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Although community structure is ubiquitous in complex networks, few works exploit this topological property to control epidemics. In this work, devoted to networks with non-overlapping community structure (i.e, a node belongs to a single community), we propose and investigate three global immunization strategies. In order to characterize the influence of a node, various pieces of information are used such as the number of communities that the node can reach in one hop, the nature of the links (intra community links, inter community links), the size of the communities, and the interconnection density between communities. Numerical simulations with the Susceptible-Infected-Removed (SIR) epidemiological model are conducted on both real-world and synthetic networks. Experimental results show that the proposed strategies are more effective than classical alternatives that are agnostic of the community structure. Additionally, they outperform alternative local and global strategies designed for modular networks.

Introduction

Epidemic outbreaks represent a tremendous threat to human life, since we live in an ever more connected world. Immunization through vaccination is a solution that protects individuals and prevents them from transmitting infectious diseases to other people living in the same social group. However, immunizing every individual in the society may prove impossible in cases where time or resources are limited. To address this problem, immunization strategies are the essential techniques to decrease the chances of epidemic outbreaks. It aims to immunize a few key nodes to achieve effectively the goal of reducing or stopping the spread of infectious diseases. Immunization strategies can be classified into two categories: global or local immunization strategies. Global immunization strategies require the knowledge of the entire network, hence their effectiveness. They consist of ranking nodes according to a specific centrality measure like Degree or Betweenness centrality. Nodes with high centrality measure are targeted for immunization.

Local immunization strategies are another group of immunization methods. They are more or less agnostic about the topological structure of networks. In these strategies, target nodes are found via local search. They require information only at node level to find the targeted nodes for immunization.

The structure of networks is crucial in explaining epidemiological patterns.

In the past few years, many immunization strategies have been developed using various topological properties of the network in order to mitigate and control the epidemic outbreaks. Despite the fact that there is clear evidence that many social networks show marked patterns of strong community structure [START_REF] Porter | Communities in networks[END_REF][START_REF] Ferrara | Community structure discovery in facebook[END_REF][START_REF] Jebabli | User and group networks on youtube: A comparative analysis[END_REF][START_REF] Jebabli | Overlapping community structure in co-authorship networks: A case study[END_REF], this property needs more consideration. A network with a strong community structure consists on cohesive subgroups of vertices that share many connections with members of their group and few connections with vertices outside their group. Bridge nodes are the ones that link different communities. They create a pathway of spreading disease outside of their community. Their influence on epidemic spreading has been particularly investigated in previous works [START_REF] Liu | Epidemic spreading in community networks[END_REF][START_REF] Gupta | Community-based immunization strategies for epidemic control[END_REF][START_REF] Ghalmane | Betweenness centrality for networks with nonoverlapping community structure[END_REF][START_REF] Chakraborty | Immunization strategies based on the overlapping nodes in networks with community structure[END_REF]. Indeed, immunization of these nodes allows confining the disease into the community where it starts. However, one must not neglect the importance of the highly connected nodes embedded into their community on the epidemic spreading process. In real-world networks, the community structure strength can range from strong community structure (few inter-community links) to weak community structure (high proportion of inter-community links). The immunization strategies proposed in the previous studies aim at targeting the key spreaders in networks with community structure. However, either they do not exploit the community structure strength or they do not use it properly. That is the reason why they are not suitable for all types of networks. To solve this issue, we propose to make better use of the information about the community structure in order to develop new immunization strategies. The three immunization strategies presented in this work are intended for various types of networks with community structure strength ranging from well-defined to non-cohesive community structure. Our aim, therefore, is to relate the impact of the community structure strength to the choice of an appropriate immunization strategy. Additionally, our goal is to show that engaging more topological properties of the community may enhance also the performance of the immunization strategies.

In this work, we restrict our attention to networks where each node belongs to a single community. We also use a global approach. In other words, for each node of the network, an influence measure is computed and the nodes are ranked and immunized according to this measure. Thus, we propose and evaluate three methods:

i) The first proposed method targets nodes having a big inter-community influence.

It is measured by the number of neighboring communities linked to the node.

ii) The second immunization method targets nodes which could have at the same time a high influence inside and outside their communities. Greater importance is given to those belonging to large communities since they could affect more nodes. This strategy is based on a weighted combination of the number of intracommunity and inter-community links of each node in the network.

iii) The third method has the same objectives as the previous one. It is designed in order to take also into account the density variation of the communities.

The remainder of this paper is organized as follows. We preview the necessary background in Section 2. In Section 3, related works and immunization strategies are introduced. In Section 4, the proposed community-based strategies are defined.

Section 5 introduces the experimental setting used in this work. In Section 6, the experimental results are presented. Finally, section 7 serves as a conclusion to the paper.

Background

In this section, we recall the definition of the immunization strategies that are used to mitigate an epidemic outbreak. In addition, we present the model used to simulate the epidemic spreading process in order to evaluate the performances of the different methods in the context of transmission dynamics. At least, a short outline of the community detection studies is presented.

Epidemiological model

The susceptible-infected (SI) and susceptible-infected-removed (SIR) models are widely used for infection dissemination and information diffusion in different fields.

In this paper, we employ the SIR model to estimate the spreading capabilities of the nodes.

The SI model [START_REF] Hurley | The basic si model[END_REF] is considered as the simplest form of all epidemic models.

In this model, a node has only two possible states: a susceptible (S) or a infected (I) state. The model can be represented by the compartment diagram shown in Figure 1 (a). At first, all nodes are set to the susceptible state (individuals are with no immunity). After that, the state of a small proportion of nodes selected by a given immunization strategy is set to the infected state. At each time step, an infected node can infect its susceptible neighbors with the transmission rate λ. This process ends when there is no susceptible node in the network.

The Susceptible-Infected-Recovered (SIR) epidemic model [START_REF] Newman | Spread of epidemic disease on networks[END_REF][START_REF] Moreno | Epidemic outbreaks in complex heterogeneous networks[END_REF] is used to simulate the spreading process in networks. In this model, there are three states for each node: susceptible (S), infected (I) and recovered (R). The infection mechanism of the SIR model is shown in Figure 1 chosen according to a given immunization strategy until a desired immunization coverage of the population is achieved, and their state is set to resistant R. All remaining nodes are in S state. After this initial set-up, infection starts from a random susceptible node. Its state changes to I. At each time step, the epidemic spreads from one infected node to a neighboring susceptible node according to the transmission rate of infection λ. Furthermore, infected nodes recover at rate γ, i.e.

the probability of recovery of an infected node per time step is γ. If recovery occurs, the state of the recovered node is set from infected to resistant. The epidemic spreading process ends when there is no infected node in the network. After each simulation, we record the total number of recovered nodes (the epidemic size).

Immunization strategy

The goal of an immunization strategy [START_REF] Giabbanelli | Reseaux complexes et epidemies[END_REF] is to reveal the set of the most influential spreaders in a given network. According to the amount of information they require about the overall structure of the network, they can be classified into two categories: Global and Local strategies. The first type of strategies requires information of the whole network topology, while the second group of strategies needs only the knowledge of network structure at node level.

Global immunization strategies are based on an ordering of all the nodes in the network in order to immunize them according to their rank. To do so, a socalled centrality measure is computed for each node of the network. It quantifies its ability to disseminate the disease inside the network. Degree and Betweenness are the most commonly used centrality measures to rank the nodes. Nodes are then targeted in the decreasing order of their rank from most central to less central node. Since all the nodes are involved in this process, the knowledge of the entire network is then required for these strategies. Local immunization strategies on the other hand are agnostic about the global structure of the network. They can operate with a very limited amount of information about a node. The most straightforward local strategy is uniform immunization that targets nodes in a totally random way without any information. Acquaintance [START_REF] Cohen | Efficient immunization strategies for computer networks and populations[END_REF] is another popular local immunization strategy which selects random neighbors of randomly selected nodes and immunizes them if they have been selected n times. Usually, global strategies perform better than local strategies since they can use more information about the topological properties of networks. Howevever, the local strategies are usually computationally more efficient.

Community structure

Many real-world networks exhibit a community structure, i.e , their nodes are organized into modules, called communities. The first definitions of the community structure were proposed by the Social network analysts. They studied the structure of subgraphs. The Clique is the most prevalent concept [START_REF] Bomze | The maximum clique problem[END_REF]. A clique is a complete subgraph such that everyone of its nodes is associated with all the others. In general, communities are not complete graphs. In addition, in a clique all nodes have identical role, while some nodes are more important than others in communities, due to their heterogeneous linking patterns. Thus, this notion cannot be viewed as an appropriate candidate for community definition. A very widespread informal definition of the community concept considers it as a densely interconnected group of vertices compared to the other vertices [START_REF] Fortunato | Community detection in graphs[END_REF]. A community is then a cohesive subset of nodes sparsely connected with the rest of the network. This view has been challenged, recent works [START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF][START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters[END_REF][START_REF] Jeub | Think locally, act locally: Detection of small, medium-sized, and large communities in large networks[END_REF][START_REF] Yang | Structure and overlaps of ground-truth communities in networks[END_REF] has shown that communities may overlap as well. Some of the vertices can be shared by several communities. In social networks for instance, individuals can take part to different groups at the same time, such as work colleagues, friends or family.

Identifying the communities in networks may offer a clear idea on how the network is organized. We can actually distinguish between nodes that are totally embedded inside their groups and nodes that are located at the boundary of the groups. These nodes may act as brokers between the communities of the networks and could play a major role in the dynamics of spreading processes across the network. Community detection in networks, also called network partitioning or clustering is a not well characterized problem. Formal definitions may differ in the way they consider these aspects of cohesion and separation of communities. There is therefore no universal definition of the modules that one should be looking for.

Such ambiguity leaves a lot of freedom to propose various community detection algorithms implementing differently the notion of community structure. In this section, we present a representative set of methods and classify them according to the approach they apply to uncover the communities.

Modularity based algorithms

Modularity is a widespread measure introduced by Newman and Girvan [START_REF] Newman | Modularity and community structure in networks[END_REF][START_REF] Zhang | Modularity optimization in community detection of complex networks[END_REF],

which measures the quality of a community structure. It assesses the internal connectivity of the identified communities through the number of intra-and intercommunity links. Modularity optimization based algorithms tend to identify the best community structure in terms of modularity.

FastGreedy [START_REF] Newman | Fast algorithm for detecting community structure in networks[END_REF] is based on a greedy optimization approach. It starts with a state in which each node constitutes its own community. The algorithm repeatedly merges pairs of communities together to obtain larger ones. At each step, the joined communities are selected by considering the largest increase (or smallest decrease) in modularity. FastGreedy produces a hierarchy of community structures. The best one is the one obtaining the maximal modularity.

Louvain proposed by Blondel et al. [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] is another optimization algorithm.

It relies on an improvement greedy optimization process. It includes a additional agglomerative phase to improve the optimization approach. Initially as for Fast-Greedy, each node constitutes its own community. After that, a greedy optimization algorithm is applied to identify the communities. The second step consists on forming a new network, where nodes represent the communities found during the first phase. The inter-community links are aggregated and represented as links between the new nodes, while the intra-community links are represented by selfloops. The first phase is repeated to the new network, and the process ends when stable communities are reached.

Random-walk based algorithms

Various algorithms utilize random walks in different ways in order to identify communities in networks. In this work, we have retained one of the most influential algorithm from this class.

WalkTrap [START_REF] Pons | Computing communities in large networks using random walks[END_REF] uses a hierarchical agglomerative clustering approach as for Fast-

Greedy, but with a different fusion criterion. It uses a distance measure based on random walks. This algorithm is based on the idea that random walks tend to get trapped into a community. If two nodes i and j are in the same community, the probability to get to a third node k located in the same community through a random walk should not be very different for both of them. The distance is constructed by summing these differences over all nodes, with a correction for degree.

Information based algorithms

The goal of these algorithms is to use the community structure so as to represent the network using less information than that interpreted by the full adjacency matrix. We retained two algorithms from this class.

InfoMod was proposed by Rosvall et al. [START_REF] Rosvall | An information-theoretic framework for resolving community structure in complex networks[END_REF], which uses a community matrix and a membership vector as simplified representation of the network focusing on the community structure. The first one is an adjacency matrix representing communities instead of nodes, while the second one is a vector associating each node to a community. This algorithm uses the mutual information measure in order to measure the quantity of information from the original network contained in the simplified representation. The best assignment among all possible assignment of nodes to communities is the one associated with the maximal mutual information.

InfoMap [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF] is another algorithm proposed by the same authors. It tends to find the set of nodes (named communities) containing high intra-module information flow and low inter-module information flow. The InfoMap algorithm is based on a map equation. It is based on the information flow used to find a compressed representation of a set of random walks through a graph. The partitions with high quality are found by minimizing the quantity of information needed to represent some random walk in the network. Indeed, the walker will probably stay longer inside communities in a partition containing few inter-community links. 

Local immunization strategies

These strategies target the most influential nodes using local information around randomly selected nodes. Their main advantage is that they require only a limited amount of information about the network topology. We present two local methods based on non overlapping community structure and one strategy designed for overlapping communities.

Community Bridge Finder (CBF)

Proposed by Salathe et al. [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF], it is a random walk based algorithm designed to search for bridge nodes. The basic idea is that real-world networks exhibit a strong community structure with few links between the communities.

The CBF algorithm works as follows:

Step 1: Select a random node v i=0 and follow a random path.

Step 2: v i-1 (i 2) is considered as a potential target if there is not more than one connection from v i to any of the previous visited nodes.

Step 3: Two random neighboring nodes of v i are picked (other than v i-1 ). If there is no connections back to the previously visited nodes v j≺i then, the potential target is marked as a bridge and it is immunized. Otherwise, a random walk at v i-1 is taken back.

Therefore, when a walker reaches a node in another community, he is no longer linked to previously visited sites. Comparisons have been performed with the Acquaintance strategy (A node is selected at random and one of its randomly selected neighbors is immunized). Extensive tests conducted on real-world and synthetic networks using the SIR epidemic model show that CBF performs mostly better, often equally well, and rarely worse than the Acquaintance strategy [START_REF] Cohen | Efficient immunization strategies for computer networks and populations[END_REF]. It performs particularly well on networks with strong community structure.

Bridge-Hub Detector (BHD)

The Bridge-Hub Detector [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] is another variant of CBF strategy. It targets bridge hub nodes for immunization by exploring friendship circles of visited nodes. The procedure of the BHD algorithm can be specified as follows:

Step 1: Select a random node v i=0 and follow a random path.

Step 2: Let v i be the node selected after i walks, and f i be the set of all neighbors of the node v i . The node v i is targeted for immunization if there is at least a node in f i that is not a member in the set F i-1 and that is not connected to the nodes in F i-1 where

F i-1 = f 0 f 1 f 2 ... f t-1 .
Otherwise, v i will not be targeted for immunization and F i will be updated to

F i = F i-1 f i .
Step 3: One node v H is randomly selected for immunization among the nodes in f i that do not belong and could not be linked back to F i-1 .

Therefore, a pair of nodes, a bridge node and a bridge hub, are targeted for immunization via a random walk. BHD was applied on simulated and empirical data constructed from social network of five US universities. Experimental results demonstrate that it compares favorably with Acquaintance and CBF strategies.

Indeed, it results in reduced epidemic size, lower peak prevalence and fewer nodes need to be visited before finding the target nodes.

Random-Walk Overlap Selection (RWOS)

This random walk based strategy [START_REF] Taghavian | A local immunization strategy for networks with overlapping community structure[END_REF] targets the high degree overlapping nodes.

The RW OS algorithm works as follows:

Step 1: Define the list of overlapping nodes L over obtained from known or extracted communities.

Step 2: A random walk is followed starting from a random node v i=0 of the network.

Step 3: The visited node v i is nominated as a target for immunization if it belongs to the list of overlapping nodes L over , otherwise, the random-walk proceeds.

Simulation results on synthetic and real-wold networks with the SIR epidemic model show that the proposed method outperforms CBF and BHD strategies.

In some cases it has a smaller epidemic size compared to the membership strategy where overlapping nodes are ranked according to the number of communities they belong to. In particular, its performance improves in networks with strong community structures and with greater overlap membership values.

Summary

Results show that local methods designed for networks with community structure are more efficient that classical local strategies. Key contributions of these works is to demonstrate that it is important to better take into account the modular organization of real-world networks in order to develop efficient immunization strategies. Note, however, that local methods are not as efficient as global ones.

Their main advantage is that they do not require a full knowledge of the global structure of the network.

Global immunization strategies

Nodes are immunized according to a rank computed using a specific influence (centrality) measure. Immunization aims to target nodes with high centrality due to their big influence. The majority of known methods make use of the structural information either at the microscopic or at the macroscopic level to characterize the node importance. These strategies such as Degree and Betweenness immunization strategies are very effective but they require the knowledge of the topology of the entire network. Refer to [START_REF] Lü | Vital nodes identification in complex networks[END_REF] for a comprehensive survey on the subject. Given that the influence of a node depends only on (i) the network's topology, and (ii) the disease model, and that a vast majority of real-world networks exhibit a modular organization, some global methods have been developed lately for such networks.

Comm strategy

Gupta et al. [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] proposed a new method called the Comm strategy. Nodes are ranked using both the number of intra-and inter-community links, which respectively link to nodes inside and outside the community. The purpose of this is to rank nodes that are both hubs in their community and bridges between communities. In this measure, the number of inter-community links is raised up to power two while the number of the intra-community links is not raised to give more importance to bridges. Results on synthetic and real-world networks show that the Comm based strategy can be more effective than degree and betweenness strategies. However, it gives significant importance to the bridges compared to the community hubs. Yet, the hubs are commonly believed to be also influential nodes as they can infect their many neighbors [START_REF] Barabási | Scale-free networks[END_REF][START_REF] Ferrara | The role of strong and weak ties in facebook: a community structure perspective[END_REF]. In some cases, they may play a very major role in the epidemic spreading.

Membership strategy

Hebert-Dufresne et al. [START_REF] Hébert-Dufresne | Global efficiency of local immunization on complex networks[END_REF] proposed an immunization strategy based on the overlapping community structure of networks. Nodes are targeted according to their membership number, which indicates the number of communities to which they belong. Experiments with real-world networks of diverse nature (social, technological, communication networks, etc.) and two epidemiological models show that this strategy is more efficient as compared to degree, coreness and betweenness strategies. Furthermore, its best performances are obtained for high infection rates and dense communities.

OverlapNeighborhood strategy (ON)

Kumar et al. [START_REF] Kumar | An efficient immunization strategy using overlapping nodes and its neighborhoods[END_REF] proposed a strategy based on overlapping nodes. It targets immediate neighbors of overlapping nodes for immunization. This strategy is based on the idea that high degree nodes are neighbors of overlapping nodes. Using a limited amount of information at the community structure level (the overlapping nodes), this strategy allows to immunize high degree nodes in their respective communities. Experiments conducted on four real-world networks show that this immunization method is more efficient than local methods such as CBF [START_REF] Newman | A measure of betweenness centrality based on random walks[END_REF][START_REF] Brandes | A faster algorithm for betweenness centrality[END_REF],

BHD and RWOS methods. It also performs almost as well as degree and betweenness strategies while using less information about the overall network structure. 

Community-Based Mediator Strategy (CBM)

This immunization method is based on Community-Based Mediator measure [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF].

The idea behinds this strategy is that if an individual has many links in several communities, he can then play significant role to diffuse information around his circle. This method selects the most intermediate nodes which receive and disseminate information through the communities than other nodes. It combines the influence of the Degree and the Betweenness of the nodes in the network. The CBM measure is defined as follows:

CbM i = H i d i N i=1 d i (1) 
Where H i is the entropy of the node i. It is defined by the following formula:

H i = - ρ in i log(ρ in i ) + - ρ ex i log(ρ ex i ) (2) 
Where ρ in i represents the fraction of links connected to i inside its community, while ρ ex i indicates the fraction of outgoing links from node i to nodes belonging to other communities. The entropy is used to find nodes that have a balance between the ability of diffusing the information in the network. The experimental results have shown that nodes with high CbM value have a greater impact to spread information in the network than nodes having a high Degree, Betweenness, CbC, PageRank or Eigenvector value.

Summary

Globally, experimental results demonstrate that the global strategies described above can reach the efficiency of classical strategies that are agnostic about the community structure while using less information. However, they do not distinguish between the various community structure strength that can be encountered in real-world networks (well defined, medium, loose). The Comm and Communitybased Betweenness Strategies give more importance to nodes with a big amount of external links (the bridges). These nodes have a significant global influence in the network. Thus, these strategies are very efficient in networks with a community structure of medium strength. Indeed, the epidemics can propagate between communities through the high number of bridges in the network. Yet, these strategies are less efficient in networks with well-defined or loose community structure.

Indeed, in these cases, the hubs can play a major role in the epidemic spreading process. The CBM strategy that immunizes nodes with a balance of external and internal links is more efficient in these situations. In order to overcome these drawbacks, we introduce three immunization strategies for networks with community structure strength ranging from well defined to loose community structure strength. Each strategy is tailored to one of the community structure strength of the network (well-defined, medium, loose). Moreover, they use also more information about the topological properties of the communities (the number of communities, community size and the density of inter-community links) to increase the performance of the community-based immunization strategies.

Proposed measures

In order to quantify the influence of a node in the diffusion process on community structured networks, we propose three measures that integrate various levels of information.

Let's G(V, E) be a simple undirected network. V represents the set of nodes, and E is the set of edges. C = {C 1 , ...C k , ..C m } is the set of the non-overlapping communities while m is the number of communities of the network (G = m k=1 C k ).

Number of Neighboring Communities Measure

The main idea of this measure is to rank nodes according to the number of communities they reach directly (through one link). The reason for targeting these nodes is that they are more likely to contribute to the epidemic outbreak towards multiple communities. Note that all the nodes that do not have inter-community links share the same null value for this measure.

For a given node i belonging to a community C k ⊂ C, the Number of Neighboring Communities β N N C (i) is given by:

β N N C (i) = C l ⊂C\{C k } j∈C l a ij (3) 
Where a ij is equal to 1 when a link between nodes i and j exists, and zero otherwise.

represents the logical operator of disjunction, i.e, j∈C l a ij is equal to 1 when the node i is connected to at least one of the nodes j ∈ C l .

Some bridge nodes may be connected to a single neighboring community with a high number of inter-community links. Other bridge nodes may have a fewer amount of inter-community links but these links allow to reach multiple communities. This strategy allows targeting nodes linked with a high number of external communities. Thus, it can target the most influential bridges of the network. Indeed, these nodes can disseminate epidemics to many communities all over the network. However, this strategy has some drawbacks. When the network has few communities, many nodes have the same rank. The nodes are randomly immunized in this case. Additionally, it does not target hubs for immunization. These nodes can affect a large number of nodes in their communities. They have then a major influence in their local communities. Overall, this strategy is suitable for networks with medium community structure having a high number of bridge nodes. Yet, it is inappropriate in networks with well-defined or loose community structure, where hubs may play a bigger role in the epidemic spreading.

Community Hub-Bridge Measure

Each node of the network share its links with nodes inside its community (intracommunity links) and nodes outside its community (inter-community links). Depending of the distribution of these links, it can propagate the epidemic more or less in its community or to its neighboring communities. Therefore, it can be considered as a hub in its community and a bridge with its neighboring communities.

That is the reason why we call this measure the Community Hub-Bridge measure.

Furthermore, the hub influence depends on the size of the community, while the bridge influence depends on the number of its neighboring communities.

For a given node i belonging to a community C k ⊂ C , the Community Hub-Bridge measure β HB (i) is given by:

β HB (i) i∈C k = h i (C k ) + b i (C k ) (4) 
Where:

h i (C k ) = Card(C k ) * k intra i (C k ) (5) b i (C k ) = β N N C (i) * k inter i (C k ) (6) 
k intra i (C k ) and k inter i (C k )
are respectively the intra-community degree and the inter-community degree of node i. Card(C k ) is the size of its community.

β N N C (i)
represents the number of its neighboring communities.

h i (C k ) tend to immunize preferentially hubs inside large communities. Indeed, they can infect more nodes than those belonging to small communities.

b i (C k ) allows to target nodes that have more links with various communities. Such nodes have a big inter-community influence.

The community Hub-Bridge strategy targets nodes that have a good balance between the intra-community and the inter-community links. It selects nodes playing simultaneously the role of hubs in their communities and bridges to other communities. This strategy gives the priority to hubs located in large communities due to their high local influence. These nodes can infect a big number of nodes in the network if they are contaminated. Additionally, it targets bridges with the highest connectivity linked to the maximal number of external communities. This allows targeting nodes with the highest global influence in the network. However, this method gives importance to hubs as well as bridge nodes regardless of the community structure strength of the network. In some situations, more weight should be given to one of the two. For instance, in networks with non-cohesive communities the network act as one big community, in this case, more importance must be given to the hubs as they can infect several nodes in the network.

Weighted Community Hub-Bridge Measure

The Community Hub-Bridge measure targets in priority the hubs in large communities and the bridges linked to multiple communities. However, no importance is given to the community structure strength. When the community structure is well-defined, more importance should be given to the bridges. Indeed, in this case breaking the network in multiple communities allows to contain the epidemic spreading where it started. On the contrary, when the community structure is very loose, it is of prime interest to immunize the hubs in large communities. Weighting each component of the community Hub-Bridge allows therefore to give more or less importance to bridges or hubs according to the community structure strength.

For a given node i belonging to a community C k ⊂ C, the Weighted Community Hub-Bridge Measure β W HB (i) is given by:

β W HB (i) i∈C k = ρ C k * h i (C k ) + (1 -ρ C k ) * b i (C k ) (7) 
Where ρ C k represents the interconnection density between the community C k and the other communities of the network. It is given by:

ρ C k = i∈C k k inter i /(k inter i + k intra i ) Card(C k ) (8) 
If the communities are very cohesive, then more importance is given to the bridges in order to isolate the communities. Otherwise, more importance is given to the hubs inside large communities.

The epidemic diffusion of a node is dependent on its position in its community besides the relation that its community has with the other communities in the network. In this perspective, the Weighted Community Hub-Bridge is designed to be able to adapt with nodes belonging to communities with various structure strength. It is very similar to the Community Hub-Bridge strategy. Yet, it gives more weight to the bridges when the network has a well-defined community structure for their isolation. Lets consider that an epidemic starts from the core of a community. If the community is isolated, then the epidemic stay confined in it and does not move to other parts of the network. This strategy gives also more weight to hubs in the case of networks with a very loose community structure since the network acts in this case as a single big community.

Toy example:

In order to illustrate the behavior of this measure a toy example is given in Fig- other communities of the network. Thus, the Weighted Community Hub-Bridge measure has the ability to adapt to the strength of the community structure. It gives more weight to the bridges when the network has a well-defined community structure in order to isolate the communities, while it gives more weight to hubs in the case of networks with a weak community structure since the network acts in this case like a single big community.

Experimental Setting

In this section, we present the data and methods used in the empirical evaluation of the various immunization strategies presented above.

Datasets

In order to evaluate the various measures under study, synthetic networks with controlled topological properties, together with real-world networks have been used. 

Synthetic networks

Synthetic networks are generated using the LFR (Lancichinetti, Fortunato and Radicchi) algorithm [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF]. It generates random samples of networks with powerlaw distributed degree and community size. Hence, LFR algorithm guarantees networks with realistic features [START_REF] Orman | Towards realistic artificial benchmark for community detection algorithms evaluation[END_REF]. This algorithm allows to control different parameters when generating networks. Mainly, the mixing parameter µ, determines the ratio of the number of external neighbors of a node to the total degree of the node. Its value controls the strength of the community structure. For small values of µ, the communities are well-separated because they share few links, whereas when µ increases the proportion of inter community links becomes higher, making community identification a difficult task. Experimental studies showed that for a scale-free network, the degree distribution exponent α usually ranges from 2 to 3, and the maximal degree is estimated to be k max ∼ n1/(α-1) [START_REF] Albert | Statistical mechanics of complex networks[END_REF][START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF][START_REF] Newman | The structure and function of complex networks[END_REF]. The parameters values used in our experiments are given in Table 1.

Real-world networks

Real-world networks of various nature (online social networks, a technological network and a collaboration network) are used in order to test the immunization strategies.

-Facebook: We use a network gathered by Traud et al. As the community structure of these networks is unknown, we use a community detection algorithm. We choose to use the Louvain algorithm that proved to be efficient in both synthetic and real-world networks [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF][START_REF] Orman | On accuracy of community structure discovery algorithms[END_REF]. Furthermore, the topological properties of the uncovered communities are also realistic [START_REF] Orman | Comparative evaluation of community detection algorithms: a topological approach[END_REF].

The basic topological properties of these networks are given in Table 2.

SIR model parameters

The value of the transmission rate λ is chosen to be greater than the network epidemic threshold λ th in order to better characterize the spreading capability, it defined as [START_REF] Wang | Predicting the epidemic threshold of the susceptible-infected-recovered model[END_REF]:

λ th = < k > < k 2 > -< k > (9) 
Where < k > and < k 2 > are respectively the first and second moments of the degree distribution. The epidemic threshold values λ th of all the networks used in this paper are reported in Table 2. The same transmission rate value (λ = 0.1) is used in all the experiments. It is larger than the values of the epidemic threshold λ th of all the data collection used in this work. We set also the value of the recovery rate γ to 0.2. This small value is chosen in order to give each infected node many chances to infect its neighbors with the probability γ before changing to the recovered status.

Immunization scheme

To investigate the spread of an infectious disease on a contact network, we use the methodology described in Figure 3. For Global strategies, the influence of every node in the network is calculated according to a given centrality measure. Then, nodes are sorted in decreasing order of their influence values. Next, nodes with highest centrality are removed from the network (or their state is set to resistant) until a desired immunization coverage is achieved. For Local immunization, nodes are targeted and removed according to a random strategy initiated from randomly chosen nodes in the network. In both cases, the network obtained after the targeted immunization is used to simulate the spreading process, running the SIR epidemic model simulations. After a simulation, we record the total number of cases recovered (the epidemic size). In order to ensure the effectiveness of the SIR Fig. 3 The main steps of the immunization scheme.

propagation model evaluation, results are averaged over 600 independent realizations. Finally, we calculate the mean epidemic size to evaluate the effectiveness of the proposed methods.

Evaluation Criteria

Relative difference of outbreak size

To compare the performance of different immunization strategies, we use the fraction of the epidemic size. We also use the relative difference of outbreak size ∆r β 0 ,β c defined by:

∆r β 0 ,β c = R β 0 R β c R β 0 (10) 
Where R β 0 and R β c are respectively the final numbers of recovered nodes for the alternative and the proposed strategy after the SIR simulations. If the relative difference of outbreak size is positive, the epidemic spreads less with the proposed strategy. Therefore, it is the most efficient one. Otherwise, the epidemic spreads more with the proposed strategy and the alternative strategy is more efficient.

Largest Connected Component

We use also the size of the Largest Connected Component LCC to test the effectiveness of the proposed strategies regardless of the epidemiological models used.It is the largest remaining subgraph after the simulation process. The size of the largest connected component is used to measure the maximum limit to which an epidemic can spread. The LCC is one of measures to quantify the performance of ranking strategies. It focuses on the changes of the structure of the giant component after removing some nodes. In effect, the size of the largest connected component is computed after removing a certain proportion of nodes selected according to an immunization strategy. Clearly, the smaller the LCC, the better the immunization strategy.

Results and discussion

In this section, we report the results of two sets of experiments. The first set of experiments is performed with synthetic networks with controlled community structure. It is aimed at getting a better understanding of the relationship between the community structure and the centrality measures. These experiments are conducted on networks generated with the LFR algorithm. Indeed, this algorithm allows to control various topological properties of the community structure. We investigate the influence of the strength of the community structure. The community size range effect is also studied. Finally, the proposed immunization strategies are compared with both global strategies (Degree, Betweenness and Comm strategies) and local strategies (Community Bridge Finder [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] and Bridge Hub Detector [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] strategies).

The second set of experiments concerns real-world networks. Online Social networks, a technological network and a collaboration network are used. Recall that, as there is no ground-truth data for these networks, the community structure is uncovered using the Louvain Algorithm. Indeed, previous studies on synthetic networks have shown that it succeeds in identifying the communities for a large range of community structure strength [START_REF] Orman | On accuracy of community structure discovery algorithms[END_REF]. First, the proposed immunization strategies are compared and discussed, then their evaluation is performed against both local and global alternative strategies.

6.1 Synthetic networks

Influence of the strength of the Community Structure

In the LFR model, the mixing parameter value µ varies from 0 to 1. It allows to control the strength of the community structure from well-separated communities with few inter-community links (low values of µ) to a network with no community structure (high values of µ). In order to investigate the effect of the strength of the community structure on the performance of the proposed methods, five networks have been generated for each value of the mixing parameter (µ = 0.1, 0.4, 0.7 and 0.9). Figure 4 reports the average fraction of the epidemic size versus the proportion of immunized nodes for each µ value. According to the results reported in this figure, the performance of both Community Hub-Bridge and Weighted Community Hub-Bridge strategies decreases while increasing the mixing parameter value. Whatever the fraction of immunized nodes, the methods perform best when the communities are well-separated. When the fraction of inter-connections between the communities increases, performance decrease gradually. Indeed, with well-separated communities, the epidemics is localized to few communities, while it tends to spread more when the inter connections increase.

The Number of Neighboring Communities strategy shows its best performance for a medium range community strength value (µ = 0.4). Its efficiency decreases slightly in the case of well-defined community structure, and it gets even worse when it is very loose. Let's now turn to the comparisons of the proposed methods between them. We can distinguish three cases depending of the community structure strength.

In networks exhibiting a very strong community structure, we can see in Fig-

ure 4 that the Community Hub-Bridge strategy is the most efficient. This is due to the fact that both alternatives methods (Number of Neighboring Communities and Weighted Community Hub-Bridge strategies) target preferentially the bridges. In fact, it is not the best solution in a network where the intra-community links predominate. As there is few external connections compared to the total connections (intra-community links are considered to be 90% of the total links of the network when µ=0.1), local outbreaks may die out before reaching other communities.

Therefore, immunizing community hubs seems to be more efficient than immunizing bridges in networks with strong community structure. This is the reason why the Community Hub-Bridge method which targets nodes having a good balance of inner and outer connections is more efficient.

In networks with weak community structure as it can be seen in Figure 4, the Weighted Community Hub-Bridge method is the most efficient. Indeed, when µ has a high value, the network does not have a well-defined community structure.

In that case, Weighted Community Hub-Bridge strategy can better adapt to the community structure. It gives more weight to the community hubs as they are the most influential nodes in networks with a loose community structure. Remember that the network acts as a single community in the extreme case where µ 0.9.

That is the reason why it performs better than the other proposed methods.

In networks with community structure of medium strength, the Number of Neighboring Communities outperforms all the other proposed methods as it reported in Figure 4. In this type of networks, nodes have many external connections while maintaining a well-preserved community structure. Therefore, there is much more options for the epidemic to spread easily to neighboring communities. As the Number of Neighboring Communities strategy targets the most influential community bridges, it prevents the epidemic spreading to multiple communities. This is the reason why this immunization method shows its best performance in this case.

To summarize, Community-Hub bridge strategy is well-suited to situations where the communities are well-defined (Dense communities with few links between communities). The Weighted Hub-Bridge strategy is recommended when the community structure is very loose. For situations in between, the Number of Neighboring Communities strategy is more efficient.

Community Size Range effects

The aim of this investigation is to show the impact of the community size range on the performance of the proposed methods. Studies reported above have been performed with community structure size in the range [100, 500]. In this paragraph, they are also evaluated in networks with community size range equals to [START_REF] Watts | Collective dynamics of small-worldnetworks[END_REF]250]. 6, one can notice that the esti-732 mated F value is always smaller than the critical value of F (F < F critic ). Thus,

733
we can conclude that Comm, CBB and CBM exhibit the same performance while 734 changing the community size range, and this in networks with various community 735 structure strength. These methods are based on measures that do not take into account either the size and the number of communities. Hence the stability of their performance despite the change of the community size range.

From Figure 5, one can also see that the Community Hub-Bridge method is always the best immunization method in networks with well-defined community structure, and that the Number of Neighboring Communities outperforms the other proposed immunization methods (where µ = 0.4). Moreover, the Weighted Community Hub-Bridge is still the most efficient one in networks with non-cohesive community structure. Acquai ta ce CBFΔ [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHDΔ [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] CommΔ [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBBΔ [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBMΔ [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Fig.

Comparison with the alternative methods

The relative difference of the outbreak size ∆R/R 0 as a function of the fraction of immunized nodes. The left panels show the difference between Community Hub-Bridge method and the alternative methods. The middle panels show the difference between Number of Neighboring Communities method and the alternative methods, while the right panels show the difference between Weighted Community Hub-Bridge and the alternative methods. We note that a positive value of ∆R/R 0 means a higher performance of the proposed method. Simulations are performed on LFR network with different community structure. Final values are obtained by running 600 independent simulations per network, immunization coverage and immunization method.

Community-based Mediator methods are slightly more performing whatever the 784 value of fraction of immunized nodes. For medium community structure strength 785 (µ = 0.4), results are more mixed, even if Community-based Betweenness is still a Table 3 The estimated mixing parameter µ of the real-world networks.

Network Power-grid ca-GrQc Princeton Oklahoma Caltech Georgetown µ 0.034 0.095 0.354 0.441 0.448 0.522 little bit more efficient. For weak community structure (µ = 0.7), the five strategies are well separated. Community-based Betweenness ranks first, followed by the Community-based Mediator, Degree, Betweenness and Comm strategy in terms of efficiency.

Real-world networks

As our goal is to cover a wide range of situations, real-world data come from different domains (social, technical and collaboration networks). In order to link the results of this set of experiments with those performed on synthetic data, we estimate the mixing proportion parameter of the uncovered community structure by the Louvain algorithm. Indeed, experiments performed with synthetic networks have shown that the community strength is a major parameter in order to explain the efficiency of the proposed immunization strategies. Estimated values reported in Table 3 show that the networks cover a wide range of community strength.

Spreading efficiency of the proposed methods

Figure 7 shows the epidemic size as a function of the fraction of immunized nodes obtained after the SIR simulations for the proposed immunization methods. These results corroborate the conclusions we made with the synthetic networks. It can be observed on Figure 7 (e) and (f) that in networks with strong community structure, Community Hub-Bridge is the most efficient immunization method. Indeed, the estimated mixing parameter value µ is equal to 0.03 and 0.09 respectively for the power-grid network and the collaboration network. Communities are very well separated, and the Community Hub-Bridge method targets nodes with a good balance of intra-community and inter-community links. That is where its superiority lies.

In networks with average community structure strength shown in Figure 7 (a), (b) and (d), the Number of Neighboring Communities outperforms the other proposed methods. It targets the bridges connected to multiple communities which facilitates the spread of epidemics throughout the whole network. Therefore, it is the most efficient method in Caltech, Princeton and Oklahoma networks.

The Weighted Community Hub-Bridge is the most efficient method for the Georgetown network (where µ = 0.522) as reported in Figure 7 (c). This method depends on the fraction of the inter-community links for each community within the network, which allows us to give the appropriate weighting to favor either the inter-community or the intra-community influence. This is the reason why it outperforms the other proposed methods in the Georgetown network which does not have a strong community structure. Finally, these results confirm the paramount influence of the mixing proportion parameter in order to choose the most appropriate strategy in a given situation. Based on the above results obtained Betweenness CBF [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHD [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] Comm [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBB [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBM [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Fig. 7 The epidemic size of the immunization methods performed on six real networks of different types namely on facebook network of four universities (a) Caltech (b) Princeton (c) Georgetown (d) Oklahoma, and on (e) Collaboration network (f) Power network. Final values are obtained by running 600 independent simulations per network, immunization coverage and immunization method.

after using real-world networks with different structures, sizes and types, what 825 matters the most is the strength of the community structure.

Comparison with the alternative methods

The relative difference of the outbreak size between global as well as local strategies and the proposed strategies is reported in Figure 8. Similarly, with synthetic networks, the local strategies (CBF and BHD) perform poorly as compared to global ones. Indeed, it appears clearly that these two types of methods are well The right panels of Figure 8 show the comparison between the Weighted Community Hub-Bridge and the alternative strategies. As expected, it outperforms its competitors in networks with average and high community structure strength.

However, it can be worse than Community-based Mediator and Betweenness for networks with a strong community structure.

To summarize, these experiments reveal that the proposed algorithms are very effective in identifying the influential nodes to be selected for immunization. When they are used on the appropriate networks in terms of community strength, they outperform the available strategies, simply by using relevant information about the community structure.

Influence of the diffusion process parameters

To test the robustness of the results to the variation of the SIR parameters model, simulation results with λ = 0.9 and γ = 0.2 are reported in Figure 9. Results, show that increasing the infection rate λ, a greater proportion of immunized nodes is needed to mitigate the spread of the epidemic. This is valid for all the tested immunization methods. For instance, only 30% of the nodes need to be removed (immunized) for all the strategies to stop the epidemic spreading in the power-grid network when λ is equal to 0.1 (Figure 7 (f)), while around 50% of the nodes need to be immunized when λ is equal to 0.9 (Figure 9 (a)). In the Georgetown network, around 40% of nodes need to be immunized when λ is equal to 0.1 (Figure 7 (c)), while a 60% node immunization rate is required in the case of a high infection rate value(Figure 9 (b)), and this hold for all the strategies. Therefore, the probability that an infected node contaminates its neighbors gets higher with an increase of the infection rate λ. Thus, the epidemic spreads at a higher rate. Consequently, a bigger proportion of immunized nodes is needed to prevent the spread of the epidemic.

We also employ the size of the Largest Connected Component LCC to confirm the effectiveness of the proposed strategies. the network split quickly into several independent modules, which leads to its collapse. As in the case of the SIR model, the Community Hub-bridge strategy is the most effective strategy in networks with a well-defined community structure (e.g., power-grid network), while the Weighted Community Hub-Bridge strategy outperforms all the other methods in networks exhibiting a loose community structure (e.g., Georgetown network).

Influence of the community detection algorithm

In this section, we report a set of experiments on Power-grid and Georgetown networks using WalkTrap and Infomap community detection algorithms. We choose these two networks because Power-Grid has a well-defined community structure while Georgetown has a loose community structure. The aim of these experiments is to get a clear picture about the community structure variations. We also report the proportion of inter-community links, the number of detected communities, and the modularity value in Table 5. For the network with a well-defined community structure, the three algorithms detect nearly the same number of communities with a relatively larger number for Infomap . This confirm the similarity of the community structure. For the Georgetown network we observe a large variation of this parameter. This is another sign that the community structures are very dissimilar. The Modularity measures the quality of the community structure. Its values are very high when the network community structure is well-defined, and relatively low for the network with a loose community structure.

According to this parameter, the performance of the three algorithms are comparable for networks with well-defined communities. Infomap is the most accurate algorithm, followed by WalkTrap then Louvain when the community structure is loose.

To summarize, when the community structures are well-defined (low values of the proportion of the inter-community links) the algorithms uncover about the same communities, while when the community structure is loose their results can be quite different. Furthermore, the mixing parameter values using the different algorithms are very close. Globally, the three detection algorithms have the same performance in networks with well defined communities with a slight preference for Infomap. In networks with a strong community structure (e.g., Power-grid network), the performance of all the proposed community-based methods for WalkTrap and Louvain detection algorithms display roughly the same behavior. Their performance is, however, slightly better for Infomap algorithm. The gain is around 5% for all three strategies, as it is reported in Figure 11 (taking the Weighted Community Hub-bridge as a reference strategy) always has a positive value. Its performance is better than the alternative methods with an average gain of 10% and 15% over the best one (CBB) for WalkTrap and Infomap respectively, while the gain is around 6% for Louvain. Therefore, the Weighted Community Hub-Bridge is the most efficient strategy in networks with an unclear community structure for all the tested detection algorithms. Yet, as expected its best performance is achieved with Infomap algorithm.

Influence of the community detection algorithms on the proposed methods

Conclusion

The adoption of an appropriate immunization strategy has aroused much interest among researchers aiming to control any threat of infectious diseases spreading.

Despite the presence of a community structure in all social networks, this property has been mostly ignored by the existing immunization strategies. In this paper, three community-based strategies are proposed. They engage more topological information related to networks with a non-overlapping community structure. The proposed strategies are evaluated in different synthetic and real networks. To verify their effectiveness, the SIR epidemic model is employed. First of all, results show that local strategies underperform compared to global strategies. Indeed, as they do not have access to the whole network structure, it is not easy to exploit their properties.

Extensive investigation also shows that generally, the proposed immunization Results of the investigations show that the performance of the proposed methods exhibits the same behavior in networks with a well defined community structure, this is for all the three community detection algorithms. Their performance is different in networks with an unclear community detection. In this case, the best results are obtained through the Infomap algorithm.

One of the main benefits of this work is to show that significant gains can be achieved by making a better use of the knowledge of the community structure organization. It can be extended in multiple directions. Firstly, these measures can be improved by using finer weights so as to make them more robust to variations in community structure. Now that the impact of community structure strength has been clearly identified, local versions of the proposed strategies need to be designed.

Finally, extension to non-overlapping community structures can be considered. Deg ee Betweeness CBFΔ [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHDΔ [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] CommΔ [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBBΔ [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBMΔ [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Deg ee Betweeness CBFΔ [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHDΔ [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] CommΔ [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBBΔ [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBMΔ [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Deg ee Betweeness CBFΔ [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHDΔ [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] CommΔ [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBBΔ [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBMΔ [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Deg ee Betweeness CBFΔ [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHDΔ [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] CommΔ [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBBΔ [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBMΔ [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Deg ee Betweeness CBFΔ [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHDΔ [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] CommΔ [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBBΔ [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBMΔ [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Deg ee Betweeness CBFΔ [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHDΔ [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] CommΔ [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBBΔ [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBMΔ [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Fig. 8 The relative difference of the outbreak size ∆R/R 0 as a function of the fraction of immunized nodes. The left panels show the difference between Community Hub-Bridge method and the alternative methods. The middle and the right panels show respectively the difference between the Number of Neighboring Communities method, the Weighted Community Hub-Bridge and the alternative methods. We note that a positive value of ∆R/R 0 means a higher performance of the proposed method. Simulations are performed on different types of realworld networks. Final values are obtained by running 600 independent simulations per network, immunization coverage and immunization method. Betweenness CBF [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHD [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] Comm [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBB [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBM [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Fig. 9 Effect of different immunization methods on the epidemic size during the SIR simulations performed on (a) Power-grid and (b) Georgetown network, with λ = 0.9 and γ = 0.2. Betweenness CBF [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHD [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] Comm [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBB [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBM [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Fig. 10 The size of the Largest Connected Component (LCC) for various immunization strategies performed on (a) Power-grid and (b) Georgetown network. Each point is the result of the LCC size as function of the proportion of the immunized nodes. Weighted Community Hub-Bridge Degree Betweene CBF [START_REF] Salathé | Dynamics and control of diseases in networks with community structure[END_REF] BHD [START_REF] Gong | An efficient immunization strategy for community networks[END_REF] Comm [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] CBB [START_REF] Kitromilidis | Community detection with metadata in a network of biographies of western art painters[END_REF] CBM [START_REF] Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] Fig 
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 1 Fig. 1 The infection mechanism of the classic (a) SI model (b) SIR model.
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 24 Community-Based Betweenness strategy (CBB) In [42] Kitromilidis et al. define a strategy based on Community-based Betweenness measure, which is a redefinition of the standard Betweenness centrality. In this measure only paths that start and finish in different communities are taken into consideration. This strategy was used in order to characterize the influence of Western artists. It is based on the idea that an influential painter is the one who promotes the flow of ideas through different communities. Using a painter collaboration network where links represent biographical connections between artists, they compared Betweenness with its classical version. Results show that the cbb performs better than the standard Betweenness. The modified centrality measure allows to highlight influential nodes who might have been missed as they do not necessary rank high in the standard measure.

ure 2 .

 2 Nodes are ranked according to the Number of Neighboring Communities measure in Figure 2 (a). Let's take the example of nodes n5 and n10 which are both community bridges and which have the same number of either internal and external links. According to Degree centrality measure in Figure 2 (d), both nodes have the same rank since it depends only on their number of neighbors. However, they have different ranks according to the Number of Neighboring Communities measure. The proposed measure gives more importance to node n5 which is linked to three external communities, so ever if it is contaminated, it can transmit the epidemic disease first to its own community C1 and also towards the neighboring communities C2, C3 and C4. While the epidemic disease could be transmitted to nodes belonging to the communities C1 and C2 in the case of node n10 contamination. Moreover, the nodes n15 and n12 are ranked among the less influential nodes according to Betweenness measure as it is shown in Figure 2 (e), although, both are community bridges that are likely to contribute to the epidemic outbreak to external communities. Therefore, the Number of Neighboring Communities measure targets the most influential bridges which can spread the epidemics to multiple communities.
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 22 Figure 2 (b) shows the rank of nodes according to the Community Hub-Bridge measure.Even-though, both n6 and n16 have four inner links inside their own communities n6 is considered more influential because it is located in community C1 which is the largest community of the network. Therefore, it could be a threat to several nodes inside the network if ever it is infected. Unlike degree measure in Figure 2 (d) that classifies the nodes n6 and n16 in the same rank based on their number of connections without considering their location within the network. It is also noticed from Figure 2 (a) that many nodes have the same rank because they have the same number of neighboring communities. So, if we consider the nodes n10 and n12, they are both connected to only one neighboring community (respectively C1 and C3 ), consequently they have the same rank. However, n10 has a bigger connectivity to C1 in term of the number of outer links. The reason why we introduced the quantity of outer links as a new parameter in the second term of the Community Hub-Bridge measure. This is to distinguish between bridges having big connectivity and those having lower connectivity with external communities.Based on Community Hub-Bridge measure n10 is more influential than node n12 as it can be seen in Figure2(b) since it has three outer connections towards community C1 while node n12 has only one connection towards C3. Therefore, the influence of nodes according to this measure is linked to two factors: the importance of nodes inside their communities by giving the priority to those located in large communities, and the connectivity of the nodes towards various communities.Nodes are ranked according to the Weighted Community Hub-Bridge measure in Figure2 (c). The network given in this example has a well-defined community structure. As we can clearly see, if we take the example of the community C1, the density of inter-community links is equal to ρ C 1 ≈ 0.15. Consequently, 15% of importance is given to the hub term h i (C 1 ) and 85% of importance is given to the bridge term b i (C 1 ). This explains why all the community bridges (n5, n2 and n4 ) are immunized before the other nodes of the community C1. It helps to isolate this community and prevent the epidemic diffusion to move from C1 to the

  [START_REF] Traud | Social structure of facebook networks[END_REF] from Facebook 1 online social network. This data includes the friendship network of five universities in the US. It provides also information about the individuals such as the dormitory, the major or the field of specialization and the year of class.-Power-grid: This technological network is an undirected, unweighted network containing information about the topology of the Western States Power Grid of the United States. An edge represents a power supply line. A node is either a generator, a transformer or a substation. This data 2 is compiled by D. Watts and S. Strogatz[START_REF] Watts | Collective dynamics of small-worldnetworks[END_REF].-General Relativity and Quantum Cosmology (GR-QC): GR-QC 3 is a collaboration network collected from the e-print arXiv. It covers scientific collaborations between authors of papers submitted to the General Relativity and Quantum Cosmology category. The nodes represent the authors and there is a link between two nodes if they co-authored a paper. This data is available in the SNAP repository compiled by Leskovec et al.[START_REF] Leskovec | Graph evolution: Densification and shrinking diameters[END_REF].
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 94 Fig.4Influence of the strength of the community structure on the epidemic size of the proposed methods. Each point show the epidemic size with respect to the fraction of the immunized nodes. Simulations are performed on LFR-generated networks with various mixing parameter values µ. Each epidemic size value is the average of 600 S.I.R simulation runs.

Figure 5 Fig.

 5 Figure5reports the epidemic size versus the percentage of immunized nodes for values of the mixing parameter µ ranging from µ = 0.1 to µ = 0.9, and with the two community size range under study. One can see that all the immunization strategies exhibit the same behavior. They always perform better in networks with smaller community size range. Furthermore, the differences between the epidemic sizes in the two situations decrease when the proportion of immunized nodes increases. In networks with a big community size range, there are a small number of communities. Consequently, the range of the Number of Neighboring Communities measure is also small, and many nodes have the same values (as it is shown in the example given in section 3.1). That makes the ranking less efficient. In networks with a smaller community size range, there are much more communities. In this case, more nodes have different numbers of neighboring communities values and the ranking is more efficient. That is the reason why the Number of Neighboring communities performs better in the latter case. Concerning Community Hub-Bridge and Weighted Community Hub-Bridge measures, both are weighted by the number of neighboring communities. This weight becomes more discriminative as the community size range decreases. That explains why they also perform better in networks with small community size range. Additionally, it is illustrated also in Figure5 (d)-(f) that the other community based strategies (Comm, CBB and CBM) are not affected by the community size range. To confirm that, we

Figure 6

 6 Figure 6 reports the relative difference of the outbreak size between the proposed strategies and both local (Acquaintance, CBF, BHD) and global alternatives (Degree, Betweenness, Comm, Community-based Betweenness and Community-based Mediator) as a function of the fraction of immunized nodes. Community Hub-Bridge is taken as the reference in (a), (d) and (g), Number of Neighborhood communities in (b), (e) and (h) and Weighted Community Hub-Bridge in (c), (f) and (e). The values of the mixing parameter (µ = 0.1, µ = 0.4, µ = 0.7) cover the three situations in terms of community strength (strong, median and weak community structure).

Figure 6 (

 6 Figure 6 (a), (d) and (g) shows that ∆R/R 0 has usually a positive value. Thus, Community Hub-Bridge yields a smaller epidemic size compared to all the alternative methods whatever the fraction of immunized nodes values, and this holds for all the range of community structure strength. The middle panels of Figure 6 reports the results of the comparative evaluation of the Number of Neighboring Communities strategy. Overall, it is more efficient than the tested alternative methods. However, Betweenness and Community-based Mediator perform better in networks with strong community structure (µ = 0.1). Indeed, the relative difference is negative in this case. Therefore, targeting the community bridges is not the best immunization solution in networks with very well-defined community structure. It performs also worse than the Community-based Betweenness in networks with loose community structure (µ = 0.7). It can be also noticed from Figure 6 (c), (f) and (i) that the Weighted Community Hub-Bridge method results always in the lowest epidemic size compared to the other methods. To summarize, if we exclude the case of the Number of neighborhood Communities strategy in the situationwhere the network has a strong community structure (µ = 0.1), in every other situations the relative difference of the outbreak is always positive. That indicates that all the proposed strategies outperform the alternatives. Let's now turn to more detailed comparisons. First of all, these results clearly demonstrate the superiority of global methods over local methods. Indeed, in any case, the biggest differences are observed with Acquaintance followed by CBF and BHD. In fact, their rank is correlated with the level of information that they possess on the network topology. In fact, Acquaintance is totally agnostic about the network topology, CBF targets the bridges between the communities while BHD targets both bridges and hubs. Even though CBF and BHD are community-based methods, they use the information only at the level of randomly chosen nodes, from where their low performances. The compared effectiveness of the five alternatives global strategies depends on the strength of the community structure. For strong community structure (µ = 0.1), Degree and Comm strategy are very close while Betweenness and

  separated. The results of the comparative evaluation of the global strategies are quite consistent with what might have been expected. The proposed strategies are globally more efficient than their competitors. This is all the more true when they are used appropriately. The left panels of Figure 8 show the comparison between the Community Hub-Bridge and the alternative methods. It outperforms the global methods in networks with strong community structure (Power Grid and ca-GrQc) with a minimal gain of around 10 % over the best alternatives (Community-based Mediator and Betweenness). Its benefits reduces when the strength of the community structure gets looser. It is still above Betweenness for Princeton and Oklahoma networks, despite their medium range mixing proportion. However, when the community structure becomes weaker (Caltech and Georgetown), it is less performing than both Community-based Mediator and Betweenness when the fraction of immunized nodes is greater than 20 %. The middle panels of Figure 8 show the comparison between the Number of Neighboring Communities and its alternative. It shows its best performances for networks with medium mixing proportion values (Princeton, Oklahoma, Caltech) with gains above 10 % as compared to the most performing alternative (Community-based Betweenness). However, it performs less than Communitybased Betweenness while it is still performing better than the other alternatives for Georgetown (such as degree strategy with gains of less than 10 %). However, it performs in some cases worse than Community-based Mediator, Degree and Betweenness in networks with strong community structure (Power-grid and the collaboration networks).

  Figure 10 reports the LCC of various immunization methods computed on two real-world networks with different community structure strength (Power-grid and Georgetown network). For both networks in Figure10, one can see that increasing the proportion of immunized nodes, the size of the largest connected component declines. In the power-grid network, the curve of the Community Hub-Bridge strategy declines faster than all the other alternative global and local strategies, as it is reported in Figure10 (a).Thus, the network can be broken down efficiently by selecting the influential nodes according to this strategy. It is followed by the Weighted Community Hub-Bridge, and the Community-based Mediator strategy. The local methods (Community Bridge Finder and Bridge-Hub Detector) perform poorly to split the network.The Weighted Community Hub-Bridge strategy is the most effective strategy in Georgetown network as it is reported in Figure10 (b). Its curve declines faster than all the other immunization strategies before reaching the steady state. Therefore, immunizing nodes according to the Weighted Community Hub-Bridge makes

Figure 11 represents

 11 Figure 11 represents the epidemic size of the proposed strategies versus the proportion of immunized nodes for different community detection algorithms. The immunization methods are tested on two networks with different community structure strength. This figure shows the effect of using various community detection

  Figure 12 shows the relative difference of the outbreak size between the proposed strategies and the alternative ones as a function of the fraction of the immunized nodes. The proposed strategies are evaluated on the Power-grid network in (a) and (b) and the Georgetown network in (c) and (d) for the WalkTrap and Infomap detection algorithms. The left panels of this figure show the comparison between the Community Hub-bridge and the alternative methods. The middle panels represent the difference between the Number of Neighboring Communities and the alternative methods. On the other hand, the right panels show the difference between the Weighted Community Hub-Bridge method and the alternative ones.In networks with a strong community structure, the performance of the Community Hub-bridge is still better than the alternative methods with an average gain of 13% over the best alternative (Community-based Mediator) for Infomap, while the gain is around 10% for WalkTrap and Louvain algorithms. This method has a minimal gain of 3% for Infomap. The middle and the right panels of Figure12(a) and (b) show that ∆R/R 0 exhibits sometimes a negative value for both the Number of Neighboring Communities and the Weighted Community Hub-Bridge strategies. In all the figures, they perform less than CBM and Betweenness as is the case of Louvain algorithm. Therefore, for all three algorithms, the Community Hub-Bridge is the most efficient strategy in networks with a well-defined community structure. Furthermore, it shows its best performance after detecting communities through Infomap algorithm.In networks with a loose community structure, the Community Hub-Bridge is performing worse than the Community-Based Betweenness for both WalkTrap and Infomap, as it is shown in the left panels of Figure12(c) and (d). These results are similar to the ones obtained using Louvain algorithm. On the other hand, the

  strategies have a smaller epidemic size compared to the most influential global immunization strategies (Community-based Mediator and Community-based Betweenness) and the Comm strategy designed for networks with non-overlapping community structure. The Community Hub-Bridge method is particularly suited to networks with a strong community structure. The Number of Neighboring communities shows its best with medium strength community structure while Weighted Community Hub-Bridge is more efficient in networks with weak community structure. Additionally, community size range plays an important role in the diffusion process. Immunization strategies are more efficient when community size is small. Results to the SIR parameters model variations, show that the immunization strategies display the same type of performances. However, by increasing the infection rate, a greater proportion of immunized nodes is needed to mitigate the spread of the epidemic. To test the effectiveness of the proposed strategies regardless of the epidemiological models, we compute the size of the Largest Connected Component LCC. Results show that the proposed methods are still more efficient than the alternative ones. Moreover, we report also a set of experiments using the Walktrap and Infomap detection algorithms to uncover communities.

. 12

 12 Fig. 12 The relative difference of the outbreak size as a function of the proportion of the immunized nodes. The left panels show the difference between Community Hub-Bridge method and the alternative methods. The middle panels show the difference between the Number of Neighboring Communities method and the alternative methods. The right panels show the difference between the Weighted Community Hub-Bridge and the alternative methods. The immunization methods are performed on Power grid network in (a) and (b) and Georgetown network in (c) and (d) for the WalkTrap and Infomap algorithms.

Table 1

 1 LFR network parameters

	Number of nodes N	15 000
	Average degree < k >	7
	Maximum degree kmax	122
	Exponent for the degree distribution α	3
	Exponent for the community size distribution σ	2.5
	Mixing parameter µ	0.1, 0.4, 0.7, 0.9
	Community size range set	[50 250],[100 500]

Table 2

 2 The basic topological properties of six real-world networks. N and E are respectively the total numbers of nodes and links. Q is the modularity. Nc is the number of communities. λ th is the epidemic threshold.

	Network	N	E	Q	Nc	λ th
	Caltech	620	7255	0.788	13	0.012
	Princeton	5112	28684	0.753	21	0.006
	Georgetown	7423	162982 0.521	42	0.006
	Oklahoma	10386	88266	0.914	67	0.031
	Power grid	4941	6594	0.92	41	0.092
	CR-QC	5242	14496	0.86	396 0.059

Table 4

 4 The Normalized Mutual Information N M I in Power-grid and Georgetown networks.

	Network		Power-grid			Georgetown	
	NMI	Louvain	WalkTrap	Infomap	Louvain	WalkTrap	Infomap
	Louvain	-	0.872	0.751	-	0.287	0.181
	WalkTrap	-	-	0.818	-	-	0.429
	Infomap	-	-	-	-	-	-

Table 5

 5 The estimated mixing parameter µ, the number of communities Nc and the modularity Q in Power-grid and Georgetown networks.To compare the community structure uncovered by WalkTrap, Infomap and Louvain, we use the Normalized Mutual Information N M I as it is commonly used in the community detection literature[START_REF] Danon | Comparing community structure identification[END_REF]. Their estimated values for each network are reported in Table4. In the network with a well-defined community structure (e.g., Power-grid network), the NMI values are high. This means that the community structures uncovered by the three algorithms are very similar. In the Georgetown network NMI values are below 0.5. This indicates that the community structures are quite different.

			Detection algorithm
	Network	Metric			
			Louvain WalkTrap Infomap
		µ	0.034	0.036	0.039
	Power-grid	Nc Q	41 0.92	45 0.907	53 0.931
		µ	0.522	0.515	0.487
	Georgetown	Nc Q	42 0.521	193 0.546	272 0.604
	6.3.1 Community detection algorithms comparison	

http://code.google.com/p/socialnetworksimulation/

http://www-personal.umich.edu/ ~mejn/netdata/

http://snap.stanford.edu/data/ca-GrQc.html

Table 6 The Analysis of Variance ANOVA with a significance level α = 0.05. SS is the sum of squares. df is the degree of freedom. M S is the mean square. F is the test statistic. P -value is the probability value and F critic is the critical value of F. 

Source