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Abstract  12 

The analysis of concentration-discharge (C-Q) relationships provides useful information on 13 

the processes controlling the mobilization and delivery of chemical elements into streams as 14 

well as biogeochemical transformations in river networks. Previous metrics developed to 15 

characterize export regimes seldom considered the possibility for the C response to Q 16 

dynamics to differ between short-term Q variations during storm events and seasonal Q 17 

variations during baseflow periods. Here, we present the “C-Qquick-slow” model, which 18 

considers the possibility for C-Q relationships to vary across temporal scales. This model was 19 

applied in 219 French catchments with various sizes (11 – 2500 km²), land use and 20 

hydrological contexts. We evidenced contrasting export regimes for nitrate (NO3
-), total 21 

phosphorus (TP) and soluble reactive phosphorus (SRP), and surprisingly consistent C-Q 22 

patterns at the seasonal scale for each parameter. For instance, NO3
--Q relationships were 23 

positive at the seasonal scale in 75% cases and relationships during storms showed either a 24 

dilution pattern (24% cases), a non-significant pattern (50%), or a mobilization pattern (12%). 25 

TP and SRP relationships with Q at the seasonal scale were almost systematically negative 26 

(95%), and patterns during storm events were in most cases mobilization for TP (77%) or 27 

non-significant for SRP (69%). We linked the different C-Q relationships with catchment 28 

descriptors and found that indicators of diffuse source loading determined NO3
- seasonal 29 

amplitudes, and hydrological drivers could explain the behavior during storms. By contrast, 30 

point sources determined P seasonal amplitudes, and diffuse sources controlled P dynamics 31 

during storms. The C-Qquick-slow model has the potential to improve nutrient load estimations 32 

because of the good predictability of appropriate C-Q archetypes and the possibility to 33 

interpolate low frequency concentration data to a daily frequency. 34 
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eutrophication, nitrogen, phosphorus, catchment, river network 36 
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1. Introduction 38 

The analysis of concentration-discharge (C-Q) relationships provides useful information on 39 

the processes controlling the mobilization and delivery of chemical elements into streams (i.e. 40 

export regimes) as well as biogeochemical transformations in river networks (Bieroza et al., 41 

2018; Godsey et al., 2009; Moatar et al., 2017; Musolff et al., 2017, 2015). Export regimes 42 

have been classified as chemostatic, when concentrations vary little compared to discharge, or 43 

chemodynamic, when concentrations variability is larger (Musolff et al., 2015). Export 44 

regimes have generally been interpreted in terms of spatial distribution of sources in three 45 

spatial dimensions: vertically in depth (Abbott et al., 2018; Dupas et al., 2016; Musolff et al., 46 

2016), laterally along hillslopes (Musolff et al., 2017) and longitudinally from upstream to 47 

downstream reaches (Dupas et al., 2019a, 2017; Tiwari et al., 2017). Homogeneously 48 

distributed sources mainly lead to chemostatic export regimes whereas heterogeneously 49 

distributed sources mainly lead to chemodynamic export regimes (Basu et al., 2011; Dupas et 50 

al., 2016; Godsey et al., 2009; Moatar et al., 2017; Musolff et al., 2015). Temporally variable 51 

biogeochemical reactions in terrestrial and aquatic ecosystems may also enhance or attenuate 52 

the chemostatic and chemodynamic character of export regimes (Minaudo et al., 2015).  53 

Different metrics and thresholds have been used to characterize export regimes. On the one 54 

hand, several authors have compared the coefficient of variation of concentration (CVc) to the 55 

coefficient of variation of discharge (CVq) (Dupas et al., 2019b; Musolff et al., 2017, 2015; 56 

Thompson et al., 2011; Underwood et al., 2017) or investigated the so-called “temporal 57 

Lorenz inequality” (Gini coefficients, Jawitz & Mitchell, 2011; Williams et al., 2016). On the 58 

other hand, other authors have used the slope of C-Q relationships in logarithmic domain as a 59 

metric of export regimes: if the slope coefficient is non-significantly different from zero, the 60 

export regime is considered chemostatic, while slopes significantly different from zero 61 

characterize a chemodynamic export regime (Ameli et al., 2017; Basu et al., 2011; Diamond 62 

and Cohen, 2018; Godsey et al., 2009; Kim et al., 2017; Koenig et al., 2017; Moatar et al., 63 

2017). This second approach allows not only to characterize export regimes as chemostatic 64 

and chemodynamic, but also to describe observed patterns as dilution, constant and 65 

mobilization archetypes (Musolff et al 2017). However, fitting a single linear regression on C-66 

Q plots is sometimes questionable due to large dispersion in C-Q plots (even log 67 

transformed). Many factors cause this dispersion: i) hysteresis and non-linearity effects due to 68 

source and transport limitations (Benettin et al., 2017); ii) instream biogeochemical 69 

transformations on nutrient concentration without temporal correlation with hydrological 70 

variations (Bieroza and Heathwaite, 2015; Moatar et al., 2017); iii) seasonal and long-term 71 

variations in C-Q relationships (Hirsch, 2014; Zhang et al., 2016). 72 

This dispersion in C-Q plots is a manifestation of ambivalent situations where the same Q 73 

corresponds to different ecohydrological conditions in the catchment, and thus produces 74 

different C (Bol et al., 2018). Ambivalent situations have been highlighted by several authors 75 

who found opposite C-Q patterns (dilution versus mobilization) at seasonal and storm event 76 

time scales (Duncan et al., 2017a; Dupas et al., 2017; Li et al., 2019) possibly leading to zero 77 

C-Q slopes on average although both seasonal and storm event slopes were significantly 78 

different from zero. Figure 1 is an illustrative example showing two C-Q relationships subject 79 

to high dispersion effects. In these examples, discharge during a summer storm event is 80 

comparable with discharge during winter baseflow, but ecohydrological conditions differ 81 

considerably, leading to different concentrations. Nitrate tended to be highest during winter 82 
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baseflow (observation A), whereas P tended to be highest during a summer storm event 83 

(observation D). These examples suggest that considering both slow and quick flow 84 

components has the potential to improve C-Q models, and this is the main hypothesis of this 85 

paper. 86 

 87 

Figure 1. Concentration response to discharge fluctuations highly depends on the hydrological conditions (not only the value 88 

of discharge but also whether discharge is subjected to quick or slow variations). Top row: C-Q relationships at two stations 89 

located in France (left: nitrate, right: total phosphorus). Measurements during storm events were differentiated from the rest 90 

of the observations based on hydrograph separation (see section Method for details and data sources). Bottom row: 91 

Hypothetical responses of C to seasonal and storm event Q variations.  92 

These examples also show that C observations during storm events overlap with values 93 

measured during baseflow periods. Therefore, splitting the C-Q diagram based on a percentile 94 

of discharge (Diamond and Cohen, 2018; Moatar et al., 2017) does not necessarily separate 95 

storm events from seasonal variations, and cannot possibly solve the dispersion effect 96 

commonly observed in C-Q plots. The approach developed in the WRTDS model (Weighted 97 

Regression on Time, Discharge and Season,  Hirsch, 2014; Zhang et al., 2015; Zhang, 98 

Harman, et al., 2016; Zhang & Ball, 2017) addresses most of the dispersion issues listed 99 

above, and efficiently interpolates low-frequency time series. Unfortunately, the WRTDS 100 

model includes four parameters and therefore cannot be considered a parsimonious approach. 101 

These coefficients are calibrated at each time step, which makes difficult to interpret what 102 

drives the heterogeneity often observed in terms of catchment behavior. 103 

This guided us towards the formulation of a double C-Q relationship, the model named 104 

hereafter “C-Qquick-slow”, which enables seasonal (slow) C-Q slopes to differ from storm event 105 

(quick) C-Q slopes. Firstly, we assessed the skills of our C-Qquick-slow model to fit observations 106 

and characterize nutrient export regimes at both temporal scales. Secondly, we explored the 107 
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spatial variability of the different C-Q archetypes encountered across diverse physical and 108 

ecological contexts. We expected variability in these C-Q relationships to be primarily 109 

controlled by land use and hydrological flow paths. To test this hypothesis, we established 110 

statistical links between a set of catchment descriptors (e.g. land use cover, and 111 

morphological, hydrological and geological attributes) and the C-Qquick-slow model parameters. 112 

This was achieved using a large database comprising 219 independent catchments (11 to 2500 113 

km²) where nitrate, total phosphorus and soluble reactive phosphorus concentrations have 114 

been monitored monthly, and discharge measured daily, within a French national program for 115 

water quality monitoring over the period 2008-2015. 116 

 117 

2. Material and methods 118 

2.1. C-Q analysis  119 

We assumed that C-Q relationships are the combination of the C response to seasonal (slow) 120 

Q variations with the C response to storm-event (quick) Q variations, and this constituted the 121 

essence of the “C-Qquick-slow” model. It does not necessarily mean that Q variations are the 122 

cause of C variations, but only that they covary or anti-covary in time. The seasonal and storm 123 

event variations in discharge were estimated from hydrograph separation into slow and quick 124 

components (Equation 1). 125 

���� = �� + �	 ∙ ��
���������� + �� ∙ ��
 ����������� + � Equation 1 126 

where all �� are adjusted coefficients, and � represents the residuals. 127 

To estimate ����� and ������, we normalized discharge by interannual median flow, and used 128 

the baseflow recursive filter method (Lyne and Hollick, 1979; Nathan and McMahon, 1990) 129 

with 3 passes and a filter parameter set at 0.925. This method separates total flow into a 130 

seasonal component and a short-term component called hereafter “storm event” in the 131 

manuscript. Seasonality of the “slow” component was verified by computing autocorrelation 132 

curves of  ����� at all sites (Figure S.1 in Supplement file). 133 

Model outputs consisted in the fitted coefficients ��, �	, �� and performance indicators: the 134 

root mean squared error normalized by the standard deviation of observations (nRMSE), 135 

adjusted explained variance (R²_adj), and p-values for each coefficient in Equation 1. A 136 

linearity test was computed on residuals to verify that 95% of studentized residuals lied within 137 

the interval [-2, 2].  138 

For both the seasonal and the storm event scales, the relationship between C and Q variations 139 

could either be positive (covariation, or mobilization), negative (anti-covariation, or dilution) 140 

or non-significant (chemostasis for nearly constant C, or neutrality when C variations exist 141 

that are not driven by Q fluctuations). We considered a relationship to be non-significant 142 

when the associated p-value exceeded 0.05. The sign of the C-Q relationship at the seasonal 143 

scale (�	) could be different from the sign of the C-Q relationship at the storm event scale 144 

(��). Thus, three possibilities (negative, non-significant, and positive) for two temporal scales 145 

(slow and quick) led to consider that only 9 different C-Q archetypes theoretically exist. 146 

2.2. Dataset for C-Q analysis 147 
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Water quality parameters included in this analysis were nitrate (NO3
-), total phosphorus (TP) 148 

and soluble reactive phosphorus (SRP). Concentrations were measured on grab samples 149 

collected for physico-chemical analysis every other month on average. Across approximately 150 

10,000 water quality stations present in the French national public database 151 

(http://www.naiades.eaufrance.fr/), we selected stations meeting all the following criteria: i) C 152 

station can be paired with a Q station (data from http://www.hydro.eaufrance.fr/) when their 153 

catchments share at least 90% surface area; ii) all C catchments are independent; iii) C data 154 

contains at least 50 observations after outliers removal (i.e. values over 200 mgN L-1 and 5 gP 155 

L-1) over the period 2008-2015; iv) at least 30% of C observations occurred during “major” 156 

hydrological events (defined here as Q(t) > 1.5 x �����); v) trends on C are non-significant 157 

over the period (p-value of Sen’s Slope test > 0.05, following Hipel and McLeod (2005)) to 158 

avoid penalizing the model. Finally, stations where a single concentration value was observed 159 

more than 15% of the time were removed from the selection, a situation often seen in P 160 

surveys when concentrations are below quantification limits. This resulted in 219 catchments 161 

with respectively 179, 138 and 107 individual time series for NO3
-, TP and SRP. 162 

2.3. Relationships with catchment descriptors 163 

The selected catchments encompassed contrasting physical contexts in terms of morphology, 164 

nutrient diffuse and point sources, and hydrological and geological properties (see Table 1 165 

and Figure 2 for data description). Catchment size ranged from 11 to 2500 km², with 87% of 166 

catchments <500 km². Approximately 55% of the catchments had at least 1/3 of their total 167 

area covered by arable land (p_arable), indicating potentially high N and P surplus and thus 168 

stream water quality likely to be significantly impacted by diffuse agricultural sources. Most 169 

catchments received limited N and P point sources (only 10% received over 10 kg N ha-1 y-1, 170 

and only 2% received over 0.1 kg P ha-1 y-1). Lithological contexts included both sedimentary 171 

and crystalline bedrocks dominancy as shown by bimodal density plot on the percentage of 172 

catchment over a sedimentary bedrock (p_sedim on Figure 2). Hydrological descriptors 173 

covered a large climatic gradient: mean ± standard deviation of effective rainfall, base flow 174 

index (BFI) and index of hydrological reactivity (W2) (descriptions in Table 1) were 175 

respectively 700 ± 160 mm y-1, 55 ± 9 and 17 ± 5%. 176 

We investigated the link between fitted coefficients of the fitted C-Qquick-slow model with a set 177 

of catchment descriptors (Table 1 and Figure 2), using Pearson correlation coefficients 178 

(assuming linear relationships) and associated p-values. We considered correlations as 179 

significant when p-value < 0.05. We conducted this correlation analysis on a subset of C-Q 180 

fitted coefficients that exhibited reasonable goodness of fit (nRMSE < 200%). 181 

 182 
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 183 

Figure 2. Monitoring stations for analysis and density plots of their catchment descriptors (see Table 1 for descriptors’ 184 

definitions). 185 

 186 

Table 1. List of catchment descriptors included in the analysis, and associated sources. 187 

Descriptor type 
Variable 
name 

Unit Definition Source 

Morphology area km² Catchment area http://www.naiades.eaufrance.fr/ 

Diffuse and point 
N and P sources 
 
 

N_surplus 
P_surplus 

kg N ha-1 y-1 

kg P ha-1 y-1 
Surplus of nitrogen and 
phosphorus 

NOPOLU model. Doublet & Le Gall 
(2013); Snoubra (2013); (Dupas et al., 
2015a) 

N_ point 
P_point 

kg N ha-1 y-1 

kg P ha-1 y-1 

Nitrogen and phosphorus 
loads of domestic and 
industrial point sources 

http://assainissement.developpement-
durable.gouv.fr/services.php 
http://www.eau-loire-
bretagne.fr/informations_et_donnees 

P_soil g P kg-1 Total phosphorus soil 
content 

Delmas et al., (2015) 

Soil erosion erosion t ha-1 y-1 
Erosion rate derived from 
land use, topography and 
soil properties 

Cerdan et al., (2010) 

Hydrological 
indicators 

precipitation mm y-1 
Average effective rainfall, 
calculated as P-ETP for the 
months when P-ETP > 0 

SAFRAN database, Quintana-Segui et 
al., (2008) 

BFI - Base flow index Eckhardt (2008) 

W2 % 

Index of hydrological 
reactivity representing the 
percentage of total 
discharge that occurs 
during the highest 2% flows 

Moatar et al., (2013) 

Land use p_arable % Percentage of arable land Corine Land Cover (2006) 

Geology p_sedim % 
Percentage of sedimentary 
rocks derived from simple 
lithological maps 

LITHO database (2008) 

 188 

All analyses were conducted with R (R Core Team, 2016) with ‘EcoHydRology’, ‘lubridate’, 189 

‘hydroGOF’, ‘trend’, ‘GGally’ and ‘ggplot2’ packages. 190 

3. Results 191 
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3.1. C-Q model performances 192 

The nRMSE was under 200%, for 81%, 78% and 65 % of catchments for NO3
-, TP and SRP, 193 

respectively (Figure 3). The median R²_adj value was 0.39, 0.28 and 0.30 for NO3
-, TP and 194 

SRP, respectively, and 10th percentile – 90th percentile ranges of R²_adj were 0.12-0.63, 0.11-195 

0.43, and 0.07-0.60. Approximately 80% of model fits passed the linearity test (results not 196 

shown). In the examples of Figure 3, seasonal variations were well reproduced, and 197 

concentration dynamics during short term storm events seemed to be correctly modeled for 198 

both dilution and mobilization processes, even if some storm events were sometimes 199 

underestimated. C-Q behaviors in a logscale C-Q diagram showed contrasting patterns, and 200 

dispersion in these plots varied depending on which component (slow or quick) dominated the 201 

total flow. 202 

 203 

Figure 3. a) C-Q fits performances (nRMSE density plots) at all stations. Red vertical lines indicate nRMSE =200%. Grey 204 

percentages above density plots indicate the proportion of stations with nRMSE under 200%.; b) examples of C-Q fits for 205 

NO3
-, TP and SRP at three different stations and c) depicts the same observed and modelled concentrations in more classical 206 

logscale C-Q plots. 207 

3.2 C-Q typologies for N and P 208 

Interestingly, only 2 or 3 C-Q archetypes among the nine possibilities were observed for each 209 

parameter (Figure 4). For NO3
-, the seasonal component covaried positively in most cases 210 

with baseflow seasonality (β1 > 0 for 86% of the catchments), and the dynamics during storm 211 

were either non-significant (52% cases), showing a dilution pattern (β2 < 0, 28% of cases), or 212 

a mobilization pattern (β2 > 0, 20%). Thus, the most represented archetype was a positive C-Q 213 

slope at the seasonal scale combined with a non-significant storm component (50% cases). 214 
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 215 

Figure 4. a) conceptual daily evolutions over one year for C and Q based on the nine potential C-Q archetypes, b) 216 

proportions of C-Q archetypes encountered in our database for NO3
-, TP and SRP for catchments where nRMSE < 200%. 217 

Numbers in black highlight archetypes encountered in more than 10% occurrences, and c) examples of logscale C-Q plots for 218 

each of these 9 possibilities. 219 

For TP, 95% of catchments displayed seasonal variations opposite to baseflow seasonality (β1 220 

< 0). The remaining 5% presented a non-significant seasonal component. The TP dynamics 221 

during storm events were a mobilization pattern in most cases (β2 > 0 for 81%), and the 222 

remaining 19% presented non-significant dynamics during storms. The most represented C-Q 223 

archetype for TP was a negative C-Q slope at the seasonal scale, combined with a 224 

mobilization storm component (77%). For SRP, seasonality was similar to TP, i.e. a negative 225 

C-Q slope at the seasonal scale for 96% of the catchments (β1 < 0). Compared to TP, a larger 226 

proportion of catchments presented a non-significant storm event component. This concerned 227 

69% catchments and represented the most observed C-Q archetype as 23% presented a 228 

mobilization pattern and only 4% a dilution pattern. 229 

These nine different C-Q archetypes were highly contrasted when presented in a classic 230 

logscale C-Q diagram (Figure 4c). Dilution or mobilization patterns were clearly represented 231 

and dispersion in the plots depended on which component (slow or quick) dominated. Points 232 

corresponding to a quick component dominating the total flow were found on top or bottom of 233 

the cloud of points depending on the sign of β2. As expected from our C-Q model design, 234 

negative β2 produced a larger dispersion towards lower C values, and positive β2 produced a 235 

larger dispersion towards higher C values. 236 

 237 

3.2. Linking C-Q relationships with catchment descriptors 238 

The link between C-Q fitted coefficients calibrated with Equation 1 and a set of catchment 239 

descriptors was assessed based on linear Pearson correlations. We computed correlation 240 

values for the C-Q types encountered more than 10% of the time in the database (section 3.1). 241 
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The coefficient β0 represented the background pollution, β1 was associated with seasonal 242 

variations, and β2 the variations in storms. 243 

For NO3
- (Figure 5), the background pollution β0 was highly correlated with diffuse 244 

agricultural sources (R correlation coefficients ranged from 0.6 to 1 with N surplus and the 245 

proportion of arable land in the catchment) for all C-Q types identified. The seasonal 246 

component β1 was highly linked with β0 (correlation was over 0.9), indicating larger seasonal 247 

magnitude in the most polluted catchments. The magnitude of the storm component β2 was 248 

linked to diffuse sources: significant correlation coefficients were found between β2 and 249 

p_arable, N surplus, and erosion rate depending on the C-Q type. Hydrological descriptors, 250 

erosion rate and lithology classes differentiated the catchments presenting contrasting C-Q 251 

archetypes: dilution patterns in storms (β2<0) were associated with high BFI values, low W2 252 

values, low values of erosion rate and mostly located on crystalline bedrock. By contrast, 253 

mobilization patterns in storms (β2>0) were associated with catchments presenting low BFI, 254 

high W2 and high erosion rate, and mostly located on sedimentary rocks.  255 

 256 

Figure 5. Ranges (a) and correlation matrices (b) between C-Q features (selection based on nRMSE < 200%) characterized 257 

by NO3
- background pollution (β0), seasonal C-Q (β1), storm C-Q (β2) and catchment descriptors for the most represented 258 

NO3
--Q types (more than 10% occurrences). Black crosses indicate non-significant correlations. Pearson correlation 259 

coefficients among catchment descriptors can be found in Table S.1 in the Supplement file. 260 

For TP (Figure 6), the coefficient β0 was highly and positively correlated with point P sources 261 

(R was 0.6 to 1). Seasonal dynamic was always opposite to the baseflow Q seasonality (β1<0) 262 

(Figure 4). The amplitude of the seasonal component β1 was clearly anti-correlated with P 263 

point sources (R was -1 to -0.8). We found that, compared to catchments where behavior in 264 

storms was not significant, catchments with significant mobilization storm event component 265 

presented higher ranges of P surplus, soil P content, erosion rate, effective rainfall, and BFI 266 
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and lower range of W2. In the case of significant mobilization pattern during storm events, the 267 

highest correlations with β2 were found with P point sources (R was 0.7). In the case of 268 

significant mobilization pattern during storm events, rainfall, BFI and W2 presented strong 269 

correlations with β0 (R were respectively -0.9, -0.6 and 0.7). 270 

 271 

Figure 6. Ranges (a) and correlation matrices (b) between C-Q features (selection based on nRMSE < 200%) characterized 272 

by TP background pollution (β0), seasonal C-Q (β1), storm C-Q (β2) and catchment descriptors for the most represented TP-Q 273 

types. Black crosses indicate non-significant correlations. Pearson correlation coefficients among catchment descriptors can 274 

be found in Table S.1 in the Supplement file. 275 

For SRP (Figure 7), although correlations between SRP C-Q coefficients and catchment 276 

descriptors were lower or less significant than the correlation found for the analysis on TP, 277 

similar interpretation could be made: β0 and β2 were positively linked with point sources, 278 

while seasonality β1 was anti-correlated with point sources. Compared to catchments with a 279 

non-significant storm component, catchments with mobilization storm event components 280 

presented higher ranges of P surplus, soil P content, and lower erosion rate.  281 
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 282 

Figure 7. Ranges (a) and correlation matrices (b) between C-Q features (selection based on nRMSE < 200%) characterized 283 

by SRP background pollution (β0), seasonal C-Q (β1), storm C-Q (β2) and catchment descriptors for the most represented 284 

SRP-Q types. Black crosses indicate non-significant correlations. Pearson correlation coefficients among catchment 285 

descriptors can be found in Table S.1 in the Supplement file. 286 

4. Discussion 287 

4.1. Nutrient export regimes at seasonal and storm event scales 288 

The C-Qquick-slow model revealed different export regimes for nitrate and phosphorus forms at 289 

both seasonal and storm event time scales. Nutrient concentration responses to storm events 290 

were sometimes opposite to seasonal responses to Q variations, resulting in large dispersion in 291 

C-Q plots as is usually observed. This supports the observations from previous studies 292 

(Duncan et al., 2017b, 2017a; Li et al., 2019) showing that C-Q relationships may vary across 293 

different time scales because the different processes shaping C-Q curves have different 294 

temporalities. 295 

Despite the diversity of catchment characteristics in our analysis, only two or three C-Q 296 

archetypes were observed among nine theoretical possibilities. This supports the idea 297 

developed in Moatar et al. (2017) that the same processes control respectively N and P 298 

transfers, across a wide range of environmental conditions. 299 
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Seasonal variations displayed consistent patterns across the entire database: we observed 300 

positive slow component for nitrate (β1>0), and negative slow component for phosphorus 301 

(β1<0). The processes responsible for seasonal covariation between nitrate and baseflow are 302 

either associated with connectivity fluctuation between the stream and the groundwater table 303 

(Curie et al., 2011; Duncan et al., 2015; Pinay et al., 1993), or with riparian and in-stream 304 

denitrification and biological assimilation (uptake). Disentangling these different processes is 305 

challenging because they often occur at the same time: biogeochemical transformations often 306 

take place in conditions with high temperature and/or light conditions and long residence 307 

times, which coincides with periods of low hydrological connectivity and thus low transport 308 

capacity. Opposite seasonality variations between phosphorus concentration and discharge 309 

probably result from point sources and their degree of dilution controlling seasonal variations. 310 

However, recent studies have found that summer reductive dissolution of  iron oxy-hydroxide 311 

could also mimic this point-source signal (Dupas et al., 2018; Smolders et al., 2017). It is 312 

however noteworthy to remind that in large eutrophic rivers, SRP seasonality can covary with 313 

baseflow seasonality due to large algae uptake when low flow coincides with long transit 314 

time, optimal light, and temperature conditions (Minaudo et al., 2018, 2015). This particular 315 

pattern was not observed in the present study, and we would argue that the selected 316 

catchments were too small for algal uptake to become a dominant driver of SRP seasonality. 317 

Storm components for nitrate were in most cases non-significant, suggesting almost unlimited 318 

N supply due to large legacy effects (Van Meter and Basu, 2015). This storm component was 319 

sometimes negative, indicating dilution effects of diffuse sources by overland flow (Dupas et 320 

al., 2016; Fovet et al., 2018). The storm component was sometimes positive, indicating a 321 

temporary reconnection between surface and sub-surface waters in catchments likely 322 

presenting a vertical gradient of N sources: storms likely flush N stored in the vadose zone 323 

(Bende-Michl et al., 2013). For P, when significant, the storm component was in most cases 324 

positive, indicating the mobilization of both particulate and dissolved phosphorus. This may 325 

occur near agricultural areas with potential interactions with sub-surface water (Dupas et al., 326 

2015c; Gu et al., 2018, 2017; Minaudo et al., 2017), or in-stream by simply re-mobilizing fine 327 

sediments stored in the river bed or stored in the river banks (Jarvie et al., 2012; Powers et al., 328 

2016). 329 

 330 

4.2. What determines C-Q relationships at the seasonal and storm event scales? 331 

Other studies have looked at potential links between C-Q parameters and catchment 332 

descriptors. In most cases, correlations were poor (Diamond and Cohen, 2018; Godsey et al., 333 

2009) but these works evidenced relationships with catchment size, land use, and lithology. In 334 

our study, and for all three NO3
-, TP and SRP, we found strong correlations between C-Q 335 

coefficients βi and readily available catchment variables derived from open-access GIS 336 

databases. We found that the magnitude of the background pollution β0 is determined by 337 

diffuse sources intensity (N surplus or p_arable) for nitrate, and by point-sources inputs 338 

(P_point) for TP and SRP. Interestingly, and for all three parameters, the absolute magnitude 339 

of the seasonal component β1 was positively correlated with higher background pollution 340 

concentration β0, suggesting that diffuse sources and point sources respectively control 341 

seasonal amplitudes of nitrate and phosphorus concentrations. This implies that the most 342 

polluted catchments are also the ones with the highest seasonal amplitudes. Different reasons 343 
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can explain this observation. For nitrate, baseflow concentrations during winter high flow 344 

varied more than during summer low flow among the catchments (see Supplementary Figure 345 

S.2) arguably because stoichiometric controls during the summer period lead to similar 346 

concentrations in different types of catchments, whereas winter concentration better reflects N 347 

sources intensity among catchments (Fovet et al., 2018). This supports some recent findings 348 

showing that spatial stability for nitrate concentrations is higher over winter months (Dupas et 349 

al., 2019b). For phosphorus, we showed that point sources largely control the background 350 

pollution in the catchments studied here. Thus, higher loads discharged constantly throughout 351 

the year in rivers where flow variations are seasonal is likely to result in limited dilution 352 

capacity during low flows, producing large seasonal variations in concentrations 353 

During storm events, we found that the dynamics of both nitrate and phosphorus were linked 354 

to both nutrient source indicators and hydrological properties. For instance, we found for NO3
-

355 

that high BFI values, low W2, and low erosion differentiated C-Q dilution patterns from non-356 

significant and mobilization types. This suggested that catchments where shallow 357 

groundwater flow contribution dominates are likely to display dilution patterns in storm 358 

events due to a sudden increased contribution of young age water (Benettin et al., 2017; 359 

Hrachowitz et al., 2016). For TP and SRP, we found that wet catchments with high diffuse P 360 

sources and high erosion rates were likely to display a significant mobilization storm event 361 

component. This supported the idea that dissolved and particulate P flush during a short term 362 

storm event is the consequence of re-mobilization of particles from the river bed or from the 363 

streams bank sides (Fox et al., 2016), or the result of an increased connectivity between 364 

groundwater and streamflow (Ali et al., 2017; Dupas et al., 2015c; Gu et al., 2017; Rose et al., 365 

2018). 366 

4.3. Potential use of this approach for load estimations 367 

In most countries, water quality monitoring strategies rely on low frequency surveys, typically 368 

executed monthly (Dupas et al., 2019b). These surveys are used to determine the water quality 369 

status of streams based on a set of simple metrics such as the interannual 90th percentile 370 

concentration or interannual fluxes. The validity of these estimations derived from low 371 

frequency data has largely been questioned (e.g. Audet et al., 2014; Cassidy and Jordan, 2011; 372 

Johnes, 2007; Moatar et al., 2013; Raymond et al., 2013; Rozemeijer et al., 2010), and raises 373 

some major management issues where the assessment of water quality indicators is critical. 374 

When applicable, the C-Qquick-slow model has the potential for interpolating low frequency C 375 

time series based on daily Q, and therefor decreases uncertainties in water quality indicators. 376 

We illustrated this potential with data from one water quality station located in Brittany where 377 

nitrate was monitored daily between 2007 and 2011 (See supplement file). First we 378 

subsampled the data to simulate a monthly survey, and then interpolated the subsampled data 379 

using the C-Qquick-slow model and compared the reconstructed daily concentration and loads to 380 

the observations. Results with this example were promising: NO3
- annual load errors remained 381 

under 5% (instead of 10% with a discharge weighted method commonly used in the literature 382 

(Moatar and Meybeck, 2005)) and average ± standard deviation errors on monthly loads were 383 

8 ± 6%. 384 

Additionally, the high correlations observed between C-Q coefficients and catchment 385 

descriptors suggest that it is possible to predict the most likely C-Q archetype for any 386 

catchment, and, then estimate annual and seasonal loads. Applications are numerous and 387 



14 

 

might be the key to empirical estimation of loads in catchments where discharge is measured 388 

or can be modelled, but not water quality. Predicting C-Q relationships based on our 389 

formulation has to be tested on a large database that covers a large diversity of local contexts 390 

in terms of catchment morphology, geology, land use, climate and hydrology. 391 

4.4. Limits and perspectives 392 

Although the C-Qquick-slow model provided good results for a majority of catchments, C-Q fits 393 

were poor for another significant proportion of them. This failure to fit the C-Qquick-slow model 394 

to these catchments means that they do not match one or several of the hypothesis of the 395 

model: they could display more complex patterns than what the model can describe, or be too 396 

chemostatic for a C-Q model to perform well. For example, the C-Qquick-slow model does not 397 

consider  hysteresis effects at both seasonal and storm event times scales, although these are 398 

commonly observed (Bieroza and Heathwaite, 2015; Dupas et al., 2015b; Minaudo et al., 399 

2017; Rose et al., 2018). Besides, the slow and quick components defined based on baseflow 400 

separation techniques represent in reality more a separation of responses in time to streamflow 401 

variations than a water source separation (McDonnell and Beven, 2014). In the particular case 402 

of nitrate, we assumed that a concentration gradient across the subsurface-to-groundwater 403 

layer would be enough to explain slow and quick variations in time, but a non-significant 404 

quick component in 52% cases in our study may indicate a conceptual limitation of our 405 

model. Indeed, the C-Qquick-slow model does not allow storm event responses to vary across 406 

seasons, although several studies have documented these variations (Dupas et al., 2016; Fovet 407 

et al., 2018). In our approach, the magnitude of C variations among events as a linear function 408 

of log-transformed quickflow variations, but the sign of the C-Q coefficient β2 or its intensity 409 

across a succession of similar Q events could not change. Thus, the C-Q relationship could 410 

only be poorly adjusted to the observations for catchments where the behavior for summer 411 

storms is for instance inverted compared to the behavior for winter storms, or where C supply 412 

is easily depleted. An interaction term between the two temporal scales could be added to the 413 

equation, but this would result in an additional coefficient that would increase the risk of 414 

overfitting the model. Finally, we assumed in this study that grab samples could represent a 415 

daily mean concentration, which is not verified in several studies in small catchments 416 

showing large sub-daily variations (Halliday et al., 2015; Minaudo et al., 2017; Rode et al., 417 

2016), thus increasing uncertainty of the model calibration data. Although this certainly limits 418 

the use of the C-Qquick-slow model with grab sample data in small and hydrologically reactive 419 

catchments, the model could be tested with sub-daily probe data where they exist. 420 

5. Conclusions 421 

The C-Qquick-slow model is a new C-Q model that considers the possibility for different C-Q 422 

relationships at the storm event scale and at the seasonal scale. Results showed that the slopes 423 

of C-Q relationships can be different or even opposite at storm event time and seasonal scales, 424 

which explains a large part of the dispersion commonly observed in C-Q plots. 425 

We showed that NO3
--Q relationships at the seasonal scale were in 75% cases positive and 426 

relationships in storms were either showing dilution pattern (24% cases), a non-significant 427 

pattern (50%), or a mobilization pattern (12%). TP and SRP relationships with Q at the 428 

seasonal scale were almost systematically negative (95%), and patterns during storm events 429 

were in most cases showing a mobilization for TP (77%) or were non-significant for SRP 430 

(69%). We have linked the different C-Q relationships with catchment descriptors and found 431 



15 

 

that indicators of diffuse sources loads determined NO3
-seasonal amplitudes, and hydrological 432 

drivers could explain the behavior during storms. In contrast, point sources determined P 433 

seasonal amplitudes, and diffuse sources combined with erosion rate likely controlled P 434 

behavior during storm events. The C-Qquick-slow model has the potential to improve nutrient 435 

load estimations because of the good predictability of appropriate C-Q archetypes and the 436 

possibility to interpolate low frequency concentration data to a daily frequency. 437 
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