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Centrality in Complex Networks 
with Overlapping Community 
Structure
Zakariya Ghalmane1, Chantal Cherifi2, Hocine Cherifi3 & Mohammed El Hassouni1

Identifying influential spreaders in networks is an essential issue in order to prevent epidemic spreading, 
or to accelerate information diffusion. Several centrality measures take advantage of various network 
topological properties to quantify the notion of influence. However, the vast majority of works ignore 
its community structure while it is one of the main features of many real-world networks. In a recent 
study, we show that the centrality of a node in a network with non-overlapping communities depends 
on two features: Its local influence on the nodes belonging to its community, and its global influence 
on the nodes belonging to the other communities. Using global and local connectivity of the nodes, 
we introduced a framework allowing to redefine all the classical centrality measures (designed for 
networks without community structure) to non-overlapping modular networks. In this paper, we extend 
the so-called “Modular Centrality” to networks with overlapping communities. Indeed, it is a frequent 
scenario in real-world networks, especially for social networks where nodes usually belong to several 
communities. The “Overlapping Modular Centrality” is a two-dimensional measure that quantifies the 
local and global influence of overlapping and non-overlapping nodes. Extensive experiments have been 
performed on synthetic and real-world data using the Susceptible-Infected-Recovered (SIR) epidemic 
model. Results show that the Overlapping Modular Centrality outperforms its alternatives designed for 
non-modular networks. These investigations provide better knowledge on the influence of the various 
parameters governing the overlapping community structure on the nodes’ centrality. Additionally, two 
combinations of the components of the Overlapping Modular Centrality are evaluated. Comparative 
analysis with competing methods shows that they produce more efficient centrality scores.

Finding influential nodes in a complex network is a core question for researchers1–6. It has a plethora of applica-
tions in different domains, such as the promotion of commercial products, the spread of news and ideas and the 
outbreak of a disease. Up to now, different centrality measures tied to the network topology have been introduced 
to solve the issue of finding these key nodes7. Among the various topological properties, many real-world net-
works8–11 exhibit a modular organization. Indeed, these networks are made of firmly connected groups of nodes, 
where connections across modules are relatively sparse. The modules can share some nodes or not. Indeed, in 
networks with overlapping communities, some nodes belong to several communities, while in networks with 
non-overlapping communities all the nodes belong to a single community. Despite the importance of the com-
munity structure, most of the proposed centrality measures ignore this property. Few works devoted to networks 
with non-overlapping community structure1–6,12–23 and overlapping community structure24–28 have shown that 
it can be efficiently exploited in order to produce efficient centrality scores. Indeed, all these works highlight the 
influence of the modular organization on the diffusion process.

In a recent work29, we introduced a framework to adapt centrality measures proposed for networks with no 
community structure to non-overlapping modular networks. The “Modular Centrality” is a vector where each 
dimension accounts for a different type of influence that the nodes can exert in the network. The first dimen-
sion quantifies their local influence in their own community, while the second dimension measures their global 
influence on the other nodes to which they are linked outside of their community. Extensive analysis of Modular 
Centrality using synthetic and real-world data have demonstrated its superiority over both classical measures and 
alternative methods designed for modular networks.
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In this study, we extend this framework to networks with overlapping modules. Indeed, overlapping nodes 
introduce a new challenge. As they can belong to multiple communities, we need to redefine the local and global 
notions of influence, especially for the overlapping nodes. In networks with overlapping community structure, 
one needs to consider also the global and local influence of the nodes. However, the local influence depends 
on the type of nodes(overlapping, non-overlapping). Through the intra-community links, the non-overlapping 
nodes exert a local influence on the nodes belonging to their communities, while the overlapping nodes exert a 
local influence on nodes of all the communities to which they belong. In addition, both types of nodes have a 
global influence on nodes that belong to different neighboring communities through the inter-community links. 
Inspired by this idea, we propose the so-called “Overlapping Modular centrality”, which is a new representa-
tion of the standard centrality measures dedicated to networks with overlapping community structure. It is a 
two-dimensional vector, where each component stands for the different types of influence. Based on the most 
influential centrality measures (Degree centrality, Betweenness centrality, Closeness centrality, Eigenvector cen-
trality), we perform a comparative analysis of the local and global component with their classical counterpart 
designed for non-modular networks. Furthermore, we propose and investigate two ranking measures based on 
combining the local and global components (the modulus of the Overlapping Modular Centrality vector and a 
weighted linear combination of both components). As there are multiple ways to combine both components, 
rather than concentrating on the most efficient ranking method, we investigate the gains in performances that can 
be obtained using additional knowledge about the topology of the communities.

Given a classical centrality measure designed for non-modular networks, to compute its overlapping modular 
version one has to proceed as follows:

•	 Extract the local network from the original modular network.
•	 Extract the global network from the original modular network.
•	 Compute the global component of the Overlapping Modular Centrality on the global network.
•	 Compute the local component of the Overlapping Modular Centrality on the local networks.

To evaluate the effectiveness of the various centrality measures, we consider an epidemic process setting. The 
classical SIR model is used in order to simulate and investigate the spread of diseases in the network. Tests are per-
formed on synthetic networks generated by the LFR algorithm30 and real-world networks. Experimental results 
point out that the Overlapping Modular Centrality always outperforms their standard counterparts defined for 
networks without community structure. Additionally, performances increase when the number of overlapping 
nodes or the number of communities to which they belong (their membership degree) increase.

Defining the set of communities may give a clear idea of how the network is organized. We can then dis-
tinguish between nodes acting as hubs inside the communities and nodes located at the boundaries making 
the epidemics spread to other modules. Community detection is one of the most challenging issues in complex 
network. The cohesion and separation of communities are considered differently by the formal definitions. Thus, 
there is no universal definition on the modules that one need to look for. This ambiguity leads to the proposal 
of different community detection algorithms using the notion of the community structure differently. Indeed, 
some algorithms consider that nodes belong to only one single community while others consider that nodes may 
belong to several communities which form the overlaps between the modules. In this paper, we use two over-
lapping community detection algorithms to unveil the set of communities of the network. The Speaker-Listener 
Label Propagation Algorithm (SLPA) as well as Link Communities (LINKC) algorithms are employed to com-
pute the Overlapping Modular centrality. The results show that the Overlapping Modular Centrality is at its best 
when SLPA is used. These experiments show that the choice of the community detection algorithm can impact 
the performance of the Overlapping Modular Centrality. Moreover, the Louvain algorithm is also used to com-
pare the Overlapping Modular centrality with the Modular centrality since Louvain algorithm is designed for 
non-overlapping communities. Results show that the SLPA and LINKC detection algorithms present a better 
performance as compared to Louvain algorithm whatever the community structure strength. Therefore, the over-
lapping nodes have a crucial impact on the epidemic spreading process.

Overlapping Modular Centrality Model
In this section, we present the different elements that make up the basis of the proposed approach. The 
Overlapping Modular Centrality definition and the algorithm to compute its components is given.

In networks with an overlapping community structure, the influence of nodes can be decomposed in two 
parts: A local influence associated to the interactions with the members of their communities, and a global influ-
ence related to their interactions with nodes from neighboring communities. Based on this assumption, we pro-
pose the Overlapping Modular Centrality.

In order to compute these two components, the original network is decomposed into a local network that cap-
tures the interactions inside the communities and a global network that accounts for the interactions between the 
communities. The local network definition depends on the type of node that is considered. For a non-overlapping 
node, it reduces to its unique community, while for an overlapping node, it includes all the communities to which 
it belongs.

Let’s G V E( , ) be a simple undirected network. ∪=V V Vo no is the set of nodes, where Vo and Vno represent the 
set of overlapping and non-overlapping nodes respectively, and E is the set of edges.  = .. .C C C{ , , }k m1  is the set 
of communities and m is the number of communities.

Definitions.  Local component of the overlapping modular centrality.  The local neighborhood of an overlap-
ping node My is defined as the union of the communities to which it belongs ∪= =M Cy r

s
r1 . The local network Gl 
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is the set formed by the union of the local neighborhoods ∪= =G Ml y
z

y1 , where  = .. ..M M M{ , , }y z1  is the set 
of the obtained connected components and = | |z  is the size of the set . Each component My is denoted as 
M V E( , )y y y . Where = ∈V v v V{ \ }y i

y
i  and = ∈E v v v v V{( , )\ ,y i

y
j
y

i j
1 2  and =y y }1 2 , while vi

y refers to any node vi 
belonging to the component My. For a given centrality measure β, we define β v( )L i

y  as the local component of the 
Modular Centrality of the overlapping node ∈v Mi y. It is computed over all the connected components of the 
local network Gl.

A non-overlapping node is a special case of an overlapping one. This type of nodes belongs to only one com-
munity Ck. In order to compute the local component of a non-overlapping node, we define the local network 
denoted as Gl as the union of all the modules of the network ∪= =G Cl k

m
k1 . These isolated communities are 

obtained by removing all the inter-community links from the original network G, and by replicating all the over-
lapping nodes with their intra-community links in each of their shared communities. Each module represents a 
community Ck denoted as C V E( , )k k k , where = ∈V v v V{ \ }k i

k
i  and = ∈E v v v v V{( , )\ ,k i

k
j
k

i j
1 2  and = =k k k}1 2 , 

while vi
k refers to any node vi belonging to the community Ck. Let’s consider a non-overlapping node ∈v Ci

k
k and 

a given centrality measure β. Its local centrality component β v( )L i
k  is computed in its local neighborhood (its 

isolated community) Ck using the usual definition of β.

Global component of the overlapping modular centrality.  The global network Gg is defined as the union of all the 
connected components of the graph remaining after deleting all the intra-community links in the original net-
work and all the isolated nodes. ∪= =G Sg q

p
q1 , where  = .. ..S S S{ , , }q p1  is the set of connected components and 

= | |p   is the size of the set  . Each component Sq is denoted as S V E( , )q q q , where = ∈V v v V{ \ }q i
q

i  and 
= ∈E v v v v V{( , )\ ,q i

q
j
q

i j
1 2  and =q q }1 2 , while vi

q refers to any node vi belonging to the component Sq.
For a given centrality measure β, we define β v( )G i

q  as the global component of the overlapping modular cen-
trality of the node ∈v Si q. It is computed over all the components Sq of the global graph Gg. The global component 
of the overlapping modular centrality of isolated nodes is set to zero.

Overlapping modular centrality.  Given a centrality measure β, designed for non modular networks (Betweeness, 
Degree, etc.), its Overlapping Modular extension for a node ∈v Vi  is expressed as follows:

β β= ∈ … ∈ …B v v v y z q p( ) ( ( ), ( )) {1, , } and {1, , } (1)OM i L i
y

G i
q

where βL and βG stand respectively for the Local and the Global components of the Overlapping Modular cen-
trality of a node vi. Note that the global and local network extracted are not subnetworks of the original modular 
network. They are sets of independent connected components build with replication of some of the nodes and 
links of the original networks.

Algorithm
The overlapping modular centrality calculation procedure may be specified as follows:

Step 1. Choose a centrality measure defined for non modular networks β.
Step 2. Build the local network of the overlapping nodes Gl defined as the set obtained by the union of the local 

neighborhoods as it is illustrated in Fig. 1.
Step 3. For each module ∈My , compute the local component βL for all the overlapping nodes ∈v V V\i

y
y no.

Step 4. Delete the inter-community links from G, and replicate all the overlapping nodes with their 
intra-community links in each of their shared communities to build the local network for non-overlapping nodes 
as it is illustrated in Fig. 1.

Step 5. For each community ∈Ck  , compute the local component βL of all the non-overlapping nodes 
∈v V V\i

k
k o.

Step 6. Delete the intra-community links and the isolated nodes in order to build the global network Gg as it 
is shown in Fig. 1.

Step 7. For each module ∈Sq , compute the global component of the Overlapping Modular Centrality βG of 
all the nodes ∈v Vi

q
q. The global centrality of isolated nodes is set to 0.

Step 8. Add βL and βG to the Overlapping Modular centrality vector BOM.

General scheme.  Figure 2 illustrates the nodes ranking methodology in networks with overlapping commu-
nity structure. First of all, one needs to know the community structure. If there is no ground-truth data available, 
a community detection algorithm31,32 can be used to uncover the community structure. Given the community 
structure, the local and global networks are extracted. Remember that the local network of the overlapping nodes 
is formed by the union of the local neighborhoods. The local network of the non-overlapping nodes is built by 
deleting all the inter-community links from the original network and by replicating all the overlapping nodes with 
their intra-community links in each of their shared communities. In addition, the global network is the result 
of deleting all the intra-community links together with all the remaining isolated nodes. Consider a centrality 
measure such as the Degree centrality, for example, its local component of the Overlapping Modular Centrality 
is computed on the local network, while its global component is computed on the global network. Nodes that are 
not in the global network are assigned a null global centrality value. Finally, the top influential nodes are selected 
according to their rank. They can be ranked according to the local or global component of the Overlapping 
Modular centrality or to a measure based on their combination (refer to the Materials and Methods section for 
the definitions of the ranking measures derived from a combination of both components).

https://doi.org/10.1038/s41598-019-46507-y
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Results on Synthetic Networks
The aim of this set of experiments is to evaluate the influence of the various parameters of the communities 
(the community structure strength, the proportion of the overlapping nodes in the network and their commu-
nity membership degree). They are performed in an epidemic spreading setting based on the SIR Model on 
LFR generated synthetic networks. LFR allows generating networks with overlapping community structure. 
The community structure strength can be adjusted via the mixing parameter μ. It represents the fraction of the 
inter-community links in networks and ranges from 0 to 1. It is set to a small value to generate networks with a 
well-defined community structure (few edges between communities). The mixing parameter is set to a large value 
to generate networks with a loose community structure. In these networks, nodes have more connections with 
nodes in other communities than with the ones in their communities. Moreover, networks with medium com-
munity structure strength can be generated with μ values ranging from 0.2 to 0.35. The degree and community 
size distributions of the networks follow a Power law with a tunable exponent value. Other parameters such as on 
and om can control the proportion of the overlapping nodes in the network and their membership respectively. 
We compare the ranking effectiveness associated with the Overlapping Modular Centrality extensions of Degree, 
Betweenness, Closeness and Eigenvector centrality with those obtained using their traditional counterpart.

Influence of the community structure strength.  The mixing parameter value μ controls the percentage 
of inter-community links and therefore the community structure strength ( μ< <0 1). For low values of μ, net-
works exhibit a well-defined community structure (few inter-community links). Increasing the proportion of 
inter-community links blurs the community structure. In order to study the influence of the community structure 
strength on the performance of the various centrality measures, networks with three mixing parameter values 
(μ = . . .0 1, 0 4, 0 6) have been generated and SIR simulations have been performed. The curves in Fig. 3 report the 
relative difference of the outbreak size Δr versus the fraction of initial spreaders obtained with the standard meas-
ure ((a) Degree centrality (b) Betweenness centrality (c) Closeness centrality (d) Eigenvector centrality) used as a 
reference. Positive values indicate that the standard measure is less effective, while it is the contrary for negative 
values.
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Figure 1.  Toy example to illustrate how to form the local network for the non-overlapping nodes G( )l
no , the 

local network for the overlapping nodes G( )l
o  and the Global network G( )g  from a network G( ) with an 

overlapping community structure.

Figure 2.  The main steps of the proposed ranking framework.
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Evaluation of the local and the global component of the overlapping modular centrality.  Results for networks with 
well-defined community structure (μ = .0 1) are reported on the left panel of Fig. 3. In this case, the local compo-
nent of the Overlapping Modular Centrality always outperforms the standard measure. The gain on the standard 
measure is around 25% for Degree centrality, and it is around 22% for Betweenness centrality. The smallest gain 
is for Closeness and Eigenvector centrality measures with an average value of 20%. However, the classical meas-
ures are more effective than the global component of the Overlapping Modular centrality. In this situation, there 
are few connections between the communities, and it is more appropriate to immunize nodes with high local 
influence inside their communities. Indeed, since there are few inter-community edges, if an epidemic initiates in 
the core of a community, it may die before propagating to the periphery of the community and the other parts of 
the network. Therefore, in networks with well-defined community structure, it is a better strategy to target nodes 
with high local influence than isolating the communities.

Figure 3.  Relative difference of the outbreak size Δr versus the percentage of initial spreaders f0, where 
Δ = −r R R R( / )c s s , Rc and Rs are the final number of recovered nodes for the centrality measure under test and 
the standard centrality, respectively. The Degree (a), Betweenness (b), Closeness (c) and Eigenvector (d) 
centrality measures are compared to their extensions derived from the Overlapping Modular Centrality. 
Synthetic networks generated by the LFR algorithm with different community structure strength are used (the 
value of their mixing coefficient is equal to 0.1, 0.4 and 0.6). We set the proportion of overlapping nodes on to 
10% of the size of the network and the community membership om to 10% of the total number of communities. 
Each value on the curves is obtained by averaging the results of 200 SIR simulations per method and fraction of 
initially infected nodes. Δr is positive if the centrality under test is more effective than the standard centrality.

https://doi.org/10.1038/s41598-019-46507-y
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The middle panel of f1 presents the results for networks with medium community structure strength 
(μ = .0 4). In these figures, Δr is always positive for both components of the Overlapping Modular Centrality. The 
local component of the Overlapping Modular Centrality performs better than the standard measure with a gain 
of an average value of 10% for Betweenness, Closeness and Eigenvector centrality. The largest gain is for the 
Degree centrality with an average value of 15%. The global measure outperforms the standard measure with a gain 
of around 18% for Betweenness centrality, 20% for Closeness and Eigenvector centrality. The largest gain is also 
for Degree centrality with an average value of 28%. Therefore, the global measure overall is more accurate than the 
local measure. In this situation, there are almost as many intra-community links as there are inter-community 
links. Thus, if an epidemic initiates in a community, it may easily propagate to the various communities through 
the numerous inter-community links. This is why the global influence is more relevant than the local influence in 
networks with community structure of average strength.

Results of the experiments using networks with a weak-community structure (μ = .0 6) are reported in the 
right panel of Fig. 3. These curves show that the relative difference of the outbreak size Δr is positive or the global 
component, while it is always negative for the local component of the Overlapping Modular Centrality. The aver-
age gain on the traditional Betweenness, Closeness and Eigenvector centrality measures is around 10% for the 
global component of the Overlapping Modular Centrality. The largest gain is still reached for Degree centrality 
with an average value of 15%. The local component of the Overlapping Modular Centrality performs worse than 
the standard measure with an average value of 15% for Degree, Betweenness, Closeness and Eigenvector central-
ity measures. The inter-community links predominate in this type of networks. Therefore, these edges can dissem-
inate epidemics globally all over the network. The best strategy in this situation is to isolate the communities.

Evaluation of the ranking methods based on combining the components of the overlapping modular centrality.  In 
order to evaluate the impact of combining local and global information, we consider two ranking measures. The 
first one is the modulus of both components of the Overlapping Modular centrality. The second one is a weighted 
linear combination of the two components. The weights are computed using more knowledge about the commu-
nities (community size, number of neighboring communities). We expect that using additional community struc-
ture parameters, the effectiveness of the combination increases. In Fig. 3, we report the experimental results of the 
ranking measures based on the modulus and the weighted linear combination of the local and the global compo-
nent of the Overlapping Modular Centrality. It appears clearly that they outperform the classical measure and also 
each component of the Overlapping Modular Centrality. This result is valid for all the centrality measures under 
test. Indeed, the modulus performs better than the standard measure with an average gain of 37% in networks 
with strong community structure, 30% in networks with community structure of medium strength, and 20% in 
networks with weak community structure for Betweenness, Closeness, and Eigenvector centrality measures. The 
largest gain is for Degree centrality with an average value of 42% in networks with strong community structure, 
35% in networks with community structure of medium strength, and 25% in networks with weak community 
structure. Therefore, combining the components of the Overlapping Modular Centrality is much more efficient 
than using only one of its components or the classical centrality measure.

Furthermore, one can notice on Fig. 3 that the curves of the Weighted linear combination of the Overlapping 
Modular centrality components are located in the top in all the figures. It is, therefore, the most effective measure 
whatever the community structure strength. Actually, the gain is around 47% in networks with well-defined 
community structure, 40% in networks with community structure of medium strength and 30% in networks with 
loose community structure for Betweenness, Closeness and Eigenvector centrality. Degree centrality presents the 
largest gain with an average value of 52% in networks with well-defined community structure, 45% in networks 
with community structure of medium strength and 35% in networks with loose community structure. This con-
firms our intuition that further gain can be obtained by using additional knowledge about the topological prop-
erties of the community structure. Indeed, in this measure, we introduce the fraction of inter-community links 
of each community in the case of non-overlapping nodes, and of each local neighborhood module in the case of 
overlapping nodes. The idea is to target the most influential nodes in networks taking care of each community 
topological properties. We introduce also the size of the communities in order to target hubs in large commu-
nities for their high local influence. In addition, the number of neighboring communities is also used to select 
community bridge nodes connected to multiple communities. Indeed, their global influence is high. Adjusting 
the weights allow adapting to the community structure by favoring either the local component or the global 
component. As this measure incorporates additional information about the community structure, it is more effi-
cient than the modulus, the local and the global components of the Overlapping Modular Centrality. To sum-
marize, using a combination strategy is more accurate as compared to the local, global or traditional measures. 
These results are obtained for different centrality measures and for networks with various community structure 
strength. The best gains are obtained in networks with a well-defined community structure. Indeed, increasing 
the mixing parameter value blurs the community structure. The network tends to act more and more like a single 
big community. Consequently, the modular-based measures performance decrease. As expected, better results 
are obtained by using more relevant information about the topological properties of the community structure. 
These results suggest that further improvements can be reached using even more efficient combination strategies.

Influence of the number of overlapping nodes.  The aim of this investigation is to show the influence of 
the proportion of the overlapping nodes on the performance of the Overlapping Modular Centrality. Networks 
with different community structure strength are used in this experiment (the mixing parameter is ranging from 
μ = .0 1 to μ = .0 6). In addition, the value of the community membership degree is set to 10% of the total num-
ber of the communities found in each network. The relative difference of the outbreak size Δr of the local, global 
and the modulus measures versus the fraction of initial spreaders f0 is represented in Figs 4–6. It is represented as 
a function of the proportion of the overlapping nodes on in Figs 7–9.

https://doi.org/10.1038/s41598-019-46507-y
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One can see in Figs 4 and 5 that the local and the global measures exhibit the same behavior if the proportion 
of overlapping nodes changes. Actually, their performance increase as the proportion of the overlapping nodes 
increases. These results are valid for all the centrality measures as it is illustrated in Figs 7 and 8. However, their 
performance decreases when the proportion of the overlapping nodes exceeds an average value of 27% as it is 
shown in Figs 7 and 8. The performance of the local measure for instance in networks with strong community 
structure raises with an average gain of 11% for Degree and Betweenness centrality, and 7% for Closeness and 
Eigenvector centrality measures. The average gain is around 6% in networks with medium community structure 
strength for all the centrality measures, as it is reported in Fig. 7. The performance of the global measure increases 
with an average gain of 5% in networks with strong community structure, 4% in networks with community struc-
ture of medium strength. The biggest gain is obtained with Degree and Betweenness centrality in networks with 
non-cohesive community structure. Indeed, in this case, we observe an average gain of 7%, while it is 3% with 
Closeness and Eigenvector centrality as illustrated in Fig. 8.

Increasing the proportion of the overlapping nodes, the size of their local network grows. Consequently, their 
local influence increase, since these nodes can belong to several neighboring communities. This is why the rank-
ing based on the local component of the Overlapping Modular Centrality becomes more efficient. Moreover, 
when the proportion of overlapping nodes becomes larger, there is a great chance that the proportion of the 

Figure 4.  Influence of the number of overlapping nodes. The relative difference of the outbreak size Δr between 
the standard measure and the Local measure versus the percentage of initial spreaders f0. The community 
membership value om is equal to 10% of the total number of communities.
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overlapping nodes inside the global network gets also bigger. Thus, these nodes can disseminate the epidemic 
globally in many foreign communities. This, therefore, increases the global influence of these nodes in the net-
work. Hence, the performance of the global measure increases while increasing the proportion of the overlapping 
nodes. Furthermore, when the proportion of the overlapping nodes becomes very important, the community 
structure becomes loose since the majority of nodes can belong to several communities. Consequently, the per-
formance of the local and the global components decrease when the proportion of the overlapping nodes exceeds 
the average value of 27%.

The same kind of results are shown in Figs 6 and 9 for the modulus based measure. In Fig. 6, one can notice 
that the modulus measure exhibits the same behavior in networks with different community structures. Its per-
formance increases as the proportion of overlapping nodes increases. Yet, its performance stops increasing when 
the proportion of the overlapping nodes exceeds an average value of 27%. As it is shown in Fig. 9, this is true for 
networks with various community structure strength and for all the centrality measures. The modulus based 
measure performance increases by an average gain of 13% in networks with clear community structure, 10% in 
networks with medium community structure strength, and 8% in networks with unclear community structure. 
this behavior is quite independent of the centrality measures as it is reported in the left, middle and right panel 
of Fig. 9. As expected, the increase of the local and the global influence of nodes leads also to an increase in the 

Figure 5.  Influence of the number of overlapping nodes. The relative difference of the outbreak size Δr between 
the standard measure and the Global measure versus the percentage of initial spreaders f0. The community 
membership value om is equal to 10% of the total number of communities.
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performance of the modulus measure. This is due to the fact that this ranking measure is based on a combination 
of local and global components of the Overlapping Modular Centrality.

Influence of the overlapping community membership degree.  Our goal in these experiments is to 
investigate the impact of the community membership degree of the overlapping nodes on the performance of the 
Overlapping Modular Centrality. Networks with different community structure strength are used. The proportion 
of the overlapping nodes is set to 10% of the size of the network. The relative difference of the outbreak size Δr of 
the local, global and the modulus measures versus the fraction of initial spreaders f0 is represented in Figs 10–12. 
It is represented as a function of the community membership degree om in Figs 13–15.

We can notice from Figs 10 and 11 that the local and the global measures exhibit the same behavior when the 
community membership degree varies. We observe in Figs 13 and 14 that the performance of all the centrality 
measures increases as the membership of the overlapping nodes increases. The performance of the local measure 
increases by an average value of 10% for Degree centrality in networks with strong and medium community 
structure, and by 7% in networks with unclear community structure. As reported in Fig. 13, the gain is also 
around 7% for Betweenness, Closeness and Eigenvector centrality in all the networks with various community 
structure strength. Figure 14 shows that overall the gain in performance of the global measure is around 5%. 

Figure 6.  Influence of the number of overlapping nodes. The relative difference of the outbreak size Δr between 
the standard measure and the modulus measure versus the percentage of initial spreaders f0. The community 
membership value om is equal to 10% of the total number of communities.
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Increasing the community membership, the local neighborhood of the overlapping nodes becomes larger. They 
become more influential in the local network. This is why the local measure performs better if the value of the 
membership of the overlapping nodes increases. Moreover, the overlapping nodes located in the global network 
are connected to many foreign communities. So, increasing their community membership, these nodes belong 
to more communities. Therefore, the epidemic can spread from one community to another through these nodes, 
affecting a very large number of communities. They can play the role of very influential bridges. This is the reason 
why the global measure gets more efficient when the value of the membership of the overlapping nodes increases.

Figures 12 and 15 show the results of the same type of experiments for the modulus of the Overlapping 
Modular Centrality measure. One can see from Fig. 12 that it exhibits the same behavior for the four centrality 
measures in all the networks under test. Its performance increases while the membership of the overlapping 
nodes increases as reported in Fig. 15. The gain is around 15% for Degree centrality and 11% for the other tested 
centrality measures, and this is the case for networks with strong and medium community structure (see the left 
and the middle panel of Fig. 15). In networks with non-cohesive community structure, the gain is around 10% for 
all the tested centrality measures (see right panel of Fig. 15). The ranking strategies which are based on a combi-
nation of the Overlapping Modular centrality components get also more efficient if we increase the value of the 
community membership degree of the overlapping nodes.

Figure 7.  Influence of the number of overlapping nodes. The relative difference of the outbreak size Δr between 
the standard measure and the Local measure versus the percentage of the overlapping nodes on. The community 
membership value om is equal to 10% of the total number of communities.
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Summary.  In this section, the Overlapping Modular Centrality extensions of Degree, Betweenness, Closeness 
and Eigenvector centrality are tested on simulated networks. They are performed at first on networks with dif-
ferent community structure strength having a mixing parameter ranging from 0.1 to 0.6 to test the influence of 
the community structure on their performance. Results show that for all the centralities, the standard measure 
performs better than the Global measure while it is less effective than the Local measure in networks with a 
well-defined community structure. In networks with a medium or weak community structure strength, results 
show that the Global measure outperforms the standard measure, while the Local measure displays the lower per-
formance. Thus, the performance of the Overlapping Modular centrality components changes with the variation 
of the proportion of the inter-community links of the network. Additionally, combination-based methods are 
the most effective measures. Their performance gets even higher if they use properly more information about the 
community structure. The second investigations aim to show the influence of the proportion of the overlapping 
nodes on the performance of the Overlapping Modular centrality variations. Results show that by increasing the 
proportion of the overlapping nodes, the performance of the Overlapping Modular centrality variations increases. 
Their performance, however, decreases when this proportion becomes very important. In this case, the majority 
of nodes can belong to several communities which make the network loses its community structure strength. The 
last part of the experiments aims to show the influence of the community membership degree of the overlapping 

Figure 8.  Influence of the number of overlapping nodes. The relative difference of the outbreak size Δr between 
the standard measure and the Global measure versus the fraction of the overlapping nodes on. The community 
membership value om is equal to 10% of the total number of communities.
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nodes on the performance of the Overlapping Modular centrality. The experimental results show that whatever 
the community structure strength of the network, the performance of the extensions of the Overlapping Modular 
centrality gets higher while increasing the community membership degree of the overlapping nodes.

Results on Real-World Networks
Results of extensive experiments performed on real-world data originating from various fields (social, collabora-
tion and biological networks) are reported in this section. The aim of this set of experiments is to compare with 
the results obtained using synthetic networks. Thus, real-world networks with different community structure 
strength are used. As there is no ground truth data for the networks, the Speaker-Listener Label Propagation 
Algorithm SLPA is used in order to uncover the overlapping communities. The mixing parameter values estimates 
are computed according to the uncovered communities. Table 1 reports the estimated values.

Evaluation of the components of the overlapping modular centrality.  Results for networks with 
well-defined community structure (ego-Facebook, Netscience, and ca-GrQc networks) are reported in Fig. 16. 
The estimated mixing proportion for these networks is equal to 0.075, 0.094 and 0.11 respectively. Figure 16(b) 

Figure 9.  Influence of the number of overlapping nodes. The relative difference of the outbreak size Δr 
between the standard measure and the modulus measure versus the percentageof the overlapping nodes on. The 
community membership value om is equal to 10% of the total number of communities.
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shows that the classical measures outperform always the global component of the Overlapping Modular 
Centrality measure, while it performs worse than its local component. Let’s consider the Betweenness centrality 
for example. The gain of its local based-measure over the standard Betweenness has an average value of 25% 
for the ego-Facebook network, 24% for the Netscience network and 20% for the ca-GrQc network. The global 
Betweenness is, however, 18%, 17% and 15% less efficient than the standard Betweenness in ego-Facebook, 
Netscience, and ca-GrQc networks, respectively. In these networks, the communities are sparsely connected with 
each other. In this case, the chance is high that the epidemic stays confined in the same community and does 
not propagate to the foreign communities since the contagious area is found in most cases in the core of com-
munities. Therefore, the epidemic spreading may stop even before reaching the nodes located in the community 
periphery. Thus, there are few chances that the bridges between the communities disseminate the epidemic to 
other communities. This explains why the local measure always outperforms the global measure. Additionally, 
one can notice on Fig. 16 that the higher the mixing parameter value the more performing the global component 
of the Overlapping Modular Centrality measure. This is due to the fact that the number of inter-community links 
increases while the number of intra-community links decreases.

Figure 17 shows the same type of results for Princeton, Caltech and Georgetown networks. These net-
works exhibit a medium community structure strength. Indeed, their estimated mixing parameter values are 

Figure 10.  Influence of the community membership degree. The relative difference of the outbreak size Δr 
between the standard measure and the Local measure versus the percentage of initial spreaders f0. The number 
of overlapping nodes value on is equal to 10% of the total number of the nodes.
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equal to 0.25, 0.27 and 0.31 respectively. It can be noticed on Fig. 17 that both components of the Overlapping 
Modular Centrality outperform the traditional measure for all centrality measures under test. Indeed, the local 
Betweenness performs better than the standard Betweenness with an average gain of 12%, 10% and 9% for 
Princeton, Caltech and Georgetown networks respectively as it is shown in Fig. 17(b). The global Betweenness, 
on the other hand, outperforms the traditional Betweenness with an average gain of 14%, 17% and 18% for 
Princeton, Caltech and Georgetown as it is shown in Fig. 17(b). In these networks, there is a great number of 
inter-community links connecting nodes from different communities. Thus, these links facilitate the transmission 
of the epidemic between the communities. In this case, the global influence of the nodes becomes more important 
than their local influence. Consequently, the global component performs better than the local components for 
all the centrality measures. One can see also on Fig. 17 that the performance of the global component is close 
to the performance of the local component in the Princeton network. It increases in Caltech and Georgetown 
networks that have higher mixing parameter values. Thus, the global influence of nodes grows with the number 
of inter-community links.

Experimental results with the Yeast-protein interaction network characterized by a loose community struc-
ture are reported in Fig. 18. One can see that the relative difference of the outbreak size Δr is always positive for 
the global measure, while it is always negative for the local measure. Thus, the standard measure outperforms 

Figure 11.  Influence of the community membership degree. The relative difference of the outbreak size Δr 
between the standard measure and the Global measure versus the percentage of initial spreaders f0. The number 
of overlapping nodes value on is equal to 10% of the total number of the nodes.
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the local measure, and it is less performing than the global measure for all the centrality measures. The gain of 
the global Betweenness measure over the standard Betweenness is around 16%. The local Betweenness measure, 
on the other hand, is 17% less efficient than the standard Betweenness as reported in Fig. 18(b). In this network, 
there is a large amount of inter-community links, so nodes have a big global influence. This is the reason why the 
global measure always outperforms the local measure. Moreover, the gain of the global measure gets smaller in 
this network. This is due to the weak community structure strength of this network, which leads to a decrease in 
the effectiveness of the modular-based measures.

Evaluation of the ranking methods based on a combination of the components of the overlap-
ping modular centrality.  Experimental results of the evaluation of the ranking measures based on com-
bining the Overlapping Modular Centrality components are reported in Figs 16–18. They are quite similar to 
the ones observed with synthetic networks for all the centrality measures under test. Indeed, both combination 
strategies always outperform the traditional measure and each component of the Overlapping Modular Centrality 
in any case. The modulus of the Overlapping Modular Betweenness centrality performs better than the standard 
measure with an average gain that ranges between 39% and 47% in networks with well-defined community struc-
ture (ego-Facebook, Netscience and cr-GrQc), between 30% and 35% in networks with community structure of 
medium strength (Princeton, Caltech and Georgetown) and around 24% in the Yeast-protein interaction network 

Figure 12.  Influence of the community membership degree. The relative difference of the outbreak size Δr 
between the standard measure and the Modulus measure versus the percentage of initial spreaders f0. The 
number of overlapping nodes on is equal to 10% of the total number of the nodes.
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that has a weak community structure. The weighted Overlapping Modular measure of the Betweenness centrality 
is overall the most efficient.

As expected, using a simple combination strategy allows more effective results. In addition, using relevant 
information about the communities allows obtaining even better results, as it is in the case of the Weighted 
Overlapping Modular measure. Indeed, this measure uses more information about the community structure such 
as the proportion of inter-community links of each module in the network. It incorporates also the size of com-
munities as well as the number of foreign communities attached to each node. That explains the effectiveness of 
this strategy compared to the simple modular Combination. Furthermore, we can also notice that the best results 
are obtained for networks with a well-defined community structure (ego-Facebook, Netscience and ca-GrQc). 
The performance of the combination strategies decreases with the community structure strength as observed in 
the case of Yeast-protein interaction network.

Comparison with the alternative community-based methods.  The epidemic size as a function of 
the proportion of the initial spreaders for the Overlapping Modular Centrality (modulus, local component, global 
component) and their various classical counterparts (Degree, Closeness, Betweenness, Eigenvector) is illustrated 
in Fig. 19. The performance of the alternative methods (i.e., Membership, Random-Walk Overlap Selection 

Figure 13.  Influence of the community membership degree. The relative difference of the outbreak size Δr 
between the standard measure and the Local measure versus the membership degree om. The number of 
overlapping nodes value on is equal to 10% of the total number of communities.
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RWOS and OverlapNeighborhood) is also represented in this figure. The results for the ego-Facebook network 
are reported in Fig. 19(a), while they are reported in Fig. 19(b) for the Yeast-protein interaction network. We 
choose these two networks because ego-Facebook has a well-defined community structure while Yeast-protein 
interaction has a loose community structure. The aim of this section is to compare the performance of all the 
variations of the Overlapping Modular Centrality with the alternative methods designed for modular networks 
(refer to the Materials and Methods section).

Results show that the epidemic size increases with the proportion of the initial spreaders. This is true for all the 
tested measures and for the two networks. However, this evolution is moderate in ego-Facebook network while 
it is faster in Yeast-protein interaction network. In the first network, the communities are well-separated, the epi-
demics cannot then propagate very easily between its modules. In both networks, the OverlapNeighborhood per-
forms, in most cases, as well as the standard Degree centrality. It even surpasses, in some cases, the performance 
of standard Betweenness centrality. Also, it outperforms the standard Closeness and Eigenvector centralities and 
the other alternative methods (Membership and RWOS). The OverlapNeighborhood selects randomly the neigh-
bors of the overlapping nodes. Indeed, overlapping nodes are more likely to be connected to hubs in each commu-
nity to which they belong. This is the reason why it performs as well as the standard Degree centrality. Moreover, 
for both networks, one can see in Fig. 19 that the curves of RWOS and the Membership are always located at the 

Figure 14.  Influence of the community membership degree. The relative difference of the outbreak size Δr 
between the standard measure and the Global measure versus the membership degree om. The number of 
overlapping nodes value on is equal to 10% of the total number of communities.

https://doi.org/10.1038/s41598-019-46507-y


1 8Scientific Reports |         (2019) 9:10133  | https://doi.org/10.1038/s41598-019-46507-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

bottom of all the figures. They perform poorly. These two measures do not use as much information about the 
network topology as compared to the other measures. That is why they exhibit lower performance.

Additionally, in ego-Facebook network, the local component of the Overlapping Modular Centrality outper-
forms the alternative measures. The global component is, however, more efficient than the alternative methods 

Network ego-Facebook Netscience ca-GrQc Princeton Caltech Georgetown
Yeast-protein 
interaction

μ 0.075 0.094 0.11 0.25 0.27 0.31 0.47

on(%) 8.33 7.84 23.25 7.47 4.55 15.25 33.75

m 1.89 2.01 1.65 1.74 1.066 1.41 1.078

Table 1.  The estimated mixing parameter μ, the proportion of the overlapping nodes on, and the average 
number of community memberships per node m of the real-world networks. These values are computed on the 
community structure uncovered using the SLPA algorithm.

Figure 15.  Influence of the community membership degree. The relative difference of the outbreak size Δr 
between the standard measure and the Modulus measure versus the membership degree om. The number of 
overlapping nodesvalue on is equal to 10% of the total number of communities.
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in Yeast-protein interaction network. The former network has a well-defined community structure. Nodes with 
high intra-community connections are more susceptible to infect many nodes of the network. That’s what makes 
the Local measure very efficient in ego-Facebook since it targets nodes of different nature (overlapping and 
non-overlapping) with high local influence. The second network, on the other hand, has a loose community 
structure. Nodes with high inter-community links are more likely to have the highest influence on this type 
of networks. This is the reason why the performance of the global measure outperforms alternative methods. 
Furthermore, the modulus is the most influential measure in both networks and for all the centrality measure 
under test. This combination-based method considers the local and global influence of both non-overlapping and 
overlapping nodes. Therefore, combination methods can highlight the key nodes in the diffusion process.

Influence of the community detection algorithms.  Comparison with alternative algorithms.  We 
report in this section a set of experiments on ego-Facebook and Yeast-protein interaction networks using Link 
Communities (LINKC)33 and Louvain34,35 algorithms. The first algorithm is used to test the robustness of the 
results if a different overlapping community detection method is chosen. The second algorithm is used to com-
pare the Overlapping Modular centrality with the Modular centrality since Louvain algorithm is designed for 
non-overlapping communities. Figure 20 represents the relative difference of the outbreak size between the 

Figure 16.  Relative difference of the outbreak size Δr versus the fraction of initial spreaders f0. Degree (a), 
Betweenness (b), Closeness (c) and Eigenvector (d) centrality measures are compared to their Overlapping 
Modular extensions using Real-world networks with strong community structure (ego-Facebook, Netscience 
and ca-GrQc networks). Their mixing coefficient values are equal respectively to 0.02, 0.03 and 0.11.
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Overlapping Modular centrality extensions (Degree and Betweenness centrality) and their classical counter-
parts. These measures are computed on two real-world networks: the ego-Facebook network characterized by a 
well-defined community structure, and the Yeast-protein interaction network that has a loose community struc-
ture. The estimated values of the mixing parameter and the proportion of the overlapping nodes are reported in 
Table 2.

It can be inferred from Fig. 20, that for both algorithms (LINKC and Louvain), the local component, global 
component and the modulus of the Overlapping Modular Centrality exhibit overall the same behavior than with 
the SLPA algorithm. In networks with well-defined community structure (e.g., ego-Facebook network), the local 
component performs always better than the classical one with an average gain of 33% and 20% for Degree cen-
trality, while the gain is around 23% and 19% for Betweenness centrality when employing LINKC and Louvain 
algorithms respectively. The average gain is around 37% and 26% in the case of the SLPA algorithm for both 
centrality measures. The standard measure, on the other hand, outperforms the global component for all the pro-
portions of the initial seeds. Additionally, the overall gain of the modulus of the Overlapping Modular Centrality 
is around 44% and 32% for Degree centrality, while it is around 38% and 34% for Betweenness centrality when 

Figure 17.  The relative difference of the outbreak size Δr as a function of the fraction of initial spreaders f0. 
The Degree (a), Betweenness (b), Closeness (c) and Eigenvector (d) centrality measures derived from the 
Overlapping Modular centrality are compared to the standard counterpart designed for networks with no 
community structure. Real-world networks with medium community structure (Princeton, Caltech and 
Georgetown networks) are used. The estimated values of their mixing coefficient is equal respectively to 0.22, 
0.26 and 0.3.
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using LINKC and Louvain algorithms respectively. The average gain, however, is around 46% and 42% for both 
centrality measures when using SLPA. Thus, if we compare the different overlapping community detection meth-
ods, it appears that the Overlapping Modular centrality extension based on the SLPA algorithm is slightly more 
effective. Indeed, for both algorithms, the same mixing parameter values and the proportion of overlapping nodes 
are quite similar. Therefore, in networks with a well-defined community structure, they uncover quite the same 
community structure. This is why the performance of the Overlapping Modular centrality displays roughly the 
same behavior. However, the variations of the Overlapping Modular Centrality exhibit the lowest performance 
when Louvain algorithm is used. This shows the importance of the overlapping nodes in the diffusion process.

In networks with a loose community structure (e.g., Yeast-protein interaction network), the standard measure 
is always outperforming the local component of the Overlapping Modular Centrality. The global component, 
however, performs better than the Standard centrality with an average gain of 5% and 3% for Degree centrality, 
while the gain is around 4% and 2% for Betweenness centrality when employing LINKC and Louvain algorithms 
respectively. The average gain is around 12% and 10% in the case of the SLPA algorithm for both centrality meas-
ures. The overall gain of the Modulus measure is around 14% and 10% for Degree centrality, while it is around 
13% and 7% for Betweenness centrality when using LINKC and Louvain algorithms respectively. In addition, the 
gain is around 20% and 19% for both centrality measures respectively when the SLPA algorithm is used. In this 
network, the performance of the Overlapping Modular Centrality components for the SLPA algorithm is higher 
than the ones obtained when the LINKC algorithm is employed. Indeed, the SLPA algorithm has a relatively 
smaller mixing parameter and a higher proportion of the overlapping nodes. As expected, the performance of the 
variations of the Overlapping Modular Centrality increases as the proportion of the overlapping nodes increases. 
These results are online with the ones based on synthetic networks experiments. Thus, it suggests that SLPA is 
more accurate than LINKC algorithm. The lowest performance, however, is obtained using the Louvain algo-
rithm even-though it has a smaller mixing parameter as compared to LINKC algorithm. This algorithm does not 
consider the overlapping nodes. Thus, we can conclude that taking into account the influence of the overlapping 
nodes enhances the performance of the Modular centrality components.

Moreover, the right panel of Fig. 20 reports the performance of the Weighted Overlapping and the Weighted 
non-overlapping measures for Degree and Betweenness centralities. The parameters of the Weighted Overlapping 
measures are computed using either SLPA or LINKC and are respectively called Weighted Overlapping SLPA and 
Weighted Overlapping LINKC. The parameters of the Weighted non-overlapping measure are computed using 
the Louvain algorithm. In ego-Facebook network, the Weighted Overlapping SLPA outperforms the Weighted 
non-overlapping measure with an average gain of 10% and 8% respectively for Degree and Betweenness centrality 
measures. The Weighted Overlapping LINKC performs also better than the Weighted non-overlapping measure 
with an average gain of 7% and 6% for Degree and Betweenness centrality measures. In the Yeast-protein interac-
tion network, the Weighted Overlapping SLPA performs 13% and 14% higher than the Weighted non-overlapping 
measure for Degree and Betweenness centralities respectively. In addition, the Weighted Overlapping LINKC out-
performs the Weighted non-overlapping measure with an average gain of 7% for both Degree and Betweenness 
centralities. As expected, in both networks, the Weighted Overlapping measures are more effective than the 
Weighted non-overlapping measure. Furthermore, the Weighted Overlapping SLPA has the best performance. 

Figure 18.  The relative difference of the outbreak size Δr as a function of the fraction of initial spreaders f0. 
The Degree (a), Betweenness (b), Closeness (c) and Eigenvector (d) centrality measures derived from the 
Overlapping Modular centrality are compared to the standard counterpart designed for networks with no 
community structure. A real-world network (YeastS) with weak community structure is used. The estimated 
value of its mixing coefficient is equal to 0.47.
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Therefore, taking into account the overlaps among communities is substantial in order to highlight the influential 
spreaders in modular networks.

Overall, the results of this set of experiments show that the performance of the Overlapping Modular 
Centrality is influenced by the variations of the uncovered community structure. Whatever the community 
structure strength, the SLPA and LINKC detection algorithms present most of the time a better performance 
as compared to Louvain algorithm. Therefore, the proposed centrality exhibits a higher performance when an 
overlapping community detection is used. That shows the major role that plays the overlapping nodes in terms of 
disseminating epidemics between the communities.

Comparison with ground truth data.  We also perform a set of experiments to compare the performance of 
the Overlapping Modular Centrality measures obtained on a network where the set of communities is known 
with the case where the communities are discovered through a community detection algorithm. Two synthetic 
networks with known community structure are used: A LFR network with a well-defined community structure 
(small mixing parameter value µ = 0.1), and one with a loose community structure (large mixing parameter value 
µ = 0.6). The SLPA algorithm is used to uncover the community structure of these networks due to its effective-
ness as compared to the LINKC algorithm. The mixing parameter, the proportion of the overlapping nodes, the 
number of communities are computed once the community structure is revealed using the SLPA algorithm. The 
estimated values are listed in Table 3. Furthermore this table contains the Normalized Mutual Information (NMI) 
shared by the two community structure (ground truth, uncovered by SLPA). Note that, the more similar the 
structures the higher the NMI value.

Figure 19.  The epidemic size as a function of the fraction of initial spreaders f0. The standard and the modular 
variations of Degree, Betweenness, Closeness and Eigenvector centrality measures as well as some alternative 
measures (Membership, RWOS and Overlap Neighborhood) are tested on two real-world networks of different 
community structure strength.
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Results for the network with well-defined community structure (µ = 0.1) show that the performance of the 
Overlapping Modular centrality variations exhibits the same behavior for both SLPA and ground truth data. The 
standard measure outperforms always the Global measure while it performs less than the Local measure. In addi-
tion, combination-based measures are the most effective measures. It is also noticed from Fig. 21(a) that the per-
formance of all the measures is lower with an average value ranging from 2% to 3% for SLPA algorithm. Indeed, 
the estimated values of the proportion of the overlapping nodes, the number of the partitions and the mixing 
parameter are relatively close to the values generated by the LFR algorithm. Furthermore, the NMI parameter has 
a high value. Thus, the SLPA algorithm can roughly detect the same set of communities than the ones defined by 
the LFR algorithm. This is why the performance is quite similar.

The results of the LFR network with a loose community structure (µ = 0.6) are illustrated in Fig. 21(b). In this 
figure, the performance of the standard measure is always lower than the Global measure and higher than the 
Local measure, while the combination-based methods show the best performance for SLPA as in the case where 

Figure 20.  The relative difference of the outbreak size Δr as a function of the fraction of initial spreaders f0. The 
Degree, Betweenness centrality measures derived from the Overlapping Modular centrality are compared to 
their standard counterparts. The measures are performed on ego-Facebook network in (a) and Yeast- protein 
interaction network in (b) for the SLPA, LINKC and Louvain algorithms.

Network Metric

Detection algorithm

SLPA LINKC Louvain

ego-Facebook

μ 0.075 0.096 0.03

on(%) 8.33 7.09 0

m 1.89 1.37 0

Yeast-protein interaction

μ 0.47 0.51 0.49

on(%) 33.75 6.03 0

m 1.078 1.64 0

Table 2.  The estimated mixing parameter μ, the proportion of the overlapping nodes on, and the average 
number of the community membership m in ego-Facebook and Yeast-protein interaction networks.
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the community structure of the LFR network is known. However, the Overlapping Modular Centrality variations 
have a lower performance with an average value of 7% for SLPA algorithm. The estimated parameters for the 
SLPA algorithm are quite different than the ones generated by the LFR algorithm. Moreover, the NMI value is 
very small. Therefore, the communities revealed by the SLPA are quite different than the set of communities gen-
erated by the LFR algorithm. This is why the performance of the extensions of the Overlapping Modular centrality 
is lower when the SLPA algorithm is used. This experiment shows that when the communities are discovered 
through a community detection algorithm, the performance of the Overlapping Modular centrality variations 
may vary as compared to the case when the set of communities are known. The highest variations are noticed in 
the case of networks with non-cohesive community structure. Indeed, the weaker the community structure the 
more difficult it is to uncover it.

Summary.  In this paper, we performed a series of experiments on real-world networks of various nature 
covering all the range of community structure strength. The SLPA algorithm is used to uncover the overlap-
ping communities of the network. Results show that the performance of the Overlapping Modular centrality 
versions of the four tested centralities exhibits the same behavior as for synthetic networks. Indeed, the Local 
component shows its best performance in networks with well-defined community structure, while the Global 
component shows its best performance in networks with medium and weak community structure strength. 
Moreover, combination-based measures outperform all the other measures in all the different types of networks. 
These results corroborate the conclusions we made with the synthetic networks. The second part of the exper-
iments aims to compare the Overlapping Modular centrality together with their classical counterparts with 
some alternative measures (Membership, RWOS and OverlapNeighborhood). Experimental results show the 
OverlapNeighborhood performs, in most cases, as well as the standard Degree centrality and surpasses in some 
cases the standard Betweenness centrality. The other alternative measures (RWOS and the Membership) display 

Network Metric Ground truth SLPA

LFR (μ = 0.1)

μ 0.1 0.141

on(%) 10 12

Nc 110 130

NMI 0.601

LFR (μ = 0.6)

μ 0.6 0.546

on(%) 10 6.2

Nc 74 197

NMI 0.178

Table 3.  μ is the estimated mixing parameter. on is the proportion of the overlapping nodes. Nc the number of 
communities membership. NMI is the Normalized Mutual Information shared by the two community structure 
(ground truth, uncovered by SLPA).

Figure 21.  The relative difference of the outbreak size Δr as a function of the fraction of initial spreaders f0. The 
Degree (a), Betweenness (b) centrality measures derived from the Overlapping Modular centrality are 
compared to their standard counterpart. Two synthetic networks (LFR) with respectively well-defined (μ = .0 1) 
and loose community structure (μ = .0 6) are used. The measures are performed using the SLPA detection 
algorithm.
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a lower performance. This is due to their use of limited information about the network topology as compared to 
the other measures. Another set of experiments is performed to show the influence of the community detection 
algorithm choice on the performance of the Overlapping Modular centrality. We use the LINKC algorithm to 
test the robustness of the results if a different overlapping community detection algorithm is chosen. We used 
also the Louvain algorithm which is designed to uncover non-overlapping communities in order to compare the 
Overlapping Modular centrality with the Modular centrality. In networks with well-defined community structure, 
results show that the performance of the Overlapping Modular centrality does not vary significantly when the 
LINKC algorithm is used. This is due to the fact that both algorithms reveal about the same set of communities. 
However, the performance of the Overlapping Modular centrality variations decreases for LINKC algorithm in 
networks with loose community structure. In this case, the community detection algorithms uncover different 
sets of communities. Furthermore, whatever the community structure strength, the Overlapping Modular cen-
trality (using SLPA or LINKC) outperforms the Modular centrality (using Louvain). Therefore, the overlapping 
nodes play a major role in terms of disseminating epidemics between the communities.

Conclusion
A new framework allowing to extend classical centrality measures to overlapping modular networks is intro-
duced. Our approach is inspired by the idea that one needs to consider two types of influences for a node in 
a modular network: a local influence on the nodes belonging to their communities exerted through the 
intra-community links, and a global influence on the nodes of the remaining communities that goes through the 
inter-community links. Therefore, in overlapping modular networks, centrality measures need to be represented 
by a two-dimensional vector that we call the “Overlapping Modular centrality”. One component measures the 
local influence of the node, while the other measures its global influence. A series of experiments have been 
performed in order to test the effectiveness of the Overlapping Modular centrality extensions as compared to 
their counterpart defined for networks with no community structure. Considering the most influential centrality 
measures (Degree, Betweenness, Closeness, Eigenvector), the local and global components have been evaluated 
separately. Additionally, a straightforward combination of both components (modulus of the two-dimensional 
vector) has been tested. Another combination based method (Weighted Overlapping Modular centrality) that 
uses additional knowledge about the community structure topology has been also evaluated. Experiments have 
been conducted on synthetic and real-world networks using the SIR epidemic model. Results show that the 
spreaders identified by the proposed approach are more influential than those targeted by the centrality measures 
designed for non-modular networks. Furthermore, investigations conducted on synthetic networks show that the 
performance of the Overlapping Modular Centrality increases with the proportion of the overlapping nodes and 
their community membership degree. Comparisons with alternative centrality measures designed for modular 
networks are in favor of the proposed framework. Additionally, experiments performed on real-world networks 
with various community detection algorithms show that the Overlapping Modular Centrality is very robust to 
community structure variations, and it demonstrates the importance of the overlapping nodes in the epidemic 
spreading process.

Materials and Methods
SIR simulations.  The performance of the centrality measures is evaluated based on the SIR epidemiological 
model36,37. Each node can be in one of the three states: Susceptible (S), Infected (I) and Recovered (R). Starting 
with all the nodes in the susceptible state, a given proportion f0 of the top-ranked nodes according to the centrality 
measure under test are infected. At each iteration, the infected nodes can transmit the infection to their suscep-
tible neighbors with the infection rate λ. Infected nodes can recover with a recovery rate γ and they cannot be 
infected again. The process stops when there are no more infected nodes. The total number of recovered nodes is 
recorded to measure the effectiveness of the immunization strategy. The higher this value, the more efficient the 
method.

The value of the transmission rate λ is chosen to be greater than the network epidemic threshold λth in order 
to better characterize the spreading capability, it is defined as38:

λ =
〈 〉

〈 〉 − 〈 〉
k

k k (2)
th 2

where 〈 〉k  and 〈 〉k2  are respectively the first and second moment of the degree distribution. The epidemic threshold 
values λth of the networks used in this paper are reported in Table 5. The same transmission rate value (λ = .0 1) 
is used in all the experiments. It is higher than the epidemic threshold λth values of all the data collection used in 
this work. The value of the recovery rate γ is set to 0.1. This small value is chosen in order to give more chances to 
infected nodes to infect their neighbors (with the probability λ) before turning to the recovered status.

Generation of synthetic networks.  The LFR (Lancichinetti, Fortunato and Radicchi) algorithm30 is used 
to produce synthetic networks. It guarantees networks with realistic features39. It allows also to control various 
parameters, such as the mixing parameter μ. This parameter controls the strength of the community structure. It 
is defined as the ratio of the number of external neighbors of a node to the total degree of the node. As this value 
becomes smaller, the community structure becomes stronger (a small proportion of the inter-community links), 
making community identification an easy task. The LFR algorithm allows to control the number of overlapping 
nodes on and their membership number om (the number of communities to which they belong). Previous studies 
showed that the typical value of the degree distribution exponent usually ranges from 2 to 3 in real-world net-
works. We choose some consensual values for the parameters that are reported in Table 4.
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Empirical networks.  Some topological properties such as transitivity and degree correlation cannot be con-
trolled in networks generated by the LFR algorithm. They may differ considerably from those observed in real 
networks39,40. Consequently, one must perform experiments with real-world networks in order to validate the 
synthetic network’s results. We choose to use networks originating from various fields such as social networks, 
collaboration networks, and biological networks in order to have exhaustive results. Experiments are performed 
on undirected and unweighted networks and only on their largest connected component. In order to uncover the 
overlapping community structure of these networks, the Speaker-Listener Label Propagation Algorithm SLPA41 
is used. We choose this algorithm because it is one of the highly ranked algorithms according to the Normalized 
Mutual Information (NMI) measure42. Furthermore, previous studies show that it is a good compromise when 
used on networks of various origin31. For more information about the networks report to12,43–46.

•	 Social networks: We use four Facebook networks: the Facebook friendship network at 3 US universities 
(Caltech, Princeton and Georgetown) collected by Traud et al.44 and the ego-Facebook network based on 
a survey of users of the Facebook app.43. Nodes represent individuals and there is a link between two nodes 
when two individuals are friends online.

•	 Collaboration network: Two collaboration networks are used. General Relativity and Quantum Cosmology 
collaboration network GR-QC46 covers scientific collaborations between authors of papers submitted to the 
General Relativity and Quantum Cosmology category. There is an edge between two authors if they co-au-
thored a paper.
Netscience12 is a co-authorship network of scientists whose research centers on network theory and experi-
ment. Nodes represent authors and edges join individuals that co-authored a paper.

•	 Biological network: The Yeast-protein interaction45 is a network formed of protein interactions contained 
in yeast. A node represents a protein and an edge represents a metabolic interaction between two proteins.

Table 5 reports the basic topological properties of real-world networks.

Alternative centrality measures designed for modular networks.  The centrality measures pre-
sented below are the most efficient for ranking nodes according to various community structure properties. Note 
that purely random strategies are not considered because their performance is generally well-below the determin-
istic strategies based on node ranking.

Membership centrality.  This measure24 counts the number of communities of a node. If the membership of a 
node vi is greater than 1 it belongs to an overlapping region. Experimental results using the SIR model have shown 
that this centrality measure outperforms degree, coreness and betweenness centrality measures in networks with 
dense communities under high infection rates.

Random-walk overlap selection (RWOS).  This method proposed by F. Taghavian et al.25 selects the overlapping 
nodes according to a random walk. It starts by defining the list of the overlapping nodes extracted from the 

Network N E 〈k〉 kmax C λth

ego-Facebook 4039 88234 43.69 1045 0.605 0.009

Netscience 1589 2742 3.45 34 0.74 0.052

ca-GrQc 4158 13428 5.53 81 0.529 0.059

Princeton 5112 28684 88.93 628 0.298 0.006

Caltech 620 7255 43.31 248 0.443 0.012

Georgetown 7651 163225 90.42 1235 0.268 0.006

Yeast-protein interaction 1870 2277 2.43 56 0.051 0.095

Table 5.  Basic topological properties of the real-world networks. N is the number of nodes, E is the number of 
edges. 〈k〉 is the average degree, kmax is the max degree. C is the average clustering coefficient. λth is the epidemic 
threshold.

Number of nodes 4000

Average degree 10

Maximum degree 20

Exponent for the degree distribution 2.7

Exponent for the community size distribution 2.5

Mixing parameter 0.1, 0.4, 0.6

Proportion of overlapping nodes [5, 50]%

Membership degree [5, 30]%

Table 4.  LFR network parameters.

https://doi.org/10.1038/s41598-019-46507-y


27Scientific Reports |         (2019) 9:10133  | https://doi.org/10.1038/s41598-019-46507-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

communities. Then, a random-walk is run from a node selected at random. If a visited node is an overlapping 
node, it is then considered as an influential spreader, otherwise, the random-walk proceeds. The aim of this 
method is to target the high degree overlapping nodes. SIR simulations have shown that RWOS performs better 
than the most efficient local methods using a limited amount of information such as CBF14 and BHD15. In addi-
tion, it performs nearly as good as Degree and Betweenness centrality especially in networks with well-defined 
community structure and with high overlap membership values.

OverlapNeighborhood.  This method26 targets the immediate neighbors of overlapping nodes as the top influ-
ential spreaders. Its main objective is to select the most highly connected nodes using a limited amount of 
information at the community level. Indeed, there is a high probability that nodes with very high connections 
are neighbors to overlapping nodes since they are part of more than one community. Experiments revealed 
that it outperforms CBF, BHD and RWOS methods. Furthermore, it performs better or as well as Degree and 
Betweenness centrality measures without the need to know the overall network structure.

Modular centrality.  In a previous work29, we introduced a framework to extend centrality measures designed 
for non-modular networks to networks with non-overlapping communities. In this case, centrality is represented 
by a two-dimensional vector called the Modular centrality. One dimension measures the local influence of a 
node while the other measures its global influence. Results have shown that derived ranking measures based 
on combining the two components of the Modular centrality outperform the traditional centrality measures. 
Better results have been obtained by using more information about the topological properties of the communities. 
However, this measure is not appropriate for modular networks containing nodes that can belong to multiple 
communities.

Combining the components of the overlapping modular centrality.  In order to obtain a ranking 
list based on the Overlapping Modular Centrality two-dimensional vector, a ranking measure need to be derived. 
We consider a straightforward combination and a more sophisticated one that integrates additional topological 
properties of the community structure. At first we propose to rank the nodes according to the modulus of the 
Overlapping Modular Centrality components. The modulus r of the Overlapping Modular centrality vector BOM 
of a node vi is defined as follows:

β β= = + ∈ … ∈ …r v B v v v y z q p( ) ( ) ( ( )) ( ( )) {1, , } and {1, , } (3)i OM i L i
y

G i
q2 2

where βL is the Local measure and βG is the Global measure.
Note that no knowledge is used about the communities topological properties. We consider the so-called 

“Weighted Overlapping Modular Centrality”. This second measure is a weighted linear combination of the local 
and the global components of the Overlapping Modular centrality that incorporates more knowledge about the 
communities.

Let’s consider an epidemic starting at the core of a community. It can propagate easily to the network if the 
community is tightly connected to the others, while it may stay in the community if this one is well isolated. 
Therefore, the diffusion capacity of a node is dependent on its position in its community and also to the inter-
actions that its community has with the rest of the network. Based on this idea, we propose a ranking measure 
that can adapt to the node environment. Its local component is weighted by the community size in order to give 
more weight to the hubs located in the biggest communities. The global component is weighted by the number 
of neighboring communities. The goal is to target the nodes allowing to reach a great number of communities 
through numerous connections. The Weighted Overlapping Modular centrality measure for a given node vi is 
then given by:

β = + ∈ … ∈ …v h v b v y z q p( ) ( ) ( ) {1, , } and {1, , } (4)w i i
y

i
q
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where SMy
 is the size of the local neighborhood My ( =S card M( )M yy

). N is the size of the network. α v( )i
q  is the 

number of the neighboring communities connected to the node vi
q while nc is the total number of communities in 

the network. ρ is the fraction of the inter-community links of the local neighborhood My. It is defined as follows:
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∑
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where k v( )i  is the degree of node vi and k v( )inter
i  represents the number of inter-community links of node vi.

This measure performs as follows:
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•	 If the node vi belongs to a local neighborhood (or a community in the case of a non-overlapping node) in a 
network with a well-defined community structure, then the value of ρ is small. In this case, the local measure 
gets more weight, and the Weighted Overlapping Modular measure favors the community hubs.

•	 If the node vi belongs to a local neighborhood (or a community in the case of a non-overlapping node) in a 
network with a loose community structure, then ρ has a high value. More importance is given to the global 
measure and the Weighted Overlapping Modular measure favors the nodes with a high amount of inter-com-
munity links that can diffuse the epidemic all over the network.

Data Availability
The datasets used in this article are all publicly available and cited in the references.
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