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Abstract Although community structure is ubiquitous in complex networks, few
works exploit this topological property to control epidemics. In this work, devoted
to networks with non-overlapping community structure (i.e, a node belongs to a
single community), we propose and investigate three global immunization strate-
gies. In order to characterize the influence of a node, various pieces of information
are used such as the number of communities that the node can reach in one hop,
the nature of the links (intra community links, inter community links), the size
of the communities, and the interconnection density between communities. Nu-
merical simulations with the Susceptible-Infected-Removed (SIR) epidemiological
model are conducted on both real-world and synthetic networks. Experimental
results show that the proposed strategies are more effective than classical alterna-
tives that are agnostic of the community structure. Additionally, they outperform
alternative local and global strategies designed for modular networks.
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1 Introduction

Epidemic outbreaks represent a tremendous threat to human life, since we live1

in an ever more connected world. Immunization through vaccination is a solution2

that protects individuals and prevents them from transmitting infectious diseases3

to other people living in the same social group. However, immunizing every indi-4

vidual in the society may prove impossible in cases where time or resources are5

limited. To address this problem, immunization strategies are the essential tech-6

niques to decrease the chances of epidemic outbreaks. It aims to immunize a few7

key nodes to achieve effectively the goal of reducing or stopping the spread of8

infectious diseases. Immunization strategies can be classified into two categories:9

global or local immunization strategies. Global immunization strategies require10

the knowledge of the entire network, hence their effectiveness. They consist of11

ranking nodes according to a specific centrality measure like Degree or Between-12

ness centrality. Nodes with high centrality measure are targeted for immunization.13

Local immunization strategies are another group of immunization methods. They14

are more or less agnostic about the topological structure of networks. In these15

strategies, target nodes are found via local search. They require information only16

at node level to find the targeted nodes for immunization.17

The structure of networks is crucial in explaining epidemiological patterns.18

In the past few years, many immunization strategies have been developed using19

various topological properties of the network in order to mitigate and control the20

epidemic outbreaks. Despite the fact that there is clear evidence that many social21

networks show marked patterns of strong community structure [1,2,3,4], this prop-22

erty needs more consideration. A network with a strong community structure con-23

sists on cohesive subgroups of vertices that share many connections with members24

of their group and few connections with vertices outside their group. Bridge nodes25

are the ones that link different communities. They create a pathway of spread-26

ing disease outside of their community. Their influence on epidemic spreading has27

been particularly investigated in previous works [5,6,7,8]. Indeed, immunization28

of these nodes allows confining the disease into the community where it starts.29

However, one must not neglect the importance of the highly connected nodes em-30

bedded into their community on the epidemic spreading process. In real-world31

networks, the community structure strength can range from strong community32

structure (few inter-community links) to weak community structure (high pro-33

portion of inter-community links). The immunization strategies proposed in the34

previous studies aim at targeting the key spreaders in networks with community35

structure. However, either they do not exploit the community structure strength36

or they do not use it properly. That is the reason why they are not suitable for37

all types of networks. To solve this issue, we propose to make better use of the38

information about the community structure in order to develop new immunization39

strategies. The three immunization strategies presented in this work are intended40

for various types of networks with community structure strength ranging from41

well-defined to non-cohesive community structure. Our aim, therefore, is to relate42

the impact of the community structure strength to the choice of an appropri-43

ate immunization strategy. Additionally, our goal is to show that engaging more44

topological properties of the community may enhance also the performance of the45

immunization strategies.46
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In this work, we restrict our attention to networks where each node belongs47

to a single community. We also use a global approach. In other words, for each48

node of the network, an influence measure is computed and the nodes are ranked49

and immunized according to this measure. Thus, we propose and evaluate three50

methods:51

i) The first proposed method targets nodes having a big inter-community influence.52

It is measured by the number of neighboring communities linked to the node.53

ii) The second immunization method targets nodes which could have at the same54

time a high influence inside and outside their communities. Greater importance55

is given to those belonging to large communities since they could affect more56

nodes. This strategy is based on a weighted combination of the number of intra-57

community and inter-community links of each node in the network.58

iii) The third method has the same objectives as the previous one. It is designed59

in order to take also into account the density variation of the communities.60

The remainder of this paper is organized as follows. We preview the necessary61

background in Section 2. In Section 3, related works and immunization strategies62

are introduced. In Section 4, the proposed community-based strategies are defined.63

Section 5 introduces the experimental setting used in this work. In Section 6, the64

experimental results are presented. Finally, section 7 serves as a conclusion to the65

paper.66

2 Background67

In this section, we recall the definition of the immunization strategies that are68

used to mitigate an epidemic outbreak. In addition, we present the model used to69

simulate the epidemic spreading process in order to evaluate the performances of70

the different methods in the context of transmission dynamics. At least, a short71

outline of the community detection studies is presented.72

2.1 Epidemiological model73

The susceptible-infected (SI) and susceptible-infected-removed (SIR) models are74

widely used for infection dissemination and information diffusion in different fields.75

In this paper, we employ the SIR model to estimate the spreading capabilities of76

the nodes.77

The SI model [9] is considered as the simplest form of all epidemic models.78

In this model, a node has only two possible states: a susceptible (S) or a infected79

(I) state. The model can be represented by the compartment diagram shown in80

Figure 1 (a). At first, all nodes are set to the susceptible state (individuals are81

with no immunity). After that, the state of a small proportion of nodes selected82

by a given immunization strategy is set to the infected state. At each time step,83

an infected node can infect its susceptible neighbors with the transmission rate λ.84

This process ends when there is no susceptible node in the network.85

The Susceptible-Infected-Recovered (SIR) epidemic model [10,11] is used to86

simulate the spreading process in networks. In this model, there are three states87

for each node: susceptible (S), infected (I) and recovered (R). The infection mech-88

anism of the SIR model is shown in Figure 1 (b). Initially, targeted nodes are89
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Fig. 1 The infection mechanism of the classic (a) SI model (b) SIR model.

chosen according to a given immunization strategy until a desired immunization90

coverage of the population is achieved, and their state is set to resistant R. All91

remaining nodes are in S state. After this initial set-up, infection starts from a92

random susceptible node. Its state changes to I. At each time step, the epidemic93

spreads from one infected node to a neighboring susceptible node according to the94

transmission rate of infection λ. Furthermore, infected nodes recover at rate γ, i.e.95

the probability of recovery of an infected node per time step is γ. If recovery oc-96

curs, the state of the recovered node is set from infected to resistant. The epidemic97

spreading process ends when there is no infected node in the network. After each98

simulation, we record the total number of recovered nodes (the epidemic size).99

2.2 Immunization strategy100

The goal of an immunization strategy [12] is to reveal the set of the most influ-101

ential spreaders in a given network. According to the amount of information they102

require about the overall structure of the network, they can be classified into two103

categories: Global and Local strategies. The first type of strategies requires infor-104

mation of the whole network topology, while the second group of strategies needs105

only the knowledge of network structure at node level.106

Global immunization strategies are based on an ordering of all the nodes in107

the network in order to immunize them according to their rank. To do so, a so-108

called centrality measure is computed for each node of the network. It quantifies109

its ability to disseminate the disease inside the network. Degree and Betweenness110

are the most commonly used centrality measures to rank the nodes. Nodes are111

then targeted in the decreasing order of their rank from most central to less cen-112

tral node. Since all the nodes are involved in this process, the knowledge of the113

entire network is then required for these strategies. Local immunization strategies114

on the other hand are agnostic about the global structure of the network. They115

can operate with a very limited amount of information about a node. The most116

straightforward local strategy is uniform immunization that targets nodes in a to-117

tally random way without any information. Acquaintance [13] is another popular118

local immunization strategy which selects random neighbors of randomly selected119

nodes and immunizes them if they have been selected n times. Usually, global120
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strategies perform better than local strategies since they can use more informa-121

tion about the topological properties of networks. Howevever, the local strategies122

are usually computationally more efficient.123

2.3 Community structure124

Many real-world networks exhibit a community structure, i.e , their nodes are125

organized into modules, called communities. The first definitions of the commu-126

nity structure were proposed by the Social network analysts. They studied the127

structure of subgraphs. The Clique is the most prevalent concept [14]. A clique128

is a complete subgraph such that everyone of its nodes is associated with all the129

others. In general, communities are not complete graphs. In addition, in a clique130

all nodes have identical role, while some nodes are more important than others131

in communities, due to their heterogeneous linking patterns. Thus, this notion132

cannot be viewed as an appropriate candidate for community definition. A very133

widespread informal definition of the community concept considers it as a densely134

interconnected group of vertices compared to the other vertices [15]. A community135

is then a cohesive subset of nodes sparsely connected with the rest of the net-136

work. This view has been challenged, recent works [16,17,18,19] has shown that137

communities may overlap as well. Some of the vertices can be shared by several138

communities. In social networks for instance, individuals can take part to different139

groups at the same time, such as work colleagues, friends or family.140

Identifying the communities in networks may offer a clear idea on how the141

network is organized. We can actually distinguish between nodes that are totally142

embedded inside their groups and nodes that are located at the boundary of the143

groups. These nodes may act as brokers between the communities of the networks144

and could play a major role in the dynamics of spreading processes across the145

network. Community detection in networks, also called network partitioning or146

clustering is a not well characterized problem. Formal definitions may differ in the147

way they consider these aspects of cohesion and separation of communities. There148

is therefore no universal definition of the modules that one should be looking for.149

Such ambiguity leaves a lot of freedom to propose various community detection150

algorithms implementing differently the notion of community structure. In this151

section, we present a representative set of methods and classify them according to152

the approach they apply to uncover the communities.153

2.3.1 Modularity based algorithms154

Modularity is a widespread measure introduced by Newman and Girvan [20,21],155

which measures the quality of a community structure. It assesses the internal156

connectivity of the identified communities through the number of intra- and inter-157

community links. Modularity optimization based algorithms tend to identify the158

best community structure in terms of modularity.159

FastGreedy [22] is based on a greedy optimization approach. It starts with a160

state in which each node constitutes its own community. The algorithm repeatedly161

merges pairs of communities together to obtain larger ones. At each step, the joined162

communities are selected by considering the largest increase (or smallest decrease)163



6 Zakariya Ghalmane et al.

in modularity. FastGreedy produces a hierarchy of community structures. The best164

one is the one obtaining the maximal modularity.165

Louvain proposed by Blondel et al. [23] is another optimization algorithm.166

It relies on an improvement greedy optimization process. It includes a additional167

agglomerative phase to improve the optimization approach. Initially as for Fast-168

Greedy, each node constitutes its own community. After that, a greedy optimiza-169

tion algorithm is applied to identify the communities. The second step consists170

on forming a new network, where nodes represent the communities found during171

the first phase. The inter-community links are aggregated and represented as links172

between the new nodes, while the intra-community links are represented by self-173

loops. The first phase is repeated to the new network, and the process ends when174

stable communities are reached.175

2.3.2 Random-walk based algorithms176

Various algorithms utilize random walks in different ways in order to identify com-177

munities in networks. In this work, we have retained one of the most influential178

algorithm from this class.179

WalkTrap [24] uses a hierarchical agglomerative clustering approach as for Fast-180

Greedy, but with a different fusion criterion. It uses a distance measure based on181

random walks. This algorithm is based on the idea that random walks tend to182

get trapped into a community. If two nodes i and j are in the same community,183

the probability to get to a third node k located in the same community through184

a random walk should not be very different for both of them. The distance is185

constructed by summing these differences over all nodes, with a correction for186

degree.187

2.3.3 Information based algorithms188

The goal of these algorithms is to use the community structure so as to represent189

the network using less information than that interpreted by the full adjacency190

matrix. We retained two algorithms from this class.191

InfoMod was proposed by Rosvall et al. [25], which uses a community matrix192

and a membership vector as simplified representation of the network focusing193

on the community structure. The first one is an adjacency matrix representing194

communities instead of nodes, while the second one is a vector associating each195

node to a community. This algorithm uses the mutual information measure in order196

to measure the quantity of information from the original network contained in the197

simplified representation. The best assignment among all possible assignment of198

nodes to communities is the one associated with the maximal mutual information.199

InfoMap [26] is another algorithm proposed by the same authors. It tends to200

find the set of nodes (named communities) containing high intra-module informa-201

tion flow and low inter-module information flow. The InfoMap algorithm is based202

on a map equation. It is based on the information flow used to find a compressed203

representation of a set of random walks through a graph. The partitions with high204

quality are found by minimizing the quantity of information needed to represent205

some random walk in the network. Indeed, the walker will probably stay longer206

inside communities in a partition containing few inter-community links.207
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3 Related work208

Immunization strategies aim to immunize a few key nodes to effectively achieve the209

goal of reducing or stopping the spread of infectious diseases. They can be classi-210

fied as local or global strategies. In local immunization strategies, local information211

about randomly selected nodes is used in order to identify target nodes. As they212

do not need any information about the full network structure, they can be used213

in situations where it is unavailable. In global strategies, for each node of the net-214

work, one compute a measure of influence using local or global measure. Nodes are215

then ranked and immunized according to their influence value. Researchers have216

begun to pay more attention to the community structure in terms of epidemic217

dynamics [16,27,28,29,30]. Local and global strategies based on the community218

structure characteristics have been proposed. They can be categorized into two219

groups. The first group is based on topological properties of non-overlapping com-220

munity structure, while the second group uses the overlapping community struc-221

ture features (i.e, a node could belong to multiple communities). We give a brief222

overview covering both types of strategies in order to highlight how communities223

can be advantageously used. However, experimental investigations are restricted224

to strategies designed for non-overlapping community structure which represents225

the focus of this study.226

3.1 Local immunization strategies227

These strategies target the most influential nodes using local information around228

randomly selected nodes. Their main advantage is that they require only a limited229

amount of information about the network topology. We present two local methods230

based on non overlapping community structure and one strategy designed for231

overlapping communities.232

3.1.1 Community Bridge Finder (CBF)233

Proposed by Salathe et al. [31], it is a random walk based algorithm designed to234

search for bridge nodes. The basic idea is that real-world networks exhibit a strong235

community structure with few links between the communities.236

The CBF algorithm works as follows:237

Step 1: Select a random node vi=0 and follow a random path.238

Step 2: vi−1(i�2)
is considered as a potential target if there is not more than239

one connection from vi to any of the previous visited nodes.240

Step 3: Two random neighboring nodes of vi are picked (other than vi−1). If241

there is no connections back to the previously visited nodes vj≺i then, the poten-242

tial target is marked as a bridge and it is immunized. Otherwise, a random walk243

at vi−1 is taken back.244

Therefore, when a walker reaches a node in another community, he is no longer245

linked to previously visited sites. Comparisons have been performed with the Ac-246

quaintance strategy (A node is selected at random and one of its randomly selected247

neighbors is immunized). Extensive tests conducted on real-world and synthetic248
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networks using the SIR epidemic model show that CBF performs mostly better, of-249

ten equally well, and rarely worse than the Acquaintance strategy [13]. It performs250

particularly well on networks with strong community structure.251

3.1.2 Bridge-Hub Detector (BHD)252

The Bridge-Hub Detector [32] is another variant of CBF strategy. It targets bridge253

hub nodes for immunization by exploring friendship circles of visited nodes. The254

procedure of the BHD algorithm can be specified as follows:255

Step 1: Select a random node vi=0 and follow a random path.256

Step 2: Let vi be the node selected after i walks, and fi be the set of all257

neighbors of the node vi. The node vi is targeted for immunization if there is at258

least a node in fi that is not a member in the set Fi−1 and that is not connected259

to the nodes in Fi−1 where Fi−1 = f0
⋃
f1

⋃
f2

⋃
...

⋃
ft−1. Otherwise, vi will not260

be targeted for immunization and Fi will be updated to Fi = Fi−1
⋃
fi.261

Step 3: One node vH is randomly selected for immunization among the nodes262

in fi that do not belong and could not be linked back to Fi−1.263

Therefore, a pair of nodes, a bridge node and a bridge hub, are targeted for im-264

munization via a random walk. BHD was applied on simulated and empirical265

data constructed from social network of five US universities. Experimental results266

demonstrate that it compares favorably with Acquaintance and CBF strategies.267

Indeed, it results in reduced epidemic size, lower peak prevalence and fewer nodes268

need to be visited before finding the target nodes.269

3.1.3 Random-Walk Overlap Selection (RWOS)270

This random walk based strategy [33] targets the high degree overlapping nodes.271

The RWOS algorithm works as follows:272

Step 1: Define the list of overlapping nodes Lover obtained from known or273

extracted communities.274

Step 2: A random walk is followed starting from a random node vi=0 of the275

network.276

Step 3: The visited node vi is nominated as a target for immunization if it be-277

longs to the list of overlapping nodes Lover, otherwise, the random-walk proceeds.278

Simulation results on synthetic and real-wold networks with the SIR epidemic279

model show that the proposed method outperforms CBF and BHD strategies.280

In some cases it has a smaller epidemic size compared to the membership strat-281

egy where overlapping nodes are ranked according to the number of communities282

they belong to. In particular, its performance improves in networks with strong283

community structures and with greater overlap membership values.284

3.1.4 Summary285

Results show that local methods designed for networks with community structure286

are more efficient that classical local strategies. Key contributions of these works287

is to demonstrate that it is important to better take into account the modular288

organization of real-world networks in order to develop efficient immunization289

strategies. Note, however, that local methods are not as efficient as global ones.290
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Their main advantage is that they do not require a full knowledge of the global291

structure of the network.292

3.2 Global immunization strategies293

Nodes are immunized according to a rank computed using a specific influence294

(centrality) measure. Immunization aims to target nodes with high centrality due295

to their big influence. The majority of known methods make use of the structural296

information either at the microscopic or at the macroscopic level to characterize the297

node importance. These strategies such as Degree and Betweenness immunization298

strategies are very effective but they require the knowledge of the topology of the299

entire network. Refer to [34] for a comprehensive survey on the subject. Given that300

the influence of a node depends only on (i) the network’s topology, and (ii) the301

disease model, and that a vast majority of real-world networks exhibit a modular302

organization, some global methods have been developed lately for such networks.303

3.2.1 Comm strategy304

Gupta et al. [35] proposed a new method called the Comm strategy. Nodes are305

ranked using both the number of intra- and inter-community links, which respec-306

tively link to nodes inside and outside the community. The purpose of this is307

to rank nodes that are both hubs in their community and bridges between com-308

munities. In this measure, the number of inter-community links is raised up to309

power two while the number of the intra-community links is not raised to give310

more importance to bridges. Results on synthetic and real-world networks show311

that the Comm based strategy can be more effective than degree and betweenness312

strategies. However, it gives significant importance to the bridges compared to the313

community hubs. Yet, the hubs are commonly believed to be also influential nodes314

as they can infect their many neighbors [36,37]. In some cases, they may play a315

very major role in the epidemic spreading.316

3.2.2 Membership strategy317

Hebert-Dufresne et al. [38] proposed an immunization strategy based on the over-318

lapping community structure of networks. Nodes are targeted according to their319

membership number, which indicates the number of communities to which they320

belong. Experiments with real-world networks of diverse nature (social, technolog-321

ical, communication networks, etc.) and two epidemiological models show that this322

strategy is more efficient as compared to degree, coreness and betweenness strate-323

gies. Furthermore, its best performances are obtained for high infection rates and324

dense communities.325

3.2.3 OverlapNeighborhood strategy (ON)326

Kumar et al. [39] proposed a strategy based on overlapping nodes. It targets im-327

mediate neighbors of overlapping nodes for immunization. This strategy is based328

on the idea that high degree nodes are neighbors of overlapping nodes. Using a329
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limited amount of information at the community structure level (the overlapping330

nodes), this strategy allows to immunize high degree nodes in their respective331

communities. Experiments conducted on four real-world networks show that this332

immunization method is more efficient than local methods such as CBF [40,41],333

BHD and RWOS methods. It also performs almost as well as degree and between-334

ness strategies while using less information about the overall network structure.335

3.2.4 Community-Based Betweenness strategy (CBB)336

In [42] Kitromilidis et al. define a strategy based on Community-based Between-337

ness measure, which is a redefinition of the standard Betweenness centrality. In338

this measure only paths that start and finish in different communities are taken339

into consideration. This strategy was used in order to characterize the influence of340

Western artists. It is based on the idea that an influential painter is the one who341

promotes the flow of ideas through different communities. Using a painter collab-342

oration network where links represent biographical connections between artists,343

they compared Betweenness with its classical version. Results show that the cbb344

performs better than the standard Betweenness. The modified centrality measure345

allows to highlight influential nodes who might have been missed as they do not346

necessary rank high in the standard measure.347

3.2.5 Community-Based Mediator Strategy (CBM)348

This immunization method is based on Community-Based Mediator measure [43].349

The idea behinds this strategy is that if an individual has many links in several350

communities, he can then play significant role to diffuse information around his351

circle. This method selects the most intermediate nodes which receive and dis-352

seminate information through the communities than other nodes. It combines the353

influence of the Degree and the Betweenness of the nodes in the network. The354

CBM measure is defined as follows:355

CbMi = Hi
di∑N
i=1 di

(1)

Where Hi is the entropy of the node i. It is defined by the following formula:356

Hi =
[
−
∑

ρini log(ρini )
]

+
[
−
∑

ρexi log(ρexi )
]

(2)

Where ρini represents the fraction of links connected to i inside its community,357

while ρexi indicates the fraction of outgoing links from node i to nodes belonging358

to other communities. The entropy is used to find nodes that have a balance359

between the ability of diffusing the information in the network. The experimental360

results have shown that nodes with high CbM value have a greater impact to361

spread information in the network than nodes having a high Degree, Betweenness,362

CbC, PageRank or Eigenvector value.363
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3.2.6 Summary364

Globally, experimental results demonstrate that the global strategies described365

above can reach the efficiency of classical strategies that are agnostic about the366

community structure while using less information. However, they do not distin-367

guish between the various community structure strength that can be encountered368

in real-world networks (well defined, medium, loose). The Comm and Community-369

based Betweenness Strategies give more importance to nodes with a big amount370

of external links (the bridges). These nodes have a significant global influence in371

the network. Thus, these strategies are very efficient in networks with a commu-372

nity structure of medium strength. Indeed, the epidemics can propagate between373

communities through the high number of bridges in the network. Yet, these strate-374

gies are less efficient in networks with well-defined or loose community structure.375

Indeed, in these cases, the hubs can play a major role in the epidemic spread-376

ing process. The CBM strategy that immunizes nodes with a balance of external377

and internal links is more efficient in these situations. In order to overcome these378

drawbacks, we introduce three immunization strategies for networks with commu-379

nity structure strength ranging from well defined to loose community structure380

strength. Each strategy is tailored to one of the community structure strength of381

the network (well-defined, medium, loose). Moreover, they use also more informa-382

tion about the topological properties of the communities (the number of commu-383

nities, community size and the density of inter-community links) to increase the384

performance of the community-based immunization strategies.385

4 Proposed measures386

In order to quantify the influence of a node in the diffusion process on community387

structured networks, we propose three measures that integrate various levels of388

information.389

Let’s G(V,E) be a simple undirected network. V represents the set of nodes,390

and E is the set of edges. C = {C1, ...Ck, ..Cm} is the set of the non-overlapping391

communities while m is the number of communities of the network (G =
⋃m
k=1 Ck).392

4.1 Number of Neighboring Communities Measure393

The main idea of this measure is to rank nodes according to the number of com-394

munities they reach directly (through one link). The reason for targeting these395

nodes is that they are more likely to contribute to the epidemic outbreak towards396

multiple communities. Note that all the nodes that do not have inter-community397

links share the same null value for this measure.398

For a given node i belonging to a community Ck ⊂ C, the Number of Neigh-399

boring Communities βNNC(i) is given by:400

βNNC(i) =
∑

Cl⊂C\{Ck}

∨
j∈Cl

aij (3)

401

Where aij is equal to 1 when a link between nodes i and j exists, and zero other-402

wise.403
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∨
represents the logical operator of disjunction, i.e,

∨
j∈Cl

aij is equal to 1 when404

the node i is connected to at least one of the nodes j ∈ Cl.405

Some bridge nodes may be connected to a single neighboring community with406

a high number of inter-community links. Other bridge nodes may have a fewer407

amount of inter-community links but these links allow to reach multiple commu-408

nities. This strategy allows targeting nodes linked with a high number of external409

communities. Thus, it can target the most influential bridges of the network. In-410

deed, these nodes can disseminate epidemics to many communities all over the411

network. However, this strategy has some drawbacks. When the network has few412

communities, many nodes have the same rank. The nodes are randomly immunized413

in this case. Additionally, it does not target hubs for immunization. These nodes414

can affect a large number of nodes in their communities. They have then a major415

influence in their local communities. Overall, this strategy is suitable for networks416

with medium community structure having a high number of bridge nodes. Yet,417

it is inappropriate in networks with well-defined or loose community structure,418

where hubs may play a bigger role in the epidemic spreading.419

4.2 Community Hub-Bridge Measure420

Each node of the network share its links with nodes inside its community (intra-421

community links) and nodes outside its community (inter-community links). De-422

pending of the distribution of these links, it can propagate the epidemic more or423

less in its community or to its neighboring communities. Therefore, it can be con-424

sidered as a hub in its community and a bridge with its neighboring communities.425

That is the reason why we call this measure the Community Hub-Bridge measure.426

Furthermore, the hub influence depends on the size of the community, while the427

bridge influence depends on the number of its neighboring communities.428

For a given node i belonging to a community Ck ⊂ C , the Community Hub-429

Bridge measure βHB(i) is given by:430

βHB(i)i∈Ck
= hi(Ck) + bi(Ck) (4)

Where:431

hi(Ck) = Card(Ck) ∗ kintrai (Ck) (5)

432

bi(Ck) = βNNC(i) ∗ kinteri (Ck) (6)

kintrai (Ck) and kinteri (Ck) are respectively the intra-community degree and the433

inter-community degree of node i. Card(Ck) is the size of its community. βNNC(i)434

represents the number of its neighboring communities.435

hi(Ck) tend to immunize preferentially hubs inside large communities. Indeed,436

they can infect more nodes than those belonging to small communities.437

bi(Ck) allows to target nodes that have more links with various communities. Such438

nodes have a big inter-community influence.439

The community Hub-Bridge strategy targets nodes that have a good balance440

between the intra-community and the inter-community links. It selects nodes play-441

ing simultaneously the role of hubs in their communities and bridges to other com-442

munities. This strategy gives the priority to hubs located in large communities due443

to their high local influence. These nodes can infect a big number of nodes in the444



Immunization of networks with non-overlapping community structure 13

network if they are contaminated. Additionally, it targets bridges with the highest445

connectivity linked to the maximal number of external communities. This allows446

targeting nodes with the highest global influence in the network. However, this447

method gives importance to hubs as well as bridge nodes regardless of the commu-448

nity structure strength of the network. In some situations, more weight should be449

given to one of the two. For instance, in networks with non-cohesive communities450

the network act as one big community, in this case, more importance must be451

given to the hubs as they can infect several nodes in the network.452

4.3 Weighted Community Hub-Bridge Measure453

The Community Hub-Bridge measure targets in priority the hubs in large com-454

munities and the bridges linked to multiple communities. However, no importance455

is given to the community structure strength. When the community structure456

is well-defined, more importance should be given to the bridges. Indeed, in this457

case breaking the network in multiple communities allows to contain the epidemic458

spreading where it started. On the contrary, when the community structure is very459

loose, it is of prime interest to immunize the hubs in large communities. Weighting460

each component of the community Hub-Bridge allows therefore to give more or461

less importance to bridges or hubs according to the community structure strength.462

For a given node i belonging to a community Ck ⊂ C, the Weighted Commu-463

nity Hub-Bridge Measure βWHB(i) is given by:464

βWHB(i)i∈Ck
= ρCk

∗ hi(Ck) + (1− ρCk
) ∗ bi(Ck) (7)

465

Where ρCk
represents the interconnection density between the community Ck and466

the other communities of the network. It is given by:467

ρCk
=

∑
i∈Ck

kinteri /(kinteri + kintrai )

Card(Ck)
(8)

If the communities are very cohesive, then more importance is given to the bridges468

in order to isolate the communities. Otherwise, more importance is given to the469

hubs inside large communities.470

The epidemic diffusion of a node is dependent on its position in its community471

besides the relation that its community has with the other communities in the472

network. In this perspective, the Weighted Community Hub-Bridge is designed473

to be able to adapt with nodes belonging to communities with various structure474

strength. It is very similar to the Community Hub-Bridge strategy. Yet, it gives475

more weight to the bridges when the network has a well-defined community struc-476

ture for their isolation. Lets consider that an epidemic starts from the core of a477

community. If the community is isolated, then the epidemic stay confined in it and478

does not move to other parts of the network. This strategy gives also more weight479

to hubs in the case of networks with a very loose community structure since the480

network acts in this case as a single big community.481
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4.4 Toy example:482

In order to illustrate the behavior of this measure a toy example is given in Fig-483

ure 2. Nodes are ranked according to the Number of Neighboring Communities484

measure in Figure 2 (a). Let’s take the example of nodes n5 and n10 which are485

both community bridges and which have the same number of either internal and486

external links. According to Degree centrality measure in Figure 2 (d), both nodes487

have the same rank since it depends only on their number of neighbors. However,488

they have different ranks according to the Number of Neighboring Communities489

measure. The proposed measure gives more importance to node n5 which is linked490

to three external communities, so ever if it is contaminated, it can transmit the491

epidemic disease first to its own community C1 and also towards the neighboring492

communities C2, C3 and C4. While the epidemic disease could be transmitted to493

nodes belonging to the communities C1 and C2 in the case of node n10 contamina-494

tion. Moreover, the nodes n15 and n12 are ranked among the less influential nodes495

according to Betweenness measure as it is shown in Figure 2 (e), although, both496

are community bridges that are likely to contribute to the epidemic outbreak to ex-497

ternal communities. Therefore, the Number of Neighboring Communities measure498

targets the most influential bridges which can spread the epidemics to multiple499

communities.500

Figure 2 (b) shows the rank of nodes according to the Community Hub-Bridge501

measure. Even-though, both n6 and n16 have four inner links inside their own502

communities n6 is considered more influential because it is located in community503

C1 which is the largest community of the network. Therefore, it could be a threat504

to several nodes inside the network if ever it is infected. Unlike degree measure in505

Figure 2 (d) that classifies the nodes n6 and n16 in the same rank based on their506

number of connections without considering their location within the network. It is507

also noticed from Figure 2 (a) that many nodes have the same rank because they508

have the same number of neighboring communities. So, if we consider the nodes n10509

and n12, they are both connected to only one neighboring community (respectively510

C1 and C3 ), consequently they have the same rank. However, n10 has a bigger511

connectivity to C1 in term of the number of outer links. The reason why we512

introduced the quantity of outer links as a new parameter in the second term of513

the Community Hub-Bridge measure. This is to distinguish between bridges having514

big connectivity and those having lower connectivity with external communities.515

Based on Community Hub-Bridge measure n10 is more influential than node n12516

as it can be seen in Figure 2 (b) since it has three outer connections towards517

community C1 while node n12 has only one connection towards C3. Therefore, the518

influence of nodes according to this measure is linked to two factors: the importance519

of nodes inside their communities by giving the priority to those located in large520

communities, and the connectivity of the nodes towards various communities.521

Nodes are ranked according to the Weighted Community Hub-Bridge measure522

in Figure 2 (c). The network given in this example has a well-defined community523

structure. As we can clearly see, if we take the example of the community C1,524

the density of inter-community links is equal to ρC1
≈ 0.15. Consequently, 15%525

of importance is given to the hub term hi(C1) and 85% of importance is given526

to the bridge term bi(C1). This explains why all the community bridges (n5, n2527

and n4 ) are immunized before the other nodes of the community C1. It helps to528

isolate this community and prevent the epidemic diffusion to move from C1 to the529



Immunization of networks with non-overlapping community structure 15

1 2 3

βNNC

(a)

n1
C1

C2

C3

n2

n3
n4

n5
n6

n7

n9
n8

n10 n11

n13

n12

n14
n15

n16

n17

n18

n20

n19

n21

2 2

3
13

3

2

3

2 3

3

3

3

2

3

3

3

2
2 3

3

C4

n1
C1

C2

C3

n2

n3
n4

n5
n6

n7

n9
n8

n10 n11

n13

n12

n14
n15

n16

n17

n18

n20

n19

n21

2 2

1
12

2

1

2

2 2

3

2

2

3

3

1

3

3
2 3

3

C4

1 2 3

Degree

(d)

1 7 13

n1
C1

C2

C3

n2

n3
n4

n5
n6

n7

n9
n8

n10 n11

n13

n12

n14
n15

n16

n17

n18

n20

n19

n21

9 9

8
1

2

7
5

4

3
6

C4

Betweeness

(e)

10

10

11

12
12

13

13

14

14

14

1414

(b)

n1
C1

C2

C3

n2

n3
n4

n5
n6

n7

n9
n8

n10 n11

n13

n12

n14
n15

n16

n17

n18

n20

n19

n21

4 4

2
15

5

3

5

75

5

9

6

9
8 13

C4

βHB

1 7 13

10

11 11

12

13

13

n1
C1

C2

C3

n2

n3
n4

n5
n6

n7

n9
n8

n10 n11

n13

n12

n14
n15

n16

n17

n18

n20

n19

n21

3 3

4
18

8

2

8

5 9
8

8

6

1313

6
7

C4

(c)

βWHB

1 7 13

10

11

12

12

13 13

Fig. 2 Rank of nodes according to (a) Number of Neighboring Communities measure βNNC
(b) Community Hub-Bridge measure βHB (c) Weighted Community Hub-Bridge measure
βWHB (d) Degree measure (e) Betweenness measure. Nodes are ranked from the most in-
fluential (nodes having the highest measure value) to the less influential node (nodes having
the lowest measure value) in the network.

other communities of the network. Thus, the Weighted Community Hub-Bridge530

measure has the ability to adapt to the strength of the community structure. It531

gives more weight to the bridges when the network has a well-defined community532

structure in order to isolate the communities, while it gives more weight to hubs533

in the case of networks with a weak community structure since the network acts534

in this case like a single big community.535

5 Experimental Setting536

In this section, we present the data and methods used in the empirical evaluation537

of the various immunization strategies presented above.538

5.1 Datasets539

In order to evaluate the various measures under study, synthetic networks with con-540

trolled topological properties, together with real-world networks have been used.541
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Table 1 LFR network parameters

Number of nodes N 15 000
Average degree < k > 7
Maximum degree kmax 122
Exponent for the degree distribution α 3
Exponent for the community size distribution σ 2.5
Mixing parameter µ 0.1, 0.4, 0.7, 0.9
Community size range set [50 250],[100 500]

5.1.1 Synthetic networks542

Synthetic networks are generated using the LFR (Lancichinetti, Fortunato and543

Radicchi) algorithm [44]. It generates random samples of networks with power-544

law distributed degree and community size. Hence, LFR algorithm guarantees545

networks with realistic features [45]. This algorithm allows to control different546

parameters when generating networks. Mainly, the mixing parameter µ, determines547

the ratio of the number of external neighbors of a node to the total degree of the548

node. Its value controls the strength of the community structure. For small values549

of µ, the communities are well-separated because they share few links, whereas550

when µ increases the proportion of inter community links becomes higher, making551

community identification a difficult task. Experimental studies showed that for a552

scale-free network, the degree distribution exponent α usually ranges from 2 to553

3, and the maximal degree is estimated to be kmax ∼ n1/(α−1) [46,47,48]. The554

parameters values used in our experiments are given in Table 1.555

5.1.2 Real-world networks556

Real-world networks of various nature (online social networks, a technological net-557

work and a collaboration network) are used in order to test the immunization558

strategies.559

- Facebook: We use a network gathered by Traud et al. [49] from Facebook 1 on-560

line social network. This data includes the friendship network of five universities in561

the US. It provides also information about the individuals such as the dormitory,562

the major or the field of specialization and the year of class.563

- Power-grid: This technological network is an undirected, unweighted network564

containing information about the topology of the Western States Power Grid of565

the United States. An edge represents a power supply line. A node is either a566

generator, a transformer or a substation. This data2 is compiled by D. Watts and567

S. Strogatz [50].568

- General Relativity and Quantum Cosmology (GR-QC): GR-QC3 is a569

collaboration network collected from the e-print arXiv. It covers scientific col-570

laborations between authors of papers submitted to the General Relativity and571

Quantum Cosmology category. The nodes represent the authors and there is a572

link between two nodes if they co-authored a paper. This data is available in the573

SNAP repository compiled by Leskovec et al. [51].574

1http://code.google.com/p/socialnetworksimulation/
2http://www-personal.umich.edu/~mejn/netdata/
3http://snap.stanford.edu/data/ca-GrQc.html

http://code.google.com/p/socialnetworksimulation/
http://www-personal.umich.edu/~mejn/netdata/
http://snap.stanford.edu/data/ca-GrQc.html
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Table 2 The basic topological properties of six real-world networks. N and E are respectively
the total numbers of nodes and links. Q is the modularity. Nc is the number of communities.
λth is the epidemic threshold.

Network N E Q Nc λth
Caltech 620 7255 0.788 13 0.012
Princeton 5112 28684 0.753 21 0.006
Georgetown 7423 162982 0.521 42 0.006
Oklahoma 10386 88266 0.914 67 0.031
Power grid 4941 6594 0.92 41 0.092
CR-QC 5242 14496 0.86 396 0.059

As the community structure of these networks is unknown, we use a community575

detection algorithm. We choose to use the Louvain algorithm that proved to be576

efficient in both synthetic and real-world networks [23,52]. Furthermore, the topo-577

logical properties of the uncovered communities are also realistic [53].578

The basic topological properties of these networks are given in Table 2.579

5.2 SIR model parameters580

The value of the transmission rate λ is chosen to be greater than the network581

epidemic threshold λth in order to better characterize the spreading capability, it582

defined as [54]:583

λth =
< k >

< k2 > − < k >
(9)

Where < k > and < k2 > are respectively the first and second moments of the584

degree distribution. The epidemic threshold values λth of all the networks used in585

this paper are reported in Table 2. The same transmission rate value (λ = 0.1) is586

used in all the experiments. It is larger than the values of the epidemic threshold587

λth of all the data collection used in this work. We set also the value of the588

recovery rate γ to 0.2. This small value is chosen in order to give each infected589

node many chances to infect its neighbors with the probability γ before changing590

to the recovered status.591

5.3 Immunization scheme592

To investigate the spread of an infectious disease on a contact network, we use the593

methodology described in Figure 3. For Global strategies, the influence of every594

node in the network is calculated according to a given centrality measure. Then,595

nodes are sorted in decreasing order of their influence values. Next, nodes with596

highest centrality are removed from the network (or their state is set to resistant)597

until a desired immunization coverage is achieved. For Local immunization, nodes598

are targeted and removed according to a random strategy initiated from randomly599

chosen nodes in the network. In both cases, the network obtained after the tar-600

geted immunization is used to simulate the spreading process, running the SIR601

epidemic model simulations. After a simulation, we record the total number of602

cases recovered (the epidemic size). In order to ensure the effectiveness of the SIR603
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Fig. 3 The main steps of the immunization scheme.

propagation model evaluation, results are averaged over 600 independent realiza-604

tions. Finally, we calculate the mean epidemic size to evaluate the effectiveness of605

the proposed methods.606

5.4 Evaluation Criteria607

5.4.1 Relative difference of outbreak size608

To compare the performance of different immunization strategies, we use the frac-609

tion of the epidemic size. We also use the relative difference of outbreak size∆rβ0,βc
610

defined by:611

∆rβ0,βc
=
Rβ0

Rβc

Rβ0

(10)

Where Rβ0
and Rβc

are respectively the final numbers of recovered nodes for the612

alternative and the proposed strategy after the SIR simulations. If the relative613

difference of outbreak size is positive, the epidemic spreads less with the proposed614

strategy. Therefore, it is the most efficient one. Otherwise, the epidemic spreads615

more with the proposed strategy and the alternative strategy is more efficient.616

5.4.2 Largest Connected Component617

We use also the size of the Largest Connected Component LCC to test the effec-618

tiveness of the proposed strategies regardless of the epidemiological models used.It619

is the largest remaining subgraph after the simulation process. The size of the620

largest connected component is used to measure the maximum limit to which an621

epidemic can spread. The LCC is one of measures to quantify the performance622

of ranking strategies. It focuses on the changes of the structure of the giant com-623

ponent after removing some nodes. In effect, the size of the largest connected624



Immunization of networks with non-overlapping community structure 19

component is computed after removing a certain proportion of nodes selected ac-625

cording to an immunization strategy. Clearly, the smaller the LCC, the better the626

immunization strategy.627

6 Results and discussion628

In this section, we report the results of two sets of experiments. The first set629

of experiments is performed with synthetic networks with controlled community630

structure. It is aimed at getting a better understanding of the relationship between631

the community structure and the centrality measures. These experiments are con-632

ducted on networks generated with the LFR algorithm. Indeed, this algorithm633

allows to control various topological properties of the community structure. We634

investigate the influence of the strength of the community structure. The commu-635

nity size range effect is also studied. Finally, the proposed immunization strategies636

are compared with both global strategies (Degree, Betweenness and Comm strate-637

gies) and local strategies (Community Bridge Finder [31] and Bridge Hub Detector638

[32] strategies).639

The second set of experiments concerns real-world networks. Online Social net-640

works, a technological network and a collaboration network are used. Recall that,641

as there is no ground-truth data for these networks, the community structure is642

uncovered using the Louvain Algorithm. Indeed, previous studies on synthetic net-643

works have shown that it succeeds in identifying the communities for a large range644

of community structure strength [52]. First, the proposed immunization strategies645

are compared and discussed, then their evaluation is performed against both local646

and global alternative strategies.647

6.1 Synthetic networks648

6.1.1 Influence of the strength of the Community Structure649

In the LFR model, the mixing parameter value µ varies from 0 to 1. It allows650

to control the strength of the community structure from well-separated commu-651

nities with few inter-community links (low values of µ) to a network with no652

community structure (high values of µ). In order to investigate the effect of the653

strength of the community structure on the performance of the proposed meth-654

ods, five networks have been generated for each value of the mixing parameter655

(µ = 0.1, 0.4, 0.7 and 0.9). Figure 4 reports the average fraction of the epidemic656

size versus the proportion of immunized nodes for each µ value. According to the657

results reported in this figure, the performance of both Community Hub-Bridge658

and Weighted Community Hub-Bridge strategies decreases while increasing the659

mixing parameter value. Whatever the fraction of immunized nodes, the meth-660

ods perform best when the communities are well-separated. When the fraction of661

inter-connections between the communities increases, performance decrease grad-662

ually. Indeed, with well-separated communities, the epidemics is localized to few663

communities, while it tends to spread more when the inter connections increase.664

The Number of Neighboring Communities strategy shows its best performance665

for a medium range community strength value (µ = 0.4). Its efficiency decreases666
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Fig. 4 Influence of the strength of the community structure on the epidemic size of the
proposed methods. Each point show the epidemic size with respect to the fraction of the
immunized nodes. Simulations are performed on LFR-generated networks with various mixing
parameter values µ. Each epidemic size value is the average of 600 S.I.R simulation runs.

slightly in the case of well-defined community structure, and it gets even worse667

when it is very loose. Let’s now turn to the comparisons of the proposed meth-668

ods between them. We can distinguish three cases depending of the community669

structure strength.670

In networks exhibiting a very strong community structure, we can see in Fig-671

ure 4 that the Community Hub-Bridge strategy is the most efficient. This is due to672

the fact that both alternatives methods (Number of Neighboring Communities and673

Weighted Community Hub-Bridge strategies) target preferentially the bridges. In674

fact, it is not the best solution in a network where the intra-community links pre-675

dominate. As there is few external connections compared to the total connections676

(intra-community links are considered to be 90% of the total links of the network677

when µ=0.1), local outbreaks may die out before reaching other communities.678

Therefore, immunizing community hubs seems to be more efficient than immuniz-679

ing bridges in networks with strong community structure. This is the reason why680

the Community Hub-Bridge method which targets nodes having a good balance681

of inner and outer connections is more efficient.682
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In networks with weak community structure as it can be seen in Figure 4, the683

Weighted Community Hub-Bridge method is the most efficient. Indeed, when µ684

has a high value, the network does not have a well-defined community structure.685

In that case, Weighted Community Hub-Bridge strategy can better adapt to the686

community structure. It gives more weight to the community hubs as they are the687

most influential nodes in networks with a loose community structure. Remember688

that the network acts as a single community in the extreme case where µ > 0.9.689

That is the reason why it performs better than the other proposed methods.690

In networks with community structure of medium strength, the Number of691

Neighboring Communities outperforms all the other proposed methods as it re-692

ported in Figure 4. In this type of networks, nodes have many external connections693

while maintaining a well-preserved community structure. Therefore, there is much694

more options for the epidemic to spread easily to neighboring communities. As the695

Number of Neighboring Communities strategy targets the most influential com-696

munity bridges, it prevents the epidemic spreading to multiple communities. This697

is the reason why this immunization method shows its best performance in this698

case.699

To summarize, Community-Hub bridge strategy is well-suited to situations700

where the communities are well-defined (Dense communities with few links be-701

tween communities). The Weighted Hub-Bridge strategy is recommended when702

the community structure is very loose. For situations in between, the Number of703

Neighboring Communities strategy is more efficient.704

6.1.2 Community Size Range effects705

The aim of this investigation is to show the impact of the community size range on706

the performance of the proposed methods. Studies reported above have been per-707

formed with community structure size in the range [100, 500]. In this paragraph,708

they are also evaluated in networks with community size range equals to [50, 250].709

Figure 5 reports the epidemic size versus the percentage of immunized nodes for710

values of the mixing parameter µ ranging from µ = 0.1 to µ = 0.9, and with711

the two community size range under study. One can see that all the immunization712

strategies exhibit the same behavior. They always perform better in networks with713

smaller community size range. Furthermore, the differences between the epidemic714

sizes in the two situations decrease when the proportion of immunized nodes in-715

creases. In networks with a big community size range, there are a small number716

of communities. Consequently, the range of the Number of Neighboring Commu-717

nities measure is also small, and many nodes have the same values (as it is shown718

in the example given in section 3.1). That makes the ranking less efficient. In net-719

works with a smaller community size range, there are much more communities. In720

this case, more nodes have different numbers of neighboring communities values721

and the ranking is more efficient. That is the reason why the Number of Neigh-722

boring communities performs better in the latter case. Concerning Community723

Hub-Bridge and Weighted Community Hub-Bridge measures, both are weighted724

by the number of neighboring communities. This weight becomes more discrimina-725

tive as the community size range decreases. That explains why they also perform726

better in networks with small community size range. Additionally, it is illustrated727

also in Figure 5 (d)-(f) that the other community based strategies (Comm, CBB728

and CBM) are not affected by the community size range. To confirm that, we729
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(c)   Weighted Community Hub-Bridge
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(d)   Comm [32]
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(f)   Community-Based Betweenness [39]
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(e)   Community-Based Mediator [40]
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Fig. 5 Effect of community size range on the epidemic spreading of the proposed methods.
Each point show the epidemic size as a function to the fraction of the immunized nodes.
Simulations are performed on LFR network with different community structure. Each value is
the average of 600 runs per network and immunization method.

perform the Analysis of Variance ANOVA on the performance of these strategies730

while varying both the community size range and the mixing parameter of the731

network. Based on the results reported in Table 6, one can notice that the esti-732

mated F value is always smaller than the critical value of F (F < Fcritic). Thus,733

we can conclude that Comm, CBB and CBM exhibit the same performance while734

changing the community size range, and this in networks with various community735

structure strength. These methods are based on measures that do not take into736
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account either the size and the number of communities. Hence the stability of their737

performance despite the change of the community size range.738

From Figure 5, one can also see that the Community Hub-Bridge method is739

always the best immunization method in networks with well-defined community740

structure, and that the Number of Neighboring Communities outperforms the741

other proposed immunization methods (where µ = 0.4). Moreover, the Weighted742

Community Hub-Bridge is still the most efficient one in networks with non-cohesive743

community structure.744

6.1.3 Comparison with the alternative methods745

Figure 6 reports the relative difference of the outbreak size between the proposed746

strategies and both local (Acquaintance, CBF, BHD) and global alternatives (De-747

gree, Betweenness, Comm, Community-based Betweenness and Community-based748

Mediator) as a function of the fraction of immunized nodes. Community Hub-749

Bridge is taken as the reference in (a), (d) and (g), Number of Neighborhood750

communities in (b), (e) and (h) and Weighted Community Hub-Bridge in (c), (f)751

and (e). The values of the mixing parameter (µ = 0.1, µ = 0.4, µ = 0.7) cover752

the three situations in terms of community strength (strong, median and weak753

community structure).754

Figure 6 (a), (d) and (g) shows that ∆R/R0 has usually a positive value. Thus,755

Community Hub-Bridge yields a smaller epidemic size compared to all the alter-756

native methods whatever the fraction of immunized nodes values, and this holds757

for all the range of community structure strength. The middle panels of Figure 6758

reports the results of the comparative evaluation of the Number of Neighbor-759

ing Communities strategy. Overall, it is more efficient than the tested alternative760

methods. However, Betweenness and Community-based Mediator perform better761

in networks with strong community structure (µ = 0.1). Indeed, the relative differ-762

ence is negative in this case. Therefore, targeting the community bridges is not the763

best immunization solution in networks with very well-defined community struc-764

ture. It performs also worse than the Community-based Betweenness in networks765

with loose community structure (µ = 0.7). It can be also noticed from Figure 6 (c),766

(f) and (i) that the Weighted Community Hub-Bridge method results always in the767

lowest epidemic size compared to the other methods. To summarize, if we exclude768

the case of the Number of neighborhood Communities strategy in the situation769

where the network has a strong community structure (µ = 0.1), in every other770

situations the relative difference of the outbreak is always positive. That indicates771

that all the proposed strategies outperform the alternatives. Let’s now turn to more772

detailed comparisons. First of all, these results clearly demonstrate the superiority773

of global methods over local methods. Indeed, in any case, the biggest differences774

are observed with Acquaintance followed by CBF and BHD. In fact, their rank is775

correlated with the level of information that they possess on the network topol-776

ogy. In fact, Acquaintance is totally agnostic about the network topology, CBF777

targets the bridges between the communities while BHD targets both bridges and778

hubs. Even though CBF and BHD are community-based methods, they use the779

information only at the level of randomly chosen nodes, from where their low780

performances. The compared effectiveness of the five alternatives global strategies781

depends on the strength of the community structure. For strong community struc-782

ture (µ = 0.1), Degree and Comm strategy are very close while Betweenness and783
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(c)   Weighted Community Hub-Bridge
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(f)   Weighted Community Hub-Bridge
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(h)   Number of Neighboring Communities
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(i)   Weighted Community Hub-Bridge 
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Fig. 6 The relative difference of the outbreak size ∆R/R0 as a function of the fraction of im-
munized nodes. The left panels show the difference between Community Hub-Bridge method
and the alternative methods. The middle panels show the difference between Number of Neigh-
boring Communities method and the alternative methods, while the right panels show the
difference between Weighted Community Hub-Bridge and the alternative methods. We note
that a positive value of ∆R/R0 means a higher performance of the proposed method. Simu-
lations are performed on LFR network with different community structure. Final values are
obtained by running 600 independent simulations per network, immunization coverage and
immunization method.

Community-based Mediator methods are slightly more performing whatever the784

value of fraction of immunized nodes. For medium community structure strength785

(µ = 0.4), results are more mixed, even if Community-based Betweenness is still a786
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Table 3 The estimated mixing parameter µ of the real-world networks.

Network Power-grid ca-GrQc Princeton Oklahoma Caltech Georgetown
µ 0.034 0.095 0.354 0.441 0.448 0.522

little bit more efficient. For weak community structure (µ = 0.7), the five strate-787

gies are well separated. Community-based Betweenness ranks first, followed by the788

Community-based Mediator, Degree, Betweenness and Comm strategy in terms of789

efficiency.790

6.2 Real-world networks791

As our goal is to cover a wide range of situations, real-world data come from792

different domains (social, technical and collaboration networks). In order to link793

the results of this set of experiments with those performed on synthetic data, we794

estimate the mixing proportion parameter of the uncovered community structure795

by the Louvain algorithm. Indeed, experiments performed with synthetic networks796

have shown that the community strength is a major parameter in order to explain797

the efficiency of the proposed immunization strategies. Estimated values reported798

in Table 3 show that the networks cover a wide range of community strength.799

6.2.1 Spreading efficiency of the proposed methods800

Figure 7 shows the epidemic size as a function of the fraction of immunized nodes801

obtained after the SIR simulations for the proposed immunization methods. These802

results corroborate the conclusions we made with the synthetic networks. It can803

be observed on Figure 7 (e) and (f) that in networks with strong community struc-804

ture, Community Hub-Bridge is the most efficient immunization method. Indeed,805

the estimated mixing parameter value µ is equal to 0.03 and 0.09 respectively for806

the power-grid network and the collaboration network. Communities are very well807

separated, and the Community Hub-Bridge method targets nodes with a good bal-808

ance of intra-community and inter-community links. That is where its superiority809

lies.810

In networks with average community structure strength shown in Figure 7811

(a), (b) and (d), the Number of Neighboring Communities outperforms the other812

proposed methods. It targets the bridges connected to multiple communities which813

facilitates the spread of epidemics throughout the whole network. Therefore, it is814

the most efficient method in Caltech, Princeton and Oklahoma networks.815

The Weighted Community Hub-Bridge is the most efficient method for the816

Georgetown network (where µ = 0.522) as reported in Figure 7 (c). This method817

depends on the fraction of the inter-community links for each community within818

the network, which allows us to give the appropriate weighting to favor either819

the inter-community or the intra-community influence. This is the reason why820

it outperforms the other proposed methods in the Georgetown network which821

does not have a strong community structure. Finally, these results confirm the822

paramount influence of the mixing proportion parameter in order to choose the823

most appropriate strategy in a given situation. Based on the above results obtained824
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(d)   Oklahoma
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Fig. 7 The epidemic size of the immunization methods performed on six real networks of
different types namely on facebook network of four universities (a) Caltech (b) Princeton (c)
Georgetown (d) Oklahoma, and on (e) Collaboration network (f) Power network. Final values
are obtained by running 600 independent simulations per network, immunization coverage and
immunization method.

after using real-world networks with different structures, sizes and types, what825

matters the most is the strength of the community structure.826
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6.2.2 Comparison with the alternative methods827

The relative difference of the outbreak size between global as well as local strate-828

gies and the proposed strategies is reported in Figure 8. Similarly, with synthetic829

networks, the local strategies (CBF and BHD) perform poorly as compared to830

global ones. Indeed, it appears clearly that these two types of methods are well831

separated. The results of the comparative evaluation of the global strategies are832

quite consistent with what might have been expected. The proposed strategies are833

globally more efficient than their competitors. This is all the more true when they834

are used appropriately.835

The left panels of Figure 8 show the comparison between the Community Hub-836

Bridge and the alternative methods. It outperforms the global methods in networks837

with strong community structure (Power Grid and ca-GrQc) with a minimal gain838

of around 10 % over the best alternatives (Community-based Mediator and Be-839

tweenness). Its benefits reduces when the strength of the community structure840

gets looser. It is still above Betweenness for Princeton and Oklahoma networks,841

despite their medium range mixing proportion. However, when the community842

structure becomes weaker (Caltech and Georgetown), it is less performing than843

both Community-based Mediator and Betweenness when the fraction of immu-844

nized nodes is greater than 20 %.845

The middle panels of Figure 8 show the comparison between the Number846

of Neighboring Communities and its alternative. It shows its best performances847

for networks with medium mixing proportion values (Princeton, Oklahoma, Cal-848

tech) with gains above 10 % as compared to the most performing alternative849

(Community-based Betweenness). However, it performs less than Community-850

based Betweenness while it is still performing better than the other alternatives851

for Georgetown (such as degree strategy with gains of less than 10 %). However,852

it performs in some cases worse than Community-based Mediator, Degree and853

Betweenness in networks with strong community structure (Power-grid and the854

collaboration networks).855

The right panels of Figure 8 show the comparison between the Weighted Com-856

munity Hub-Bridge and the alternative strategies. As expected, it outperforms857

its competitors in networks with average and high community structure strength.858

However, it can be worse than Community-based Mediator and Betweenness for859

networks with a strong community structure.860

To summarize, these experiments reveal that the proposed algorithms are very861

effective in identifying the influential nodes to be selected for immunization. When862

they are used on the appropriate networks in terms of community strength, they863

outperform the available strategies, simply by using relevant information about864

the community structure.865

6.2.3 Influence of the diffusion process parameters866

To test the robustness of the results to the variation of the SIR parameters model,867

simulation results with λ = 0.9 and γ = 0.2 are reported in Figure 9. Results, show868

that increasing the infection rate λ, a greater proportion of immunized nodes is869

needed to mitigate the spread of the epidemic. This is valid for all the tested870

immunization methods. For instance, only 30% of the nodes need to be removed871

(immunized) for all the strategies to stop the epidemic spreading in the power-grid872
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Table 4 The Normalized Mutual Information NMI in Power-grid and Georgetown networks.

Network Power-grid Georgetown
NMI Louvain WalkTrap Infomap Louvain WalkTrap Infomap

Louvain - 0.872 0.751 - 0.287 0.181
WalkTrap - - 0.818 - - 0.429
Infomap - - - - - -

network when λ is equal to 0.1 (Figure 7 (f)), while around 50% of the nodes need873

to be immunized when λ is equal to 0.9 (Figure 9 (a)). In the Georgetown network,874

around 40% of nodes need to be immunized when λ is equal to 0.1 (Figure 7 (c)),875

while a 60% node immunization rate is required in the case of a high infection rate876

value(Figure 9 (b)), and this hold for all the strategies. Therefore, the probability877

that an infected node contaminates its neighbors gets higher with an increase of878

the infection rate λ. Thus, the epidemic spreads at a higher rate. Consequently,879

a bigger proportion of immunized nodes is needed to prevent the spread of the880

epidemic.881

882

We also employ the size of the Largest Connected Component LCC to confirm883

the effectiveness of the proposed strategies. Figure 10 reports the LCC of vari-884

ous immunization methods computed on two real-world networks with different885

community structure strength (Power-grid and Georgetown network). For both886

networks in Figure 10, one can see that increasing the proportion of immunized887

nodes, the size of the largest connected component declines. In the power-grid888

network, the curve of the Community Hub-Bridge strategy declines faster than all889

the other alternative global and local strategies, as it is reported in Figure 10 (a).890

Thus, the network can be broken down efficiently by selecting the influential nodes891

according to this strategy. It is followed by the Weighted Community Hub-Bridge,892

and the Community-based Mediator strategy. The local methods (Community893

Bridge Finder and Bridge-Hub Detector) perform poorly to split the network.894

The Weighted Community Hub-Bridge strategy is the most effective strategy in895

Georgetown network as it is reported in Figure 10 (b). Its curve declines faster896

than all the other immunization strategies before reaching the steady state. There-897

fore, immunizing nodes according to the Weighted Community Hub-Bridge makes898

the network split quickly into several independent modules, which leads to its col-899

lapse. As in the case of the SIR model, the Community Hub-bridge strategy is the900

most effective strategy in networks with a well-defined community structure (e.g.,901

power-grid network), while the Weighted Community Hub-Bridge strategy outper-902

forms all the other methods in networks exhibiting a loose community structure903

(e.g., Georgetown network).904

6.3 Influence of the community detection algorithm905

In this section, we report a set of experiments on Power-grid and Georgetown net-906

works using WalkTrap and Infomap community detection algorithms. We choose907

these two networks because Power-Grid has a well-defined community structure908

while Georgetown has a loose community structure. The aim of these experiments909

is to get a clear picture about the community structure variations.910
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Table 5 The estimated mixing parameter µ, the number of communities Nc and the modu-
larity Q in Power-grid and Georgetown networks.

Network Metric
Detection algorithm

Louvain WalkTrap Infomap

Power-grid

µ 0.034 0.036 0.039
Nc 41 45 53
Q 0.92 0.907 0.931

Georgetown

µ 0.522 0.515 0.487
Nc 42 193 272
Q 0.521 0.546 0.604

6.3.1 Community detection algorithms comparison911

To compare the community structure uncovered by WalkTrap, Infomap and Lou-912

vain, we use the Normalized Mutual Information NMI as it is commonly used in913

the community detection literature [55]. Their estimated values for each network914

are reported in Table 4. In the network with a well-defined community struc-915

ture (e.g., Power-grid network), the NMI values are high. This means that the916

community structures uncovered by the three algorithms are very similar. In the917

Georgetown network NMI values are below 0.5. This indicates that the community918

structures are quite different.919

We also report the proportion of inter-community links, the number of de-920

tected communities, and the modularity value in Table 5. For the network with921

a well-defined community structure, the three algorithms detect nearly the same922

number of communities with a relatively larger number for Infomap . This confirm923

the similarity of the community structure. For the Georgetown network we ob-924

serve a large variation of this parameter. This is another sign that the community925

structures are very dissimilar. The Modularity measures the quality of the commu-926

nity structure. Its values are very high when the network community structure is927

well-defined, and relatively low for the network with a loose community structure.928

According to this parameter, the performance of the three algorithms are compa-929

rable for networks with well-defined communities. Infomap is the most accurate930

algorithm, followed by WalkTrap then Louvain when the community structure is931

loose.932

To summarize, when the community structures are well-defined (low values of933

the proportion of the inter-community links) the algorithms uncover about the934

same communities, while when the community structure is loose their results can935

be quite different. Furthermore, the mixing parameter values using the different936

algorithms are very close. Globally, the three detection algorithms have the same937

performance in networks with well defined communities with a slight preference938

for Infomap.939

6.3.2 Influence of the community detection algorithms on the proposed methods940

Figure 11 represents the epidemic size of the proposed strategies versus the pro-941

portion of immunized nodes for different community detection algorithms. The942

immunization methods are tested on two networks with different community struc-943

ture strength. This figure shows the effect of using various community detection944
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algorithms on the performance of the proposed community-based methods. It can945

be inferred from the results reported in Figure 11, that the performance of the946

proposed methods evolves in the same way. Whatever the community strength of947

the network, their curves display the same behavior.948

In networks with a strong community structure (e.g., Power-grid network),949

the performance of all the proposed community-based methods for WalkTrap and950

Louvain detection algorithms display roughly the same behavior. Their perfor-951

mance is, however, slightly better for Infomap algorithm. The gain is around 5%952

for all three strategies, as it is reported in Figure 11 (a). In networks with a loose953

community structure (e.g., Georgetown network), the performance of the proposed954

community-based strategies with Louvain algorithm is worse than when the com-955

munity detection is performed using WalkTrap and Infomap algorithms. The gain956

is around 10% and 17% when employing WalkTrap and Infomap respectively, as957

it is shown in Figure 11 (b). The best results are obtained by using Infomap958

algorithm. That being said, the proposed strategies exhibit almost the same per-959

formance regardless of the community detection algorithm when the network has960

well-separated communities. Their performance is different in networks with an961

unclear community structure. It increases when using WalkTrap and Infomap al-962

gorithms. Note that the modularity is a good indicator of the performance. Indeed,963

the performance increases when the modularity increases.964

6.3.3 Comparison with the alternative methods965

Figure 12 shows the relative difference of the outbreak size between the proposed966

strategies and the alternative ones as a function of the fraction of the immunized967

nodes. The proposed strategies are evaluated on the Power-grid network in (a) and968

(b) and the Georgetown network in (c) and (d) for the WalkTrap and Infomap de-969

tection algorithms. The left panels of this figure show the comparison between the970

Community Hub-bridge and the alternative methods. The middle panels represent971

the difference between the Number of Neighboring Communities and the alterna-972

tive methods. On the other hand, the right panels show the difference between the973

Weighted Community Hub-Bridge method and the alternative ones.974

In networks with a strong community structure, the performance of the Com-975

munity Hub-bridge is still better than the alternative methods with an average976

gain of 13% over the best alternative (Community-based Mediator) for Infomap,977

while the gain is around 10% for WalkTrap and Louvain algorithms. This method978

has a minimal gain of 3% for Infomap. The middle and the right panels of Figure 12979

(a) and (b) show that ∆R/R0 exhibits sometimes a negative value for both the980

Number of Neighboring Communities and the Weighted Community Hub-Bridge981

strategies. In all the figures, they perform less than CBM and Betweenness as982

is the case of Louvain algorithm. Therefore, for all three algorithms, the Com-983

munity Hub-Bridge is the most efficient strategy in networks with a well-defined984

community structure. Furthermore, it shows its best performance after detecting985

communities through Infomap algorithm.986

In networks with a loose community structure, the Community Hub-Bridge is987

performing worse than the Community-Based Betweenness for both WalkTrap and988

Infomap, as it is shown in the left panels of Figure 12 (c) and (d). These results989

are similar to the ones obtained using Louvain algorithm. On the other hand, the990
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Number of Neighboring Communities outperforms its competitors with an aver-991

age gain of 3% and 6% over its best alternative (Community-Based Betweenness)992

for WalkTrap and Infomap respectively (see the middle panels of Figure 12 (c)993

and (d)), whereas it performs worse than CBB for Louvain. Indeed, the WalkTrap994

and Infomap algorithms detect a higher number of communities as compared to995

Louvain algorithm, which uncovers large communities. This makes the ranking996

using the Number of Neighboring Communities more efficient in the case of Walk-997

Trap and Infomap. The right panels of Figure 12 (c) and (d) show that ∆R/R0998

(taking the Weighted Community Hub-bridge as a reference strategy) always has999

a positive value. Its performance is better than the alternative methods with an1000

average gain of 10% and 15% over the best one (CBB) for WalkTrap and Infomap1001

respectively, while the gain is around 6% for Louvain. Therefore, the Weighted1002

Community Hub-Bridge is the most efficient strategy in networks with an unclear1003

community structure for all the tested detection algorithms. Yet, as expected its1004

best performance is achieved with Infomap algorithm.1005

7 Conclusion1006

The adoption of an appropriate immunization strategy has aroused much interest1007

among researchers aiming to control any threat of infectious diseases spreading.1008

Despite the presence of a community structure in all social networks, this property1009

has been mostly ignored by the existing immunization strategies. In this paper,1010

three community-based strategies are proposed. They engage more topological1011

information related to networks with a non-overlapping community structure. The1012

proposed strategies are evaluated in different synthetic and real networks. To verify1013

their effectiveness, the SIR epidemic model is employed. First of all, results show1014

that local strategies underperform compared to global strategies. Indeed, as they1015

do not have access to the whole network structure, it is not easy to exploit their1016

properties.1017

Extensive investigation also shows that generally, the proposed immunization1018

strategies have a smaller epidemic size compared to the most influential global1019

immunization strategies (Community-based Mediator and Community-based Be-1020

tweenness) and the Comm strategy designed for networks with non-overlapping1021

community structure. The Community Hub-Bridge method is particularly suited1022

to networks with a strong community structure. The Number of Neighboring1023

communities shows its best with medium strength community structure while1024

Weighted Community Hub-Bridge is more efficient in networks with weak com-1025

munity structure. Additionally, community size range plays an important role in1026

the diffusion process. Immunization strategies are more efficient when community1027

size is small. Results to the SIR parameters model variations, show that the immu-1028

nization strategies display the same type of performances. However, by increasing1029

the infection rate, a greater proportion of immunized nodes is needed to mitigate1030

the spread of the epidemic. To test the effectiveness of the proposed strategies1031

regardless of the epidemiological models, we compute the size of the Largest Con-1032

nected Component LCC. Results show that the proposed methods are still more1033

efficient than the alternative ones. Moreover, we report also a set of experiments1034

using the Walktrap and Infomap detection algorithms to uncover communities.1035

Results of the investigations show that the performance of the proposed methods1036
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exhibits the same behavior in networks with a well defined community structure,1037

this is for all the three community detection algorithms. Their performance is dif-1038

ferent in networks with an unclear community detection. In this case, the best1039

results are obtained through the Infomap algorithm.1040

One of the main benefits of this work is to show that significant gains can1041

be achieved by making a better use of the knowledge of the community structure1042

organization. It can be extended in multiple directions. Firstly, these measures can1043

be improved by using finer weights so as to make them more robust to variations in1044

community structure. Now that the impact of community structure strength has1045

been clearly identified, local versions of the proposed strategies need to be designed.1046

Finally, extension to non-overlapping community structures can be considered.1047
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Table 6 The Analysis of Variance ANOVA with a significance level α = 0.05. SS is the sum
of squares. df is the degree of freedom. MS is the mean square. F is the test statistic. P−value
is the probability value and Fcritic is the critical value of F.

Source
SS df MS F P-value F critof variations

Comm strategy
µ = 0.1 ; [100,500] Between groups 4.256503573 1 4.256503573

0.019440919 0.890504334 4.351243478
µ = 0.1 ; [50,250] Within groups 4378.911918 20 218.9455959
µ = 0.4 ; [100,500] Between groups 3.25263213 1 3.25263213

0.022543556 0.882154017 4.351243478
µ = 0.4 ; [50,250] Within groups 2885.642407 20 144.2821203
µ = 0.7 ; [100,500] Between groups 14.15562603 1 14.15562603

0.050262847 0.824880951 4.351243478
µ = 0.7 ; [50,250] Within groups 5632.639949 20 281.6319974
µ = 0.9 ; [100,500] Between groups 1.420498127 1 1.420498127

0.00563914 0.967814872 4.351243478
µ = 0.9 ; [50,250] Within groups 5037.9883 20 251.899415

CBB strategy
µ = 0.1 ; [100,500] Between groups 2.968469205 1 2.968469205

0.007615194 0.931328629 4.351243478
µ = 0.1 ; [50,250] Within groups 7796.175363 20 389.8087681
µ = 0.4 ; [100,500] Between groups 1.419799471 1 1.419799471

0.013046107 0.910202616 4.351243478
µ = 0.4 ; [50,250] Within groups 2176.587136 20 108.8293568
µ = 0.7 ; [100,500] Between groups 2.78891 1 2.78891

0.01472556 0.999564357 4.351243478
µ = 0.7 ; [50,250] Within groups 3787.848287 20 189.3924143
µ = 0.9 ; [100,500] Between groups 12.76013782 1 12.76013782

0.03371355 0.856166211 4.351243478
µ = 0.9 ; [50,250] Within groups 7569.738518 20 378.4869259

CBM strategy
µ = 0.1 ; [100,500] Between groups 6.632987506 1 6.632987506

0.037059628 0.849285018 4.351243478
µ = 0.1 ; [50,250] Within groups 3579.629836 20 178.9814918
µ = 0.4 ; [100,500] Between groups 2.153661701 1 2.153661701

0.01532581 0.973948282 4.351243478
µ = 0.4 ; [50,250] Within groups 2810.5024 20 140.52512
µ = 0.7 ; [100,500] Between groups 1.349802017 1 1.349802017

0.005821325 0.939940411 4.351243478
µ = 0.7 ; [50,250] Within groups 4637.43895 20 231.8719475
µ = 0.9 ; [100,500] Between groups 0.54374064 1 0.54374064

0.003027532 0.956666083 4.351243478
µ = 0.9 ; [50,250] Within groups 3591.973201 20 179.59866
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Fig. 8 The relative difference of the outbreak size ∆R/R0 as a function of the fraction of
immunized nodes. The left panels show the difference between Community Hub-Bridge method
and the alternative methods. The middle and the right panels show respectively the difference
between the Number of Neighboring Communities method, the Weighted Community Hub-
Bridge and the alternative methods. We note that a positive value of ∆R/R0 means a higher
performance of the proposed method. Simulations are performed on different types of real-
world networks. Final values are obtained by running 600 independent simulations per network,
immunization coverage and immunization method.
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Fig. 9 Effect of different immunization methods on the epidemic size during the SIR simula-
tions performed on (a) Power-grid and (b) Georgetown network, with λ = 0.9 and γ = 0.2.

20 40 60 80
Proportion of nodes immunized (%)

0

20

40

60

80

100

LC
C (

%)

(a)   Power-grid

20 40 60 80
Proportion of nodes immunized (%)

0

20

40

60

80

100

LC
C (

%)

(b)   Georgetown

βNNC
βHB

βWHB
Degree

Betweenness
CBF [31]

BHD [32]
Comm [35]

CBB [42]
CBM [43]

Fig. 10 The size of the Largest Connected Component (LCC) for various immunization strate-
gies performed on (a) Power-grid and (b) Georgetown network. Each point is the result of the
LCC size as function of the proportion of the immunized nodes.
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Fig. 11 Effect of various community detection algorithms on the performance of the proposed
community based methods. Each point shows the epidemic size with respect to the proportion
of the immunized nodes.
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Fig. 12 The relative difference of the outbreak size as a function of the proportion of the
immunized nodes. The left panels show the difference between Community Hub-Bridge method
and the alternative methods. The middle panels show the difference between the Number of
Neighboring Communities method and the alternative methods. The right panels show the
difference between the Weighted Community Hub-Bridge and the alternative methods. The
immunization methods are performed on Power grid network in (a) and (b) and Georgetown
network in (c) and (d) for the WalkTrap and Infomap algorithms.
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