many continuous time systems (1.1) such that the sampled
system (1.2) is observable? Due to the importance of the notion of observability,
it is indeed of interest to know “how many” continuous time systems give rise to
observable sampled data systems. The present paper intends to prove that the set
of continuous time systems which admit an observable sampled system is everywhere
dense. Notice that this result cannot be deduced from the above-mentioned papers
because, while the observability of the continuous time system is generic (see [12]) the
conditions in [7, 3, 5] are not; also, in these papers, the observability is ensured only
for sufficiently small sampling time T .

The genericity of the observability has been the subject of some researches in the
last decades. As regards continuous-time systems, the first paper on the subject was
about the genericity of the observability for uncontrolled systems [10]; this work was
generalized to controlled systems by J.-P. Gauthier and I. Kupka: in [11] these authors
proved the genericity of differential observability for systems with more outputs than
inputs. A reference book on this subject is [12]. A related issue is the problem of the
identifiability, in [9], the authors deal with general nonlinear systems which contain
an unknown function, they prove that these (uncontrolled) systems are generically
identifiable if the number of observations is at least three. Regarding the discrete-
time systems, the first paper on the subject was from Aeyels [2], we can cite also [18]
for the uncontrolled case and [8, 4] for the controlled case. In all of these papers,
it is proved that the observability is a generic property provided that the number of
outputs is greater than the number of inputs. Concerning the subject of this paper,
we have also to cite [14], in this paper the authors prove also a result of genericity of
the observability for sampled data systems; the systems considered in this paper are
uncontrolled and the sampling time is not constant but depends on the sate of the
system.

This paper is the continuation of [6] (see also https://hal.inria.fr/hal-01630461),
in which we dealt with the problem of the observability under sampling. To be more
precise, we proved that the set of pairs (f, h) which make the sampled system (1.2)
strongly observable, is everywhere dense for the Whitney topology; in the present
paper, we intend to prove that the strong differential observability is also generic.

The tools used to prove our main result are essentially the same (but applied to
different situations) as the ones used in the above-mentioned papers, that is to say
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the major theorem of the transversality theory.
The paper is organized as follows: in the next section, we state the precise for-

mulation of the problem we deal with; then we recall some useful facts from the
transversality theory. Finally, our main theorem is proved throughout three proposi-
tions.

1.1. Notations and problem formulation . In system (1.1), the state x be-
longs to a compact manifold X with dimension n, the control u belongs to another
compact manifold U whose dimension is denoted by du and the mapping h takes its
values in Rdy . As usual we denote by TxX the tangent space to X at x, by TX the
tangent bundle, and by T2(X) the double tangent bundle. A parametrized vector
field will be a C∞ mapping defined from X × U into TX such that, for every u ∈ U ,
f(·, u) is a vector field defined on X. The set of parametrized vector fields defined
on X will be denoted by ΓU (X). If f belongs to ΓU (X), we denote by ϕut the flow
generated by the vector field f(·, u) (the parameter u being fixed); so for every x ∈ X,
every u ∈ U , and every t ≥ 0, we have

ϕu0 (x) = x and
dϕut (x)

dt
= f(ϕut (x), u) .

Let u0, u1, . . . be a sequence of controls (i.e. a sequence of elements of U), for k ≥ 1,
we denote by uk the finite sequence uk = (u0, . . . , uk−1).

Let ψ : M → N be a differentiable mapping between two manifolds M and N ,
the notation dψ(x) will stand for the differential of ψ at x; let ξ ∈ TxM be a tangent
vector, dψ(x) · ξ will denote the image of ξ under dψ(x).

Hereafter, together with the parametrized vector field, and the observation map-
ping h, given a sampling time T > 0, we consider the mapping Θf,h

T defined as

(1.3)
Θf,h
T : X × U2n −→ (Rdy )

2n+1 × U2n

(x, u2n) 7−→
(
h(x0), h(x1), . . . , h(x2n), u2n

)
where the sequence (x0, x1, . . . , x2n) is defined recursively by x0 = x and xk+1 =
ϕuk

T (xk). Also, we denote by yi the values taken by h at xi i.e. yi = h(xi) .

Definition 1.1. We will say that the sampled data system (1.2) is strongly dif-

ferentially observable if the mapping Θf,h
T defined above is a one-to-one embedding.

The space ΓU (X) × C∞(X,Rdy ) is endowed with the Whitney topology (which
amounts to the C∞ topology, since the spaces X and U are compact). As mentioned
above, in [6], we showed that, generically, system (1.2) is strongly observable (i.e.

Θf,h
T is one-to-one); in this paper, we will show that, in addition, mapping Θf,h

T is
generically an embedding. To be more precise, we will prove that the set of pairs
(f, h) ∈ ΓU (X)×C∞(X,Rdy ) such that the mapping Θf,h

T is an injective embedding
is open and dense provided that dy ≥ du + 2 (case du > 0) or dy ≥ 1 (case du = 0).

So what is the point of showing this additional property? (i.e. that Θf,h
T is,

generically, an embedding.) First, we already know that the set O1 of pairs (f, h)

such as Θf,h
T is injective is a residual set. Knowing that, moreover, the set O2 of these

pairs that make Θf,h
T immersive is also a residual set easily allows us to show that

the set O1 ∩O2 is not only residual but also open; the openness part of this assertion
following easily from the Whitney embedding theorem.

On the other hand, this result has some practical consequence. As explained
in [12], when Θf,h

T is an embedding, system (1.2) admits a phase variable represen-
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tation and this property is interesting from the point of view of the design of an
observer.

1.2. Reminders and some facts from transversality theory. The tools
used in this paper come from the transversality theory, hereafter, we recall the no-
tion of transversality as well as the Abraham’s theorem of density [1] which will be
intensively in the proof of our main result.

Definition 1.2 (Transversality). Let f be a smooth mapping between two smooth
manifolds X and Y , W a submanifold of Y and x a point in X. We will say that f
is transversal to W at x if either

• f(x) 6∈W , or
• f(x) ∈W and Tf(x)Y = Tf(x)W + dfx(TxX) .

We will say that f is transversal to W if it is transversal to W at every x ∈ X. We
will use the symbol t to denote the transversality.

We recall also the notion of representation: let A, X and Y be Cr manifolds
and ρ a map from A to Cr(X,Y ). For a ∈ A, ρa : X → Y is the map defined as
ρa(x) = ρ(a)(x). We say that ρ is a Cr representation if the evaluation map:

evρ : A×X −→ Y
(a, x) 7−→ ρa(x) = ρ(a)(x)

is a Cr map from A×X to Y .

Theorem 1.3 (Transversal density theorem). Let A, X, Y be Cr manifolds, ρ :
A → Cr(X,Y ) a Cr representation, W ⊂ Y a submanifold (not necessarily closed),
and evρ : A×X → Y the evaluation map. Define AW ⊂ A by:

AW = {a ∈ A | ρa tW}

Assume that:
1. X has a finite dimension n and W has a finite codimension q in Y ;
2. A and X are second countable;
3. r > max(0, n− q);
4. evρ tW .

Then AW is residual in A.

In this theorem, it is important to notice that manifold A is not necessarily finite
dimensional; it may be a Banach space or an open subset of a Banach space.

1.2.1. Periodic trajectories. Let f ∈ ΓU (X), u ∈ Y , x ∈ X, we assume that
x belongs to a periodic trajectory of the vector field f(·, u). Let us denote by π0 the
prime period of this trajectory, i.e., π0 is the smallest positive number τ such that
ϕuπ0

(x) = x. As we have dϕuπ0
(x) · f(x, u) = f(ϕuπ0

(x), u) = f(x, u), the number 1 is
an eigenvalue of A := dϕuπ0

(x). In the sequel we will have to consider expressions like
Id +A+ . . .+Ak and we will need that this sum of linear mappings be invertible; this
is certainly true if, apart from 1, the other eigenvalues have modulus different from
1. The theorem of Kupka-Smale [15, 16] asserts that this is generically the case for
a vector field. Let a > 0, hereafter, we denote by G2(a) the subset of Γ(X) of these
vector fields f such that

• if x is a singular point of f , then for every t 6= 0, dϕ(x) : TxX → TxX has no
complex eigenvalue of modulus 1;

• if x belongs to a periodic trajectory of f with period 0 < π0 ≤ a, then
denoting by 1, λ2, . . . , λn the eigenvalues of dϕπ0

(x), we have |λi| 6= 1 for
i = 2, . . . , n.

4



Recall that the manifolds X and U are assumed to be compact. We have

Theorem 1.4 (Kupka-Smale). Let a > 0, the set G2(a) is residual; moreover for
the Cr topology (r < +∞), G2(a) is open and dense.

This theorem has been generalized for parametrized vector fields when dimU = 1
(see [17]) but actually it is still true whatever the dimension of U ,1 to be more precise
we have:

Theorem 1.5. Let a > 0, the set GU2 (a) of parametrized vector fields such that
f(·, u) ∈ G2(a) for every u ∈ U is a residual; moreover GU2 (a) is open and dense for
the Cr topology (r < +∞).

2. Main result.

Theorem 2.1. Let T > 0 be a given sampling time. The set of couples (f, h) ∈
ΓU (X)×C∞(X,Rp) such that system (1.2) is strongly differentially observable is an
open and dense subset of ΓU (X)× C∞(X,Rdy ) for the Whitney topology.

The proof of this theorem result from three propositions. In these propositions, we
have to deal with the periodic trajectories related to the vector field f(., u), for u ∈ U .

3. Proof of the main result.

3.1. Strategy of proof. Given an initial condition x0 and a sequence of controls
u2n, we consider the list

L =
(
(x0, u0), (x1, u1), . . . , (x2n, u2n)

)
∈ (X × U)2n+1 .

In this list the elements can be all distinct or there may be some equalities between
the pairs (xi, ui) or between the points xi. Our strategy will be the following: we will
consider some submanifold W together with some representation ρ, and we will prove
the following results:

• By applying the Transversal density theorem [1], we will see that the set of
couples (f, h) ∈ ΓU (X)× C∞(X,Rdy ) which are transversal to W is dense;

• the codimension of the chosen submanifold W being greater than the dimen-
sion of the domain of ρf,h, this implies that the range of ρf,h does not intersect
W ;

• the non belonging to the submanifold W implies that Θf,h
T must be an im-

mersion.
The choice of the submanifold W and of the representation ρ depends on the number
of equalities occurring in the above list L; hereafter, we will examine the different
possibilities that can occur.

The method followed in this paper is very similar to the one we implemented
in [6]. However, in this work we also need relation (3.2) below, because we have to
compute the second derivative (with respect to vector field f) of the mapping ϕuT .
The number of configurations considered here is less than in the above-mentioned
paper, nevertheless, the need to take into account this second derivative can, in some
configurations, pose delicate problems because we have to compute a perturbation of
the field f in order to fulfill two different objectives for the first and second derivatives
of ϕuT .

1For a proof see https://hal.inria.fr/hal-01630461
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3.2. Different configurations. There may be some equalities between the el-
ements (xi, ui) of list L; in each equality class we retain the element with least index
and we denote by L′ the new list obtained by this method. This list can be written
as

L′ = S1 ∪ S2, · · · =
(
(x0, u0), (x1, u1), . . . , (xj−1, uj−1)︸ ︷︷ ︸

S1

, (xp, up), . . .︸ ︷︷ ︸
S2

, . . .
)

where the Si’s are sequences of consecutive terms, the consecutive terms between Si
and Si+1 having been cancelled. Roughly speaking L′ is obtained from L by making
some “gaps” in L; moreover, whereas the pairs in L′ are all distinct, there can exist
some equalities between the points xi of some pairs.

Besides lists L, L′, S1,. . . we will also consider the lists Lx, L′x, S1,x constituted
by the first projections of the elements of L, L′, S1,. . . respectively; namely, we write

Lx = (x0, . . . , x2n), L′x = (x0, x1, . . . , xj−1, xp, . . . ), . . .

In the sequel, we will say that an equality xi = xj (i < j) between two elements of Lx
is a “suitable” equality if (xi, ui) ∈ L′ and (xj−1, uj−1) ∈ L′ (so, the element (xj , uj)
may belong to L r L′). Hereafter, we make a discussion according to the number of
gaps in L and the number of equalities between the elements of Lx.

No gap. Assume first that there exist no gap in L, in other words, with our
notations, we have L = L′.

• If there exists at most one equality between the elements of Lx, this configu-
ration will be denoted by C0.

• If there exists at least two equalities between the elements of Lx, this config-
uration will be denoted by C2.

Exactly one gap. In this case we have L′ = S1 ∪ S2 with S2 possibly empty.
Denoting the elements of S1 by (x0, u0), . . . , (xj−1, uj−1), the element (xj , uj) is not in
L′ and, from the definition of L′, it yields an equality that we write (xi, ui) = (xj , uj)
with i < j; notice that the equality xi = xj is a suitable equality, notice also that
if S2 6= ∅, the first element (xq, uq) of S2 is equal to an element (xr, ur) ∈ S1 but
xq = xr is not a suitable equality.

• If there does not exist any suitable equality (other than xi = xj) between two
elements of Lx, this configuration will be denoted by C1.

• If there exists at least one other suitable equality between two elements of
L′x, this configuration will be denoted by C2.

At least two gaps. In the case where there exists at least two gaps (so L′ =
S1∪S2∪S3∪ . . . ) (with S3 possibly empty), we can find at least two suitable equalities
among the elements of Lx. Let us write

S1 = {x0, . . . , xj−1}, S2 = {xq, . . . , xp−1}

then there exists i < j such that xi = xj (and also ui = uj) and k < p such that
xp = xk (and also uk = up), from the definition of L′ it follows that the elements
(xi, ui) and (xk, uk) can be chosen in L′ (they belong to S1 ∪ S2). Moreover, the
equalities xi = xj and xk = xp are suitable equalities. This configuration will also be
denoted by C2.

Hereafter we summarize the discussion made above.
Configuration C0 We are in the case where L = L′ and there exists at most one

equality among the points xi in Lx.
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Configuration C1 There exists exactly one gap in L, i.e. L′ = S1 ∪ S2 (with S2
possibly empty) and there does not exist any suitable equality between two
elements of L′x.

Configuration C2 There exists two suitable equalities between the elements of Lx.
We will be more specific and describe more completely the situations where
these configurations arise.
• First, these two suitable equalities can occur between some terms of S1,x

or between some terms of Lx when L = L′ (case “no gap”) , we will
write them xi = xj and xk = xp with i < j < p and k < p; these
two equalities could involve only three elements : xi = xj = xp with
i < j < p. Moreover, we will assume that p is the smallest index with
this property: that is to say, we assume that there is no other equalities
among the elements of the list (x0, . . . , xp).

• Then, there can exist exactly one suitable equality, written xi = xj ,
among the elements of S1,x ; in this case, there exists at least one gap,
writing S1 =

(
(x0, u0), . . . , (xp−1, up−1)

)
, there exists (xk, uk) ∈ S1 such

that (xk, uk) = (xp, up), which gives rise to a second suitable equality
(notice than k could be equal to i or j).

• In the third sub-configuration, we have L′ = S1∪S2∪. . . with S2 6= ∅ and
there is no equality among the elements of S1,x but at least one suitable
equality among an element xp of S2,x and an element of S1,x ∪ S2,x; as
before, in this case we get another suitable equality by considering the
first element in the gap after S1. Here also, we assume, that p is minimal
for this property: there does not exist any other suitable equality among
the elements of (x0, . . . , xp).

• Finally the fourth and last sub-configuration occurs when there exist at
least two gaps in L′: L′ = S1 ∪ S2 ∪ S3 (with S3 possibly empty), and
when there exist no suitable equality among the terms of S1,x ∪ S2,x,
in this case the consideration of the first elements in the two first gaps
gives rise to two suitable equalities.

3.3. Perturbation lemmas. Before going further, we recall a result which will
be used in the subsequent proofs of the propositions, related to the different considered
configurations. Take two vector fields f and φ defined on X and denote by ϕt and ϕλt
(λ ∈ R) the flows related to f and f+λφ respectively ( φ will be called a perturbation
of f). In [1, Perturbation theorem, p. 107 ], the following formula is proved: for every
x ∈ X, we have

(3.1)
d

dλ
ϕλt (x)

∣∣∣∣
λ=0

=

∫ t

0

dϕσ ◦ φ ◦ ϕt−σ(x)dσ .

Obviously, this formula can be extended to the case of parametrized vector fields.
Consider f and φ in ΓU (X) and denote by ϕu,λt the flow generated by the vector field
f(·, u) + λφ(·, u) (with u fixed). Starting from an initial condition x0, consider now

the sequence xλ0 , x
λ
1 , . . . defined recursively as xλ0 = x0 and xλi+1 = ϕui,λ

T (xλi ), then
applying formula (3.1), we deduce easily that

d

dλ
xλi+1

∣∣∣∣
λ=0

= Ji + δi(Ji−1) + · · ·+ δ1(J0)
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where

Jk =

∫ T

0

dϕuk
σ (ϕuk

T−σ(xk)) · φ(ϕuk

T−σ(xk), uk)dσ ;

the integral Jk belongs to the tangent space of X at ϕuk

T (xk) = xk+1. Moreover the
δk’s are the mappings defined as

δk = d(ϕui

T ◦ · · · ◦ ϕ
uk

T )(xk) .

Another lemma that we will use is the Tangent perturbation lemma, stated in
the same work [1, Tangent perturbation lemma, p.110]; it is concerned with the per-
turbation of the tangent map dϕT (x) of the flow related to a vector field f . Denote
by ω the canonical involution defined on T2(X), given that ω ◦ df is a vector field
defined on T(X) whose flow is dϕt, we derive the following formula [1, p. 110], which
is similar to (3.1):

(3.2)
d

dλ
dϕλt (x)

∣∣∣∣
λ=0

=

∫ t

0

d2ϕσ ◦ ω ◦ dφ ◦ dϕt−σ(x)dσ .

Denote by T the trajectory passing through x and let us restrict ourselves to pertur-
bation φ that are zero along T . We will then have ϕλt (x) = ϕt(x) for every t ∈ R, so
dϕλT (x) is a linear mapping from TxX to TϕT (x)X and we can compute the derivative

of dϕλT (x) with respect to λ at λ = 0. Let A be a linear mapping from TxX to
TϕT (x)X such that A · f(x) = 0, the tangent perturbation lemma [1, p. 110] asserts
that φ can be chosen such that this derivative is equal to A. If we look at the proof
of this lemma, it is noteworthy that φ can be chosen equal to zero outside of an
arbitrarily small neighborhood of T .

In the sequel, we will have to consider two kind of perturbations of vector field f ,
one of them will serve to set the derivative of ϕus,λ

T with respect to λ at λ = 0 at some
predetermined value, the other one will be useful to adjust the value of the derivative
of dϕus,λ

T (xλs ) at λ = 0. Denote respectively by φ1 and φ2 these two perturbations, as
φ2 restricted to the trajectories of the vector fields f(·, us) passing through the points

xs is zero, it does not affect the value of the derivative of ϕus,λ
T (cf (3.1)). Moreover,

the derivative of dϕus,λ
T (xλs ) can be written as

(3.3)
d

dλ
dϕus,λ

T (xλs )

∣∣∣∣
λ=0

=

∫ t

0

d2ϕus
σ ◦ ω ◦ dφ2 ◦ dϕus

T−σ(xs)dσ

+

∫ t

0

d2ϕus
σ ◦ ω ◦ dφ1 ◦ dϕus

T−σ(xs)dσ .+ dϕus

T ◦
d

dλ
xλs

∣∣∣∣
λ=0

Notice, that in this sum, the first integral depends only on φ2 while the two last terms
depend only on φ1.

Hereafter, the proof of Theorem 1.5 is achieved thanks to three propositions
related to each configuration C0, C1, C2; we begin by dealing with the case of C0

configuration.

3.4. The pair (x, u2n+1) is under configuration C0..

Proposition 3.1. Assume that the number of observations is greater than the
number of controls ( i.e dy > du). Denote by Or0 the set of pairs (f, h) ∈ ΓU (X) ×
C∞(X,Rdy ) such that Θf,h

T is an immersion at (x0, u2n) whenever the pair (x0, u2n)
is in configuration C0. Then Oro contains a residual set Rr0 for the Cr topology.
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Proof. First, we choose a finite atlas A of X; given a parametrized vector field
f , a point x ∈ X and a sequence of controls u2n ∈ U2n, there exists some charts
(U0, θ0),. . . , (U2n, θ2n) in A such that x0 ∈ U0, . . . , x2n ∈ U2n. The number of 2n+ 1-
tuples of charts belonging to A is finite; for each such 2n + 1-tuple, we will prove
the existence of a residual subset of GU2 (a) × C∞(X,Rdy ) satisfying some property
(explained below); obviously the intersection of all of theses residual sets is still a
residual set. We consider the following representation defined through the evaluation
map evρ whose domain is ΓU (X) × C∞(X,Rdy ) × X × U2n × Pn−1, codomain is
X2n ×GL(n,R)2n × L(Rn,Rdy )2n ×Pn−1, and which is defined as

evρ : (f, h, x, u2n, l) 7−→(
(x0, . . . , xj

:
, . . . , x2n), (dϕ̄0, . . . ,dϕ̄2n−1), (dh̄0, . . . ,dh̄j

:::
, . . . ,dh̄2n), l

)
where

• Pn−1 denotes the n− 1 dimensional real projective space;
• dϕ̄r (resp. dh̄r) denotes the local expression of dϕur

T (xr) in the charts (Ur, θr)
and (Ur+1, θr+1) (resp. dh(xr));

• the wavy underline indicates that the underlined terms have been canceled
(in order to take into account the possibly equality xi = xj).

Below, we will denote by Ãs the product Ãs := As−1 ◦ As−2 ◦ · · · ◦ A0 (with
Ã0 := Id). Together with representation ρ, we consider the submanifold W ⊂ X2n ×
GL(n,R)2n × L(Rn,Rdy )2n ×Pn−1 defined as the set of those elements(

(a0, . . . , aj
:
, . . . , a2n), (A0, . . . , A2n−1), (C0, . . . , Cj

::
, . . . , C2n), `

)
such that

• the elements a0, . . . , aj
:
, . . . , a2n are all distinct;

• we have the following equalities

C0Ã0 · ` = 0, . . . , CiÃi · ` = 0, . . . , Cj−1Ãj−1 · ` = 0,

Cj+1Ãj+1 · ` = 0, . . . , . . . , . . . , C2nÃ2n · ` = 0 .

First, we will compute the codimension of W . Clearly the mapping

(C0, . . . , Cj
::
, . . . , C2n, A0, . . . , A2n−1, `) 7→

(C0 · `, . . . , Ci Ãi · `, . . . , Cj−1 Ãj−1 · `, Cj+1Ãj+1 · `, . . . , C2nÃ2n · `)

is a submersion, so the codimension of W is equal to 2ndy , which is greater than
2n− 1 + 2ndu, the dimension of the domain of evρ because dy > du.

Now, we will show that the evaluation map evρ is transversal to W at every point

X = (f, h, x, u2n+1, l) ∈ ΓU (X)× Cr(X,Rdy )×X × U2n ×Pn−1 .

If evρ(X) /∈ W , there is nothing to prove, so we will assume that evρ(X) ∈ W . Take
(X,Φ,H,L) a vector tangent to the codomain of evρ at evρ(X) with Xs ∈ TxsX
(s = 0, . . . , 2n, s 6= j), Φs ∈ GL(n,R), (s = 0, . . . , 2n − 1), Hs ∈ L(Rn,Rdy )
(s = 0, . . . , 2n, s 6= j) and L ∈ Pn−1. We have to prove that the transversality
equation has (at least) one solution, that is to say, we have to prove that there exist
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φ ∈ ΓU (X), η ∈ Cr(X,Rdy ), ξ ∈ TxX, υs ∈ Tus
U (s = 0, . . . , 2n − 1) and l ∈ Pn−1

as well as a vector ζ, which is tangent to W at evρ(X) such that

(3.4) (X,Φ,H,L) = devρ(X) · (φ, η, ξ, υ, l) + ζ .

We will prove this relation with φ ≡ 0, ξ = 0, υs = 0 (s = 0, . . . , 2n − 1) and l = 0.
We denote by

α0, . . . , αj
::
, . . . , α2n,A0, . . . ,A2n−1,C0, . . . ,Cj

::
, . . . ,C2n,L

the components of ζ ; the term ζ being tangent to submanifold W , notice that the
components of ζ have to satisfy the following relations

C0` = 0(3.5a)

CsÃs`+ Cs

s−1∑
σ=0

Πσ(Ãs,Aσ)` = 0, s = 1, . . . , 2n, s 6= j(3.5b)

where Πσ(Ãs,Aσ) is equal to the product Ãs with the term Aσ replaced with Aσ .
Now, in ζ, the components αs (s = 0, . . . , 2n, s 6= j) can be chosen so that the 2n

first equations in (3.4) be satisfied. We chose next the terms As (s = 0, . . . , 2n − 1)
in order to satisfy the following 2n equations in (3.4). The As being so chosen, it is
possible to find 2n homomorphisms Cs (s = 0, . . . , 2n, s 6= j) in order to satisfy the
relations (3.5). The Cs being so chosen, as evρ(X) ∈W , the xs (s = 0, . . . , 2n, s 6= j)
are all distinct, hence we can find η ∈ Cr(X,Rdy ) such that the 2n equations bearing
on the Hs in (3.4) are satisfied. Finally, as L can be chosen freely, the last equation
in (3.4) can also be satisfied.

Thus, we can invoke the Abraham density Theorem 1.3: the set Rr0 of pairs (f, h)
such that ρf,h is transverse to W is a residual but, here, transversality means non
set membership because the codimension of W is greater than the dimension of the
domain of ρf,h . Thus, if we take a pair (f, h) in this residual set; if point x, the
sequence of controls u2n and l ∈ Pn−1 are such that the points xs (s = 0, . . . , 2n,
s 6= j) are all distinct, one must have

dh(xs) ◦ dϕ
us−1

T (xs−1) ◦ dϕu0

T (x0) · ` 6= 0

for at least one index s. The point ` ∈ Pn−1 being arbitrary, this proves that Θf,h
T

is an immersion at (x, u2n). Now the intersection R∞0 :=
⋂
r≥1 R

r
0 is a subset of

ΓU (X)×Cr(X,Rdy ) that is a residual for the C∞ topology. Moreover for every pair

(f, h) ∈ R∞0 , if (x, u2n) is under C0 configuration relatively to (f, h), then Θf,h
T is an

immersion at (x, u2n).

3.5. The pair (x, u2n+1) is under configuration C1.. The proof of the
following proposition needs some lemmas which has been postponed in appendix.

Proposition 3.2. Assume that the number of observations is greater than the
number of controls ( i.e dy > du). Denote by Or1 the set of pairs (f, h) ∈ ΓU (X) ×
C∞(X,Rdy ) such that Θf,h

T is an immersion at (x0, u2n) whenever the pair (x0, u2n)
is in configuration C1. Then Or1 contains a residual for the Cr topology.

Proof of the proposition. In this configuration, there exists exactly one gap in
list L so L′ = S1 ∪ S2 (with S2 possibly empty), let (xj , uj) be the first term in this
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gap (so S1 = (x0, u0), . . . , (xj−1, uj−1)) then there exist (xi, ui) ∈ S1 which is equal
to (xj , uj) (with i < j). Now if S2 is empty, the terms (xj , uj), . . . , (x2n, u2n) are in
L r L′ and there does not exists any equality between the terms in L′x. If S2 is not
empty, we write in this case S2 = (xp, up), . . . , (x2n, u2n), so there exists r ≤ j − 1
such that (xp−1, up−1) = (xr, ur), which implies that xp = xr+1; if r = j − 1, this
equality implies that xp = xi. Notice that, in both cases, this equality is not suitable.

To prove this proposition, we have to distinguish between the cases j ≥ n and
j < n ; as the proofs in theses two cases are quite similar we focus on the case j < n
and we will only give some indication for the other case.

Hereafter, we will consider n representations ρ1, . . . , ρn together with n sub-
manifolds W1, . . . ,Wn. First, take an index k such that 1 ≤ k ≤ j and con-
sider the representation ρk defined through the evaluation map evρk , whose do-
main is GU2 (a)(X) × C∞(X,Rdy ) × X × U j × Pn−1 (with a > T ), codomain is

Xj+1 ×GL(n,R)j × L(Rn,Rdy )
j ×Pn−1 ×Pn−1, and which is defined as

evρk(f, h, x, uj , l) =
(
(x0, . . . , xj), (dϕ̄0, . . . ,dϕ̄j−1), (dh̄0, . . . ,dh̄j−1), f̄k−1, l

)
here the notations are the same as in the proof of the previous proposition and,
moreover, f̄k−1 represents in Pn−1 the local expressions of f(xk−1, uk−1) .

Together with this representation, we consider the submanifold Wk defined as the
set of those elements(

(a0, . . . , aj), (A0, . . . , Aj−1), (C0, . . . , Cj−1), fk−1, `
)

such that
• we have the equality ai = aj and this equality is the only one between the
ar’s (r = 0, . . . , j);

• the family (`, Ã1`, . . . , Ãk−1`) is linearly independent,
• whereas the family (`, Ã1`, . . . , Ãk`) is linearly dependent
• we have the equalities

C0` = 0, C1Ã1` = 0, . . . , Cj−1Ãj−1` = 0, CiÃj` = 0 .(3.6)

• and the vector Ãk−1` is not proportional to fk−1 .
Here, as in the proof of Proposition 3.1, Ã1 := A0, Ã2 := A1A0, . . . , Ãk := Ak−1Ãk−1.

First we compute the codimension of Wk, from Proposition A.1, this codimension
is equal to n + n − k + jdy, as dy > du and k ≤ j, this codimension is greater than
2n− 1 + j du, the dimension of the domain of evρk . So, saying that ρkf,h is transversal

to Wk at (x, uj) means that ρkf,h(x, uj) does not belong to Wk. We will now show
that the evaluation map evρk is transversal to Wk at every point

X = (f, h, x, uj , l) ∈ ΓU (X)× Cr(X,Rdy )×X × U j ×Pn−1 .

If evρk(X) /∈ Wk, there is nothing to prove, so we will assume that evρk(X) ∈ Wk .
Take (X,Φ,H,Fk−1,L) a vector tangent to the codomain of evρk at evρk(X) with
Xs ∈ TxsX (s = 0, . . . , j), Φs ∈ GL(n,R), (s = 0, . . . , j − 1), Hs ∈ L(Rn,Rdy )
(s = 0, . . . , j − 1) and Fk−1,L ∈ Pn−1. We have to prove that the transversality
equation has (at least) one solution, that is to say, we have to prove that there exist
φ ∈ ΓU (X), η ∈ Cr(X,Rdy ), ξ ∈ TxX, υs ∈ Tus

U (s = 0, . . . , j − 1) and l ∈ Pn−1 as
well as a vector ζ, which is tangent to Wk at evρk(X) such that

(3.7) (X,Φ,H,Fk−1,L) = devρ(X) · (φ, η, ξ, υ, l) + ζ .
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We will prove this relation with ξ = 0 and υs = 0 (s = 0, . . . , j − 1). We denote by

α0, . . . , αj ,A0, . . . ,Aj−1,C0, . . . ,Cj−1,Fk−1,L

the components of ζ and we will work with L = 0 ; the term ζ being tangent to
submanifold Wk, notice that we have the equalities αi = αj as well as the following
relations

C0` = 0(3.8a)

CsÃs`+ Cs

s−1∑
σ=0

Πσ(Ãs,Aσ)` = 0, s = 1, . . . , j − 1,(3.8b)

k−1∑
σ=0

n∑
s=1

Πσ,s(|`, Ã1`, . . . , Ãk`|k+1) = 0 .(3.8c)

where Πσ(Ãs,Aσ) is equal to the product Ãs with the term Aσ replaced with Aσ and
• the expression

∣∣`, Ã1`, . . . , Ãk`
∣∣
k+1

denotes a (k + 1) × (k + 1) determinant

extracted from the n × (k + 1) matrix whose columns are `, . . . , Ãk` and
Πσ,s(|`, Ã1`, . . . , Ãk`|k+1) denotes this determinant where the term Aσ in col-
umn s has been substituted for Aσ (the result being zero if Aσ does not appear
in this column);

• relation (3.8c) is intended for all the (k + 1)× (k + 1) determinants that we
can extract from the matrix (`, Ã1`, . . . , Ãk`).

Before addressing the problem of the existence of a solution to the transversality
equation (3.7), we will discuss the constraints induced by the relations (3.8). Firstly,
the tangent vectors A0, . . . ,Ak−2 having been chosen, it is possible to find C0, . . . ,Cj−1
in order to satisfy the equations (3.8a) and (3.8b). Then, we will rewrite relation (3.8c)
in a more convenient form. First there exist scalars λ0, . . . , λk−1 such that Ãk` =∑k−1
s=0 λsÃs`, replacing Ãk` by this sum in the left-hand member of (3.8c), we get

∣∣`, . . . , Ãk−1`,Ak−1Ãk−1`+Ak−1

k−2∑
σ=0

Πσ(Ãk−1, Aσ)−
k−1∑
s=1

k−2∑
σ=1

λsΠσ(Ãs, Aσ)
∣∣
k+1

= 0 .

The tangent vectors A0, . . . ,Ak−2 being fixed, in order to satisfy this equality for any
(k + 1)× (k + 1) determinant, it suffices to take

(3.9) Ak−1` = −Ak−1
k−2∑
σ=0

Πσ(Ãk−1, Aσ) +

k−1∑
s=1

k−2∑
σ=1

λsΠσ(Ãs, Aσ) .

We turn now to equation (3.7); the j+1 first equalities in this system of equations
write

d

dλ
xλs

∣∣∣∣
λ=0

+ αs = Xs, s = 0, . . . , j

the first term in the left-hand member of this equality depends on the chosen pertur-
bation φ of vector field f . Consider first the equations corresponding to the indices
s = i, j , as the tangent vector αi = αj can be freely chosen, this system of two
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equations is equivalent to following equation

d

dλ
xλj

∣∣∣∣
λ=0

− d

dλ
xλi

∣∣∣∣
λ=0

= Xj − Xi .(3.10)

From Lemma 3.5 (see in the appendices), one can find a perturbation φ1 of vector
field f such that this equality is satisfied, concerning the equalities corresponding to
the indices s 6= i, j, they can be satisfied thanks to a judicious choice of the αs’s,
this is possible because these tangent vectors can be chosen independently from each
other.

This perturbation φ1 being chosen we chose A0, . . .Ak−2 in order to satisfy the
j − 1 following equations in (3.7) (equations numbered from j + 2 to 2j). Concerning
the equation number 2j + 1, it writes

d

dλ
dϕ̄λk−1

∣∣∣∣
λ=0

+ Ak−1 = Φk−1,(3.11)

where ϕ̄λk−1 denotes the local expression of dϕ
uk−1,λ
T (xk−1), the derivative of the flow

related to the perturbed vector field f+λφ in the charts (Uk−2, θk−2) and (Uk−1, θk−1).
The derivative is the left-hand member of (3.11) is equal to the sum of two contribution
Pφ1

and Pφ2
(cf. relation (3.3)): Pφ1

is due to perturbation φ1 and its value is fixed
by the choice of φ1 made to satisfy equation (3.10), and Pφ2

is due to perturbation
φ2 . From the tangent perturbation lemma [1, p. 110], we know that Pφ2 may be
chosen to be equal to any linear map P such that Pf̄k−1 = 0; on the other hand,
the value taken by Ak−1 at dϕ̄k−2 ◦ · · · ◦ dϕ̄0` is set by relation (3.9) (the roles of
the As being played by the dϕ̄s’) but as the vectors dϕ̄k−2 ◦ · · · ◦ dϕ̄0` and f̄k−1 are
not proportional, it is possible to choose P and Ak−1 in such a way that P + Ak−1
is equal to any linear mapping. To summarize, the left-hand member of (3.11) writes
Pφ1 +P+Ak−1 where P+Ak−1 can be made equal to an arbitrary endomorphism of
Rn, which means that equation (3.11) may be satisfied thanks to a judicious choice
of φ2 and Ak−1.

Concerning the dh̄ part of the transversality equation (equations numbered 2j+2
to 3j + 1 in (3.7)), the Cs having been chosen, we can choose a mapping η such that

dη

dx
(xs) + Cs = Hs, s = 0, . . . , j − 1

this is possible because the points x0, . . . , xj−1 are all distinct.
Finally, the two last equations in (3.7) can be trivially satisfied thanks to a good

choice of Fk−1 and L.
In the following part of the proof, we have to consider the case where dϕ̄k−2 ◦

· · · ◦ dϕ̄0` and f̄k−1 are proportional. In this case, the representation ρk is the same
as in the previous case but the submanifold Wk is different; namely we consider the
submanifold W ′k defined as the set of those elements(

(a0, . . . , aj), (A0, . . . , Aj−1), (C0, . . . , Cj−1), fk−1, `
)

such that
• we have the equality ai = aj and this equality is the only one between the
ar’s (r = 0, . . . , j);

• the vectors Ãk−1` and fk−1 are proportional ;
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• and

C0` = 0, C1Ã1` = 0, . . . , Cj−1Ãj−1` = 0, CiÃj` = 0 .(3.12)

Notice first that the codimension of W ′k is equal to 2n− 1 + j dy , which is greater
than the dimension of the domain of evρk .

The transversality equation in this case is almost the same than in the previous
case. Here, we do not have to take care of equation (3.11) because, the component
Ak−1 of the vector tangent to W ′k can be chosen arbitrarily. But, due to second
condition in the definition of W ′k, we have now some constraint about the component
Fk−1 of this tangent vector. That is why we consider a perturbation φ0 of vector field
f such that φ0(xk−1, uk−1) solves the penultimate equation in (3.7) that is to say, the
equation

(3.13) Fk−1 = φ0(xk−1, uk−1) + φ1(xk−1, uk−1) + Fk−1 .

Recall that perturbation φ1, is zero outside an arbitrary small neighborhood of the
trajectory of f(·, uj−1) passing through xj−1 and can be made equal to zero at any
point of P1 (see the proof of Lemma 3.5 and the final remark). Therefore, in equa-
tion (3.13), we can assume that φ1(xk−1, uk−1) = 0 and we can then choose the value
of φ0 at (xk−1, uk−1) in order to satisfy this equality. Perturbation φ0 being so chosen,
we can then choose φ1 in order to satisfy equation (3.10). If j ≥ n, we are finished
because a family of more than n vectors in Rn is linearly dependent.

If j > n, we consider the following representation ρk and submanifold Wk; re-
garding the indices k ≤ j, they are defined as above. When k > j, representation ρk

defined through evρk as

evρk(f, h, x, uj , l) =(
(x0, . . . , xj), (dϕ̄0, . . . , ϕj−1,dϕ̄p, . . . ,dϕ̄k−1), (dh̄0, . . . ,dh̄j−1,dh̄p, . . . ,dh̄k), f̄k−1, l

)
Here this definition of evρk is given for the case where S2 6= ∅, in this case the terms
dϕ̄s and dh̄s corresponding to indices s = j, . . . , p− 1 are omitted. In the case where
S2 = ∅, all of these terms are omitted after the index j.

The definition of the submanifold Wk is almost the same: the first three points of
the definition are identical, the two last points have to be slightly modified as follows.
Let d = j − i − 1; first, the equalities bearing on the CsÃs` have to be satisfied for
s = 0, . . . , k where the equalities corresponding to the indices s between j and p (case
S2 6= ∅) or 2n (case S2 = ∅) are to be understood as follows: if j ≤ s < p then in the
expression CsÃs`, the term Cs has to be replaced by Ci+r where r is the remainder
in the euclidean division of s− i by d+ 1 and, in the same way, each occurence of As
has to be replaced by Ai+r′where r′ is the remainder in the euclidean division of s− i
by s+ 1 .

Moreover, writing the euclidean division of k−1−i by d+1 as k−i = q(d+1)+rk,
the last condition “the vector Ãk−1` is not proportional to fk−1” has to be modified
as follows : the vector fk−1 does not belong to the subspace generated by the vectors
Ãi+rk`, . . . , Ãk−1`.

We can conclude this part by applying the Transversal density theorem (see The-
orem 1.3): there exists a residual subset Rr1 ⊂ GU2 (a) × Cr(X,Rdy ) of Cr pairs
(f, h) ∈ ΓU (X) × Cr(X,Rdy ) such that if (f, h) ∈ Rr1 and the element (x, u2n) is

in C1 configuration (relatively to (f, h)), then the related mapping Θf,h
T is an immer-

sion at (x, u2n). Every set GU2 (a) is open and dense for the Cr topology, so set Rr1 is
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dense in ΓU (X)×Cr(X,Rdy ) and is even a residual set. Now, applying this result for
every positive integer r, we obtain a set R∞1 ⊂ ΓU (X)× Cr(X,Rdy ) that is residual
for the C∞ topology.

3.6. The pair (x, u2n+1) is under configuration C2..

Proposition 3.3. Assume that the number of observations is greater than the
number of controls ( i.e dy > du) and du < 2n. Denote by Or2 the set of pairs (f, h) ∈
ΓU (X)×C∞(X,Rdy ) such that Θf,h

T is an immersion at (x0, u2n) whenever the pair
(x0, u2n) is in configuration C2. Then Or1 contains a residual for the Cr topology.

Before entering in the proof of this proposition, we present hereafter some useful
lemmas.

3.6.1. Technical lemmas. Given x ∈ X and a sequence of controls uj ∈ U j ,
we consider here the following list issued from x0 := x

Lj = (x0, u0), (x1, u1), . . . , (xj , uj) .

We will state three lemmas related to the perturbation of vector field f but before
that, we will introduce the following assumption. The trajectory of the vector field
f(·, uj−1) passing through xj−1 may be periodic, in this case we denote by π0 its
prime period and we write T = qπ0 + τ with q ∈ N and 0 ≤ τ < π0.

Assumption 3.4. In the case where the trajectory of the vector field f(·, uj−1)
passing through xj−1 is periodic, we assume that

• if τ = 0, there does not exist an index js < j − 1 such that ujs = uj−1 and
xjs is on the trajectory of f(·, uj−1) passing through xj−1 ;

• if τ 6= 0 and if τ is commensurable with π0, then one cannot find more than
4 equalities between the terms of the list (x0, . . . , xj) ∩ L′x.

The notations in the lemma below are defined in subsection 3.3.

Lemma 3.5. Take a vector field f ∈ GU2 (a) (a > T ) and let Xj ∈ Txp
X be

an arbitrary tangent vector to X at xj. Assume that list Lj satisfies the following
assumptions: for every index js < j−1, we have (xjs , ujs) 6= (xj−1, uj−1) . Moreover,
if the trajectory of the vector field f(·, uj−1) passing through xj−1 is periodic, we
assume that there does not exists any index js < j − 1 such that ujs = uj−1 and xjs
on this trajectory.

Then one can find a perturbation φ ∈ ΓU (X) of vector field f such that

dxλj
dλ

∣∣∣∣∣
λ=0

= Xj , and
dxλr
dλ

∣∣∣∣
λ=0

= 0, for r = 0, . . . , j − 1 .

Proof. This lemma is very similar to Lemma 18 in [6]. In this publication the
situation is slightly different because, the considered points are distributed among two
lists, however the ingredients of the proof are exactly the same and we think that the
reading of the proof of the mentioned lemma is sufficient to convince the reader of
the correctness of the present Lemma.

Recall that if L is under C2 configuration, we can find two suitable equalities in
list (x0, . . . , xp), which we write xi = xj and xk = xp (or xi = xj = xp). We then
have.

Lemma 3.6. Take f ∈ GU2 (a) (a > T ) and assume that list L is in C2 config-
uration ( cf subsection 3.2) and that Assumption 3.4 is satisfied, and let Xj and Xp
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be two arbitrary vectors tangent to X at xj and xp respectively then one can find a
perturbation φ ∈ ΓU (X) of vector field f such that

dxλj
dλ

∣∣∣∣∣
λ=0

− dxλi
dλ

∣∣∣∣
λ=0

= Xj , and
dxλp
dλ

∣∣∣∣∣
λ=0

− dxλk
dλ

∣∣∣∣
λ=0

= Xp .

In the second equality above, the index k has to be replaced by j in the case where the
two equalities resulting from configuration C2 involve only 3 elements.

Proof. The second lemma is an easy consequence of the first one. From the
considerations following the definition of configuration C2 it follows that the lists
(x0, . . . , xj) and (x0, . . . , xp) satisfy the assumptions of Lemma 3.5, so there exists a
perturbation φ1 of f such that,

dxλi
dλ

∣∣∣∣
λ=0

= 0,
dxλj
dλ

∣∣∣∣∣
λ=0

= Xj .

This perturbation has also an effect on the derivatives of xλk and xλp , so we also have

dxλk
dλ

∣∣∣∣
λ=0

= X′k,
dxλp
dλ

∣∣∣∣∣
λ=0

= X′p

with (possibly) X′k 6= 0 or X′p 6= 0. Now, applying Lemma 3.5 for a second time, we
obtain the existence of a perturbation φ2 of f such that

dxλi
dλ

∣∣∣∣
λ=0

= 0,
dxλj
dλ

∣∣∣∣∣
λ=0

= 0,
dxλk
dλ

∣∣∣∣
λ=0

= 0,
dxλp
dλ

∣∣∣∣∣
λ=0

= X′′p ,

the tangent vector X′′p being arbitrary. Under the action of the perturbation φ =
φ1 + φ2, we then have

dxλj
dλ

∣∣∣∣∣
λ=0

− dxλi
dλ

∣∣∣∣
λ=0

= Xj ,
dxλp
dλ

∣∣∣∣∣
λ=0

− dxλk
dλ

∣∣∣∣
λ=0

= X′′p + X′p − X′k .

Here X′p and X′k depend on φ1 but, X′′p , which depends on φ2 , can be chosen in such
a way that X′′p + X′p − X′k = Xp .

In the case where the above assumptions are not satisfied, the conclusion of
Lemma 3.5 is not ensured but we can obtain a slightly weaker result.

Lemma 3.7. Assume that f ∈ GU2 (a), point x and sequence uj are such that

• the trajectory Tj−1 of the vector field f(·, uj−1) passing through xj−1 is peri-
odic;

• there exists an index i < j such that ui−1 = uj−1 and xi−1 lies on this
trajectory;

• we then have the equalities xi−1 = xi and xj−1 = xj, and we assume moreover
that if (xr, ur) is such that ur = uj−1 and xr ∈ Tj−1, then i− 1 ≤ r < j and
xr = xi .

Then one can find a perturbation φ0 of vector field f such that

dxλi
dλ

∣∣∣∣
λ=0

−
dxλi−1

dλ

∣∣∣∣∣
λ=0

= Xi,
dxλj
dλ

∣∣∣∣∣
λ=0

−
dxλj−1

dλ

∣∣∣∣∣
λ=0

= γ · Xi + X̃j
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where γ is an invertible linear mapping from Txi
X to Txj

X and X̃j is any vector in
the range of the linear mapping Id−dϕ

uj−1

T (xj−1) .

Proof. We consider a perturbation φ of vector field f such that φ(·, uj−1) = φ0 ∈
Γ(X) and φ(·, ur) ≡ 0 if ur 6= uj−1 (r = 0, . . . , j − 1). Taking into account the
assumptions of the lemma, some computations lead to the following expressions of
the derivative of xi and xj with respect to this perturbation (see [6, Lemma 18]).

dxλi−1
dλ

∣∣∣∣∣
λ=0

= 0,
dxλi
dλ

∣∣∣∣
λ=0

= Q0 ·
∫ π0

0

dϕσ ◦ φ0 ◦ ϕ−σ(xi−1) dσ,

dxλj−1
dλ

∣∣∣∣∣
λ=0

= Γj,i,
dxλj
dλ

∣∣∣∣∣
λ=0

= δ1 · Γj,i +Q1 ·
∫ π0

0

dϕσ ◦ φ0 ◦ ϕ−σ(xj−1) dσ

Here π0 denotes the prime period of trajectory Tj−1, Q0 = Id +δ0 + . . . δq−10 where
δ0 = dϕπ0

(xi) and q is such that T = qπ0 ; moreover δ1 = dϕπ0
(xj) and Q1 =

Id +δ1 + · · · + δq−11 . The term Γj,i depends only on the integral between 0 and π0
appearing in the expression of dxλi /dλ, to be more precise, this term is equal to

Γj,i = dϕ
uj−2

T (xj−2) ◦ · · · ◦ dϕ
ui+1

T (xi+1) ·
∫ π0

0

dϕσ ◦ φ0 ◦ ϕ−σ(xi−1) dσ,

when all the terms (xr, ur) between (xi, ui) and (xj−1, uj−1) are such that ur 6= uj−1
or ur = uj−1 but xr /∈ Tj−1 ; otherwise, Γj,i is a sum of such terms. Let xi−1 =
ϕ
uj−1

t0 (xj−1) (where 0 < t0 < π0); the integral occurring in the expression of dxλi /dλ
can be rewritten as follows∫ π0

0

dϕσ ◦ φ0 ◦ ϕ−σ(xi−1) dσ = dϕ
uj−1

t0 (xj−1) ·
(
δ−11 Iπ0 + (Id−δ−11 ) · Iπ0−t0

)
.

The reader is refereed to the proof of [6, Lemma 18] for the details of computation
and we recall that It denotes the following integral

It =

∫ t

0

dϕσ ◦ φ0 ◦ ϕ−σ(xj−1) dσ .

As shown in the above-mentioned proof, the integrals Iπ0
and Iπ0−t0 can be chosen

independently from each other. So, to obtain dxλi /dλ − dxλi−1/dλ equal to Xi, it

suffices to choose Iπ0−t0 equal to dϕ
uj−1

π0−t0(xj−1) ◦ Q−10 · Xi + (Id−δ1) · Iπ0−t0 . With
this choice of Iπ0−t0 , we obtain

dxλj
dλ

∣∣∣∣∣
λ=0

−
dxλj−1

dλ

∣∣∣∣∣
λ=0

= Q1◦dϕ
uj−1

π0−t0(xj−1)◦Q−10 ·Xi+(δ1−Id)·Γj,i+(Id−δ1)◦Q1·Iπ0−t0

in this equality Γj,i depends only on Xi and Iπ0−t0 can be freely chosen, so we have
proved the result.

In the C2 configuration, there exist two equalities between the elements of L′x,
these two equalities can involve 3 or 4 points of the list; except in the sub-configuration
considered in Lemma 3.7, the proofs in these two subcases are very similar but, here-
after, we present only the case where these two equalities occur between 3 elements,
because, this case is a little bit more complicated. Furthermore, we assume that, at
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least the first equality xi = xj occurs in S1; at the end of the proof, we will explain
briefly how to handle the other cases. Finally, we will deal with the sub-configuration
corresponding to the assumptions of Lemma 3.7.

3.7. Proof of Proposition 3.3. As in the case of configuration C1, we choose a
finite atlas A of X; given a parametrized vector field f , a point x ∈ X and a sequence
of controls up ∈ Up (with p ≤ 2n), there exists some charts (U0, θ0),. . . , (Up−1, θp−1)
in A such that x0 ∈ U0, . . . , xp ∈ Up. The number of p-tuples of charts belonging to
A is finite, for each such p-tuple, we will prove the existence of a residual subset of
ΓU (X) × C∞(X,Rdy ); obviously the intersection of all of theses residual sets is still
a residual set.

The proof is subdivided into five subcases, we will deal with the more general
sub-case first.

3.7.1. General case. The charts (U0, θ0), . . . (Up−1, θp−1) in A being given, we
consider the following representation defined through the evaluation map evρ whose
domain is GU2 (a)×C∞(X,Rdy )×X ×Up ×Pn−1, codomain is Xp+1 ×GL(n,R)p ×
L(Rn,Rdy )p−1 ×Pn−1, and which is defined as

evρ : (f, h, x, up, l) 7→
(
(x0, x1, . . . , xp), (dϕ̄0, . . . ,dϕ̄p−1),

(dh̄0, . . . ,dh̄j
:::

, . . . ,dh̄p−1), l
)

where
• Pn−1 denotes the n− 1 dimensional real projective space;
• dϕ̄r (resp. dh̄r) denotes the local expression of dϕur

T (xr) in the charts (Ur, θr)
and (Ur+1, θr+1) (resp. dh(xr)); moreover, the wavy underline indicates that
the underlined term has been canceled.

Below, we will denote by Ãs the product Ãs := As−1 ◦ As−2 ◦ · · · ◦ A0 (with
Ã0 := Id). Together with representation ρ, we consider the submanifold W ⊂ Xp+1×
GL(n,R)p × L(Rn,Rdy )p−1 ×Pn−1 defined as the set of those elements(

(a0, . . . , ap), (A0, . . . , Ap−1), (C0, . . . , Cj
::
, . . . , Cp−1), `

)
such that

• ai = aj = ap and these two equalities are the only ones in the sequence
(a0, . . . , ap) ;

• the vectors Ãi ·` and Ãj ·` are linearly independent and we have the equalities

C0Ã0 · ` = 0, . . . , CiÃi · ` = 0, . . . , Cj−1Ãj−1 · ` = 0, CiÃj · ` = 0

Cj+1Ãj+1 · ` = 0, . . . , . . . , . . . , Cp−1Ãp−1 · ` = 0 .

Obviously, due to the assumption on Ãi · ` and Ãj · `, the mapping

(C0, . . . , Cj
::
, . . . , Cp, A0, . . . , Ap−1, `) 7→

(C0 · `, . . . , Ci Ãi · `, . . . , Cj−1 Ãj−1 · `, Ci Ãj · `, Cj+1Ãj+1 · `, . . . , Cp−1Ãp−1 · `)

is a submersion, so the codimension of W is equal to p dy + 2n , which is greater than
2n− 1 + p du, the dimension of the domain of evρ .

We will show now that the evaluation map evρ is transversal to W at every point

X = (f, h, x, up, l) ∈ GU2 (a)(X)× Cr(X,Rdy )×X × Up ×Pn−1 .
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If evρ(X) /∈ W , there is nothing to prove, so we will assume that evρ(X) ∈ W . Take
(X,Φ,H,L) a vector tangent to the codomain of evρ at evρ(X) with Xs ∈ Txs

X
(s = 0, . . . , p), Φs ∈ GL(n,R), (s = 0, . . . , p− 1), Hs ∈ L(Rn,Rdy ) (s = 0, . . . , p− 1,
s 6= j) and L ∈ Pn−1. We have to prove that the transversality equation has (at
least) one solution, that is to say, we have to prove that there exist φ ∈ ΓU (X),
η ∈ Cr(X,Rdy ), ξ ∈ TxX, υs ∈ Tus

U (s = 0, . . . , p − 1) and l ∈ Pn−1 as well as a
vector ζ, which is tangent to W at evρ(X) such that

(3.14) (X,Φ,H,L) = devρ(X) · (φ, η, ξ, υ, l) + ζ .

We will prove this relation with ξ = 0 and υs = 0 (s = 0, . . . , p− 1). We denote by

α0, . . . , αp,A0, . . . ,Ap−1,C0, . . . ,Cj
::
, . . . ,Cp−1,L

the components of ζ and we will work with L = 0 ; the term ζ being tangent to
submanifold W , notice that we have the equalities αi = αj = αp as well as the
following relations

C0` = 0(3.15a)

CsÃs`+ Cs

s−1∑
σ=0

Πσ(Ãs,Aσ)` = 0, s = 1, . . . , p− 1, s 6= j(3.15b)

where Πσ(Ãs,Aσ) is equal to the product Ãs with the term Aσ replaced with Aσ .
The p+ 1 first equations in (3.7) write

d

dλ
xλs

∣∣∣∣
λ=0

+ αs = Xs, s = 0, . . . , p

the first term in the left-hand member of this equality depends on the chosen pertur-
bation φ of vector field f . Consider first the equations corresponding to the indices
s = i, j, p, as the tangent vector αi = αj = αp can be freely chosen, this system of
three equations is equivalent to the two following one

d

dλ
xλj

∣∣∣∣
λ=0

− d

dλ
xλi

∣∣∣∣
λ=0

= Xj − Xi,
d

dλ
xλp

∣∣∣∣
λ=0

− d

dλ
xλi

∣∣∣∣
λ=0

= Xp − Xi .(3.16)

From Lemma 3.6, one can find a perturbation φ of vector field f such that these
two equalities are satisfied, concerning the equalities corresponding to the indices
s 6= i, j, p, they can be satisfied thanks to a judicious choice of the αs’s, this is
possible because these tangent vectors can be chosen independently of each other.

Notice that if we set the As’s to some predetermined values, one can choose the
Cs in order to satisfy equations (3.15). Thus, once the αs’s and perturbation φ have
been chosen, we can choose the As’s in order to satisfy the equations numbered from
p+ 2 to 2p+ 1 in (3.14).

At this step, the αs’s, the As’s, the Cs’s and the perturbation φ have been set.
Now, as the points in the set {xs | s = 0, . . . , p − 1, s 6= j } are all distinct, we can
choose η as well as l in order to satisfy the last p equations in (3.14).

At this step, we can conclude as at the end of the proof of Proposition 3.2: the
set R1,1 of pairs (f, h) such that ρf,h is transverse to W is a residual but, here,
transversality means non set membership because the codimension of W is greater
than the dimension of the domain of ρf,h . Thus, if we take a pair (f, h) in this residual
set, if x, the sequence of controls u2n and l ∈ Pn−1 are such that
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• xi = xj = xp ;
• dϕ

ui−1

T (xi−1)◦· · ·◦dϕu0

T (x0) · l and dϕ
uj−1

T (xj−1)◦· · ·◦dϕu0

T (x0) · l are linearly
independent ;

then one must have d(h◦ϕus−1

T ◦· · ·◦ϕu0

T )(x)·` 6= 0 for at least one index s = 0, . . . , p−1.

However, that does not allow us to conclude that Θf,h
T is an immersion at (x, u2n),

because of the second assumption above, so we have to take into account the case
where Ãi · ` and Ãj · ` are proportional, this case, which subdivides into four sub-
cases, is handled below.

3.7.2. First particular case. In this case we assume that rk(Ãi`, Ãj`) = 1 and

rk(Ãi`, Ãp`) = 2 . The method of the proof is similar to the previous one: we will
consider the same representation ρ as above but we will work with a slightly different
submanifold W , here W is defined as the set of those elements(

(a0, . . . , ap), (A0, . . . , Ap−1), (C0, . . . , Cj
::
, . . . , Cp−1), `

)
in Xp+1 ×GL(n,R)p × L(Rn,Rdy )p−1×Pn−1 such that

• ai = aj = ap and these two equalities are the only ones in the sequence
(a0, . . . , ap) ;

• the vectors Ãi · ` and Ãp · ` are linearly independent;
• and we have the equalities

C0Ã0 · ` = 0, . . . , Cj−1Ãj−1 · ` = 0, Cj+1Ãj+1 · ` = 0

Cj+2Ãj+2 · ` = 0, . . . , Cp−1Ãp−1 · ` = 0, CiÃp · ` = 0 .

Here, whereas the submanifold W is slightly different from one chosen in the precedent
part of the proof, its codimension is the same and the reasoning proving that the
transversality equation can be satisfied is very similar to that used in the precedent
case, so we will not go into further details.

Finally, we have to deal with the case where the rank of the family (Ãi · `, Ãj ·
`, Ãp · `) is equal to one. This sub-case subdivides in turn into three parts: we have
to distinguish wether ` represents the same direction as f(x0, u0) or not.

3.7.3. Second particular case. In this case, we assume that rk(Ãi`, Ãj`, Ãp`) =

1 and rk(Ãj−1`, fj−1) = rk(Ãp−1`, fp−1) = 2 . We consider here the representation ρ
defined through the evaluation map evρ whose domain is GU2 (a)×C∞(X,Rdy )×X ×
Up×Pn−1, codomain is Xp+1×GL(n,R)p×L(Rn,Rdy )p−1×Pn−1× (Pn−1)

2
, and

which is defined as

evρ : (f, h, x, up, l) 7→
(
(x0, x1, . . . , xp), (dϕ̄0, . . . ,dϕ̄p−1), (dh̄0, . . . ,dh̄j

:::
, . . . ,dh̄p−1),

l, f̄j−1, f̄p−1
)

where f̄j−1 (resp. f̄p−1) represents in Pn−1 the local expressions of f(xj−1, uj−1)
(resp. f(xp−1, up−1)). The submanifold W is defined as the set of those elements(

(a0, . . . , ap), (A0, . . . , Ap−1), (C0, . . . , Cj
::
, . . . , Cp−1), `, fj−1, fp−1

)
such that

• ai = aj = ap and these two equalities are the only ones in the sequence
(x0, . . . , xp) ;
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• the rank of the family (Ãi · `, Ãj · `, Ãp · `) is equal to 1 ;

• we have rk(Ãj−1`, fj−1) = rk(Ãp−1`, fp−1) = 2
• and we have the equalities

C0Ã0 · ` = 0, . . . , Cj−1Ãj−1 · ` = 0, Cj+1Ãj+1 · ` = 0

Cj+2Ãj+2 · ` = 0, . . . , . . . , Cp−1Ãp−1 · ` = 0 .

First, we will compute the codimension of W . The mapping Σ from GL(n,R)3×
Pn−1 to L(R2,Rn) which maps (M1,M2,M3, c) to the three-columns matrix (M1c,M2c,M3c)
is a submersion. Denote by R1 the set of rank 1 homomorphisms of L(R3,Rn); as
Σ is a submersion, we have codim Σ−1(R1) = codimR1 but this last codimension is
equal to 2(n − 1) (cf [13, Prop. 5.3]). Now, the mapping from GL(n,R)p × Pn−1

to GL(n,R)3 × Pn−1 which maps (A0, . . . , Ap−1, `) to the triplet (Ãi`, Ãj`, Ãp`) is
also a submersion, it follows that the codimension of the elements of the codomain
of evρ such that the rank of the family (Ãi · `, Ãj · `, Ãp · `) is equal to 1 is equal to
2(n− 1). These considerations together with the computation made in the first part
of this proof leads to the equality codimW = (p−1)dy+4n−2 . Due to the inequality
dy > du, clearly we have that the codimension of W is greater than the dimension of
the domain of evρ provided that du < 2n .

The transversality equations are the same as in (3.14) plus two equations related
to the last two components of evρ(f, h, x, up, `) . Here, we will consider a perturbation
φ of vector field f that we decompose into two parts: φ = φ1 + φ2 ; the first part, φ1
will be chosen in order to satisfy the first p transversality equations, and the second
one, φ2, will be chosen in order to deal with the equations numbered from p + 2 to
2p+ 1, that is to say the equations related to dϕ̄0, . . . ,dϕ̄p−1 and dϕ̄p−1 . Recall that
φ2 is chosen to be zero along the trajectories of f passing through the points xi−1,
xj−1 and xp−1 and does not affect the values of the derivatives of ϕλT (xs) with respect
to λ . Thus the first (p+ 1) equations can be satisfied thanks to a judicious choice of
φ1 and the αs’s, this assertion has been proved in the first part of this proof.

Concerning the p following equations, we concentrate first on the equations related
to the indices j − 1 and p − 1; as in the first part of this proof, we take ξ = 0 and
υ = 0, these two equations then write

d

dλ
dϕ̄λj−1

∣∣∣∣
λ=0

+ Aj−1 = Φj−1,
d

dλ
dϕ̄λp−1

∣∣∣∣
λ=0

+ Ap−1 = Φp−1 .(3.17)

Denote by Ps
j−1 (resp. Ps

p−1), the term coming from the perturbation φs (s = 1, 2)
in the left-hand members of the first equation (resp. the second) in (3.17); these
equations can then be more specifically written as

P1
j−1 + P2

j−1 + Aj−1 = Φj−1,

δj−1,p−1 ◦ (P1
j−1 + P2

j−1) + P1
p−1 + P2

p−1 + Ap−1 = Φp−1 .

where δj−1,p−1 = dϕ
up−1

T ◦ · · · ◦ dϕ
uj

T . The points xj−1 and xp−1 are different, and
notice also that one cannot have uj−1 = up−1 (because the equalities xj = xk = xp
are suitable), so, the perturbation φ1 being fixed, we can choose the perturbation φ2
such that P2

j−1 and P2
p−1 are arbitrary linear mapping satisfying P2

j−1 · f̄j−1 = 0 and

P2
p−1 · f̄p−1 = 0 . Thus, if we can choose Aj−1 and Ap−1 such that Aj−1 · f̄j−1 and

Ap−1 · f̄p−1 are arbitrary, we are done with these two equations.
At this point, regarding the these choices of values for Aj−1 · f̄j−1 and Ap−1 · f̄p−1,

we have to be careful because, due to the additional relations between the vectors Ãi ·`,
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Ãj ·` and Ãp ·` in the definition of W , some constraints exist on the part A0, . . . ,Ap−1
of the tangent vector at W , namely the vectors Vj and Vp defined below must be zero

Vj =

j−1∑
s=0

Πs(Ãj ,As) · `+ Ãj · L− κj
(i−1∑
s=0

Πs(Ãi,As) · `+ Ãi · L
)

Vp =

p−1∑
s=0

Πs(Ãp,As) · `+ Ãj · L− κp
(i−1∑
s=0

Πs(Ãi,As) · `+ Ãi · L
)

;

here the scalars κj and κp are such that Ãs · ` = κsÃi · ` (s = j, p). In the expression
of Vj above, the term Aj−1 appears only once, so a judicious choice for the value

of Aj−1Ãj−1 · ` yields Vj = 0 . Then, as the vectors Ãj−1 · ` and f̄j−1 are linearly
independent, one can choose a given value for Aj−1 · f̄j−1 independently from the one

chosen for f Aj−1Ãj−1 · ` ; the same is true for vector Vp and Ap−1 . Notice also that
the vectors As (s = 0, . . . , p − 2, s 6= j − 1) can be arbitrarily chosen. Thus, the
transversality equations corresponding to the terms dϕu0

T ,. . . dϕ
up−1

T can be solved,
following the same argument as in the preceding case, the next p− 1 equations have
also a solution. Finally the last three equations can be solved thanks to a judicious
choice of the last three components of the tangent vector ζ.

We have to deal now with the case Ãj−1` collinear to f̄j−1 or Ãp−1` collinear to
f̄p−1 .

3.7.4. Third particular case. In this case, we assume that rk(Ãi`, Ãj`, Ãp`) =

rk(Ãj−1`, fj−1) = 1 . Compared to the preceding case, we have here to modify slightly
the representation ρ and the submanifold W . In this case we consider the representa-
tion ρ defined through the evaluation map evρ whose domain is GU2 (a)×C∞(X,Rdy )×
X×U j×Pn−1, codomain is Xj+1×GL(n,R)j−1×L(Rn,Rdy )j×Pn−1×Pn−1, and
which is defined as

evρ : (f, h, x, uj , l) 7→
(
(x0, x1, . . . , xj), (dϕ̄0, . . . ,dϕ̄j−2), (dh̄0, . . . ,dh̄j−1),

l, f̄j−1
)

The submanifold W is defined as the the set of those elements(
(a0, . . . , aj), (A0, . . . , Aj−2), (C0, . . . , Cj−1), `, fj−1,

)
such that

• ai = aj and these two equalities are the only ones in the sequence (x0, . . . , xj) ;

• we have rk(Ãj−1`, fj−1) = 1
• and we have the equalities

C0Ã0 · ` = 0, . . . , Cj−1Ãj−1 · ` = 0 .

In the particular case j = 1, the value of evρ applied to (f, h, x, u1, l) is equal to
((x0, x1),dh̄(x0), f̄0, l), the definition of submanifold W remaining the same (recall
that Ã0 = Id). In both cases, the codimension of W is equal to 2n − 1 + j dy and
so is greater than the dimension of the domain of evρ . Regarding the transversality
equation, there is an additional difficulty in comparison with the preceding case which
is due to the second equality satisfied by the elements of W . Let us denote by

(α0, . . . , αj), (A0, . . . ,Aj−2), (C0, . . . ,Cj−1), L, Fj−1
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the components of ζ, the vector tangent to W at evρ(X). Denote by φ = φ0 + φ1 a
perturbation of the vector field f such that φ1(xi−1, ui−1) = 0, then, the components
of ζ being given, the last transversality equation can be solved by means of a judicious
choice of φ0(xi−1, ui−1) . The vector field φ0 being chosen, the first j+1 transversality
equations are solved, as in the first case, by application of Lemma 3.5 and by means
of an appropriate choice of the αs ; notice that, as the equality xi = xj is suitable,
ui−1 6= uj−1 , and so the perturbation φ1 which comes from this lemma can be chosen
such as to satisfy the equality φ1(xi−1, ui−1) = 0 . The remaining equations are solved
by means of an appropriate choice of the As and L.

3.7.5. Fourth particular case. In this case, we assume that rk(Ãi`, Ãj`, Ãp`) =

1, rk(Ãj−1`, fj−1) = 2 and rk(Ãp−1`, fp−1) = 1 . This case being very similar to the
preceding one, so we do not describe it anymore.

We conclude this part of the proof by noticing that one could have (xi, ui) =
(xj , uj); in this case, we have to have to modify slightly the definition of representation
ρ by removing the term dϕ̄j in the definition of ρ and by adapting the definitions of
the various manifold W . This inequality can occur only in the presence of gaps in L′

and when there is no equality among the points of S1,x. In this case, in the definition
of ρ and W , we have to take this gap into account but the proofs are similar than in
the case handled above, the arguments and difficulties are the same.

We conclude the proof, dealing with the last particular case.

3.7.6. Case corresponding to the assumptions of Lemma 3.7. Recall that,
in this case, we are under C2 configuration, and that one can find two equalities
xi−1 = xi, xj−1 = xj with ui−1 = uj−1 but xi−1 6= xj−1 and if there exists an indice
r such that ur = uj−1 with xr on the trajectory of f(·, uj−1) passing through xj−1
then xr = xi and r ≥ i − 1. As above, we fix an atlas of manifold X with charts
denoted by (U0, θ0), (U1, θ1), . . . To deal with this case, we consider the representation
ρ defined through the evaluation map evρ whose domain is GU2 (a) × C∞(X,Rdy ) ×
X × U j−1 × Pn−1 ×R+, codomain is Xj+1 × GL(n,R)j × L(Rn,Rdy )j−1 × Pn−1,
and which is defined as

evρ : (f, h, x, uj−1, l, t) 7→
(
(x0, x1, . . . , xj−1, ϕ

uj−1

t (xj−1)), (dϕ̄0, . . . , . . . , dϕ̄j−1),

(dh̄0, . . . ,dh̄j−1), l
)

here the notations are the same as above.
Together with this representation, we consider the submanifold W ⊂ Xj+1 ×

GL(n,R)j × L(Rn,Rdy )j−1 ×Pn−1 defined as the set of those elements(
(a0, . . . , aj), (A0, . . . , Aj−1), (C0, . . . , Ci

::
, . . . , Cj−1), `

)
such that

• ai−1 = ai and aj−1 = aj and these two equalities are the only ones in the
sequence (a0, . . . , aj) ;

• we have the equalities

C0Ã0 · ` = 0, . . . , Ci−1Ãi−1` = 0, Ci−1Ãi · ` = 0, . . . , Cj−1Ãj−1 · ` = 0 .

From Lemma A.2, it follows that the codimension of W is equal to jdy + 2n which
is greater than 2n− 1 + (j − 1)du + 1, the dimension of the codomain of evρ . Notice
that if evρ(f, h, x, uj , `, t) ∈W , then the trajectory of f(·, ui−1) passing through xi−1
is periodic and t is a multiple of the prime period π0 (but t is not necessarily equal
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to T ). As regard the transversality equation, it is very similar to the ones we dealt
with (cf. the first part of this proof). This equation differs only by the following two
relations (cf (3.16)):

d

dλ
xλi

∣∣∣∣
λ=0

− d

dλ
xλi−1

∣∣∣∣
λ=0

= Xi − Xi−1,(3.18)

d

dλ
xλj

∣∣∣∣
λ=0

− d

dλ
xλj−1

∣∣∣∣
λ=0

+ τf(xj−1, uj−1) = Xj − Xj−1(3.19)

where Xs ∈ Txs
X (s = i− 1, i, j − 1, j) are arbitrary tangent vectors. Here the term

τf(xj−1, uj−1) comes from the derivative of ϕ
uj−1

t (xj−1) with respect to t. Now from
Lemma 3.7, we know that, thanks to a good choice of the perturbation φ, the left-
hand member in (3.18) can be made equal to Xi − Xi−1 while the left-hand member
of the second equality (3.19) can be made equal to γ · (Xi − Xi−1) + X̄j where X̄j
is an arbitrary vector in the range of Id−dϕ

uj−1

T (xj−1). As f ∈ GU2 (a), the range of
Id−dϕ

uj−1

T (xj−1) and Rf(xj−1, uj−1) are complementary subspaces, so one can find
a real τ , such that the left-hand member of equation (3.19) is equal to Xi − Xi−1.

The other relations in the transversality equation are treated exactly in the same
way that in the first part of this proof.

Conclusion. Arguing as in the end of the preceding part, we can conclude that
there exists a set R∞2 ⊂ ΓU (X) × C∞(X,Rdy ) that is residual for the C∞ topology
and such that if (f, h) ∈ R∞2 and (x, u2n) is under C2 configuration relatively to (f, h)

then Θf,h
T is an immersion at (x, u2n).

3.8. Proof of Theorem 2.1. From the Propositions 3.1 and 3.3, if the pair
(f, h) belongs to the residual set R∞0 ∩R∞1 ∩R∞2 , then Θf,h

T is an immersion; moreover
from the result proven in [6], there exists another residual set RI such that if (f, h) ∈
RI , then Θf,h

T is one-t-one. Thus we can conclude that, given a sampling time T > 0,

the set of pairs (f, h) such that the mapping Θf,h
T is an embedding is a residual set

and so is everywhere dense, it remains to prove that this set is also open. To this end,
consider the mapping

Φ : X × U2n+1 −→ C∞(X × U2n+1, (Rdy )
2n+1

)

(f, u2n+1) 7−→ Θf,h
T

which is obviously continuous for the Whitney topology. Clearly Φ(f, u2n+1) is an

embedding iff the mapping Θf,h
T (·, u2n+1) is an embedding for every finite sequence

u2n+1 ∈ U2n+1. Now, since X and U are compact manifolds, the set of embeddings

from X × U2n+1 to (Rdy )
2n+1 × U2n+1 is open for the Whitney topology, so, due to

the continuity of Φ, the set set of mappings Θf,h
T (·, u2n+1) which are embeddings for

every u2n+1 is open.

Appendix A. Some codimension computations. We will prove below two
lemmas that give the co-dimensions of some sets of matrices. Let r and k be two

integers such that 1 ≤ k ≤ r ; in GL(nR)r+1 × L(Rn,Rdy )
r+1 × Pn−1 we con-

sider the subset Z1
r,k defined as follows. Subset Z1

r,k is the set of of (2r + 3)-tuples(
(A0, . . . , Ar), (C0, . . . , Cr), `

)
such that

• the rank of the family (Ã0`, Ã1`, . . . , Ãk−1`) is equal to k ;
• the family (Ã0`, Ã1`, . . . , Ãk`) is linearly dependent;
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• we have the equalities

C0` = 0, C1Ã1` = 0, C2Ã2` = 0, . . . , CrÃr` = 0 .

Here the terms Ãs are defined as

Ã0 = Id, Ã1 = A0, . . . , Ãr = Ar−1Ar−2 · · ·A0 .

Consider now r, s and k three positive integers and fix a sequence of integers
i0, . . . ik−2 ∈ {0, . . . , r−1} and a sequence j0, . . . , jk−1 ∈ {0, . . . , s−1}. In GL(nR)r×
L(Rn,Rdy )

s ×Pn−1, we consider the subsets Z2
r,s,k defined as follows. Subset Z2

r,s,k

is the set of of (r + s+ 1)-tuples
(
(A0, . . . , Ar−1), (C0, . . . , Cs−1), `

)
such that

• the rank of the family (Ã0`, Ã1`, . . . , Ãk−1`) is equal to k ;
• the family (Ã0`, Ã1`, . . . , Ãk`) is linearly dependent;
• we have the equalities

Cj0Ã0 = 0, Cj1Ã1 = 0, . . . , Cjk−1
Ãk−1 = 0 .

Here the terms Ãi are defined as

Ã0 = Id, Ã1 = Ai0 , . . . , Ãk−1 = Aik−2
Ãk−2 .

The number of relations bearing on the Cs in the definition of Z1
r,k may be greater

than k whereas this number is equal to the rank of the family (`, Ã1`, . . . , Ãk`) in the
definition of Z2

r,k,s but, in this last case, some terms (among the As or the Cs) could
be repeated. We then have

Proposition A.1 (Codimension of Z1
r,k and Z2

r,s,k). Subset Z1
r,k is a submani-

fold of GL(nR)r+1 × L(Rn,Rdy )
r+1 × Pn−1 whose codimension is equal to n − k +

(r + 1)dy.
Subset Z2

r,s,k is a submanifold of GL(n,R)r × L(Rn,Rdy )
s × Pn−1 whose codi-

mension is equal to n− k + kdy.

This proposition is a consequence from the three following lemmas.

Lemma A.2. Consider the subset Lr of L(Rn,Rdy )
r+1 × (Pn−1)

r+1
of 2r + 2-

tuples (C0, . . . , Cr, `0, . . . , `r) such that

C0`0 = 0, C1`1 = 0, . . . , Cr`r = 0 .

Then Lr is a submanifold whose codimension is equal to (r + 1)dy .

Proof. Consider the following mapping

Φr : L(Rn,Rdy )
r+1 × (Pn−1)

r+1 −→ (Rdy )
r+1

(C0, . . . , Cr, `0, . . . , `r) 7−→ (C0`0, C1`1, . . . , Cr`r)

Computing the partial derivatives of this mapping with respect to the components of
C0, . . . , Cr, we find the following (r + 1)dy × rndy Jacobian matrix

Iddy ⊗`T0 0 0 . . . 0
0 Iddy ⊗`T1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . Iddy ⊗`Tr `
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where Iddy denotes the dy×dy identity matrix and ⊗ denotes the Kronecker product.
As the `s are in Pn−1, the rank of this matrix is equal to (r+ 1) dy, which prove that

Φr is a submersion. Thus, Lr being the preimage of (0, . . . , 0) ∈ (Rdy )
r+1

by Φr, it
follows that Lr is a submanifold of the same codimension as (0, . . . , 0), that is to say
(r + 1)dy .

Lemma A.3. Let (v0, . . . vk−1) be a family of k linearly independent vectors of Rn.
Let j0, . . . , jk−1 be a finite sequence of integers chosen in {0, . . . , r} (with r possibly

less than k). Consider the subset Lk,r of L(Rn,Rdy )
r+1

of elements (C0, . . . , Cr)
such that

Cj0v0 = 0, Cj1v1 = 0, . . . , Cjk−1vk−1 = 0 .

Then Lk,r is a submanifold whose codimension is equal to kdy .

Proof. Consider the mapping

Φk,r : L(Rn,Rdy )
r+1 −→ (Rdy )

k

(C0, . . . , Cr) 7−→ (Cj0v0, Cj1v1, . . . , Cjk−1
vk−1)

.

It is linear and, as the family (v0, . . . , vk−1) is linearly independent, it is onto, so its
kernel has a codimension equal to the dimension of its codomain, that is to say k dy .

Lemma A.4. Consider the set Gr,k of the r-tuples (A0, . . . , Ar−1, `) ⊂ GL(n,R)r×
Pn−1 such that

• the family (Ã0`, . . . , Ãk−1`) is linearly independent;
• the family (Ã0`, . . . , Ãk`) is linearly dependent.

The set Gr,k is a submanifold of GL(n,R)r × Pn−1 whose codimension is equal to
n− k.

Proof. The result in the case k = n being obvious, we will assume in what follows
that k < n.

Consider the set Vk of n-tuples (v0, . . . , vn−1) of vectors in Rn such that
• the family v0, . . . , vk−1 is linearly independent;
• the family v0, . . . , vk is linearly dependent.

The set Vk is a submanifold of Rn×n whose codimension is equal to n− k, this is an
easy consequence of [13, Prop. 5.3].

Denote by Ui, i = 1, . . . , n the standard domains of charts in Pn−1. For every
domain Ui, we will introduce a mapping ϕi from GL(n,R)n×Ui to Rn×n and we will
show that all of these mappings ϕi are transversal to Vk. Hereafter, we will prove the
result only for i = 1 ; consider the mapping

ϕ1 : GL(n,R)r × U1 −→ Rn×n

(A0, . . . , Ar−1, `) 7−→ (l̄, Ã1
¯̀, . . . , Ãn−1 ¯̀)

where ¯̀ is the element of Rn that represents ` and whose first component is equal to
1. We will see that ϕ1 is transversal to Vk ; to this end, we begin by describing the
tangent vectors to Vk.

Let v0, . . . , vn−1 be an element of Vk, consider the matrix M whose columns are
the vectors vi (i = 0, . . . , n− 1), from this matrix, we can extract an invertible k × k
submatrix. Without loss of generality, we can assume that this submatrix is obtained
by retaining the k first lines and columns of M . Hereafter, we introduce the n×(k+1)
matrix M ′ obtained by retaining the k+1 first columns of M we write this submatrix
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as follows

M ′ =

(
A b
C d

)
where A is a k×k invertible matrix, C is a (n−k)×k matrix and the column (bTdT)T

is equal to the vector vk. The sequence v0, . . . , vn−1 belongs to Vk iff d− CA−1b = 0
[13, p. 60], so a vector t0, . . . , tn−1 will be tangent to Vk at v0, . . . , vn−1 if

(A.1) g′ −H ′A−1B + CA−1HA−1B − CA−1g = 0

where H is a k × k squared matrix , H ′ is a (n − k) × k matrix, g a column matrix
with k lines and g′ a column matrix with n − k lines. These matrices are such that
the columns of the matrix (

H g
H ′ g′

)
are the vectors t0, . . . , tk; notice that equality (A.1) can be rewritten as

(A.2)
(
−CA−1 In−k

){(g
g′

)(
H
H ′

)
A−1B

}
= 0.

Take now e = (A0, . . . , Ar−1, l) an element of GL(n,R)r×Pn−1 such that ϕ1(e) ∈
Vk. We will consider the derivative of ϕ1 with respect to Aik−1

, evaluated at e.

dϕ1(e).(0, . . . , 0,M, 0, . . . , 0) = (0,Πik−1
(Ã1,M)l̄, . . . ,Πik−1

(Ãk−1,M)l̄,

MÃk−1 l̄ +Aik−1
Πik−1

(Ãk−1,M)l̄), . . . ).

Recall that Πik−1
(Ãr,M) is the expression obtained by substituting each occurrence

of Aik−1
in Ãr by M ; so if Ãr does not contain Aik−1

, Πik−1
(Ãr,M) is zero, if not

it is equal to a sum of expressions involving terms as MÃs ¯̀ with s < r . Denoting
by w0, . . . , wk−1 the vectors l̄, Ã0 l̄, . . . , Ãk−1 l̄, for every r ≤ k − 1, the expression
Πik−1

(Ãr,M) is zero or the sum of terms BjMwj , the vectors w0, . . . , wk−1 being
linearly independent, the matrix M can be chosen such that Mwj = 0 for j =

0, . . . , k − 2, while the term MÃk−1 l̄ can be arbitrarily chosen. In matrix notation,
we then have

dϕ1(e).(0, . . . , 0,M, 0, . . . , 0) =

(
0k×k h ∗ . . .

0(n−k)×k h′ ∗ . . .

)
the column vectors h and h′ being arbitrary in Rk and Rn−k respectively. Substituting
this expression for dϕ1(e).(0, . . . , 0,M, 0, . . . , 0) in (A.2), we obtain

(
−CA−1 In−k

)(h
h′

)
= −CA−1h+ h′ .

This last expression reduces to h′ if h is chosen equal to zero. Let us choose the

vectors (hT, (h′)
T

)
T

to be equal to the vectors ek+1, . . . , en of the canonical basis of
Rn, the above equality shows that none linear combination of these vectors belongs
to the tangent space to Vk. We have shown that there exists a n − k dimensional
subspace that is transversal to the tangent space to Vk, this proves the transversality
of ϕ1.
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Remark A.5. The same result remains true if one considers the set Gk of the
r-tuples (A0, . . . , Ar−1, `) ⊂ GL(n,R)n ×Pn−1 such that

• the family (Ãj`, . . . , Ãk−1`) is linearly independent;

• the family (Ãj`, . . . , Ãk`) is linearly dependent.
Namely the codimension of this set of invertible matrices is equal to n− k + j .
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