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Abstract

Given a connected manifold with corners of any codimension there is a very basic and computable
homology theory called conormal homology defined in terms of faces and orientations of their
conormal bundles, and whose cycles correspond geometrically to corner’s cycles.
Our main theorem is that, for any manifold with corners X of any codimension, there is a natural
and explicit morphism

K∗(Kb(X))
T−→ Hpcn

∗ (X,Q)

between the K−theory group of the algebra Kb(X) of b-compact operators for X and the periodic
conormal homology group with rational coeficients, and that T is a rational isomorphism.
As shown by the first two authors in a previous paper this computation implies that the rational
groups Hpcn

ev (X,Q) provide an obstruction to the Fredholm perturbation property for compact
connected manifold with corners.
The difference with respect to the previous article of the first two authors in which they solve
this problem for low codimensions is that we overcome in the present article the problem of com-
puting the higher spectral sequence K-theory differentials associated to the canonical filtration by
codimension by introducing an explicit topological space whose singular cohomology is canonically
isomorphic to the conormal homology and whose K-theory is naturally isomorphic to the K−theory
groups of the algebra Kb(X).
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1 Introduction

In this paper we continue our study on obstructions on Fredholm boundary conditions on manifolds
with corners initiated in [7], let us explain and motivate the context of the present work. On a
smooth compact manifold, ellipticity of (classical) pseudodifferential operators is equivalent to
Fredholmness, and the vanishing of the Fredholm index of an elliptic pseudodifferential operator
is equivalent to its invertibility after perturbation by a regularizing operator. In the case of a
smooth manifold with boundary, not every elliptic operator is Fredholm and it is known since
Atiyah and Bott that there exist obstructions to the existence of local boundary conditions in
order to upgrade an elliptic operator into a Fredholm boundary value problem. Nonetheless, if one
moves to non-local boundary conditions, obstructions disappear: for instance, not every elliptic
(b-operator) pseudodifferential operator is Fredholm but it can be perturbed with a regularizing
operator to become Fredholm. This non trivial fact, which goes back to Atiyah, Patodi and Singer
[2], can also be obtained from the vanishing of a boundary analytic index (see [21, 22, 30], and
below). In fact, in this case the boundary analytic index takes values in the K0-theory group
of the algebra of regularizing operators and this K-theory group is easily seen to vanish. It is
known that obstructions to the existence of perturbations of elliptic operators into Fredholm ones
reappear in the case of manifolds with corners of arbitrary codimension ([5, 31]) (this includes for
instance many useful domains in Euclidean spaces). In this paper we will show that the global
topology/geometry of the corners and the way the corners form cycles enter in a fundamental way
in a primary obstruction to give Fredholm boundary conditions. As we will see the answer passes
by the computation of some K-theory groups. We explain now with more details the problem and
the content of this paper.

Using K-theoretical tools for solving index problems was the main asset in the series of papers
by Atiyah-Singer ([3, 4]). In the case of manifolds with boundary, K-theory is still useful to
understand the vanishing of the obstruction to the existence of pertubations of elliptic operators
into Fredholm ones (even if K-theory is not essential in the computation of analytical indices [2]),
and a fortiori to understand this obstruction in the case of families of manifolds with boundary
([21, 22, 23]). For manifolds with corners, Bunke [5] has delivered for Dirac type operators a
complete study of the obstruction, which lives in the homology of a complex associated with the
faces of the manifold. As observed in [7], this homology also appears as the E2-term of the spectral
sequence computing the K-group that contains the obstruction to Fredholmness for general elliptic
b-pseudodifferential operators. Nazaikinskii, Savin and Sternin also use K-theory to express the
obstruction for their pseudodifferential calculus on manifolds with corners and stratified spaces
[32, 31].

Let us briefly recall the framework in which we are going to work. The algebra of pseudodiffer-
ential operators Ψ∗b(X) associated to any manifold with corners X is defined in [26]: it generalizes
the case of manifolds with boundary treated in [25] (see also [13, Section 18.3]). The elements in
this algebra are called b−pseudodifferential operators1, the subscript b identifies these operators as
obtained by microlocalization of the Lie algebra of C∞ vector fields on X tangent to the boundary.
This Lie algebra of vector fields can be explicitly obtained as sections of the so called b-tangent bun-
dle bTX (compressed tangent bundle that we will recall below). The b-pseudodifferential calculus
has the classic and expected properties. In particular there is a principal symbol map

σb : Ψm
b (X)→ S[m](bT ∗X).

Ellipticity has the usual meaning, namely invertibility of the principal symbol. Moreover (discus-
sion below and Theorem 2.15 in [26]), an operator is elliptic if and only2 if it has a quasi-inverse
modulo Ψ−∞b (X). Now, Ψ−∞b (X) also contains non compact operators and compacity is there
characterized by the vanishing of a suitable indicial map (p.8 ref.cit.). Elliptic b-pseudodifferential
operators being invertible modulo compact operators -and hence Fredholm3-, are usually said to
be fully elliptic.

The norm closure Kb(X) of Ψ−∞b (X) into the bounded operators on L2
b(X) fits in the short

1To simplify we discuss only the case of scalar operators, the passage to operators acting on sections of vector
bundles is done in the classic way.

2Notice that this remark implies that to an elliptic b-pseudodifferential operator one can associate an ”index” in
the algebraic K-theory group K0(Ψ−∞b (X)) (classic construction of quasi-inverses).

3see p.8 in [26] for a characterization of Fredholm operators in terms of an indicial map or [18] thm 2.3 for the
proof of Fully ellipticity iff Fredholm
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exact sequence of C∗-algebras:

0 // K(X)
i0 // Kb(X)

r // Kb(∂X) // 0 (1.1)

It will be fundamental in this paper to have a groupoid description of the involved C∗-algebras.
This is explained in Section 2.

In order to understand how the above sequence enters into the study of Fredholm Perturbation
properties we need to settle some definitions.

Analytic and Boundary analytic Index morphism: Every lliptic b-pseudodifferential
operator has a principal symbol class in K0

top(
bT ∗X), and possesses an interior parametrix that

brings a class in K0(Kb(X)) called the analytical index class. Both classes are related as follows.
Consider the short exact sequence

0 // Kb(X) // Ψ0
b(X)

σb // C(bS∗X) // 0. (1.2)

After applying theK-functor, it gives rise to the boundary morphism: K1(C(bS∗X))→ K0(Kb(X))
that can be factorized canonically into a morphism

K0
top(

bT ∗X)
IndaX // K0(Kb(X)) (1.3)

called the Analytic Index morphism of X, which is the one that maps the principal symbol class
to the analytical index class of a given elliptic b-operator.

Alternatively, we can compose (1.3) by r in (1.2):

K0
top(

bT ∗X)
Ind∂X // K0(Kb(∂X)) (1.4)

and call the result the Boundary analytic index morphism of X. In fact r : K0(Kb(X)) →
K0(Kb(∂X)) is an isomorphism if ∂X 6= ∅, proposition 5.6 in [7], and so the two indices above
are essentially the same. This describes the role of (1.1) into the relationship between ellipticity
and K-theory. Notice that in particular there is no contribution of the Fredholm index in the
K0-analytic index.

To express how (1.1) and the previous index maps relate to the Fredholm obstruction we
introduce the following vocabulary:

Definition 1.1 Let D ∈ Ψm
b (X) be elliptic. We say that D satisfies:

• the Fredholm Perturbation Property (FP) if there is R ∈ Ψ−∞b (X) such that D + R is fully
elliptic.

• the stably Fredholm Perturbation Property (SFP) if D⊕1H satisfies (FP) for some identity
operator 1H .

The following result is due to [32] (see [6] for an alternative proof using deformation groupoids).

Theorem 1.2 Let D be an elliptic b-pseudodifferential operator on a compact manifold with cor-
ners X. Then D satisfies (SFP) if and only if Ind∂X([σb(D)]) = 0 in K0(Kb(∂X)).
In particular if D satisfies (FP) then its boundary analytic index vanishes.

The present work is motivated by the understanting of the K-groups that capture this obstruction,
preferably in terms of the geometry and topology of the manifold with corners. As it happens, the
only previously known cases are:

• the K-theory of the compact operators K(X), giving K0(K(X)) = Z and K1(K(X)) = 0,
which is of course essential for classic index theory purposes;

• the K-theory of Kb(X) for a smooth manifold with boundary, giving K0(Kb(X)) = 0 and
K1(Kb(X)) = Zp−1 with p the number of boundary components, which has the non trivial
consequence that any elliptic b-operator on a manifold with boundary can be endowed with
Fredholm boundary conditions;
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• the K-theory of Kb(X) for X a finite product of manifolds with corners of codimension less or
equal to three, where we recall below the computation given in [7] in terms of very computable
homology associated to the corner’s faces. In particular, as shown by examples in ref.cit.,
from codimension 2 any possible free abelian group can arise as one of this K-theory groups.

In this paper we address the case of arbitrary manifolds with corners and the geometrical tool
used to describe the needed K-theory groups is conormal homology [5, 7]. The conormal complex,
initially considered in [5], is made of faces provided with orientation of their conormal (trivial)
bundle and the differential maps a co-orientated face of codimension p to the sum of codimension
p − 1 faces -provided with the induced co-orientation-, that contains it in their closures. Bunke
proved that the obstruction for the existence of a boundary taming of a Dirac type operator on a
manifold with corners X is given by an explicit class in this homology (which also implicitly appears
in the work of Melrose and Nistor in [20], through the quasi-isomorphism in [7, Corollary 5.5]. It
is thus all but a surprise that conormal homology emerges from the computation of K∗(Kb(X)).
Just recall that the faces decomposition of X yields a filtration

K(L2(
◦
X)) = A0 ⊂ A1 ⊂ . . . Ad = A = Kb(X) (1.5)

already used by Melrose and Nistor in [20] and one of their main result is the expression of the
first differential (theorem 9 ref.cit.) of the corresponding spectral sequence (E∗∗,∗(Kb(X)), d∗∗,∗). In
[7], it is proved that:

Hcn
p (X) ' E2

p,0(Kb(X)), (1.6)

and furthermore that the even/odd groups Hev/odd(X,Q) are isomorphic with K0/1(Kb(X)) ⊗ Q
for product of manifolds of codimension at most 3 (tensorisation by Q can be dropped of if X itself
is of codimension at most 3 or if one factor is of codimension at most 2). This gave a concrete
geometric description to the computations initiated in [20], but after the paper [7], the expression of
the higher differentials remained unclear in the case of arbitrary codimension, that is, it remained
unclear whether conormal homology is a satisfactory geometric replacement for K0(Kb(X)).

In this paper we overcome this problem by using groupoid methods in order to find a topological
space OX equivalent to Kb(X) = C∗(Γb(X)) in K-theory (Section 3). This leads to the main result
of this paper, which generalizes [7, theorem 5.8].

Theorem 1.3 For every connected manifold with corners X there are morphisms

Tev/odd : Kev/odd(Kb(X)) −→ Hcn
ev/odd(X)⊗Q (1.7)

inducing rational isomorphisms. Explicitly, T∗ is given by the composition of

1. The Connes-Thom isomorphism

CTh : K∗(Kb(X))→ K∗top(OX), (1.8)

2. the Chern character morphism

K∗top(OX)
ch−→ Hev/odd(OX)⊗Q, (1.9)

which is a rational isomorphism and

3. the natural isomorphism

B∗ ⊗ Id : H∗(OX)⊗Q −→ Hpcn
∗ (X)⊗Q, (1.10)

described in the section 4.2.

We do not expect the isomorphism above to hold without tensorizing by Q in general, even if many
examples exist: manifolds of codimension at most 3, product of such manifolds with one factor of
codimension at most 2, manifolds whose even conormal homology is torsion free.

Nevertheless, it is a straightforward consequence of Theorems 1.2 and 1.3 that the rational
groups Hcn

ev (X,Q) provide an obstruction to the Fredholm perturbation properties. As observed
in [7], the groups Hcn

ev (X) tend to be non trivial. Even more interesting, for naturally geometric
operators the boundary analytic indices do not vanish neither. Hence this motivates the study of
the composition of (1.3) with 1.7, which will be called Corner index morphism:

K0
top(

bT ∗X)
IndXcn−→ Hpcn

ev (X)⊗Q. (1.11)

This brings in natural questions such as:
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1. Given an elliptic operator D ∈ Ψ∗b(X), can we express, in terms of corner cycles, the class
IndXcn([σD]) ? And is it possible to refine the computation at the integral level ?

2. Is it possible to give a topological formula (in the spirit of the Atiyah-Singer theorem) for
the Corner index morphism and then for the obstructions for Fredholm perturbations ?

We will study these questions in a subsequent paper.

Acknowledgements. The first two authors want to thank Victor Nistor for very helpful
discussions and for suggesting us a computation using the classic Chern character. The second and
third authors want to thank the ANR SINGSTAR for support two collaboration research visits in
Toulouse.

2 Index theory for manifolds with corners via groupoids

2.1 Groupoids and manifolds with corners

For background and notation about Lie groupoids and their relationship to C∗-algebras, K-theory,
index theory and pseudodifferential analysis, the reader may consult [10, 34, 29, 16, 17, 12, 35, 1]
and references therein. For backgound about b-calculus the reader may consult [25, 24, 26, 18] and
references therein. Here we closely follows the definition and notation of [7, 6].

We will consider compact manifolds X with embedded corners [24]: we thus may fix once for
all a smooth compact manifold X̃ and submersions ρ1, ..., ρn : X̃ −→ R such that:

1. X =
⋂

1≤j≤n ρ
−1
j ([0,+∞)) ⊂ X̃

2. Setting Hj = ρ−1j ({0}) ∩X, j = 1, . . . , n, we require that {dρj1 , ..., dρjk} has maximal rank
at any point of Hj1 ∩ . . . ∩Hjk for any 1 ≤ j1 < · · · < jk ≤ n.

We assume for simplicity that all the boundary hypersurfaces Hj of X are connected, as well as
X itself.

The so-called Puff groupoid [28] is then defined by:

G(X̃, (ρi)) = {(x, y, λ1, ..., λn) ∈ X̃ × X̃ × Rn : ρi(x) = eλiρi(y)}. (2.1)

This is a Lie subgroupoid of X̃ × X̃ × Rk. The b-groupoid Γb(X) [28] is then defined as the s-
connected component of the restriction of the Puff groupoid to (the saturared closed subspace) X.
It is again a Lie amenable groupoid (in the extended sense of [16]) whose Lie algebroid identifies
in a canonical way with the compressed tangent bundle bTX. Also, the vector representation (or
the regular one at any interior point of X) of the algrebra of compactly supported pseudodiffer-
ential operators on Γb(X) is equal to the compactly supported small b-calculus. This equality can
be enlarged to the small calculus by adding a natural Schwartz space of Γb(X) [15] to the pseu-
dodifferential Γb(X)-calculus but the operation is not necessary for K-theory purposes. Indeed,
denoting by Kb(X) the closure of Ψ−∞b (X) into the algebra of bounded operators on L2

b(X), we
have a natural isomorphism

C∗(Γb(X)) ∼= Kb(X). (2.2)

We will now introduce the several index morphisms we will be using, mainly the Analytic
and the Fredholm index. In all this section, X denotes a compact and connected manifold with
embedded corners.

2.2 Ellipticity and Analytical Index morphisms

The analytical index morphism (of the manifold with embedded corners X) takes it values in
the group K0(Kb(X)). It can be defined in two ways. First, we may consider the connecting
homomorphism I of the exact sequence in K-theory associated with the short exact sequence of
C∗-algebras:

0 // Kb(X) // Ψ0
b(X)

σb // C(bS∗X) // 0. (2.3)

Then, if [σb(D)]1 denotes the class in K1(C(bS∗X)) of the principal symbol σb(D) of an elliptic
b-pseudodifferential D, we define the analytical index Indan(D) of D by

Indan(D) = I([σb(D)]1) ∈ K0(Kb(X)).
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Secondly, we can in a first step produce a K0-class [σb(D)] out of σb(D):

[σb(D)] = δ([σb(D)]1) ∈ K0(C0(bT ∗X)) (2.4)

where δ is the connecting homomorphism of the exact sequence relating the vector and sphere
bundles:

0 // C0(bT ∗X) // C0(bB∗X) // C(bS∗X) // 0. (2.5)

Next, we consider the exact sequence coming with the adiabatic deformation of Γb(X):

0 // C∗(Γb(X)× (0, 1]) // C∗(Γtanb (X))
r0 // C∗(bTX) // 0, (2.6)

in which the ideal is K-contractible. Using the shorthand notation K0
top(

bT ∗X) for K0(C∗(bTX)),
we set:

IndaX = r1 ◦ r−10 : K0
top(

bT ∗X) −→ K0(Kb(X)) (2.7)

where r1 : K0(C∗(Γtanb (X))) → K0(C∗(Γb(X))) is induced by the restriction morphism to t = 1.
Applying a mapping cone argument to the exact sequence (2.3) gives a commutative diagram

K1(C(bS∗X))

δ ''

I // K0(Kb(X))

K0
top(

bT ∗X)

IndaX

77
(2.8)

Therefore we get, as announced:

Indan(D) = IndaX([σb(D)]) (2.9)

The map IndaX will be called the Analytic Index morphism of X. A closely related homomorphism
is the Boundary analytic Index morphism, in which the restriction to X × {1} is replaced by the
one to ∂X × {1}, that is, we set:

Ind∂X = r∂ ◦ r−10 : K0(C0(bT ∗X)) −→ K0(C∗(Γb(X)|∂X)), (2.10)

where r∂ is induced by the homomorphism C∗(Γtanb (X)) −→ C∗(Γb(X))|∂X . We have of course

Ind∂X = r1,∂ ◦ IndaX (2.11)

if r1,∂ denotes the map induced by the homomorphism C∗(Γb(X)) −→ C∗(Γb(X)|∂X). Since r1,∂
induces an isomorphism between K0 groups (proposition 5.6 in [7]), both indices have the same
meaning.

2.3 Full ellipticity and the Fredholm Index morphism

To capture the defect of Fredholmness of elliptic b-operators on X, we may introduce the algebra
of full, or joint, symbols AF [14]. If F1 dnoytes the set of closed boundary hypersurfaces of X,
then the full symbol map is the ∗-homomorphism given by:

σF : Ψ0(Γb(X)) 3 P 7−→
(
σb(P ), (P |H)H∈F1

)
∈ AF . (2.12)

It gives rise to the exact sequence:

0 // K(X) // Ψ0(Γb(X))
σF // AF // 0 (2.13)

where K(X) is the algebra of compact operators on L2
b(X). An operator D ∈ Ψ0(Γb(X)) is said

to be fully elliptic if σF (D) is invertible. In [18] (the statement also appears in [26]), it is proved
that full ellipticity is equivalent to Fredholmness on any b-Sobolev spaces Hs

b (X).
For a given fully elliptic operator D, we denote by IndFred(D) its Fredholm index. We briefly

recall how this integer is captured in K-theory. First, there is a natural isomorphism

K0(µ) ∼= K0(C∗(TncX)) (2.14)
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between the K-theory of the obvious homomorphism C(X) −→ AF and the K-theory of the
noncommutative tangent space TncX. The former K-group captures stable homotopy classes of
fully elliptic operators and the latter, which comes from deformation groupoid techniques, classifies
the noncommutative symbols σnc(D) of fully elliptic operators D.

Next, the same deformation techniques give rise to a homomorphism:

IndXF : K0(TncX) −→ K0(K(X)) ' Z, (2.15)

which satisfies:
IndXF ([σnc(D)]) = IndFred(D), (2.16)

for any fully elliptic operator D.

2.4 Obstruction to full ellipticity and Fredholm perturbation property

In order to analyse the obstruction to full ellipticity, we introduce Fredholm Perturbation Properties
[33].

Definition 2.1 Let D ∈ Ψm
b (X) be elliptic. We say that D satisfies:

• the Fredholm Perturbation Property (FP) if there is R ∈ Ψ−∞b (X) such that D + R is fully
elliptic.

• the stably Fredholm Perturbation Property (SFP) if D⊕1H satisfies (FP) for some identity
operator 1H .

• the stably homotopic Fredholm Perturbation Property (HFP) if there is a fully elliptic oper-
ator D′ with [σb(D

′)] = [σb(D)] ∈ K0(C∗(bTX)).

We also say that X satisfies the (resp. stably) Fredholm Perturbation Property if any elliptic
b-operator on X satisfies (FP) (resp. (SFP)).

Property (FP) is stronger than property (SFP) which in turn is equivalent to property (HFP)
by [11, Proposition 4.3]. In [32], Nazaikinskii, Savin and Sternin characterized (HFP) for arbitrary
manifolds with corners using an index map associated with their dual manifold construction. In [7]
the result of [32] is rephrased in terms of deformation groupoids with the non trivial extra apport
of changing (HFP) by (SFP) thanks to [11, Proposition 4.3]:

Theorem 2.2 Let D be an elliptic b-pseudodifferential operator on a compact manifold with cor-
ners X. Then D satisfies (SFP) if and only if Ind∂X([σb(D)]) = 0 in K0(C∗(Γb(X)|∂X)).
In particular, if D satisfies (FP) then its boundary analytic index vanishes.

This motivates the computation of K0(C∗(Γb(X))) ∼= K0(C∗(Γb(X)|∂X)).

3 A topological space K-equivalent to Γb(X)

The subject of this section is to construct an explicit space OX and an explicit Connes-Thom
isomorphism

CT : K∗(C
∗(Γb(X))) −→ K∗top(OX). (3.1)

This will be done by replacing Γb(X) by an action groupoid which has the same K-theory and
moreover which is free and proper, and then equivalent to its space of orbits. The general idea
comes from [8], the case of manifolds with boundary is treated in [6] and all the material here
comes directly from [6].

3.1 The orbit space OX

Consider an embedding
ι : X̃ ↪→ RN−n

with N even and n still denoting the number of boundary hypersurfaces of X. Consider the
groupoid morphism

h : X̃ × X̃ × Rn → RN−n × Rn = RN (3.2)

7



given by
h(x, y, (λi)i) = (ι(x)− ι(y), (λi)i).

The morphism h induces a semi-direct product groupoid

(X̃ × X̃ × Rn) oRN ⇒ X̃ × RN . (3.3)

A very simple and direct computation gives that this groupoid is free (that is, has trivial isotropy
subgroups) and proper, the freeness commes from the fact h is a monomorphism of Lie groupoids
(if h(γ) is a unit then γ itself is a unit), and the properness of the map

(X̃ × X̃ × Rn) oRN (t,s)−→ (X̃ × RN )2

can be verified by a direct computation.
Now, as shown by Tu in [36] proposition 2.10, a topological groupoid G ⇒ Z is proper iff the

asscoiated map (t, s) is closed and the stabilizers are quasi-compact. In particular, since Γb(X) is

a closed subgroupoid of X̃ × X̃ × Rn and since the induced groupoid morphism

Γb(X)
h−→ RN (3.4)

is a groupoid monomorphism we obtain that:

Proposition 3.1 The semi-direct product groupoid

Γb(X) oRN ⇒ X × RN (3.5)

is free and proper.

By [36] (section 2), the space of orbits X×RN/Γb(X)oRN is then Hausdorff and locally compact.
We let:

Definition 3.2 (The orbit space) We denote by

OX := Orb(Γb(X) oRN ) (3.6)

the Orbit space associated with the groupoid Γb(X) oRN ⇒ X × RN .

By classic groupoid’s results recalled for instance in [6] section 2, we have the following

Proposition 3.3 There is an isomorphism

CTh : K∗(C
∗(Γb(X))) −→ K∗top(OX) (3.7)

given by the composition of the Connes-Thom isomorphism

CT : K∗(C
∗(Γb(X))) −→ K∗(C

∗(Γb(X) oRN ))

and the isomorphism
µ : K∗(C

∗(Γb(X) oRN )) −→ K∗top(OX)

induced from the groupoid Morita equivalence between Γb(X) oRN and OX (seen as a trivial unit
groupoid).

3.2 The orbit space OX as a manifold with corners

Later on the paper we will need to apply the Chern character morphism to the topological space
OX (to its topological K-theory) and for this we will justify in this section that this space has
indeed the homotopy type of a CW-space, in fact this space inherits from X×RN a manifold with
corners structure as we will now explain.

Consider the s-connected Puff groupoid, recalled in (2.1),

Gc(X̃, (ρi))⇒ X̃. (3.8)

It is a Lie groupoid and the semi-direct product groupoid

Gc(X̃, (ρi)) oh RN ⇒ X̃ × RN (3.9)
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induced by the morphism h defined in (3.2) is a free proper Lie groupoid by exactly the same
arguments applied to Γb(X) in section 3.1. By classic results on Lie groupoid theory, the orbit
space

OX̃ := Orb(Gc(X̃, (ρi)) oh RN ) (3.10)

inherits from X̃×RN a structure of a C∞-manifold. A good reference for this is the nice extended
survey of Crainic and Mestre, [9], that clarifies and explains very interesting results on Lie groupid
theory that were confusing in the litterature, in particular they explain the role of the linearization
theorem for proper Lie groupoids (theorem 2 in ref.cit.) on the local structure of such groupoids
and on their orbit spaces.

We will now give the defining functions on OX̃ whose positive parts will define OX . For this,
denote, as in sections above, a vector v = (v′, v′′) ∈ RN−n×Rn. A simple and direct computation
shows that, for i = 1, ...n, the C∞-map

(x, v) 7→ ρi(x)ev
′′
i (3.11)

induces a well defined C∞-map
ρ̃i : OX̃ → R. (3.12)

Using the map (3.22) and the induced homeomorphisms on the faces (3.20) one can get that

OX =
⋂

i=1,...,n

{ρ̃i ≥ 0}. (3.13)

Finally, a simple computation yields

d(x,A)Ri(W,V ) = eA
′′
i dxρi(W ) + eA

′′
i V ′′i ρi(x) (3.14)

where Ri = ρ̃i ◦ p (with p : X̃ × RN → OX̃ the quotient map), (W,V ) ∈ TxX̃ × TARN , and since

p is a submersion we obtain that {dρ̃j1 , ..., dρ̃jk} has maximal rank at any point of H̃j1 ∩ . . .∩ H̃jk

for any 1 ≤ j1 < · · · < jk ≤ n, where Hj = ρ̃−1j ({0}) ∩OX .
In conclusion we obtain that OX is a manifold with embedded corners defined by the defining

fuctions ρ̃1, ..., ρ̃n, the set of its faces of a given codimension is in bijection with the set of faces
of X the corresponding codimension. As proved above, each face is homeomorphic to an euclidien
space.

Now, it is a classic fact, for example see corollary 1 in [27], that any topological separable
manifold as OX has the homotopy type of a countable CW -complex. This is all we will need in
the following sections.

3.3 The filtration of OX

The space OX is a quotient space X×RN/ ∼ where the relation is given as follows (x,A) ∼ (y,B)
iff there is γ = ((x, y), (λi)i) ∈ Γb(X) with B = h(γ) + A. We denote by π : X × RN −→ OX the
quotient map. This map is open [36, Prop. 2.11].

The space X is naturally filtrated. Indeed, denote by Fp the set of connected faces of codimen-
sion p (and d the codimension of X). For a given face f ∈ Fp, we define the index set I(f) of f to
be the unique tuple (i1, . . . , ip) such that 1 ≤ i1 < . . . < ip ≤ n and

f ⊂ Hi1 ∩ . . . ∩Hip (3.15)

where we recall that Hj = ρ−1j ({0}) ⊂ X. The filtration of X is then given by:

Xj =
⋃
f∈F

d−j≤codim(f)≤d

f (3.16)

Then:
Fd = X0 ⊂ X1 ⊂ · · · ⊂ Xd = X. (3.17)

and setting Yp = π(Xp × RN ), we get a filtration of OX :

Y0 ⊂ Y1 ⊂ · · · ⊂ Yd−1 ⊂ Yd = OX (3.18)
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For any index set I we let:

RNI := {(y, x) ∈ RN−n × Rn+ ; xi = 0 if i ∈ I and xi > 0 otherwise } ⊂ RN (3.19)

and we write RNf instead of RNI(f). We are going to define a map

Q : X × RN −→ RN−n × Rn+,

smooth and compatible with the equivalence relation on X ×RN , whose quotient map q : OX −→
RN−n × Rn+ induces homeomorphisms:

π(f × RN ) ' RNf (3.20)

for any face f and
π((f ∪ g)× RN ) ' RN(f,g) := RNf ∪ RNg (3.21)

for any pair (f, g) ∈ Fp × Fp−1 such that f ⊂ g.
For that purpose, we write for convenience eA for (eA1 , . . . , eAk) and ρ.v for (ρ1v1, . . . , ρkvk)

for all k and A, ρ, v ∈ Rk. Also, we use the notation v = (v′, v′′) ∈ RN−n × Rn for any v ∈ RN .
We then define

x ∈ X, v ∈ RN , Q(x, v) = (ι(x) + v′, ρ(x).ev
′′
). (3.22)

It is easy to check that Q : X × RN −→ RN−n × Rn+ is a surjective submersion, compatible with
the equivalence relation. We denote by q : OX −→ RN−n×Rn+ the quotient map. For any f ∈ F∗,
one can check that

f × RN = Q−1(RNf ) and ∀x, y ∈ f, v, w ∈ RN , Q(x, v) = Q(y, w) ⇐⇒ (x, v) ∼ (y, w). (3.23)

It follows that q|f and q|f∪g provide the homeomorphisms (3.20) and (3.21). We have proved:

Proposition 3.4 For any pair (f, g) ∈ Fd−q × Fd−q−1 such that f ⊂ g, we have a commutative
diagram:

(Yq \ Yq−1)f

≈q|f

��

// (Yq+1 \ Yq−1)f∪g

≈ q|f∪g

��
RNf // RN(f,g)

(3.24)

where the vertical maps are homeomorphisms, the horizontal maps are the inclusions and:

(Yq \ Yq−1)f := π(f × RN ) ; (Yq+1 \ Yq−1)f∪g := q((f ∪ g)× RN ) (3.25)

This will be used to compute the singular cohomology groups of OX , which requires the under-
standing of the inclusions Yq \Yq−1 ↪→ Yq+1 \Yq−1 and more specifically how they look like around
a given face f ∈ Fd−q with respect to a given g ∈ Fd−q−1 with f ⊂ g.

3.4 Cohomology of the orbit space

We can expect the same difficulties in computing K∗(OX) as the ones encountered in computing
K∗(C

∗(Γb(X)) (using the spectral sequence associated with the corresponding filtrations). Instead,
the spectral sequence argument becomes simpler for the (singular) cohomology of OX with compact
support. In this section we follow the notations used in [19, Sec. 2.2]

The spectral sequence associated to the filtration considered in the last subsection will allow
to give a very explicit cohomological computation because of proposition 3.4.

Explicitly we associate a cohomological spectral sequence to the filtration 3.18. It can be done
by considering the exact couple

A =
⊕
p,n

Hn(Yp), E =
⊕
p,n

Hn(Yp, Yp−1), (3.26)

with the usual maps ip,n : Hn(Yp+1) → Hn(Yp), jp,n : Hn(Yp) → Hn+1(Yp+1, Yp) and kp,n :
Hn+1(Yp+1, Yp)→ Hn+1(Yp+1).
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Denote by (Ep,qr (X), dp,qr ) the associated spectral sequence to the exact couple (3.26), this
spectral sequence converges to

E∞p,q(X) ∼= Fp−1(Hp+q(OX))/Fp(H
p+q(OX)), (3.27)

where Fp(H
p+q(OX)) = ker(Hp+q(OX)

i∗−→ Hp+q(Yp)) and i : Yp → OX is the inclusion, see for
instance theorem 2.6 in [19]. We have the following result.

Proposition 3.5 The spectral sequence (Ep,qr (OX), dp,qr ) collapses at the page two and moreover,
for r = 0, ..., d

HN−r(OX) ∼=
⊕

p+q=N−r
Ep,q2 (OX). (3.28)

Proof : From the exact couple we know that

Ep,q1 (X) = Hp+q(Yp, Yp−1)

and a simple application of the long exact sequence axiom and of proposition 3.4 gives

Ep,q1 (X) =

{
Z|Fd−p| if q = N

0 if q 6= N

On the other hand the first differential is defined as

dp,q1 = jp,n ◦ kp,p+q−1 : Hp+q(Yp, Yp−1)→ Hp+q+1(Yp+1, Yp). (3.29)

The page E2 has only one non trivial row, which is given by the cohomology of the complex:

0→ E0,N
1 Z|Fd| → · · · → Ed−1,N1 Z|F1| → Ed,N1 Z→ 0. (3.30)

It implies that
Ep,q∞ (X) = Ep,q2 (X).

Now, for the next part of the statement we need to identify the associated graded group with the
singular cohomology of OX with compact support. The proof of that fact is very similar to the
identification of cellular cohomology with singular cohomology.

Indeed, let us consider the long exact sequence of the pair (Yp, Yp−1) in singular cohomology
with compact support

· · · → Hk(Yp, Yp−1)→ Hk(Yp)→ Hk(Yp−1)→ Hk+1(Yp, Yp−1)→ · · · . (3.31)

Because of the fact that Yp/Yp−1 is homeomorphic to a finite disjoint union of RN−d+p for p =
0, ..., d we have that the morphisms (induced from the canonical inclusions)

Hk(Yp)→ Hk(Yp−1) (3.32)

are isomorphisms for k > N − d+ p and for k ≤ N − d+ p− 2, injective for k = N − d+ p− 1 and
surjective for k = N − d+ p. A direct computation gives that, for r = 0, .., d,

FpH
N−r(OX) = HN−r(OX) for p = −1, ..., d− r − 1, (3.33)

and
FpH

N−r(OX) = 0 for p = d− r, ..., d. (3.34)

The statement (3.28) above follows now by (3.27).
2
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4 K-theory vs Conormal homology and Fredholm Pertur-
bation characterisation

4.1 Conormal homology

Conormal homology is introduced (under a different name) and studied in [5]. In [7], a slighty
different presentation of this homology is given, after the observations that it coincides with the
E2 page of the spectral sequence computing K∗(C

∗(Γb(X))) and that it should provide easily
computable obstructions to various Fredholm perturbations properties. We just briefly recall the
definition of the chain complex and of the differential of conormal homology (see [5, 7] for more
details).

With the same notation as above, the chain complex C∗(X) is the Z-module where Cp(X) is
generated by

{f ⊗ ε ; f ∈ Fp and ε is an orientation of Nf}. (4.1)

Here Nf = (TfX/Tf)∗ is the conormal bundle of f ⊂ X. Note that this bundle is always
trivialisable with ei = dρi, i ∈ I(f) as a prefered global basis, and oriented by εI(f) = ∧i∈I(f)ei or
its opposite. We define the differential δ∗ : C∗(X)→ C∗−1(X) by

δp(f ⊗ ε) =
∑

g∈Fp−1,
f⊂g

g ⊗ ei(g,f)
yε (4.2)

where the index i(f, g) and correspondant defining function ρi(f,g) defines f in g and where y
denotes the contraction of exterior forms. The conormal homology of X, denoted by Hcn

∗ (X) is
defined to be the homology of (C∗(X), δ∗). Even and odd groups are called periodic conormal
homology:

Hpcn
0 (X) = ⊕p≥0Hcn

2p (X) and Hpcn
1 (X) = ⊕p≥0Hcn

2p+1(X). (4.3)

We can consider conormal homology with rational coefficients as well.

4.2 The cohomology of OX and the conormal homology of X are isomor-
phic

We will construct an explicit isomorphism

Hev/odd(OX)
B−→ Hpcn

ev/odd(X) (4.4)

where in the left hand side Hev/odd stands for singular cohomology (with compact supports) with
integer coefficients. For this it will be enough, after the last proposition, to explicitly compute the
first differentials dp,N−d1 , (3.29) above.

We start by fixing an α ∈ H1(R) with α 7→ 1 under the connecting map (which is an isomor-
phism) associated to the inclusion of {0} in R+. Let now β ∈ H1(R) be such that (α, β) 7→ 1.

Let f ∈ Fp, there is a canonical homeomorphism φf : RNf → RN−p where RN−p is the usual

euclidien space. We let βf ∈ HN−p(RNf ) be the generator given by the image of (β, ..., β) ∈
(H1(R))N−p by the product isomorphism

H1(R)⊗ · · · ⊗H1(R)
∼= // HN−p(RN−p), (4.5)

where in the left hand side there are exactly N − p copies of H1(R), followed by the isomorphism
in cohomology

HN−p(RN−p)
(φf )

∗

∼=
// HN−p(RNf ) (4.6)

induced by φf .
By construction, for every p = 0, ..., d we have a basis (βf )f∈Fp

of HN−p(Yd−p, Yd−p−1) via the
isomorphism induced from proposition 3.4. We can now prove the following

Proposition 4.1 With the notations above we have that for f ∈ Fd−p and g ∈ Fd−p−1 with f ⊂ g
the following holds:

dp,N−d1 (βf ) = σ(f, g) · βg, (4.7)

where σ(f, g) = (−1)j−1 with j the place of the coordinate in the multi-index I(f) whose associated
index i(f, g) and correspondant defining function ρi(f,g) defines f in g.

12



Proof : By construction the differential

dp,N−d1 : HN−d+p(Yp, Yp−1)→ HN−d+p+1(Yp+1, Yp)

is given by the connecting morphism in cohomology associated to the inclusion

Yp \ Yp−1 ↪→ Yp+1 \ Yp−1.

Hence, by proposition 3.4, we are led to compute the connecting morphism

HN−d+p(RNf )
d(f,g)−→ HN−d+p+1(RNg ) (4.8)

associated to the canonical inclusion
RNf ↪→ RN(f,g).

Now, it is just a simple algebraic topology exercise to show that

d(f,g)(βf ) = σ(f, g) · βg

from which we conclude the proof. 2

From the last two propositions we obtain the following corollary.

Corollary 4.2 For every p = 0, ..., d the isomorphism HN−p(Yd−p, Yd−p−1)→ Ccnp (X) given in a
basis by βf 7→ f ⊗ εI(f) induces an isomorphism

Bp : HN−p(OX) −→ Hcn
p (X). (4.9)

In particular, since N is even there are induced isomorphisms between the periodic versions

Bev/odd : Hev/odd(OX) −→ Hcn
ev/odd(X). (4.10)

4.3 K-theory computation and Fredholm perturbation characterisation

In this final section we will put all the previous results together to get results linking the K-
theory computations with the Fredholm perturbation properties. First, let us state the following
K-theoretical computation.

Corollary 4.3 For every connected manifold with corners X there are morphisms

Tev/odd : Kev/odd(Kb(X)) −→ Hcn
ev/odd(X,Q). (4.11)

inducing rational isomorphisms. Explicitly, T∗ is given by the composition of

1. The Connes-Thom isomorphism

CTh : K∗(Kb(X)) −→ K∗top(OX), (4.12)

2. the Chern character morphism

K∗top(OX)
ch−→ Hev/odd(OX ,Q) (4.13)

which is a rational isomorphism and

3. the isomorphism

Bev/odd ⊗ Id : Hev/odd(OX)⊗Q −→ Hpcn
ev/odd(X)⊗Q, (4.14)

described in the last section.

It is not sure that the isomorphism (4.11) holds true without tensorisation by rational numbers
in general. However, this is obviously true when the Chern character homorphism used in the
construction is an integral isomorphism. This is the case for instance if the conormal homology
groups are torsion free, as one can see using the classic arguments of Atiyah-Hirzebruch spectral
sequences. Concrete situations where this freeness holds true exist: manifolds of codimension at
most 3, product of such manifolds with one factor of codimension at most 2.
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In conclusion, we emphasize that Fredholm property of elliptic b-operators is characterized by
classes in the K-theory of Kb(X) and that this group, up to torsion, identifies with the conormal
homology of X, whose computation is elementary. This brings in a simplified obstruction for
Fredholm property that can be expressed with the natural map:

K0
top(

bT ∗X)
IndXcn−→ Hpcn

ev (X)⊗Q, (4.15)

which is the composition of the analytical index (the obstruction to Fredholm property itself)
with our isomorphism Tev. This raises further questions as: can one find formulas for the classes
IndXcn([σD]) in terms of corners cycles or in more topological terms (in the spirit of the Atiyah-
Singer theorem) ? Is it possible to refine the computation at the integral level ? Is there a
cobordism invariance of the obstruction ? These questions will be investigated in future works.
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(Grenoble), 33(3):201–208, 1983.
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[17] J.-M. Lescure, D. Manchon, and S. Vassout. About the convolution of distributions on
groupoids. Journal of Noncommutative Geometry, 11(2):757–789, 2017.

[18] Paul Loya. The index of b-pseudodifferential operators on manifolds with corners. Ann. Global
Anal. Geom., 27(2):101–133, 2005.

[19] John McCleary. A user’s guide to spectral sequences, volume 58 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2001.

[20] R. Melrose and V. Nistor. K-theory of C∗-algebras of b-pseudodifferential operators. Geom.
Funct. Anal., 8(1):88–122, 1998.

[21] R. Melrose and P. Piazza. Families of Dirac operators, boundaries and the b-calculus. J.
Differential Geom., 46(1):99–180, 1997.

[22] R. Melrose and P. Piazza. An index theorem for families of Dirac operators on odd-dimensional
manifolds with boundary. J. Differential Geom., 46(2):287–334, 1997.

[23] R. Melrose and F. Rochon. Index in K-theory for fibred cusp operators. K-Theory, 37(1-
2):25–104, 2006.

[24] R.B. Melrose. Differential analysis on manifolds with corners. http://www-
math.mit.edu/ rbm/book.html.

[25] R.B. Melrose. The Atiyah-Patodi-Singer index theorem, volume 4 of Research Notes in Math-
ematics. A K Peters Ltd., Wellesley, MA, 1993.

[26] Richard B. Melrose and Paolo Piazza. Analytic K-theory on manifolds with corners. Adv.
Math., 92(1):1–26, 1992.

[27] John Milnor. On spaces having the homotopy type of a CW-complex. Trans. Amer. Math.
Soc., 90:272–280, 1959.

[28] B. Monthubert. Groupoids and pseudodifferential calculus on manifolds with corners. J.
Funct. Anal., 199(1):243–286, 2003.

[29] B. Monthubert and F. Pierrot. Indice analytique et groupöıdes de Lie. C. R. Acad. Sci. Paris
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