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Introduction

This article extends the algebraic construction of the wild character varieties [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF]Through the analytic halo: Fission via irregular singularities[END_REF][START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] to the case of "twisted" Stokes local systems. There are two, closely related, types of twist that appear, both already mentioned in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF]. Firstly we will consider Stokes data for connections with twisted formal normal forms (often called the "ramified case"). A simple example where this type of twist occurs is the Airy equation, which was studied in Stokes' original article on the Stokes phenomenon [START_REF] Stokes | On the discontinuity of arbitrary constants which appear in divergent developments[END_REF].

Here the "twist" can be understood visually from the following diagram, drawn by Stokes: Such twists can be recognised by the appearance of fractional powers of a local coordinate in the exponential factors of formal solutions, such as exp(±2x 3/2 ) in the Airy equation u = 9xu considered by Stokes (see [START_REF] Stokes | On the discontinuity of arbitrary constants which appear in divergent developments[END_REF] eqn. [START_REF] Boalch | Connections, commutators and continuants, in preparation. 21. F. Bottacin, Symplectic geometry on moduli spaces of stable pairs[END_REF]). The Stokes diagram represents the monodromy and the growth/decay of this exponential factor. Secondly we will also consider local systems which are twisted in the interior of the curve-namely they are torsors for a local system of groups, rather than for a constant group. Such examples may appear exotic, as for twisted loop groups, but in fact occur as the spaces of Stokes data used to classify 2d topological quantum field theories and the counting of BPS states [START_REF] Cecotti | On classification of N = 2 supersymmetric theories[END_REF][START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF]. These examples are partly responsible for the recent resurgence of interest in the Stokes phenomenon (cf. e.g. the introduction to [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF][START_REF]Poisson Lie groups and Frobenius manifolds[END_REF]). They led to the discovery that the Poisson manifolds underlying the Drinfeld-Jimbo quantum groups are simple examples of wild character varieties [START_REF]Poisson Lie groups and Frobenius manifolds[END_REF] and the subsequent realisation [START_REF]isomonodromy and quantum Weyl groups[END_REF] that the braiding of Stokes data (the wild mapping class group) underlies Lusztig's symmetries (also known as Soibelman, Kirillov-Reshetikhin's quantum Weyl group).

Another motivation is that the wild character varieties give the simplest description of the differentiable manifolds underlying a large class of complete hyperkähler manifolds, the wild Hitchin spaces [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF][START_REF] Biquard | Wild non-abelian Hodge theory on curves[END_REF]. These are moduli spaces of solutions of Hitchin's self-duality equations; in one complex structure they are spaces of meromorphic Higgs bundles (and so algebraically completely integrable systems [START_REF]Stable bundles and integrable systems[END_REF]21,[START_REF] Markman | Spectral curves and integrable systems[END_REF]), and in another they are spaces of meromorphic connections (and so are spaces of initial conditions for the isomonodromy systems-see [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF]). By the irregular Riemann-Hilbert correspondence such spaces of connections become wild character varieties. Thus there are three parallel classification problems that one could consider:

1) algebraic integrable systems, 2) isomonodromy systems, 3) wild character varieties.

If restricted to algebraic integrable systems that are isomorphic to a meromorphic Hitchin system, e.g. basically anything admitting a rational Lax pair, then these classifications are abstractly equivalent (via the wild versions of the non-abelian Hodge and Riemann-Hilbert correspondences on curves). One point here is that many of the simplest algebraic integrable systems, such as the Mumford system (which is closely related to the KdV hierarchy), are diffeomorphic to twisted wild character varieties in this way, as is the whole Painlevé 1 hierarchy of isomonodromy systems. In subsequent work the present results will be used to extend the theory of Dynkin diagrams for the above classification problems (developed in [START_REF]Irregular connections and Kac-Moody root systems[END_REF][START_REF]Simply-laced isomonodromy systems[END_REF][START_REF] Hiroe | Moduli spaces of meromorphic connections and quiver varieties[END_REF]) to the twisted case. They also yield a twisted version of the (coloured) multiplicative quiver varieties [START_REF] Crawley-Boevey | Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem[END_REF][START_REF] Yamakawa | Geometry of multiplicative preprojective algebra[END_REF][START_REF]Global Weyl groups and a new theory of multiplicative quiver varieties, Geometry and Topology[END_REF].

A related motivation comes from mirror symmetry and Langlands duality. Namely via the above correspondences the wild character varieties inherit special Lagrangian torus fibrations (by hyperkähler rotation), so can be studied in the SYZ framework of mirror symmetry. By considering as-general-as-possible complex character varieties, we hope to get a complete picture which is closed under passing to the dual torus fibration. This duality is known to be related to Langlands duality in some cases [START_REF] Hausel | Mirror symmetry, Langlands duality, and the Hitchin system[END_REF][START_REF] Donagi | Langlands duality for Hitchin systems[END_REF], but apparently suffers from "missing orbits" in certain untwisted cases [START_REF] Gukov | Rigid surface operators[END_REF].

1.1. Summary of results. We will first quickly review some known results. The quasi-Hamiltonian approach [START_REF] Alekseev | Lie group valued moment maps[END_REF] reveals the natural differential-geometric structure on moduli spaces of framed local systems on Riemann surfaces, that yields the natural Poisson/symplectic structures on the moduli spaces of local systems themselves, upon forgetting the framing. Whilst first developed only for compact groups the theory may be complexified and then the complex character varieties may be constructed as multiplicative symplectic quotients of a smooth affine variety by a reductive group. Suppose Σ is a compact Riemann surface with non-empty boundary ∂ and G is a connected complex reductive group (with an invariant nondenegerate symmetric bilinear form on its Lie algebra). Let β ⊂ ∂ be a set of basepoints with exactly one element in each boundary circle ∂ i ⊂ ∂. Then the space of G-local systems framed at β is isomorphic to the representation space Hom(Π, G)

where Π = Π 1 ( Σ, β) is the fundamental groupoid. The main result of [START_REF] Alekseev | Lie group valued moment maps[END_REF] basically says that this is a quasi-Hamiltonian space for the group G β = Map(β, G). This is a multiplicative analogue of the notion of a Hamiltonian space: there is an action of G β , an invariant two-form and a moment map taking values in the group G β . Here the action corresponds to changing the framings and the moment map is given by taking the local monodromies around the boundary circles ρ → {ρ(∂ i )}. An immediate corollary is that the character variety (the affine quotient)

M B = Hom(Π, G)/G β ∼ = Hom(π 1 ( Σ), G)/G
inherits the structure of algebraic Poisson variety, with symplectic leaves obtained by fixing the conjugacy classes of the local monodromies. Thus the character varieties arise from the smooth affine varieties Hom(Π, G) and their quasi-Hamiltonian structure. In particular this gives a clean algebraic way to recover the Atiyah-Bott symplectic structure.

In [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF]Through the analytic halo: Fission via irregular singularities[END_REF][START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] a similar picture was established for (untwisted) Stokes local systems, yielding many new examples of quasi-Hamiltonian spaces and an algebraic approach to the irregular extension [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF] of the Atiyah-Bott symplectic structure. Here the main new features are that the structure groups are naturally reduced to reductive subgroups H i ⊂ G in a halo around each boundary circle, and some extra, tangential, punctures are added to account for the Stokes multipliers. The resulting space of Stokes representations Hom S (Π, G) ⊂ Hom(Π, G)

is again a smooth affine variety and Thm 1.1 of [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] says that it is a quasi-Hamiltonian H-space where H = H i ⊂ G β . (Here Π is defined after removing the tangential punctures from Σ.) This implies the wild character varieties Hom S (Π, G)/H are Poisson with symplectic leaves obtained by fixing the conjugacy classes of the formal monodromies (in the groups H i ). This work is surveyed in [START_REF]Poisson varieties from Riemann surfaces[END_REF]. The possibility to break G to H i is called fission, and leads to a bestiary of new symplectic varieties, beyond those of concern here [START_REF]Through the analytic halo: Fission via irregular singularities[END_REF], [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] §3.2.

On the other hand, returning to the tame case, physically it doesn't seem quite natural to restrict to G-local systems (requiring some omnipotent being to transport a fixed copy of G from one piece of the surface to another). Rather it is possible that as one moves around the surface the group G becomes twisted by an automorphism. Thus suppose G → Σ is a local system of groups (with each fibre isomorphic to G). It is determined by a morphism f : Π → Aut(G). Then we can consider G-local systems on Σ. Now however the monodromy around a loop is not an automorphism of a fibre but rather it is a twisted automorphism. Given φ ∈ Aut(G) let

G(φ) = {(g, φ) g ∈ G} ∼ = G be the corresponding "twist" of G.
It is a subset of the group G Aut(G), which acts on a standard fibre ( ∼ = G) via p → gφ(p). Given a path γ ∈ Π we get f (γ) ∈ Aut(G), and thus a twist of G:

G(γ) := G(f (γ)) ⊂ G Aut(G).
We will sometimes (abusively) call such spaces G(φ) "twisted groups", since the orbits of the conjugation action of G ⊂ G Aut(G) on G(φ) are commonly called twisted conjugacy classes [START_REF] Springer | Twisted conjugacy in simply connected groups[END_REF]. The moduli space of framed G-local system is isomorphic to the space of twisted representations

THom(Π, G) ⊂ Hom(Π, G Aut(G))
which is the subset where any path γ is mapped to G(γ). It is a smooth affine variety with an action of G β changing the framings. Basic results [START_REF] Alekseev | Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces[END_REF][START_REF] Alekseev | Pure spinors on Lie groups[END_REF] then imply that THom(Π, G) is a twisted quasi-Hamiltonian G β -space-this notion is very close to that of a quasi-Hamiltonian space, the only difference in the axioms is that the moment map ρ → {ρ(∂ i )} now takes values in the twist G β (∂) of G β . In turn this implies the resulting twisted character variety

M B ( Σ, G) = THom(Π, G)/G β ∼ = THom(π 1 ( Σ), G)/G
is a Poisson variety with symplectic leaves obtained by fixing the twisted conjugacy classes of the local monodromies. The corresponding set-theoretic quotient is usually denoted H 1 ( Σ, G) or H 1 (π 1 ( Σ), G), where π 1 acts on G via f (see [START_REF] Frenkel | Cohomologie à valeurs dans un faisceau non abélien[END_REF][START_REF] Serre | Cohomologie galoisienne[END_REF]).

In this article we will put all this together (and extend to twisted formal types), by defining the notion of twisted Stokes G-local systems and showing that: Theorem 1. The moduli space THom S (Π, G) of framed twisted Stokes G-local systems is a smooth affine variety and is a twisted quasi-Hamiltonian H-space.

In turn this implies the resulting twisted wild character variety THom S (Π, G)/H is a Poisson variety with symplectic leaves obtained by fixing the twisted conjugacy classes of the formal monodromies.

The basic picture is as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF][START_REF]Poisson varieties from Riemann surfaces[END_REF] except now we might have a twisted local system in the interior of the curve, as well as a reduction to a twisted local system on each halo (and we may have twists on each halo even if there is no twist in the interior, as for Airy's equation). Note that on any proper sector (at any pole) the local picture is isomorphic to that in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] so the main input here is to see that when these are glued together the result is indeed a twisted quasi-Hamiltonian space.

As in [START_REF] Alekseev | Lie group valued moment maps[END_REF] we may use fusion to do induction with respect to the genus and number of poles. Then as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] we may use fusion within the halos to do induction with respect to the depth of the connections (reducing the order of poles)-for this it is essential to consider both types of twist simultaneously. Then Theorem 1 follows from the special case of a connection with just one pole and one level on a disc, which is amenable to a direct proof. In this case (in fact for any connection with just one pole on a disc) the formula for the twisted quasi-Hamiltonian two-form is the same as that in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] (which in turn generalises [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF]Through the analytic halo: Fission via irregular singularities[END_REF]). Acknowledgments. The first named author is grateful to Jochen Heinloth for useful conversations, and is partly supported by grants ANR-13-BS01-0001-01 (Variétés de caractères et généralisations) and ANR-13-IS01-0001-01/02 (Symétrie miroir et singularités irrégulières provenant de la physique). The second named author is supported by JSPS KAKENHI Grant Number 15K17552.

Torsors etc

We will briefly recall some elementary facts and notation for torsors, and G-local systems. Let G be a group. A G-torsor is a set P with a free transitive (right) action of G. For example if V is an n-dimension complex vector space, then the space P = Iso(C n , V ) of frames of V is a GL n (C)-torsor-a point of P is an isomorphism Φ : C n → V , giving a basis of V , and g ∈ GL n (C) acts on the right Φ → Φ • g, changing the basis of C n .

A morphism φ : P 1 → P 2 between two G-torsors is a G equivariant map, i.e. such that φ(pg) = φ(p)g for all p ∈ P 1 , g ∈ G. Any such map is an isomorphism. Let Iso(P 1 , P 2 ) denote the set of such maps, and let Aut(P) = Iso(P, P). Thus Aut(P) is a group that acts (freely and transitively) on P on the left, commuting with the right G action. In this situation we say that P is a Aut(P)-G-bitorsor. Similarly Iso(P 1 , P 2 ) is an Aut(P 2 )-Aut(P 1 )-bitorsor. If P has commuting, free, transitive actions of G on the left and the right then we will say P is a G-bitorsor.

Let F denote the standard/trivial G-torsor: it is just a copy of G with G acting by right multiplication. Then Aut(F) = G, acting by left multiplication on F. The semi-direct product G Aut(G) acts on F via (g, φ)(p) = gφ(p).

This extends the action of the normal subgroup G ⊂ G Aut(G) acting by automorphisms of F. (Here Aut(G) is the group of group automorphisms of G.) We can view G Aut(G) as a subgroup of the group Perm(F) of all bijections F → F in this way. If φ ∈ Aut(G) let Γ ⊂ Aut(G) be the subgroup generated by φ and write

G = G(φ) = G Γ ⊂ G Aut(G). Let G(φ) = {(g, φ) g ∈ G} ⊂ G(φ) ⊂ G Aut(G)
be the component of G lying over φ. Then the natural left and right actions of G ⊂ G Aut(G) are free and transitive, so G(φ) is G-bitorsor. Explicitly (g 1 , g 2 ) ∈ G × G sends (g, φ) to (g 1 gφ(g 2 ), φ). In particular the conjugation action of G is φconjugation, whose orbits are twisted conjugacy classes (cf. e.g [START_REF] Springer | Twisted conjugacy in simply connected groups[END_REF]). We will say that a G-bitorsor, such as G(φ), is a "twist of G", or, abusively, a "twisted group".

A framing of a G-torsor P is an isomorphism θ ∈ Iso(F, P). The choice of θ is equivalent to choosing a point p ∈ P (given p ∈ P there is a unique θ = θ p such that p = θ(1)). In turn there is an induced group isomorphism

η = η p : Aut(P) → G = Aut(F), namely η(m) = θ -1 • m • θ : F → F, for all m ∈ Aut(P). Note that (1) m(p) = p • η(m)
for all m ∈ Aut(P) and this characterises η. 

G ∼ = G; h → φ(h)
on each two-fold intersection. Then a G-local system L is a sheaf which is a torsor under G (so L(U ) is G(U )-torsor for small open U ⊂ Σ). On a cover, such L can be specified by constant G Aut(G)-valued clutching maps (g, φ) acting as

F ∼ = F; p → g • φ(p)
on each two-fold intersection, where the φ are the automorphisms determining G. If so, the local system of groups Aut(L) is specified by the clutching maps

G ∼ = G; h → gφ(h)g -1 .

Graded local systems

This section discusses local systems that are graded by a local system of sets, rather than by a set.

3.1. Covers. Let ∂ denote a circle, and let π : I → ∂ be a covering map, i.e. a local system of sets. Thus for each point p ∈ ∂ we have a discrete set I p = π -1 (p), and as p moves around the circle the sets are locally constant so that after one turn we obtain a monodromy automorphism σ : I p → I p . Upto isomorphism the monodromy σ determines I. In the cases of interest to us I is a disjoint union of circles.

3.2. Graded local systems. Now let V → ∂ be a local system of finite dimensional complex vector spaces. We will usually think of local systems of vector spaces as locally constant sheaves (but the equivalent viewpoint of a C ∞ vector bundle with a flat connection is sometimes helpful). Definition 2. An "I-graded local system" is a local system V → ∂ together with a point-wise grading

(2) V p = i∈Ip V p,i
of each fibre of V , by the set I p , such that each subspace V p,i is locally constant over ∂, via the local system structure of V .

Thus if p ∈ ∂ is a basepoint then we have monodromy automorphisms σ ∈ Aut(I p ), and σ ∈ GL(V p ). The grading (2) is locally constant, but globally one has

σ(V p,i ) = V p,σ(i)
i.e. the monodromy of V permutes the subspaces according to the monodromy of I. In particular, in general, each subspace V p,i is not the fibre of a sub-local system of V .

If V is an I-graded local system, then we can associate an integer, the multiplicity, to each component j ⊂ I of I, namely the rank of the corresponding subspaces of V :

(3) mult(j) = dim(V p,i ) ≥ 0
for any i ∈ j p ⊂ I p and p ∈ ∂.

3.3.

Local system of exponents. Suppose Σ is a complex curve and 0 ∈ Σ is a smooth point. Let π : Σ → Σ denote the real oriented blow up of Σ at 0, and let Choose a local coordinate z vanishing at 0. Let I be the local system on ∂ whose local sections are complex polynomials in some root z -1/r of z -1 having constant term zero. In other words local sections are functions (defined on sectors) of the form

∂ = π -1 (0) ⊂ Σ denote
(4) q = k i=1 a i z -i/r
where a i ∈ C, k, r ∈ N. (They are just the exponents of the exponential factors occurring in formal solutions of linear differential equations.) Each local section q has a well defined ramification degree/index: it is the minimal integer r = ram(q) ≥ 1 such that q ∈ C[z -1/r ]. Thus each local section q of I becomes single valued on the r-fold cyclic covering circle of ∂, where r = ram(q). The degree of q is the smallest integer k = deg(q) ≥ 0 possible in (4). The level of q is lev(q) = deg(q)/ram(q) ∈ Q.

Taking the exterior derivative of sections of I yields an isomorphic local system " d I ", the Deligne local system [24], whose local sections are one-forms.

We will often use the equivalence between local systems and covering spaces, and thus view I as a (vast) disjoint union of circles covering ∂. Thus each component I ∈ π 0 (I) is a circle covering ∂, and we will write π : I → ∂ for this finite covering (sub-local system). Let r = ram(I) denote the degree of π. If we choose an interval U ⊂ ∂ then π -1 (U ) has r components, and each component determines a well defined function on Sect(U ). These functions are the r branches of a single function upstairs on a small annulus with boundary circle I → ∂ (i.e. they form a single Galois orbit). In other words if b ∈ U is a basepoint and we choose a point i ∈ I b = π -1 (b) then we get a well defined function q i on Sect(U ), and the analytic continuation of q i yields the other functions q j for j ∈ I b .

Thus choosing a component of I is equivalent to choosing a Galois orbit of such functions. Thus for example the Galois orbit {z -1/2 , -z -1/2 } determines a component I ⊂ I, and we will sometimes write I = z -1/2 , bearing in mind that we also view I as the two-fold covering circle of ∂ where these functions become single-valued. The ramified circle drawn by Stokes can be identified with the circle 2x 3/2 , with x = 1/z. Remark 3. Here is a coordinate independent definition of I. For each interval U ⊂ ∂, let F(U ) be the algebra of (germs at 0 of) holomorphic functions on Sect(U ) which have finite monodromy (i.e. each f ∈ F(U ) has an analytic continuation around 0 and returns to itself after a finite number of turns). Let F m (U ) ⊂ F(U ) be the subalgebra of such functions which have at most a pole at zero (i.e. after analytic continuation they become meromorphic functions on a covering disc). Let F h (U ) ⊂ F m (U ) be the subalgebra of functions which, after analytic continuation, become holomorphic functions on a covering disc. Then I is defined by

I(U ) = F m (U )/F h (U ).
Deligne's way [24] of stating the formal classification of connections on vector bundles is then as follows (see also [START_REF] Malgrange | La classification des connexions irrégulieres à une variable[END_REF] Thm 4.4, [6] §4.8, and compare [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]): Theorem 4. The category of connections on vector bundles on the formal punctured disc is equivalent to the category of I-graded local systems.

Note that each fibre I p of I is a lattice (a free Z-module), by adding functions. Thus we can view I as a local system of lattices over ∂. In turn we can consider the pro-torus T p = Hom(I p , C * ) with character lattice I p . This pro-torus T p is the exponential torus of [START_REF] Martinet | Elementary acceleration and multisummability[END_REF] p.380. Let T denote the resulting local system of pro-tori over ∂, so T p is the fibre of T at p ∈ ∂.

Thus an I-graded local system V is the same thing as a local system V together with a morphism T → Aut V of local systems of groups. (Recall that a torus action on a vector space is the same as a grading by the character lattice of the torus. Here we do the same for locally constant vector spaces and locally constant pro-tori. By "morphism to Aut(V )" we mean one that factors through one of the natural algebraic quotients of T , corresponding to a finite rank local system of lattices ⊂ I.)

More generally we will use the following definition.

Definition 5. An I-graded G-local system is a G-local system L together with a morphism T → Aut(L)
of local systems of groups over ∂, factoring through an algebraic quotient of T .

Here a G-local system is a right torsor under the constant sheaf of groups G, whereas a principal G-bundle is a right torsor under the sheaf of groups U → G(O(U )). The generalisation of Theorem 4 also holds (cf. [START_REF] Babbitt | Formal reduction theory of meromorphic differential equations: a group theoretic view[END_REF][START_REF] Martinet | Elementary acceleration and multisummability[END_REF]): Theorem 6. The category of connections on principal G-bundles on the formal punctured disc is equivalent to the category of I-graded G-local systems.

Similarly if we replace the constant group G by a local system G of groups over ∂ then we can define the notion of I-graded G-local system in the same way, i.e. a G-local system L plus a morphism T → Aut(L). Similarly to above, one can show that they classify connections on torsors under non-split reductive groups over C((z)) (any such torsor is trivial and any such group is quasi-split and so determined by an outer automorphism of G). When we speak of "graded local systems" we will always mean I-graded, unless otherwise stated.

Note that the image of any morphism T → Aut(L) will be a twisted torus, i.e. a local system T ⊂ Aut(L) of finite dimensional complex tori over ∂. Given a basepoint b ∈ ∂ the fibre T b of T at b occurs in the differential Galois group of the corresponding connection and is known as the Ramis torus. The character lattice of T is a finite rank local system of free Z-modules I ⊂ I. The choice of such a quotient T of T is determined by the choice of such I ⊂ I. A Z-basis of I b is just a certain list q 1 , . . . q n of functions of the form (4) defined near b.

We will say that L has "twisted irregular type" if T is non-constant, i.e. if I has non-trivial monodromy.

3.4.

Points of maximal decay. Each circle I = q ⊂ I (except 0 ) has some special marked points on it: a point p ∈ I is a "point of maximal decay" if the corresponding function q is such that exp(q) has maximal decay at p (as z → 0 in that direction). We will call such points of maximal decay p.o.m.s, or apples. There are deg(q) p.o.m.s on I. For example if q = λz -i/n they are the i points where q is real and negative. In Stokes' Airy example the apples are the points a, b, c. They were singled out by him as the points where discontinuities in the constants occur ([42] p.118), and this was generalised in the modern multisummation approach to the Stokes phenomenon that we use here (see e.g. [START_REF] Martinet | Elementary acceleration and multisummability[END_REF][START_REF] Loday-Richaud | Stokes phenomenon, multisummability and differential Galois groups[END_REF][START_REF] Ramis | Stokes phenomenon: historical background, The Stokes phenomenon and Hilbert's 16th problem[END_REF]). In more detail suppose L 1 , L 2 are graded G-local systems so we have maps φ i : Exercise. First suppose G is constant. Let t ⊂ g be a Cartan subalgebra of g = Lie(G) and let t = t((z)) ⊂ g((z)) be the corresponding Cartan subalgebra of the loop algebra.

T → Aut(L i ) with images T i (i = 1, 2) say. Then L 1 , L 2 are locally isomorphic if they are isomorphic at any point b ∈ ∂, i.e. if there is an isomorphism L 1 b → L 2 b (of G b -torsors) such that the induced map Aut(L 1 b ) ∼ = Aut(L 2 b ) makes the diagram (5) 
T b = T b   φ 1   φ 2 Aut(L 1 b ) ∼ = -→ Aut(L 2 
1) Show that any element Q ∈ t/t[[z]] determines an irregular class Q and that any untwisted irregular class arises in this way. Now let t ⊂ g((z)) be any Cartan subalgebra of the loop algebra. Recall that one can take a root w of z so that t may be conjugated into t((w)) via G((w)) (note that Cartan subalgebras are conjugate over algebraically closed fields).

2) Show that the w-adic filtration of t((w)) yields a canonical filtration of t. Let t ≥0 be the non-negative part of t for this filtration.

3) Show that any element Q ∈ t/ t ≥0 determines an irregular class Q and that any irregular class arises in this way for some such t and Q.

Thus given a choice of Cartan subalgebra t we can define an "irregular type for t" to be an element Q ∈ t/ t ≥0 , and this determines an irregular class Q. This definition of twisted irregular type was suggested in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] Rmk 8.6. More generally (if G has finite monodromy) we can proceed similarly with Cartan subalgebras in the corresponding twisted loop algebra (since everything straightens out on passing to a cover). Note that we could fix a maximal torus T ⊂ G and define a "very standard fibre" to be a standard fibre with ϕ landing in T . This is often convenient since a map T b → T corresponds to a Z-linear map X * (T ) → I b . In the untwisted case choosing a very standard fibre is equivalent to choosing an irregular type in the sense of [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF].

3.7. Gradings versus Reductions. Suppose P → ∂ is an auxiliary graded G-local system, with irregular class Q = [P]. Let T ⊂ Aut(P) be the image of T and let H ⊂ Aut(P) be the centraliser of T, i.e. H = GrAut(P) is the local system of graded automorphisms of P. Now suppose L is any G-local system over ∂. Given the auxiliary graded local system P we can make the following definition. Definition 11. A "flat reduction of L to H" is an H-local system L 0 plus an isomorphism χ : L ∼ = L 0 × H P of G-local systems on ∂.

Lemma 12. Choosing a flat reduction of L to H is equivalent to choosing a grading of L such that the resulting graded local system is in the same irregular class as P.

Proof. Given a grading of L in the class Q, consider the local system L 0 := GrIso(P, L) of graded isomorphisms from P to L. Since [L] = Q, L 0 is nontrivial and is an H-local system. The natural map L 0 × H P → L is an isomorphism, so a grading gives a reduction to H. Conversely given a reduction (L 0 , χ) then L 0 × H P is graded (as T lies in the centre of H, so acts on both sides of L 0 ), and isomorphic to L via χ.

Note that this is a generalisation/modification of the usual notion of reduction of structure group, since we twist by P here (it reduces to the usual notion if P is trivial as a G-local system). For example in the untwisted case we can always take P to be trivial as a G-local system, so gradings are then related to reduction of structure group in the usual sense, as in [START_REF]Through the analytic halo: Fission via irregular singularities[END_REF][START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF]. One could also avoid this by working with disconnected groups.

3.8. Singular directions and Stokes groups. Suppose L → ∂ is a graded Glocal system. Thus we have a map T → Aut(L) and so the Lie algebra bundle ad(L) = Lie(Aut(L)) is an I-graded local system of vector spaces (from the T action via the adjoint action of Aut(L)). Therefore for any d ∈ ∂ we may write For example if V → ∂ is a local system of vector spaces, graded by I = x 1/3 , then Lie(Aut(V )) = End(V ) is graded by the degree 7 cover 0 ∪ (1-ω)x 1/3 ∪ (ω-1)x 1/3 , where ω = exp(2πi/3), containing 2 apples. Note that in Stokes' example End(V ) is graded by the degree 3 cover 0 ∪ 4x 3/2 , and the Stokes diagram of 4x 3/2 is the same as that of 2x 3/2 , so the points a, b, c can be taken to be those defining A.

The grading [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF] of sto d can be further refined by the levels: each graded piece ad(L) d,i has a level lev(i) ∈ Q so for any k ∈ Q there is a level k subspace sto d (k) ⊂ sto d . These are Lie subalgebras and exponentiate to subgroups Sto d (k) ⊂ Sto d . In turn this yields a direct spanning decomposition [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF] Sto

d (k 1 ) × • • • × Sto d (k r ) ∼ = Sto d
where k 1 < k 2 < • • • < k r are the levels of the non-zero pieces occurring in [START_REF]Local moduli for meromorphic differential equations[END_REF].

Passing to a cover all this is isomorphic to that studied in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF], which extends the G-Stokes data in [START_REF]isomonodromy and quantum Weyl groups[END_REF], and parts of [START_REF] Martinet | Elementary acceleration and multisummability[END_REF][START_REF] Loday-Richaud | Stokes phenomenon, multisummability and differential Galois groups[END_REF] (which already handle the local twisted case for constant general linear groups).

Twisted Stokes local systems

Let G be a connected complex reductive group. Let Σ be a compact Riemann surface (possibly with boundary). Let α ⊂ Σ be a finite subset of points (not on the boundary). Let G → Σ • be a local system of groups with each fibre isomorphic to G, where Σ • = Σ \ α. Let π : Σ → Σ be the real oriented blow up of Σ at each point of α. Let ∂ denote the boundary of Σ, which we suppose is non-empty. For each boundary circle ∂ i ⊂ ∂ let T i → ∂ i denote the corresponding local system of pro-tori (which we take to be trivial if ∂ i was already a boundary component of Σ).

Extend G to Σ in the obvious way, and let G i denote the restriction of G to ∂ i .

Choose a graded G i -local system P i → ∂ i (it is graded by T i ). Let Q i = [P i ] be the corresponding irregular class and let Q = {Q i }.

Write Σ = (Σ, α, Q) for the resulting twisted bare irregular curve/wild Riemann surface, with structure group G. (This is convenient notation; as in [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF][START_REF]isomonodromy and quantum Weyl groups[END_REF][START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] the moduli of such Σ behaves like the moduli of the underlying Riemann surface.) Define an auxiliary surface Σ as follows. Let A i ⊂ ∂ i be the singular directions of Q i and let A = A i ⊂ ∂. Let H i ⊂ Σ be a tubular neighbourhood of ∂ i , the ith "halo". Let ∂ i = ∂ i denote the interior boundary circle of H i . For each d ∈ A i choose e(d) ∈ ∂ i so that the points e(d) are in the same order as the points d ∈ A i ⊂ ∂ i .

Then puncture Σ at each point e(d) to define [START_REF]Poisson Lie groups and Frobenius manifolds[END_REF] Σ := Σ \ {e(d) d ∈ A}.

Thus there are surfaces and maps: Σ → Σ Σ. We will sometimes call the punctures e(d) "tangential punctures". Their exact position is not important (it is sometimes convenient to draw non-crossing cilia between each d and e(d), which can be pulled tight whenever required, as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF]) A slightly different approach to defining Σ is possible, cf. Here we extend T i from ∂ i to H i in the obvious way and use this to grade L H i . An isomorphism of Stokes local systems is an isomorphism of G-local systems on Σ which restricts to an isomorphism of graded G i -local systems on each halo.

We will say that L is a "twisted" Stokes G-local system if any of the irregular types are twisted, or if G is twisted. Otherwise it is "untwisted".

Using the auxiliary graded local system P i on H i (rather than just the classes Q i ) then we can set H i = GrAut(P i ) → H i so that a Stokes local system may be defined equivalently (cf. Lemma 12) as a G-local system L on Σ together with a flat reduction to H i on H i for all i, with monodromy around γ d in Sto d for all d ∈ A. Then there is a distinguished subset

H(∂) ⊂ Perm(L b )
of the set of all bijections L b → L b , where the monodromy of L lives. We will describe it here and show it is a twist of the group H = GrAut(L b ). First we give the abstract approach, then a more concrete one (involving more choices). 

) m • t = t • m ∈ Perm(L b ).
The first of these says that m is in a twist of Aut(L b ) ∼ = G determined by φ, and 2) says m is in a certain subset of this twist. Let H(∂) ⊂ Perm(L b ) be the set of elements m satisfying 1) and 2). Lemma 15. The set H(∂) of elements m satisfying 1) and 2) is a twist of H.

Proof. Clearly H × H acts, via (h 1 , h 2 )(m) = h 1 mh 2 . Also if m 1 , m 2 are two so- lutions, then 1) implies m 1 m -1 2 ∈ Aut(L b ) and 2) then implies m 1 m -1
2 ∈ H, so the space of solutions is indeed an H-bitorsor.

To make this more explicit fix an isomorphism G ∼ = G b , a standard fibre F, and a graded isomorphism F ∼ = L b . Then we can identify φ ∈ Aut(G), and the Ramis torus becomes a torus T b ⊂ G = Aut(F), which is equipped with its monodromy automorphism t → t . The set of elements m satisfying 1) becomes the twist G(φ) = {(g, φ) g ∈ G} ⊂ G Aut(G), so any m satisfying 1) can be written as (M, φ) ∈ G(φ). In turn the solutions to 1) and 2) becomes the subset H(∂) ⊂ G(φ) of elements (M, φ) such that (M, φ)(t, 1) = (t , 1)(M, φ), i.e. [START_REF]isomonodromy and quantum Weyl groups[END_REF] M ∈ G such that M φ(t) = t M ∈ G for all t ∈ T b . Further, if we have an auxiliary graded G local system P in the same class as L, with monodromy (P, φ) say, then [START_REF]isomonodromy and quantum Weyl groups[END_REF] says that t = P φ(t)P -1 so the constraint on M is that M P -1 commutes with every element of T b , i.e.

(

) M ∈ HP = P φ(H) ⊂ G. 12 
Note that H(∂) ⊂ G(φ) doesn't depend on the specific graded G-local system chosen, only the irregular class.

Remark 16. Equivalently we can consider the group

G := G Γ ⊂ G Aut(G) where Γ = φ ⊂ Aut(G), so that G(φ) is a component of G, and T b ⊂ G is a torus in the identity component of G. Then H(∂) ⊂ G(φ) is a distinguished component of the normaliser of T b in G.
In particular this enables us to give a more explicit approach to graded G-local systems. Suppose L is a G local system with monodromy (M, φ) ∈ G(φ) ⊂ Perm(L b ). Then to grade L we need a morphism T → Aut(L), where T is a local system of tori, which is given as an algebraic quotient of T . Such T is determined by the corresponding local system I = X * (T) ⊂ I of finite rank lattices. Thus the first choice is such I (a finite rank local system of lattices, given as a sublocal system of I). This is determined by the lattice I b ⊂ I b in any fibre. The only restriction on I b is that it is closed under monodromy. The monodromy of I determines the monodromy t → t of T. Given T we need to embed it in Aut(L). This amounts to the compatibility condition t = M φ(t)M -1 given in [START_REF]isomonodromy and quantum Weyl groups[END_REF]. 

Q ∈ t 1 ((w))/t 1 [[w]]
where t 1 = Lie(T b ). It satisfies ( 13)

Q(ζw) = M φ(Q(w))M -1
where ζ = exp(2πi/r). If we choose a maximal torus T ⊂ G with Lie algebra t containing t 1 , then such Q is a special case of the irregular types considered in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] (on the w-disc).

Conversely suppose we have

Q ∈ t((w))/t[[w]] satisfying (13) for some φ ∈ Aut(G) and M ∈ G. Then Q defines a lattice map Q, -: X * (T ) → C((w))/C[[w]].
Thus there is a unique subtorus T b ⊂ T such that X * (T b ) is the image of the map Q, -. By construction T b is a quotient of T b . Then [START_REF]Irregular connections and Kac-Moody root systems[END_REF] allows us to descend T b to a local system of tori T, and we can define a G-local system L with clutching map (M, φ) ∈ G(φ), and (13) implies L is graded by T. Here G is determined by φ. So Q determines an irregular class in this way, and all irregular classes arise in this fashion.

Remark 17. Note that, given the auxiliary graded G-local system P, choosing L corresponds to choosing an H-local system L 0 → ∂ as in §3. [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF], where H = GrAut(P). As above the monodromy of any such L 0 lives in a twist H(ψ) of H, where H = H b and ψ ∈ Aut(H) is the monodromy of H. For consistency we should check that H(ψ) is isomorphic to the twist H(∂) appearing above (as bitorsors for H). Indeed, in the notation above ψ = P φ(•)P -1 , and H(ψ) consists of elements (h, ψ), whereas

H(∂) = {(hP, φ) h ∈ H}. The action of (h 1 , h 2 ) ∈ H × H then takes h to h 1 hψ(h 2 )
in both cases, so they are indeed isomorphic twists of H.

Classification of Stokes local systems

Let Π = Π 1 ( Σ, β) denote the fundamental groupoid of Σ with the given basepoints. Let f : Π → Aut(G) be the monodromy of G (using the chosen identifications

G b ∼ = G for all b ∈ β). For any γ ∈ Π let G(γ) ⊂ G Aut(G) denote the twist of G lying over f (γ).
Given a framed Stokes local system and a path γ ∈ Π from b 1 to b 2 say, then (using the framings) we get a bijection mon γ : F 1 ∼ = F 2 where F i is the standard fibre at b i .

Since L is a G-local system mon γ lives in the twist G(γ) of G. Thus a framed Stokes local system determines a twisted representation

ρ ∈ THom(Π, G) := {ρ ∈ Hom(Π, G Aut(G)) ρ(γ) ∈ G(γ) for all γ ∈ Π}.
Note that, by projecting onto the G factor, THom(Π, G) could also be defined as the space of maps ρ : Π → G satisfying the twisted composition rule ρ(γ 1 • γ 2 ) = ρ(γ 1 )φ 1 (ρ(γ 2 )) for composable paths, where φ 1 = f (γ 1 ).

We will view any boundary circle ∂ i ⊂ ∂ as a loop based at b i , oriented in the positive sense, and let ∂ i = ∂ -1 i denote the opposite loop (oriented in a negative/clockwise sense). Thus each boundary component determines a twist Note that the group H ⊂ G β acts on THom S (Π, G) as follows: 

G(∂ i ) of G. Further, as in §4.2, there is a distinguished subset H(∂ i ) ⊂ G(∂ i ), which is a twist of H i . If d ∈ A i let λ d ∂ i be
1) ρ(∂ i ) ∈ H(∂ i ) ⊂ G(∂ i ) for any boundary circle ∂ i , as in §4.
{k i } ∈ H sends ρ to ρ , where ρ (γ) = k j ρ(γ)k -1 i for any path γ ∈ Π from b i to b j . Recall that G is embedded in G Aut(G)

Twisted quasi-Hamiltonian geometry

Our conventions for complex quasi-Hamiltonian geometry are as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF], except here it is convenient to work with twisted quasi-Hamiltonian spaces.

Let G be a connected complex reductive group with an automorphism φ ∈ Aut(G). Fix a symmetric non-degenerate complex bilinear form (-, -) on g = Lie(G), invariant under the adjoint action and under φ. Let G(φ) ⊂ G = G(φ) ⊂ G Aut(G) be the twist of G determined by φ, on which G acts by φ-twisted conjugation. Definition 20. A twisted quasi-Hamiltonian G-space (tq-Hamiltonian) is a complex manifold M with an action of G, an invariant holomorphic two-form ω and a Gequivariant map µ : M → G(φ), to a twist of G (with the twisted conjugation action), which satisfies the axioms of quasi-Hamiltonian G-space for the action of G ⊂ G.

Thus M has a twisted group valued moment map. In brief such M is almost a quasi-Hamiltonian G-space (considered in [START_REF] Alekseev | Pure spinors on Lie groups[END_REF]), but we only insist the identity component of G acts. Alternatively it is a special type of quasi-Hamiltonian g-space (also considered in [START_REF] Alekseev | Pure spinors on Lie groups[END_REF]) where we insist the identity component of G does act. Needless to say all the basic properties follow from those established in [START_REF] Alekseev | Lie group valued moment maps[END_REF][START_REF] Alekseev | Quasi-Poisson manifolds[END_REF][START_REF] Alekseev | Pure spinors on Lie groups[END_REF]. In particular:

• Any twisted conjugacy class C ⊂ G(φ) is a tq-Hamiltonian G space.

• If µ i : M i → G(φ i ) are tq-Hamiltonian moment maps for i = 1, 2, then the fusion

M := M 1 M 2 is a tq-Hamiltonian G-space with moment map µ 1 •µ 2 : M → G(φ 1 φ 2 ). • If φ 1 is the inverse of φ 2 , then the gluing M 1 M 2 = M 1 M 2 / /G is well defined.
• If M is an affine variety and a tq-Hamiltonian G-space, then the affine quotient M/G is a Poisson variety, with symplectic leaves M / / C G = µ -1 (C)/G, for twisted conjugacy classes C ⊂ G(φ).

As another example consider H = G × G with automorphism χ switching the two factors. Then the group G is isomorphic to the twisted conjugacy class in H(χ) containing ((1, 1), χ), and so is a tq-Hamiltonian H-space. Then G G is a q-Hamiltonian H-space (since χ 2 = 1), and is isomorphic to the double D = D(G) of [START_REF] Alekseev | Lie group valued moment maps[END_REF] (which is the framed G-character variety M B attached to an annulus). This derivation of the double from a conjugacy class is from [START_REF] Alekseev | Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces[END_REF]. Similarly G(φ) is a tq-Hamiltonian H space for any φ ∈ Aut(G), where now χ(g 1 , g 2 ) = (φ(g 2 ), φ -1 (g 1 )). Thus the "twisted double" D(φ, ψ) := G(φ) G(ψ -1 ) is also tq-Hamiltonian H-space. The moment map takes values in the twist G(φψ) × G(φ -1 ψ -1 ) of H, and so we can fuse the two factors to obtain the "twisted internally fused double" D(φ, ψ) which is a tq-Hamiltonian G-space, whose moment map takes values in G(φψφ -1 ψ -1 ). This is the framed twisted tame character variety M B attached to a one holed torus, with arbitrary twist. Now return to the setup of §5. Let H(∂) = H(∂ i ) ⊂ G(∂ i ), which is a twist of H, and let

µ : THom S (Π, G) → H(∂); ρ → {ρ(∂ i )}
be the map taking the (inverse of the) formal monodromies.

Choose a locally constant, monodromy-invariant, non-degenerate invariant symmetric C-bilinear form on the Lie algebra of each fibre of G → Σ. This determines an invariant bilinear form on Lie(H).

The main result then is as follows. 6.1. Discs and pullbacks. Now we will consider the simplest example of a disc with one marked point, and explain how to relate the Stokes data to the untwisted case.

Let ∆ be a closed complex disc with a marked point 0 in its interior. Let G → ∆\0 be a local system of groups. Choose an irregular class Q at 0, and let ∆ → ∆ ∆ be the associated surfaces, as in [START_REF]Poisson Lie groups and Frobenius manifolds[END_REF]. Here we suppose the framings of G are chosen so that G has no monodromy along the chosen path from b 0 to b 1 . A point of A(Q) will be denoted (C, h, S) with C ∈ G, h ∈ H(∂) and S ∈ d∈A Sto d where S = (S 1 , . . . , S s ) and we label the s = #A points of A in a positive sense from b 0 . The action of G × H on A(Q) is given by (g, k)(C, S, h) = (kCg -1 , kSk -1 , khk -1 ) where (g, k) ∈ G × H and kSk -1 = (kS 1 k -1 , . . . , kS s k -1 ). Define an algebraic twoform ω on A(Q) by [START_REF]Through the analytic halo: Fission via irregular singularities[END_REF] 2ω = (γ, Ad b γ)

+ (γ, β) + (γ s , η) - s i=1 (γ i , γ i-1 )
where

γ i = C * i (θ), γ i = C * i (θ), η = h * (θ H ), β = b * (θ)
, where θ, θ are the Maurer-Cartan forms on G (and θ H , θ H are the Maurer-Cartan forms on H), where C i :

A(Q) → G is the map defined by C i = S i • • • S 2 S 1 C and b = hS s • • • S 2 S 1 : A(Q) → G(φ)
. Note this expression for ω is the same as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] eqn. [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF]. Theorem 24. A(Q) is a twisted quasi-Hamiltonian G × H-space, with two-form ω and twisted group valued moment map

µ(C, S, h) = (C -1 hS s • • • S 2 S 1 C, h -1 ) ∈ G(∂) × H(∂).
We will prove this as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] by induction with respect to the number of levels. Recall the decomposition (9) of the Stokes groups in terms of the levels k

1 < • • • < k r .
Proposition 25. Suppose Thm. 24 holds in all the cases with only one level k 1 . Then Thm. 24 holds in general.

Proof. This follows exactly as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] Prop. 7.12. The sequence of groups

H = H 1 ⊂ • • • H r of [16] (33) is now the fibre at b 0 of a sequence H = H 1 ⊂ • • • ⊂ H r
of local systems of groups, which may be defined as follows. For each k ∈ Q let I k ⊂ I be the sublocal system (of lattices) of level < k. Then the map I → I/I k determines a sublocal system T k ⊂ T of pro-tori. Thus if P is graded by T , then it is graded by T k for any k. Thus there is a sequence

T r ⊂ • • • ⊂ T 2 ⊂ T 1 = T of local
systems of tori, with T i the image of T k i in Aut(P). Then H i is the centraliser in Aut(P) of T i . The story then proceeds as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF], nesting/gluing the twisted quasi-Hamiltonian spaces together for each level.

Proposition 26. Thm. 24 holds in all the cases with only one level k 1 .

Proof. Let ψ = P φ(•)P -1 ∈ Aut(G), as in Rmk 17. Let Sto is+j := ψ -i (Sto j ) for i ∈ Z, j = 1, 2, . . . , s. Then since T has finite monodromy (given by ψ) we can pull back to a finite cyclic cover (as in Apx. A) and observe (as in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] proof of Lemma 7.11) there exists l ∈ Z >0 such that for any j ∈ Z:

(1) Sto j+2l = Sto j ;

(2) the subgroups Sto j+1 , . . . , Sto j+l directly span the unipotent radical U j of a parabolic subgroup of G with Levi subgroup H, and Sto j+l+1 , . . . , Sto j+2l directly span the unipotent radical of the opposite parabolic.

Then the Lie algebras s j := sto j = Lie(Sto j ) and h := Lie(H) satisfy

(s i , s j ) = 0 (|i -j| < l), g = h ⊕ j+l m=j-l+1 s m (j ∈ Z),
and hence s j and s j+l are dual to each other with respect to the pairing for each j ∈ Z. Thus we have

(h ⊕ s j ) ⊥ = j+l-1 m=j-l+1 s m (j ∈ Z).
The proof of (QH1), (QH2) is similar to the untwisted case (see [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF]). For (QH3), fix p ∈ A and v ∈ Ker ω ∩ Ker dµ ⊂ T p A. Then for arbitrary u ∈ T p A we have

0 = 2ω(v, u) = 2(Ad -1 h γ , η) + s i=1 (∆ i , σi )
using the notation from [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] (noting that h is in the group G) where ( 15)

∆ i = Ad -1 h[si] γ + Ad [i-1,1] γ - j>i Ad -1 [ji] σ j + j<i Ad [i-1,j] σ j .
We see that π h (γ ) = 0 and ∆ i is orthogonal to s i . Note that dµ(v) = 0 implies

Ad -1 b γ -γ = β = s j=1 Ad -1 [j1] σ j . Hence Ad -1 h[si] γ -Ad [i-1,1] γ = j>i Ad -1 [ji] σ j + j≤i Ad [i-1,j] σ j .
By [START_REF]Simply-laced isomonodromy systems[END_REF] and the above equality we see that R i := ∆ i + σ i , i = 1, 2, . . . , s have the following expressions:

R i = 2 Ad [i-1,1] γ + j≤i Ad [i-1,j] σ j = 2 Ad -1 h[si] γ - j>i Ad -1 [ji] σ j . (16) 
In particular, we have R 1 = 2(γ + σ 1 ), R s = 2Ad -1 hSs γ , and ( 17)

R i+1 = Ad S i R i + 2σ i+1 (i = 1, . . . , s -1). Extend the definition of R i to all i ∈ Z by R is+j = Ad -i h R j for j = 1, 2, . . . , s, i ∈ Z. Also let S is+j = h -i S j h i ∈ Sto is+j . Then we have R 0 = Ad h R s = 2Ad Ss γ , S 0 = hS s h -1 , R s+1 = Ad -1 h R 1 = 2Ad -1 h γ + 2σ s+1 .
It follows that the recursion relation [START_REF]Poisson varieties from Riemann surfaces[END_REF] holds for all i ∈ Z.

Lemma 27. Each R i takes values in h ⊕ s i .

Proof. Fix i ∈ Z and take arbitrary j ∈ Z with j < i ≤ j + l. Since the subgroups Sto j+1 , Sto j+2 , . . . , Sto j+l directly span U j , the product map

Sto j+l × • • • × Sto j+1 → U j
is an isomorphism of varieties. In particular, the differential of the above map at the point (S j+l , . . . , S j+1 ) is surjective, so we have

Lie(U j ) = (L [j+l,j+1] ) -1 * (T [j+l,j+1] U j ) = (L [j+l,j+1] ) -1 * j+l m=j+1 (L [j+l,m+1] ) * (R [m-1,j+1] ) * (T Sm Sto m ) = j+l m=j+1 Ad -1 [m-1,j+1] s m ,
where L, R denotes the left and right translations, respectively. Hence

(18) Lie(U j ) = Ad [i-1,j+1] Lie(U j ) = i-1 m=j+1 Ad [i-1,m] s m + s i + j+l m=i+1 Ad -1 [m-1,i] s m .
On the other hand, using the recursion relation [START_REF]Poisson varieties from Riemann surfaces[END_REF] repeatedly we obtain

R i = Ad [i-1,m] R m + 2 i q=m+1
Ad [i-1,q] σ q (m < i).

If m ≥ j + 1, each Ad [i-1,q] σ q appearing on the right hand side is orthogonal to Ad [i-1,m] s m thanks to [START_REF]Wild character varieties, points on the Riemann sphere and Calabi's examples[END_REF]. Since R m ∈ s ⊥ m , we see that R i is orthogonal to Ad [i-1,m] s m for j < m < i. Similarly, using the formula

R i = Ad -1 [m-1,i] R m -2 m q=i+1 Ad -1 [q-1,i] σ q (m > i) deduced from (17), we see that R i is orthogonal to Ad -1 [m-1,i] s m for i < m ≤ j + l. Thus we obtain R i ∈ i-1 m=j+1 Ad [i-1,m] s m + s i + j+l m=i+1 Ad -1 [m-1,i] s m ⊥ = Lie(U j ) ⊥ ,
and hence

R i ∈ i-1 j=i-l Lie(U j ) ⊥ = i+l-1 m=i-l+1 s ⊥ m = h ⊕ s i . For i > 0 we have π h (R i ) = π h (Ad S i-1 R i-1 ) = π h (R i-1 ) = • • • = π h (R 1 ) = 2π h (γ ) = 0,
and hence R i ∈ s i for all i ∈ Z. Then [START_REF]Poisson varieties from Riemann surfaces[END_REF] implies R i+1 = 2σ i+1 , R i = 0 (i ∈ Z), since s i ∩ s i+1 = 0. This shows R i = σ i = 0 for all i ∈ Z and γ = 0. Thus Thm. 24 holds. In turn this implies the global result Thm. 21 (i.e. Thm. 1 in the introduction) as in the proof of [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] Thm. 8.2 (but allowing twists). In brief

THom S (Π, G) ∼ = A(Q 1 ) • • • A(Q m ) D 1 • • • D g / /G
where each D i is a twisted internally fused double, g is the genus of Σ and m is the number of boundary components of Σ. Note that many of the other results of [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] now extend to the twisted case with little further effort.

The spaces A(Q) with just one level will be called "twisted fission spaces". As in [START_REF]Through the analytic halo: Fission via irregular singularities[END_REF] and [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF] §3.2 they lead to many other Poisson or symplectic varieties beyond the twisted wild character varieties. We will call the class of such varieties"twisted fission varieties". In general one obtains spaces of twisted local systems on surfaces with varying structure groups in various components, and fission gives a way to splice surfaces in quite complicated ways (see the figures in [START_REF]Through the analytic halo: Fission via irregular singularities[END_REF] in the untwisted case).

Note that Li-Bland-Severa [START_REF] Li-Bland | Symplectic and Poisson geometry of the moduli spaces of flat connections over quilted surfaces[END_REF] recently suggested a different approach to some of the results of [START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF]Through the analytic halo: Fission via irregular singularities[END_REF][START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF], although not incorporating the new braiding. We expect their approach also works in the twisted case.

6.2.

Example. There are an abundance of examples; for example coming from any system of linear differential equations on any smooth algebraic curve. More specifically recall from Prop. 8 that any map π 0 (I) → N (mapping all but a finite number of components to zero) determines an irregular class for a general linear group with trivial twist φ. In particular for any positive c ∈ Q we could consider the irregular class Q determined by I = z -c ⊂ I, with any multiplicity n > 0. Taking c = k/2 for any odd integer k gives the following twisted quasi-Hamiltonian spaces.

Let W be a complex vector space of dimension n and let V = W ⊕ W . Thus elements of G := GL(V ) can be written as 2 × 2 block matrices, and we consider the following subgroups of G: ± . These examples are related to the matrix Painlevé 1 hierarchy, and will be studied in great detail in [START_REF] Boalch | Connections, commutators and continuants, in preparation. 21. F. Bottacin, Symplectic geometry on moduli spaces of stable pairs[END_REF]. They are related to the odd Euler continuants, similarly to how the Painlevé 2 hierarchy is related to the even continuants [START_REF]Wild character varieties, points on the Riemann sphere and Calabi's examples[END_REF].

U + = 1 * 0 1 , U -= 1 
The reader can readily write down more examples. In the examples I = z -c , with n = 1, the corresponding underlying twisted wild character varieties have been (conjecturally) related to the HOMFLY polynomial of the corresponding torus knot (whose projection is the Stokes diagram) in [START_REF] Shende | Legendrian knots and constructible sheaves[END_REF].

Appendix A.

To make the Stokes groups really explicit in the twisted case we will see they are the same as those occurring in the untwisted case, as follows. In brief we can pull back to a ramified covering disc to reduce to the untwisted case (see also [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and differential Galois groups[END_REF] §II.4). Suppose we are in the situation of §6.1. Choose an integer r ≥ 1 and another disc ∆ with coordinate w, so that the map Since t * = X * (T ) ⊗ Z C, such a map is just an element Q = N 1 A i /w i ∈ t((w))/t[[w]] where A i ∈ t = Lie(T ), i.e. it is an untwisted irregular type, as studied in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF]. In particular the group H ⊂ G here equals that in [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF]. We can then use the (more concrete) definitions of singular directions A and Stokes groups from [START_REF]Geometry and braiding of Stokes data; Fission and wild character varieties[END_REF], and find: 

Figure 1 .

 1 Figure 1. The Stokes diagram of the Airy equation, from [42] p.116.

  The intrinsic description of the Stokes data that we give rests heavily on the work of many people, most directly Deligne, Loday-Richaud, Malgrange, Martinet-Ramis (and in turn Babbitt-Varadarajan, Balser-Jurkat-Lutz, Ecalle, Sibuya ...). The layout of this article is as follows. The first few sections are preparatory, leading up the definition of twisted Stokes G-local systems in §4. Then §5 gives the classification of framed Stokes local systems. Next §6 discusses twisted quasi-Hamiltonian geometry and proves Thm 1. Some examples are discussed at the end.

  the circle of real directions emanating from 0 in Σ. Open intervals U ⊂ ∂ parameterise (germs of) open sectors Sect(U ) at 0 with opening U .

3. 5 .

 5 Irregular types and irregular classes. Definition 7. Two graded G-local systems have the same "bare irregular type" or "irregular class" if they are locally isomorphic as graded local systems over ∂. If L is a graded G-local system, let [L] denote the underlying irregular class/bare irregular type (i.e. its class under the above equivalence relation).

  b ). commute. This implies that T 1 b ∼ = T 2 b (as quotients of T b ), so correspond to the same (finite rank) lattice I b ⊂ I b . Thus if G is constant, an irregular class is determined by the quotient T b of T b (for some b) plus the conjugacy class of the embedding T b → G ∼ = Aut(L b ). Further if G general linear group this amounts to remembering just the multiplicity of each component of I, as in (3). In other words: Proposition 8. If G = GL n (C) × ∂ then an irregular class is a map π 0 (I) → N assigning a multiplicity n I ∈ N to each component I ⊂ I, such that n I •ram(I) = n.

3. 6 .

 6 Framings and standard fibres. Suppose Q is an irregular class and P → ∂ is a graded G-local system in the class Q. Choose a basepoint b ∈ ∂ and fix an isomorphism G ∼ = G b . Then P b is a graded G-torsor: there is a map ϕ : T b → Aut(P b ) of groups. Let F 0 denote the trivial G-torsor, so Aut(F 0 ) = G acting by left translation. Given a point p ∈ P b there is an isomorphism F 0 → P b of G-torsors and in turn an isomorphism Aut(P b ) ∼ = Aut(F 0 ) = G of groups, and so ϕ becomes a map T b → G. Thus F 0 inherits a grading in this way. Definition 9. A "standard fibre F for Q at b" is a grading of F 0 , i.e. a group map ϕ : T b → Aut(F 0 ) = G, such that ϕ arises as above for some choice of P and p. Now suppose we fix a standard fibre F for Q at b. Then for any graded G-local system L in the class Q we can make the following definition. Definition 10. A framing of L at b is an isomorphism F → L b of graded G-torsors, i.e. a T b -equivariant map of G-torsors, where T b acts via the left actions of Aut(L b ) and Aut(F 0 ) respectively. Let T b ⊂ G denote the image of T b and let H ⊂ G be the centraliser of T b . Then H is a connected complex reductive group, and the set of framings of L at b is an H-torsor.

Recalling §3. 4 , 8 )

 48 this has a distinguished subspace:[START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF] sto d := ad(L) d,i i ∈ I d is a point of maximal decay ⊂ ad(L) d . This is a nilpotent Lie subalgebra (cf. [16] Lemma 7.3). By definition the Stokes group in the direction d is the corresponding connected unipotent group: (Sto d := exp(sto d ) ⊂ Aut(L) d . In turn the singular directions A ⊂ ∂ are the directions d ∈ ∂ such that Sto d has non-zero dimension. (They are sometimes called "anti-Stokes directions".) Said differently the pro-torus T d maps onto a torus T d , which lies in some maximal torus T ⊂ Aut(L d ) ∼ = G. Dually X * (T ), and thus each root of T , maps to I d . Then sto d is the sum of the root spaces for the roots which map to a p.o.m.

  [START_REF]Poisson varieties from Riemann surfaces[END_REF] Apx. B. Let G also denote the restriction of G to Σ (it has no monodromy around any tangential puncture). For any d ∈ A let γ d be a simple loop in Σ based at d going once around the extra puncture e(d) (and no others). Definition 13. A twisted Stokes G local system on Σ is a G-local system L → Σ such that 1) the restriction of L to H i is graded (with irregular class Q i ), and 2) the monodromy of L around γ d is in the Stokes group Sto d ⊂ Aut(L) d for all d ∈ A.

Remark 14 . 4 . 1 . 4 . 2 .

 144142 Note the same definition makes sense for any complex affine algebraic group G. For groups over other fields we could replace the appearance of C * by G m in the definition of T . Framed moduli spaces. Choose a basepoint b i ∈ ∂ i in each component of ∂. Let β ⊂ ∂ be the set of these basepoints. Fix a framing of G at each b ∈ β, i.e. a group isomorphism G b ∼ = G, so any G b -torsor is now canonically a G-torsor. For each b = b i ∈ β, let F i = F b be a standard fibre at b, isomorphic to the fibre of P i at b, as graded G-torsors. Then a framing at β of a Stokes G-local system L is an isomorphism F b → L b of graded G torsors for each b ∈ β. Let H i = GrAut(F i ) ⊂ G be the group of graded automorphisms of F i , and let H = H i . It is a connected complex reductive group. Let M B (Σ, G) denote the set of isomorphism classes of framed twisted Stokes Glocal systems on Σ. Our next aim is to describe this more explicitly, and the next section prepares for this. Formal monodromy of graded G-local systems. Returning briefly to the set-up of section 3, let L → ∂ be a graded G-local system. Choose a basepoint b ∈ ∂.

  The fibre L b is a G b -torsor. Let T b ⊂ Aut(L b ) be the Ramis torus (the image of T b ). Then H = GrAut(L b ) is the centraliser of T b . Given t ∈ T b let t ∈ T b be the element obtained by parallel translating t around ∂ (once in a positive sense). Similarly g ∈ G b yields φ(g) ∈ G b and p ∈ L b yields mon ∂ (p) ∈ L b . Thus φ ∈ Aut(G b ) and mon ∂ ∈ Perm(L b ). Since everything is locally constant the following hold (where m = mon ∂ ): 1) m(pg) = m(p)φ(g) for all p ∈ L b , g ∈ G b , and 2

  If we now pass to a finite cyclic cover to kill the monodromy of T (see Apx. A) by setting z = w r , then the embedding I b = X * (T b ) → I b lands in C((w))/C[[w]]. This Z-linear map amounts to a C-linear map Lie(T b ) * → C((w))/C[[w]], and thus to an element

  the arc from b i to d in a positive sense. By parallel translation along λ d , we identify the Stokes group Sto d ⊂ Aut(L d ) as a subgroup of Aut(L b i ), and thus as a subgroup of G = Aut(F i ). Also let γ d := λ -1 d • γ d • λ d ∈ Π be the simple loop around e(d) based at b i , where γ d is the loop around e(d) based at d considered above. Note that ρ has the following two properties:

2 , and 2 )

 22 ρ( γ d ) ∈ Sto d ⊂ G for each singular direction d ∈ A. Definition 18. A twisted representation ρ ∈ THom(Π, G) is a "Stokes representation" if conditions 1) and 2) hold. Let THom S (Π, G) ⊂ THom(Π, G) denote the subset of Stokes representations.

  and H i ⊂ G. The following is now straightforward. Proposition 19. Taking monodromy yields a bijection M B (Σ, G) ∼ = THom S (Π, G) from the isomorphism classes of framed twisted Stokes local systems to the twisted Stokes representations. Moreover the action of H corresponds to changing the framings and the set of isomorphism classes of twisted Stokes local systems corresponds bijectively to the set of H orbits in THom S (Π, G).

Theorem 21 .

 21 The space THom S (Π, G) of twisted Stokes representations is a twisted quasi-Hamiltonian H-space with moment map µ.Let M B (Σ, G) denote the affine variety associated to the ring of H invariant functions on THom S (Π, G). Corollary 22. The twisted wild character variety M B (Σ, G) is an algebraic Poisson variety. The symplectic leaves of M B (Σ, G), the symplectic twisted wild character varieties, are the multiplicative symplectic quotients M B (Σ, G, C) = THom S (Π, G) / / C H = µ -1 (C)/H for twisted conjugacy classes C ⊂ H(∂).

Choose basepoints b 0

 0 , b 1 ∈ ∂ ∆ (with b 0 lying over 0), and standard fibres F 0 , F 1 . To simplify notation let ∂ be the boundary circle of ∆ over 0. Choose framings of G at b 0 , b 1 and let φ ∈ Aut(G) be the monodromy of G around ∂. Let A(Q) = THom S (Π, G) denote the resulting space of Stokes representations. Let T 0 ⊂ H ⊂ G = Aut(F 0 ) denote the associated groups at b 0 , let H ⊂ G = G(φ) be the normaliser of T 0 in G and let H(∂) ⊂ G(φ) denote the distinguished component of H. Let Sto d ⊂ G = Aut(F 0 ) denote the Stokes groups for each singular direction d ∈ A ⊂ ∂ (translated to b 0 as above). They are unipotent groups normalised by H. Choosing paths generating Π as in the figure above, yields the following description: Lemma 23. There is an isomorphism A(Q) ∼ = G × H(∂) × d∈A Sto d . In particular A(Q) is a smooth affine variety.

  H(∂) = ( 0 * * 0 ) ⊂ G, which is a twist of H. Let U (k) ± = U + × U -× U + × • • •where there are k groups in total on the right. A simple case of Theorem 1 says that the spaceG A c H = A(Q) = G × H(∂) × U (k) ± is a twisted quasi-Hamiltonian G × H space with moment map µ = (µ G , µ H ) : G A c H → G × H(∂); µ G (C, S, h) = C -1 hS k • • • S 2 S 1 C, µ H (C, S, h) = h -1 ,where C ∈ G, h ∈ H(∂), and S = (S 1 , . . . , S k ) ∈ U (k)

π

  : ∆ → ∆; w → z = w ris well-defined. Let π also denote the induced map ∆ → ∆ on the blowups. Let ∂ = π -1 (∂) and let ∆ = π -1 ( ∆). Write b = b 0 and choose a basepoint b ∈ ∂ lying over b. Then all the data at b lifts to data at b . In particular each element q of the character lattice I b = X * (T b ) ⊂ I b lifts uniquely to a local section q (near b ) of the exponential local system I upstairs. (In brief q (w) = q(w r ) as functions defined near the basepoints.) Now choose r so that for any q ∈ I b the lift q extends to a global section of I over ∂ . (For example take r to be the lowest common multiple of the ramification degrees of a Z-basis of I b .) Thus the local system I → ∂ lifts to a constant lattice I ⊂ I . Thus I lies in the unramified part C((w))/C[[w]] of I . Moreover we have an isomorphism I ∼ = I b (of lattices). Thus if we choose a maximal torus T ⊂ G such that T b ⊂ T , then we have a map X * (T ) I b → C((w))/C[[w]].

1 )

 1 A = π -1 (A) ⊂ ∂ 2) If d ∈ A ison the first sheet of ∆ then the Stokes groups are equal: Sto π(d) = Sto d ⊂ G, where Sto d ⊂ G is the Stokes group at d as defined in [16], and Sto π(d) ⊂ G is as defined here (translated to G = Aut(F b ) as in §5). Here the "first sheet" is the subset of ∆ with argument arg(w) satisfying arg(b ) ≤ arg(w) < arg(b ) + 2π/r.