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Abstract. To allow climate change impact assessment of wa-
ter quality in river systems, the scientific community lacks
efficient deterministic models able to simulate hydrologi-
cal and biogeochemical processes in drainage networks at
the regional scale, with high temporal resolution and wa-
ter temperature explicitly determined. The model QUALity-
NETwork (QUAL-NET) was developed and tested on the
Middle Loire River Corridor, a sub-catchment of the Loire
River in France, prone to eutrophication. Hourly variations
computed efficiently by the model helped disentangle the
complex interactions existing between hydrological and bio-
logical processes across different timescales. Phosphorus (P)
availability was the most constraining factor for phytoplank-
ton development in the Loire River, but simulating bacte-
rial dynamics in QUAL-NET surprisingly evidenced large
amounts of organic matter recycled within the water col-
umn through the microbial loop, which delivered significant
fluxes of available P and enhanced phytoplankton growth.
This explained why severe blooms still occur in the Loire
River despite large P input reductions since 1990. QUAL-
NET could be used to study past evolutions or predict future
trajectories under climate change and land use scenarios.

1 Introduction

River eutrophication has become a rising problem over the
past decades, especially in India, Asia and South America,
constituting a major risk for ecosystems and human health
(e.g., Braga et al., 2000; Némery and Garnier, 2016; Yin et
al., 2016; Dixit et al., 2017). Significant efforts to reduce non-

point and point sources of nitrogen (N) and phosphorus (P)
were made in Europe and North America, leading to a eu-
trophication decline in several large rivers (Hartmann et al.,
2007; Friedrich and Pohlmann, 2009; Howden et al., 2010;
Hardenbicker et al., 2014; Minaudo et al., 2015, 2016; Pow-
ers et al., 2016; Poisvert et al., 2017). However, eutrophica-
tion crises are still occurring in many freshwater areas.

Previous studies often tried to assess which controlling
factor of eutrophication prevails over the others and often
contrasted nutrient availability with supposedly favorable
physical conditions. Conflicting results in the literature did
not solve this issue. In some rivers chlorophyll a concentra-
tion could directly be assessed confidently from P concen-
tration (e.g., Basu and Pick, 1996; Dodds, 2006), whereas
river flow conditions in other systems clearly constrained
and determined the algal biomass (Biggs and Smith, 2002;
Istvánovics et al., 2009). A few studies identified a com-
bination of variables co-controlling phytoplankton blooms
like the association of river flow conditions, water temper-
ature and sunshine duration over the preceding days (Bowes
et al., 2016), flow and light intensity (Hardenbicker et al.,
2014), and flow, temperature and nutrient availability (Van
Vliet and Zwolsman, 2008). If reducing P inputs has proved
to be efficient to limit phytoplankton blooms in rivers, many
recent studies show that both N and P availability must be
considered as key elements to determine the trophic state
of streams and rivers (Dodds and Smith, 2016; Paerl et al.,
2016). Apart from nutrient availability, numerous other fac-
tors control phytoplankton composition and abundance in
rivers, such as water residence time (directly linked to the
river morphology, with the potential presence of flow veloc-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2252 C. Minaudo et al.: High-resolution model for eutrophication in rivers

ity dead zones), penetration of solar radiation into the water
column (depth and turbidity), water temperature variations
(hydrological and climate forcing), invertebrate grazing from
endemic and invasive species, and self-shading effects by
the phytoplankton colony itself (Reynolds and Descy, 1996;
Reynolds, 2006; Abonyi et al., 2018).

Disentangling the relative influence of so many chemi-
cal, biological and physical factors on the river biogeochem-
istry can hardly be captured confidently through simple wa-
ter quality monitoring and often requires the help of nu-
merical modeling. Many deterministic water quality mod-
els at the catchment scale were developed and used initially
to estimate nutrient source inputs into receiving waterbod-
ies and support watershed stakeholders and decision makers
to tackle eutrophication issues (Wellen et al., 2015). Only
a limited number of models propose a mechanistic module
simulating phytoplankton community dynamics and its im-
pact on eutrophication. One can cite Riverstrahler (Billen et
al., 1994; Garnier et al., 2002), ProSe (Even, 1995; Even
et al., 1998; Flipo et al., 2004; Vilmin et al., 2015), Pe-
gase (Deliège et al., 2009), QSIM (Kirchesch and Schöl,
1999; Schöl et al., 1999), WaterRAT (McIntyre and Wheater,
2004), QUAL2KW (Pelletier et al., 2006), WASP7 (Am-
brose and Wool, 2009), QUASAR (Whitehead et al., 1997)
or RWQM1 (Reichert et al., 2001). However, many of these
models are only able to simulate river stretches and not the
entire river network. The main reason is that very few models
work at the catchment scale with subdaily timesteps (Wellen
et al., 2015), mostly because program developers have to face
long calculation times and usually compromise between a
large spatial scale and high temporal and/or spatial resolu-
tion. The use of a high temporal resolution is, however, re-
quired to account for hydrological and biogeochemical pro-
cesses occurring over short periods of time (e.g., storm events
or subdaily phytoplankton growth variations). Water temper-
ature is also a key factor for phytoplankton abundance and
assemblage (Reynolds, 2006) which needs to be simulated
at a high temporal frequency to assess the impact of po-
tentially drier streams and warmer summers under climate
change (Quiel et al., 2010). Developing methods appropri-
ate to the regional scale is also required to account for in-
stream processes in large rivers that control N, P and carbon
(C) variations and constrain water quality in estuarine and
coastal zones. Finally, models need to be appropriate for re-
gional studies, i.e., the scale at which actions are undertaken
by water body stakeholders and catchment managers.

The objectives of our study were twofold: firstly, develop
a model able to simulate hydrological and biogeochemical
processes in drainage networks at the regional scale (over
104 km2), with hourly resolution and water temperature ex-
plicitly determined to allow potential climate change impact
assessment; secondly, disentangle the different processes in-
volved in eutrophication in a large river and identify their
main drivers. To achieve this, the model QUALity-NETwork
(QUAL-NET) was developed based on the integration of a

biogeochemical model, Rive (Garnier et al., 2002), in a ther-
mal model, T-NET (Beaufort et al., 2016). This new model
was tested on a selected portion of the Loire River basin, the
Middle Loire River Corridor, draining 43× 103 km2, where
the river main stem (270 km long) is prone to eutrophication
in summer (Lair and Reyes-Marchant, 1997; Descy et al.,
2011; Minaudo, 2015; Minaudo et al., 2015).

2 Study site

The Loire River (110× 103 km2) is the largest river flow-
ing in France. The selected Middle Loire River Corri-
dor (MLRC) is an intermediate sub-catchment located in the
lowland section of the river main stem (Fig. 1). It separates
the Upper Loire (a mountainous area where anthropogenic
pressures greatly impact the river water quality but where eu-
trophication is only visible in lakes and reservoirs; Jugnia et
al., 2004) from the Lower Loire River where the river main
stem meets its major tributaries (Cher, Indre, Vienne and
Maine rivers). The MLRC starts 450 km from the headwa-
ters and runs over 270 km. From its entrance to its outlet (sta-
tions S1 to S2 in Fig. 1), the cumulated catchment area in the
MLRC increases by only 26 %. This section of the river has a
high eutrophication potential, combining most of the condi-
tions favoring phytoplankton growth: high N and P concen-
trations (Minaudo et al., 2015), a low water level in summer
(∼ 1 m), and a morphology with multiple channels and nu-
merous islands slowing down flow velocity which increases
the water travel time (Latapie et al., 2014). Chlorophyll a

concentration was often over 250 µg L−1 in the 1980s, and
many efforts have been conducted since 1990 to limit phos-
phorus point and non-point sources and counteract eutrophi-
cation: since 1990, phosphorus concentrations have been di-
vided by 2.5 and phytoplankton blooms have declined 3-fold
(Floury et al., 2012; Minaudo et al., 2015; Oudin et al., 2009).
Even if phytoplankton in the Loire system is now clearly P-
limited, algal blooms still occur (Abonyi et al., 2012), ques-
tioning phosphorus as a source and suggesting potential re-
cycling processes.

3 Methods

The model QUALity NETwork (QUAL-NET) was developed
based on a deterministic approach. It is the coupling between
a thermal model, T-NET (Beaufort et al., 2016), and a bio-
geochemical model, Rive (Garnier et al., 2002).

Model T-NET is a physically based model able to estimate
the water temperature in each reach of a large hydrographi-
cal network (105 km2) with an hourly resolution and low er-
rors, especially in the lowland area (Beaufort et al., 2015,
2016; Loicq et al., 2018). It has previously been developed
specifically for the Loire River Basin (110× 103 km2 and
over 50× 103 river reaches from headwaters to the estuary).
The temperature in the river network is computed as follows:
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Figure 1. Study area, the Middle Loire River Corridor sub-catchment defined between stations S1 and S2, and network topology concept
used in the model.

(i) resolution of the heat budget in a given reach and esti-
mation of the equilibrium temperature (Bustillo et al., 2014);
(ii) longitudinal propagation downstream of the thermal sig-
nal according to the estimated water velocity throughout the
river reach; (iii) discharge-weighted mix of the thermal sig-
nal when two or more streams meet in one node.

The model Rive is a mechanistic model describing many
of the biogeochemical interactions that occur in the river be-
tween the water column and the benthos. It simulates the
dynamic of dissolved and particulate organic matter, nutri-
ents (N, P, Si), dissolved oxygen, the phytoplankton biomass
(three algae groups: green algae, diatoms and cyanobacte-
ria), zooplankton and bacteria. Equations from model Aqua-
phy (Lancelot et al., 1991) were used to describe primary
producer variations. The model Rive is the biogeochemical
module of the Riverstrahler (Billen et al., 1994) and ProSe
(Even et al., 1998) models. Riverstrahler was largely used
in past studies to simulate with a 10-day time step biogeo-
chemical variations in large lowland eutrophic rivers under
varying climate conditions, e.g., the Seine Basin, the Danube
River, the Red River in Vietnam, and over long periods of
time (Garnier et al., 1995, 2002, 2005; Billen and Garnier,
2000; Billen et al., 2001; Quynh et al., 2010). Equations and
variables included in the model are extensively described in
Billen et al. (1994) and Garnier et al. (2002). Both the wa-
ter and the benthic components were considered, including
chemical and physical exchanges in-between these two com-
ponents, according to the Billen et al. (2014) formulation.
Equations in this formulation provided estimates of nitro-
gen, phosphorus, silica and dissolved oxygen fluxes across
the water–sediment interface. The sediment layer was split
into two sub-layers. The one at the bottom was considered

compact and not erodible, the other one could potentially
be resuspended. Nutrient fluxes between these two sediment
layers were also considered in our model. For each river
reach and at each time step, the model estimated quantities
of eroded particles or those settled on the riverbed. Particles
were considered both inorganic and organic with three lev-
els of lability. Resuspension could potentially fuel the water
column with soluble reactive phosphorus via desorption pro-
cesses from suspended matter.

The temporal resolution of QUAL-NET was hourly.
QUAL-NET was coded in C++ language and allowed par-
allel computing, i.e., the simultaneous use of several proces-
sors in order to reduce computation time as much as pos-
sible. Simulating hourly biogeochemical evolutions of 3361
stream segments over a 3-year period took nearly 4 h on a
two-processor platform (Intel(R) Xeon(R) CPU E5-2670 0
@ 2.60 GHz) with 16 cores (64 Go, DDR3= 1600 MHz).

3.1 Data inputs and main spatialization choices

Hydrological, geomorphological and meteorological forc-
ing variables were determined and used on the basis of T-
NET model implementation on the Loire Basin (Fig. 2).
Thus, a more detailed description is available in Beaufort et
al. (2016), except for nutrient sources forcing variables.

3.1.1 Meteorological variables

Hourly meteorological variables were taken from the
SAFRAN atmospheric reanalysis (Quintana-Segui et al.,
2008), produced by the French Meteorological Services
(Météo-France). Spatial resolution was 8× 8 km2. Meteo-
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Figure 2. Architecture of QUAL-NET and data sources.

rological variables were used to compute the hydrological
model (see below) for both thermal and biogeochemical
modules. Air temperature, specific humidity, wind velocity
and atmospheric radiation were used to compute water tem-
perature. Most biogeochemical variables were water tem-
perature dependent, and phytoplankton photosynthesis pro-
cesses were directly linked to atmospheric radiation varia-
tions.

3.1.2 Hydrology

Daily mean discharge and groundwater flows were sim-
ulated by the semi-distributed hydrological model EROS
(Thiéry and Moutzopoulos, 1995) at the outlet of 17 sub-
watersheds. Within each of these sub-watersheds, flows were
redistributed into the hydrographic network according to the
corresponding drainage area of each river reach. This ap-
proach proved its efficiency and reliability at the regional
scale in the Loire Basin (Beaufort et al., 2016). Discharge
and groundwater flows were considered constant over 24 h
even if the water quality model output was hourly.

3.1.3 Geomorphology

The hydrographical network was determined from the
Carthage® database (Carthage, 2012), after transforming
multiple channels into single channels. In the MLRC, we

counted 3361 reaches, every one of them being defined
as the river section between two confluences. Slopes for
each reach were assessed based on a 25 m resolution digi-
tal terrain model (ALTI, 2012). Transversal morphology in
streams were assumed to be rectangular, while depth and
width were assessed on a daily time step but differently for
the Loire River main stem and other streams: (i) depths in
the Loire River main stem reaches were assessed based on
field measurements conducted during both low- and high-
flow periods (Latapie, 2011; Latapie et al., 2014) com-
bined with Manning–Strickler formulation (Strickler coef-
ficient was calibrated numerically); (ii) in all other rivers
and streams, where no field measurements were available,
depth and width were assessed on a daily basis on the ES-
TIMKART application (Lamouroux et al., 2010) which uses
stream slope, watershed area, and daily and interannual dis-
charge to estimate streams morphology.

3.1.4 Non-point sources

Non-point sources of nutrients and exports of total sus-
pended solid concentrations (TSSs) were defined based on
land use (European Corine Land Cover dataset, 2006), cli-
mate characteristics, lithology (LITHO®, 2008) and previous
observations conducted on 108 streams located in the Loire
headwaters, upstream of any potential point sources (Blan-
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chard, 2007). Overall, land use categories were grouped into
seven large categories (urban, arable land, cultivated land,
prairie, forest, wetland, other types) and associated with a
corresponding non-point source concentration for the follow-
ing variables: nitrate, ammonium, total inorganic phospho-
rus, biogenic silica, dissolved and particulate organic carbon
for three different biodegradability classes, total suspended
solids, and fecal matter. The MLRC Basin was divided into
479 small sub-catchments (the average was 27 km2), and dif-
fuse source concentrations were applied homogenously for
all streams located in a given sub-catchment as a combina-
tion of concentrations originating from all the different land
use types. Land use was considered constant over time, lead-
ing to constant nutrient concentrations for non-point sources.
Thus, it was hypothesized that the hydrological variability
alone could be responsible for temporal variations in non-
point nutrient fluxes.

3.1.5 Point sources

Industrial and domestic point sources of nutrients and TSS
fluxes originated from Loire Basin water authorities (AELB)
surveys conducted in 2010. In the MLRC Basin, 641 wastew-
ater treatment plants (WWTPs) were recorded. Datasets pro-
vided total organic carbon, total nitrogen and total phos-
phorus fluxes. It was estimated in 2010 that point sources
in the Middle Loire sub-catchment (our study) represented
322 kg P day−1 and 1.9 t N day−1. These fluxes were divided
into the different chemical forms for C, N and P, according
to Servais and Billen (2007), depending on the type of point
sources and the characteristics of WWTP. Fluxes of point
sources were considered constant over time.

3.1.6 Upstream boundary in the Loire River and
validation dataset at catchment outlet

A daily survey was conducted at S1 (Saint-Satur-sur-Loire)
and S2 (Cinq-Mars-la-Pile) in the Loire River during the
period August 2011–July 2014 (Minaudo, 2015). Data col-
lected at S1 were used as data input for the model, and data
at S2 were used for both calibration and model performance
assessment. Samples were collected every day from a bridge
using the same procedure at each station. TSSs were mea-
sured every day. The following parameters were analyzed on
a 3-day frequency basis: dissolved and particulate organic
carbon (DOC and POC), total and soluble reactive phospho-
rus (TP and SRP), nitrate (NO−3 ), dissolved silica (Si), and
chlorophyll a concentrations. Filtrations were immediately
made on-site using 0.45 µm cellulose acetate membrane fil-
ters for chemical parameters and a 0.70 µm glass filter (What-
man GFF) previously burned at 500 ◦C for 6 h for chloro-
phyll a and POC analysis. Total suspended solid concentra-
tions were determined by filtration of a precise volume of
each water sample through pre-weighed filters and by dry-
ing them at 105 ◦C. After filtration, water samples and filters

were stored at−80 ◦C in polypropylene tubes after acidifica-
tion of aliquots for NO−3 , SRP and DOC analysis. Tubes and
filters were unfrozen on the day of the analysis. DOC con-
centrations were measured with a carbon analyzer (Shimadzu
TOC-V CSH/CSN). The NO−3 concentration was determined
by ionic chromatography. Phosphorus was measured by col-
orimetry after solid digestion in the case of TP analysis
(potassium-persulfate digestion). Dissolved silica (Si) was
measured by colorimetry. For POC analyses, filters were first
treated with HCl 2N to remove carbonates, dried at 60 ◦C
for 24 h and then measured with a C / S analyzer (LECO
C-S 200). Chlorophyll a was measured by fluorimetry at a
wavelength > 665 nm after an excitation step between 340
and 550 nm. Chlorophyll a concentrations were expressed in
mg C L−1 considering a C :Chl a ratio of 31, according to
Minaudo et al. (2016), and constituted the variable hereafter
named “PHY”.

3.2 Computation steps in the model

Computation in the model was based on a network topol-
ogy: each reach in the hydrographic network corresponded
to the stream segment between two confluences. Each reach
had an upstream (or upper) and a downstream (or lower)
node (Fig. 1). Except for Strahler first-order streams in the
headwaters, upper nodes were always connected to two lower
nodes.

3.2.1 Initialization at upper node and boundary
conditions

All variables were initialized at the upper node of Strahler
first-order streams. Water component variables were initial-
ized according to non-point sources estimated for hillslope
catchments located upstream of the upper nodes. Variables
in the sediment component were initialized homogenously
everywhere in the stream network, assuming that the model
should quickly reach its equilibrium based on the interac-
tions with variables from the water component. The upstream
boundary in the Loire River (S1) was determined based on
the daily survey conducted at S1 (see Sect. 3.1.6).

3.2.2 Propagation downstream

All variables computed at one reach in the water compo-
nent were transferred downstream according to travel time
estimated from discharge and stream morphology. Variables
from the benthic component interacted with the water com-
ponent but were not transferred downstream. For a given time
step, a given reach was discretized depending on the esti-
mated travel time. If travel time was shorter than 1 h, the
reach was not segmented: thermal and biogeochemical equa-
tions were solved at the downstream node. If travel time ex-
ceeded 1 h, the reach was segmented into as many subseg-
ments as needed to get 1 h travel time subsegments. Within
one 1 h time step, all biogeochemical equations were solved
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with a 15 min sub time step to avoid potential numerical res-
olution drifts. When two streams met, biogeochemical sig-
nals were mixed with respect to stream discharge. This de-
termined the values for the next downstream upper node. Be-
cause the exact location of potential WWTP input within a
segment was not always known, it was assumed that the lo-
cation of point sources occurred at the downstream node.

3.3 Calibration step

The thermal model was fully deterministic and no calibration
step was needed. Even if Rive was built as a universal rep-
resentation of the mechanisms occurring in rivers, some pro-
cesses were based on empirical relationships. Nearly 150 co-
efficients were counted overall (Fig. 3), the majority of them
were used to describe bacteria and phytoplankton dynamics
depending on light intensity, water temperature, and nutrient
availability. Most coefficients are currently accepted as uni-
versal constants, but several studies pointed out that hydro-
sedimentary and P sorption–desorption processes needed ex-
perimental or numerical calibration (Vilmin et al., 2015),
especially because processes involved highly impacted per-
formances on phytoplankton and water quality predictions
(Aissa-Grouz, 2015). The phosphorus dynamic in the water
compartment was based on the Langmuir equilibrium con-
cept (Limousin et al., 2007), a description largely found in

the literature for water quality models (e.g., Chao et al., 2010;
Rossi et al., 2012; Vilmin et al., 2015). Very different val-
ues for P sorption–desorption coefficients were found exper-
imentally or numerically in the literature, with up to 5 orders
of magnitude differences from one study to another (Vilmin
et al., 2015). No specific laboratory experiments were con-
ducted in the Loire River, leading us to deploy numerical
calibration methods to calibrate TSS and SRP dynamics. Be-
cause SRP computation relies on TSS dynamic, the first vari-
able calibrated was TSS. Calibration was conducted manu-
ally by changing the values of the different coefficients to be
calibrated over a range of values found in the literature. In
total, five coefficients were calibrated. The best set of co-
efficients was selected when results minimized root mean
square errors (RMSEs) of the calibrated variable. Among the
recorded time series (1 August 2011 to 31 July 2014), the
period selected for calibration was the first year, i.e., 1 Au-
gust 2011 to 31 July 2012, and the remaining data served for
validation.

3.3.1 Calibration of TSS dynamic

Total suspended solid concentration increments (dTSS) were
computed based on a simple difference between eroded
matter from the riverbed (erosTSS) and settled particles
(sedimTSS), as described in Eqs. (1–4). Erosion was defined

Biogeosciences, 15, 2251–2269, 2018 www.biogeosciences.net/15/2251/2018/
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as a power law function of flow velocity (Eqs. 2 and 3).

dTSS(t)= erosTSS(t)− sedimTSS(t), (1)

erosTSS (t)=
V sTSS

depth(t)

(
CapTSS(t)−TSS(t − 1)

)
SED(t − 1)−SED0

SED0
, (2)

CapTSS (t)= Veli0+Veli1 ·V (t)3, (3)

sedimTSS (t)=
V sTSS

depth(t)
TSS(t − 1), (4)

where VsTSS was the sedimentation velocity, depth(t) was
the water depth at time t , CapTSS was the erosion capac-
ity depending on coefficients Veli0, Veli1 and flow velocity
V (t), SED was the height of the layer of sediments poten-
tially erodible, and SED0 was the layer of sediments set dur-
ing initialization step.

Thus, TSS concentration depended on the coefficients
Veli0, Veli1 and VsTSS. These three coefficients were cali-
brated.

3.3.2 Calibration of P dynamic

SRP concentration was estimated based on sorption–
desorption equations originating from the Langmuir equilib-
rium displayed by Eqs. (5) and (6). This formulation requires
the maximal sorption capacity of P onto suspended solids
(Pac, in mg P g−1) and a half-saturation constant (Kpads, in
mg P L−1) that needed to be defined.

dSRP(t)=
1
2

[[
A(t)2

+ 4 ·TIP(t) ·Kpads
] 1

2
−A(t)

]
, (5)

A(t)=Kpads−TIP(t)+TSS(t) ·Pac, (6)

where TIP corresponded to total inorganic phosphorus con-
centration at time step t and Kpads and Pac were the two
parameters needing to be calibrated.

3.4 Model performance criteria for validation

To estimate model performances and define criteria for
model validation, bias and standard deviation errors were
used, following Eqs. (7) and (8):

ErrSD = SD (observation−model), (7)

Errbias =

n∑
i=1

observation(i)−model(i)
n

, (8)

where SD was the standard deviation and n the total number
of observations. These metrics were calculated for each vari-
able observed at S2 over the entire period of validation (1 Au-
gust 2012 to 31 July 2014), and were also computed season-
ally: “summer” corresponded to the bloom season from April

to October; “winter” corresponded to the remaining part of
the year.

3.5 Lagrangian representation and fluxes budgets

In addition to more common ways of presenting results lon-
gitudinally, we proposed two other graphical representations
of transfers and biogeochemical transformations from S1 to
S2 along the Loire River. One representation consisted in fol-
lowing the same water body transferred from S1 to S2, i.e.,
a Lagrangian representation. Lagrangian profiles were esti-
mated from the matrix of travel time computed for each reach
and at each time step from measured discharge and river
morphology estimates (see Sect. 3.1.3). This representation
was both spatial and temporal since it displayed longitudinal
variations according to travel time going downstream. It was
used for two typical situations: one in winter (starting on 9
February 2013 during a high-flow period) and another one
during a phytoplankton bloom (starting on 10 July 2012).

Additionally, average seasonal flux budgets of all the main
processes (inputs and outputs) simulated between S1 and S2
over winter or summer periods were computed for a selection
of variables (TSS, NO−3 , total inorganic P, Si, PHY, DOC,
POC and O2). In those graphs, arrow widths were propor-
tional to the corresponding calculated flux, allowing the com-
parison between the two different seasons.

3.6 Constant flow and constant water temperature
simulations

The sensitivity of phytoplankton variations to constant flow
conditions in the Loire River for both low-flow and high-flow
conditions (200 and 1000 m3 s−1, respectively) was assessed.
A similar approach was tested with constant water tempera-
ture (13.7 ◦C, i.e., the average temperature). Lagrangian pro-
files during a phytoplankton bloom (starting on 10 July 2012)
of these simulations can be found as Fig. S1 in the Supple-
ment.

4 Results

4.1 Calibration step

The best set of coefficients that minimized errors over the pe-
riod are displayed in Table 1. RMSE on calibrated variables
were 15 mg L−1 for TSS and 14 µg P L−1 for SRP. The se-
lected values for TSS coefficients largely differed from other
values found in the literature, justifying the need for this cali-
bration step. Compared to the Seine River, it appeared neces-
sary to increase the erosion capacity (Veli1) but also to reduce
considerably suspended solids sedimentation rates (VsTSS),
which resulted on an increased sediment reactivity within the
Loire system. Values calibrated for P sorption processes were
close to the values found experimentally in the neighboring
Seine Basin (Aissa-Grouz, 2015).
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Table 1. Values optimized for TSS and Langmuir coefficients during the calibration step and compared to other values found in literature.

Coefficient Optimized value Other studies for
RMSE name Unit for this study rivers or streams

Veli0 mg TSS L−1 20 201

TSS 15 mg L−1 Veli1 mg TSS L−1 500 50a

VsTSS m h−1 0.1 0.5a

SRP 14 µg L−1

Kpads mg P L−1 0.15 0.68a

0.04b

0.01c

1.89 to 200d

Pac mg P (g TSS)−1 5.5 5.6a

3.1b

12.8c

0.3 to 3.0d

a Billen et al. (1994); Seine River, France. b Aissa-Grouz (2015); Seine River, France. c Vilmin et al. (2015); Seine River,
France. d Jalali and Peikam (2013); Abshineh River, Iran.

Table 2. Model performances (bias±SD errors) for different timescales: over the entire period of validation (1 August 2012 to 31 July 2014),
in summer (April to October) and in winter (November to March).

Parameter Unit Entire period Summer Winter

TSS mg L−1 7.6± 13 5.4± 11 10.3± 14.8
NO−3 mg N L−1 0.1± 0.4 0.1± 0.4 0.1± 0.5
SRP µg P L−1

−2± 14 −2.2± 15 −1.9± 13
Si mg Si L−1 0.2± 1.7 0.4± 1.3 −0.1± 2.1
PHY mg C L−1 0.0± 0.4 −0.1± 0.5 0.1± 0.1
POC mg C L−1 0.3± 1.0 0.0± 1.1 0.6± 0.7
DOC mg C L−1 0.4± 1.5 0.2± 1.3 0.7± 1.8

4.2 Model performances at station S2

Over the study period, discharge variations at S2 presented
highly seasonal variations (Fig. 4): Q ranged between 60
and 150 m3 s−1 in summer low flows and peaked over
1200 m3 s−1 in winter high flows. Water temperature sim-
ulated by T-NET was highly seasonal and fluctuated be-
tween 0 and 30 ◦C. In summer, the amplitude of water tem-
perature diel cycles ranged between 0.2 and 1.5 ◦C. Phy-
toplankton concentrations presented three clearly delimited
bloom events between March and September. The maximum
observed each year was 60 to 70 µg chl a L−1 correspond-
ing to 1.6 and 1.9 mg C L−1. Observed TSS concentrations
were correlated with discharge and ranged between nearly 0
in summer and 150 mg L−1 during high flows. Nitrate con-
centrations presented a clear seasonal signal, fluctuating be-
tween ∼ 1.5 mg N L−1 in summer to ∼ 3.5 mg N L−1 in win-
ter. Dissolved silica concentrations ranged between nearly
0 and 8 mg Si L−1. Concentrations always peaked in winter
during high flows and dropped in spring, concomitantly with
the start of phytoplankton activity. Soluble reactive P con-

centrations presented a clear seasonal cycle, with very low
concentrations reached during summer (< 10 µg P L−1) and
relatively high concentrations in winter (∼ 60 µg P L−1). Par-
ticulate organic carbon concentrations ranged between 0.4 to
5 mg C L−1, with strong correlations between POC and TSS
in winter and between POC and phytoplankton biomass dur-
ing algae blooms (Minaudo et al., 2016). Dissolved organic
carbon concentrations ranged between 4 and 10 mg C L−1.
The highest concentrations were observed during high-flow
periods, but no clear seasonal variations could be deciphered.

QUAL-NET provided reasonable estimations for the main
variables (see Table 2 for bias and standard deviation errors).
Seasonal variations were correctly simulated for all vari-
ables. At the scale of the storm event, a few events were ob-
served with the daily survey but were not represented by the
model, especially for several storm events that occurred un-
der low-flow conditions. A phytoplankton bloom event at the
end of summer 2012 was simulated but did not correspond to
our observations. Dissolved oxygen was not measured, but
concentrations simulated by QUAL-NET presented a clear
seasonal cycle, with∼ 12 mg O2 L−1 estimated in winter, and
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Figure 4. Results at station S2 after calibration for the main variables in the model: discharge (Q), phytoplankton (PHY), nitrate (NO−3 ),
dissolved silica (Si), soluble reactive phosphorus (SRP), water temperature, total suspended solids (TSSs), particulate organic carbon (POC),
dissolved organic carbon (DOC), dissolved oxygen (O2). Last row zooms in on SRP and O2 concentrations in July 2013 to show simulated
diel fluctuations.

6 to 9 mg O2 L−1 in summer. During phytoplankton blooms,
the model provided interesting diel fluctuations for PHY,
SRP and O2 concentrations. For instance, SRP concentration
fluctuated between 0 and 15 µg P L−1 and O2 concentrations
presented a minimum at midnight and a maximum at noon.
Unfortunately, the reliability of these variations could not be
verified with our measurements. Performances appeared sim-
ilar between seasons (Table 2) with approximately the same
range of errors in winter or summer, except for dissolved sil-

ica whose simulated concentrations in winter were subject to
higher imprecisions (2.1 against 1.3 mg Si L−1 in summer)
and for PHY with lower absolute errors in winter (a period
with very low PHY concentrations).

4.3 Lagrangian views of winter versus summer
dynamics

The Lagrangian views of the evolution of the differ-
ent biogeochemical species highlighted different hydro-
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biogeochemical functioning depending on the season,
(Fig. 5). The selected winter event corresponded to a high-
flow period: Q at S1 was 940 m3 s−1 and increased to
1110 m3 s−1 by the time the water arrived at S2. It took
almost 2 days for the water to travel between S1 and S2
(∼ 250 km). Most elements were simply transferred down-
stream, with no significant transformation or alteration be-
tween S1 and S2. The concentration of TSS presented a
decreasing evolution from 33 mg L−1 at S1 to 25 mg L−1

at S2. Nitrate concentration slightly increased from 2.8
to 3.1 mg N L−1 (+11 %), and so did SRP (+40 %). Dis-
solved silica concentration decreased (−12 %). Phytoplank-

ton activity remained very low and declined steadily (5 to
2 µg chl a L−1). Dissolved oxygen slightly increased (+8 %).

During the selected summer event, discharge was much
lower: Q was 330 m3 s−1 when the water left S1 on 10 July
2012 and increased to 340 m3 s−1 when the water reached S2.
The model estimated that it took nearly 3 days for the water
to cover the distance from S1 to S2, and all biogeochemi-
cal variables were largely modified when the water moved
downstream. Two steps were identified:

– The first 2.5 days, total phytoplankton concentration in-
creased from 0.5 to 1.7 mg C L−1. Simultaneously, SRP
was dramatically depleted from 50 to nearly 0 µg P L−1.
Nitrate, silica and oxygen concentrations slightly de-
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Figure 6. Longitudinal evolution of discharge Q, TSS, SRP and PHY concentrations when a storm event occurred between 8 and 19 August
2013.

creased (∼−10 %). The amount of P released from
organic matter mineralization remained limited but
reached a first peak concomitantly with a large P uptake
from the phytoplankton colony. Phytoplankton mortal-
ity rates kept increasing and peaked when growth rate
reached its maximum (0.15 mg C L−1 h−1), i.e., when
travel time from S1 was 2.3 days.

– Then, during the next 24 h (the time needed for the wa-
ter to reach S2), phytoplankton concentration started
to decrease (−15 %); SRP remained very low under
5 µg P L−1 and presented a diurnal fluctuation with a
minimum reached during the afternoon and rising con-
centrations when the water arrived at S2 by night.
During this phase, organic matter mineralization as a
source of inorganic P increased substantially from 2 to
13 µg P L−1 h−1, and phytoplankton growth rates first
dropped from 0.15 to near 0 mg C L−1 h−1 and then rose

again to 0.1 mg C L−1 h−1 when SRP input from miner-
alization counteracted phytoplankton uptake.

4.4 Storm event disturbance during a phytoplankton
bloom

A storm event occurred in August 2013, during a phyto-
plankton bloom. Over 5 days (9 to 14 August), discharge at
S2 increased from 200 to 406 m3 s−1 and then declined to
reach 230 m3 s−1 on 19 August. This largely disturbed TSS,
SRP and PHY dynamics (Fig. 6). This storm event caused
a suspended solids peak which propagated over the entire
river stretch. TSS concentration peak amplitude decreased
from 120 to 50 mg L−1 when the water moved downstream
from S1 to S2, and the peak width widened. At the begin-
ning of the event, the SRP concentration profile was showing
a complete P depletion starting approximately 80 km down-
stream S1. This P limitation threshold progressively moved
further downstream when the storm event hit. SRP slightly
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Figure 7. Average winter and summer budgets between S1 and S2 for TSS, nitrate, inorganic P and dissolved silica. All arrow widths are
proportional to calculated fluxes, allowing the visual comparison between winter and summer periods.

increased at S2, but concentrations remained very low. When
the discharge peak hit S2 (14 August), SRP concentrations
presented a steady longitudinal decline from 50 µg P L−1

down to nearly 0. Before the storm event, phytoplankton
concentrations showed a limited longitudinal increase, from
0.5 to 1.2 mg C L−1, but when the discharge peak event oc-
curred, PHY concentrations decreased in the upper part of
the MLRC but clearly increased in the lower part suggest-
ing that phytoplankton was flushed away by the storm event.
PHY concentrations during discharge recession presented an
increasing longitudinal profile from 0.1 to 1.1 mg C L−1 and
began to increase again everywhere along S1 to S2 when hy-
drological conditions stabilized.

4.5 Fluxes, transfers and transformations in the
Middle Loire River Corridor

Proportions of the different contributions or biogeo-
chemical transformations largely depended on the season
(Figs. 7 and 8). In winter, most of the biogeochemical species

entering the MLRC at S1 were transferred downstream, with
nonsignificant interactions with the biological component.
Suspended solids and particulate P showed an almost bal-
anced budget between erosion and sedimentation processes.
Lateral contribution between S1 and S2 remained small com-
pared to the upstream flux at S1, except for nitrate because
tributaries and lateral non-point source inputs contributed to
25 % of the total NO−3 flux at S2. Reaeration of the water
body represented a significant portion of the dissolved oxy-
gen budget at S2 (14 %).

In summer low flows, the biological component largely
modified the river biogeochemistry in the studied sector.
Nitrate fluxes were 15% higher at S2 (38 t N day−1) than
at S1 (28 t N day−1) despite N uptake by phytoplankton
(3.2 t N day−1

∼ 11 % S1 flux) and a moderate contribution
from the lateral streams (12 t N day−1). Diffuse sources in the
tributaries contributed to 94 % of total lateral inputs. Inor-
ganic phosphorus loads were by 3 between S1 and S2 (from
1 to 0.3 t P day−1) due to phytoplankton and bacteria up-
takes (respectively, 2.6 and 0.4 t P day−1). P recycling from
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organic matter mineralization (phytoplankton dead cells)
supplied 1.3 t P day−1, i.e., more available phosphorus than
both upstream and lateral P inputs. Inorganic P inputs from
WWTPs within the MLRC subbasin represented less than a
third of P load in the Loire at S1 (0.3 t P day−1 compared to
1 t P day−1). Particulate inorganic P constituted a very small
amount of total inorganic P, most of it was balanced between
erosion and sedimentation processes. The riverbed acted like
a source of inorganic P (299 kg P day−1). Dissolved silica
fluxes were slightly affected by phytoplankton activity: 20 %
of the flux at S1 was assimilated by diatoms. Lateral stream
contributions represented 13 % of the flux quantified at S2.
Phytoplankton increased 4-fold between S1 and S2 during
summer blooms (Fig. 8), from 4.3 to 17.1 kg C day−1, but
this calculation only took into account the surviving cells
when the water body reached S2. A larger proportion of phy-
toplankton actually grew but part of it decayed and was even-
tually recycled: the model estimated that 50 % of green algae
and 25 % of diatoms that grew between S1 and S2 decayed.
Additionally, approximately 25 % diatoms were deposited on
the riverbed. The lateral contributions by the Loire river trib-
utaries were not significant (only 0.1 kg C day−1), indicating

that phytoplankton grew only within the river main stem. Ap-
proximately 100 t of organic C entered the system at S1 every
day in low-flow periods (see also Minaudo et al., 2016). Ap-
proximately 80 % of it was dissolved, the rest was particulate.
It was estimated that 16 t C day−1 in summer of DOC was
bioavailable and consumed by heterotrophic bacteria. Part of
this organic matter was eventually mineralized, depending on
oxygen content. The dissolved oxygen budget was balanced
between S1 and S2 (respectively, 192 and 208 t O2 day−1),
with oxygen inputs from primary producers (phytoplankton,
136 t O2 day−1) similar to oxygen depletion by bacteria and
zooplankton respiration processes (137 t O2 day−1).

5 Discussion

Interannual, annual and seasonal variations in the main wa-
ter quality variables simulated by QUAL-NET corresponded
to the observations, proving the efficiency of the model at
both transferring the different biogeochemical species and
also modeling the main processes instream. High temporal
resolutions provided reasonable daily variations and made it
possible to estimate biogeochemical variations during short-
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term (but highly impacting) events such as a storm during
a phytoplankton bloom. These performances were consid-
ered good enough to allow us investigate confidently the
different processes and their drivers. This is highlighted in
Sect. 5.1 and 5.2. Additionally, QUAL-NET was subject
to several weaknesses, and potential improvements will be
made; this is detailed in Sect. 5.3 and 5.4.

5.1 Drivers of eutrophication in the Middle Loire River
Corridor

5.1.1 Biological versus hydrological control of the river
biogeochemistry

The model showed that the Loire River biogeochemistry was
the result of complex interactions between nutrient availabil-
ity and hydrological variations. In winter, the MLRC was
mainly controlled by hydrological processes, and nutrients
were simply transferred downstream, with no noticeable con-
trol by biological processes. Under low-flow conditions and
warmer water temperature, C, N, P and oxygen dynamics
were dominated by biological processes. Stream algae were
clearly P-limited and never reached N or Si limitations, sup-
porting previous studies (Descy et al., 2011; Minaudo et al.,
2015). In the MLRC, lateral inputs during summer were not
significant compared to the magnitude of fluxes within the
Loire River main stem. The highest phytoplankton concen-
tration was not necessarily observed at the catchment out-
let: during phytoplankton blooms, P was often depleted be-
fore the water could reach S2, and when this occurred, lower
phytoplankton growth and higher mortality rates started to
cause a decline in phytoplankton concentration. As soon as
phytoplankton started to be P-limited, and bacterial activ-
ity caused the decrease in oxygen concentration (Li et al.,
2014). When a storm event entered the Middle Loire sys-
tem, the phytoplankton colony was flushed downstream, and,
as long as physical conditions for phytoplankton growth re-
mained degraded (shorter transit time, increased turbidity),
available P was not totally assimilated. Thus, the SRP con-
centration increase in the lower section during such an event
was rather the consequence of lower phytoplankton activity
than increased inputs. Storm events in summer simply move
the available P-exhaustion point further downstream.

5.1.2 P recycling within the MLRC

In summer, most of the inorganic P entering the MLRC
was assimilated by phytoplankton and bacteria biomasses.
However, mineralization of organic matter constituted a
significant source of bioavailable P. The model estimated
that P releases from mineralization was equivalent to all
fluxes entering the MLRC (point and non-point sources),
i.e., ∼ 1.3 t P day−1. Besides, the phytoplankton concentra-
tion peak in-between S1 and S2 corresponded to inorganic
P exhaustion. This caused a 15 % decrease in PHY con-

centration when the water moved further downstream. Thus,
SRP was most of the time fully assimilated by phytoplank-
ton in summer, but phytoplankton was also subject to mor-
tality and could partly be recycled to eventually constitute an
autochthonous source of available P. Remineralization of au-
tochthonous labile organic particulate P, known as part of the
“microbial loop”, is described in the literature of phytoplank-
ton ecology (Reynolds, 2006; Li et al., 2014) and mostly
identified in lakes, reservoirs or estuarine systems (Jossette et
al., 1999; James and Larson, 2008; Song and Burgin, 2017)
and rarely in rivers (Descy et al., 2002; Withers and Jarvie,
2008). On the one hand, bacteria compete with phytoplank-
ton for SRP availability, and on the other hand, bacterial min-
eralization recycles P and supports phytoplankton growth.
These observations confirm the necessity of considering bac-
terial activity as a major driver of carbon cycling in large
eutrophic rivers.

5.2 High temporal resolution is needed in water quality
models

The high temporal resolution in QUAL-NET enabled us to
disentangle the interactions between hydrological and bio-
geochemical processes when a storm event occurred in sum-
mer low flow. Besides, the model identified diel fluctuations
of O2 or SRP (daily variations oscillated between 0 and
15 µg P L−1 during phytoplankton blooms). Diel fluctuations
of O2 were often observed and described in previous studies,
directly linked to primary producers’ activity (Moatar et al.,
2001; Wade et al., 2012; Rode et al., 2016). Sub-daily fluctu-
ations of inorganic phosphorus are rarely observed, but this
is due to limited measurements of high-frequency variations
in P concentration. Similar diel fluctuations were found in
some other lowland eutrophic rivers, but these cycles were
mostly explained as a balance between P contributions from
direct sources and non-point sources (Wade et al., 2012). In
the case of the Loire River, QUAL-NET simulates these diel
fluctuations as likely being the result of complex interplay
between biological uptake, P mineralization instream, lateral
inputs and diffusion from the benthos. During the night, phy-
toplankton growth was zero, while lateral contributions from
point and non-point sources still occurred. Additionally, P
kept being diffused from the benthic compartment, resulting
in an increased SRP concentration in the water column. Af-
ter sunrise, as soon as the biological compartment started to
assimilate more P than the amount of P originating from the
different P sources, the SRP concentration decreased again.
These subtle variations, revealed by the model, could not be
seen based on the daily-scale survey and need to be con-
firmed with higher-frequency sampling measurements.
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5.3 Sensitivity to phosphorus sorption–desorption
representation

During the calibration step, QUAL-NET showed a high sen-
sitivity to the formulation of phosphorus sorption–desorption
processes. Compared to other studies using the same formu-
lation, the optimized values found manually for our study
appeared relatively close to those determined experimentally
in the Seine River (Table 1). However, the large variability
in the results when one of these two coefficients was mod-
ified challenged the use of the model: if modifications are
conducted on the model (in terms of data inputs and/or pro-
cesses), these coefficients should be recalibrated. This ap-
pears as an important weakness in the model until an experi-
mental survey is deployed to assess spatial and temporal het-
erogeneities of P sorption–desorption characteristics in the
Loire River.

5.4 Issues and potential improvements for model
QUAL-NET

5.4.1 Conflicting time steps between forcing variables
and output resolution

The use of a high temporal resolution in QUAL-NET proved
its usefulness to model processes that occur over short tem-
poral scales. However, the only forcing variables with such
a fine resolution were the meteorological variables, allowing
us to compute hourly water temperature and light availabil-
ity in the water column. Flows, and therefore water depth
and velocity, were measured on a daily basis, and spatial dis-
cretization for discharge was based on catchments that were
on average 27 km2. Flows within each of these 17 catchments
were redistributed into the hydrographic network according
to the corresponding drainage area of each river reach, as-
suming a simultaneous temporal dynamic within each of the
17 catchments. This could provoke conflicting signal prop-
agation through the hydro-system during storm events. A
semi-distributed hydrological model could address some po-
tential propagation issues during storm events, even if the
output frequency remains daily because of the lack of dis-
charge estimation on a sub-daily basis.

Nutrients fluxes discharged from point sources were con-
sidered constant through time. Wastewater treatment plants
efficiency in treating sewage can be seasonal (biological pro-
cesses, variation in population in tourist areas) and some-
times highly impacted by storm events. Therefore, we urge
local and national water basins authorities to provide at least
monthly concentrations and fluxes for the different wastew-
ater treatment plants, especially for plants treating sewage
from the biggest cities.

Non-point source concentrations were constant through
time. Therefore, it was assumed that only hydrological vari-
ability could modify non-point fluxes. This representation
proved its reliability with a 10-day time step (Garnier et al.,

2002) but misses many processes occurring at least at the sea-
sonal scale, such as for instance nutrient retention by ripar-
ian vegetation during spring and summer (Peterjohn and Cor-
rell, 1984; Pinay et al., 1993), denitrification increases dur-
ing warmer conditions, and peaks of nutrient concentrations
during soil-rewetting events and when groundwater connects
with streams (Dupas et al., 2015a, b). QUAL-NET proved to
be efficient to model in-stream processes and would certainly
benefit if coupled with land use models that predict more
reliably nutrient non-point inputs such as SWAT (Douglas-
Mankin et al., 2010) or HSPF (Fonseca et al., 2014). This
would allow us to model the biogeochemical variations for
the whole drainage system, instead of forcing the system with
daily-scale measurements at S1. To upscale the model to the
entire Loire Basin, the influence of lakes and reservoirs have
to be considered since they largely modify nutrient transfers
downstream. This raises another issue, because the connec-
tion between streams/rivers with lakes/reservoirs is hardly
considered in water quality models at the catchment scale.

5.4.2 New eco-hydrological issues

In eutrophic rivers, several recent studies clearly showed the
increasing concern with Asian Corbicula spp. clams that
have invaded river networks in South and North America
over the past decades and later in Europe (Cohen et al., 1984;
Phelps, 1994; Cataldo and Boltovskoy, 1998; Pigneur et al.,
2014). This clam plays a significant role in the dynamic
of phytoplankton for several rivers in Europe. Pigneur et
al. (2014) estimated for instance that Corbicula was respon-
sible for a 70 % decrease in the phytoplankton biomass of the
Meuse River. The main challenge with Corbicula is the lack
of datasets, both spatially and temporally. In the Loire River,
Descy et al. (2011) determined that a population density of
2.5 to 10 g C m−2 was needed to explain the phytoplankton
variations, but clam density was then uniformly distributed
depending on the river. This has not been tested in QUAL-
NET yet, since very few surveys have been conducted, and
spatial distributions of Corbicula spp. population remain un-
known. In addition, aquatic fixed vegetation is able to extract
nutrients from the sediment and might keep growing even if
phytoplankton has reached its phosphorus limitation in the
water column (Carignan and Kalff, 1980; Hood, 2012). De-
spite low P availability, macrophytes might keep growing, es-
pecially under a high P legacy in the riverbed sediments. We
lack data about macrophytes in the Loire River, but a few un-
published observations in the MLRC presented very signif-
icant densities of Ranunculus fluitans, Myriophyllum spica-
tum and Elodea nuttallii (Michel Chantereau, personal com-
munication, 2015). Their impact on the Loire River’s biogeo-
chemistry is likely significant; further developments in the
model QUAL-NET should consider this biological compart-
ment, and macrophyte biomass within the MLRC needs to be
surveyed properly.
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6 Conclusions

The deterministic modeling approach we developed helped
disentangle the interactions between hydrological and bio-
logical processes in the Loire River. Results from QUAL-
NET fitted the available daily observations, and the main
driving processes could be identified. The Middle Loire
River Corridor functions as a biogeochemical reactor in sum-
mer during the low water period. The system clearly reaches
a P limitation, and our model indicates that internal loadings
of P due to bacterial mineralization enhance phytoplankton
blooms. The use of a high temporal resolution enabled us
to study the impact of a storm event during a phytoplank-
ton bloom, and identified large diel fluctuations for C, P and
O2, but these variations still need to be compared to high-
frequency in situ measurements. QUAL-NET simulated re-
alistic sub-daily variations from low-frequency forcing vari-
ables and could be applied at a larger scale (e.g., the entire
Loire Basin, 110× 103 km2). It could be used to study past
evolutions using a low-frequency dataset as data input or pre-
dict future evolutions under climate change and land use sce-
narios.
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