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Abstract. The Mediterranean region is one of the more complex environments and is a hot-spot for climate change. The

HyMeX (Hydrometeorological Mediterranean eXperiment) aims at improving our understanding of the water cycle at

the meteorological to the inter-annual scales. However, monitoring this water cycle with Earth Observations (EO) is still

a true challenge: EO products are multiple, and their use still suffer from large uncertainties and incoherencies among

the products. Over the Mediterranean region, these difficulties are exacerbated by the coastal/mountainous regions and5

the small size of the hydrological basins. Therefore, merging/integration techniques have been developed to solve these

issues. We introduce here an improved methodology that closes not only the terrestrial but also the atmospheric and

ocean budgets. The new scheme allows to impose a spatial and temporal multi-scaling budget closure constraint. A new

approach is also proposed to downscale the results from the basin to the pixel scales. The provided Mediterranean WC

budget is for the first time based mostly on observations such as GRACE water storage or the netflow at the Gibraltar10

strait. The integrated dataset is in better agreement with in situ measurements, and we are now able to estimate the

Bosporus strait annual mean netflow.

1 Introduction

The Mediterranean region is one of the main climate change hotspots (IPCC, 2014): its sensitivity to global change is high

and its evolution remains uncertain. Its role in the evolution of the global ocean (i.e. mainly salinization and warming), as15

well as the socio-economics consequences it has for surrounding countries, stress the need of monitoring its water resource.

Analyzing the Water Cycle (WC), the exchange among its terrestrial, atmospheric and oceanic branches are critical to estimate

the availability of the water in the Mediterranean region. Most previous studies use model outputs or reanalysis (Mariotti

et al., 2002; Sanchez-Gomez et al., 2011), and in situ data network is too sparse and irregular. A recent paper Jordà
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et al. (2017) reviewed this literature on the analysis and quantification of the Mediterranean water budget. The WC

components are estimated but their uncertainties remain high. Recommendations are made to increase our use of EO

data, in a coordinated way. EO allow for the monitoring of the water cycle over long time-records, in particular in

regions with low number of in situ stations. But the use of EO data for WC monitoring remains a challenge due to:

(1) the multiplicity of datasets for the same geophysical parameter, (2) the EO uncertainties (systematic and random5

errors), and (3) the inconsistency between datasets (for the same component or among the components of the WC). In

Pellet et al. (2017), EO are used to monitor the WC over the Mediterranean region, it is shown that the WC budget is

not closed and that some integration technique should be used to optimize them.

Several approaches have been considered in order to optimize EO dataset at the global scale, for the WC analysis.

The features of some “integration” methods presented in the following are synthesized in Table 1.10

The “Princeton” approach - Pan and Wood (2006) presented first a work in which the authors aimed at closing the water

balance using EO products. In this work, EO datasets such as precipitation was assimilated into a land surface model (the

Variable Infiltration Capacity, VIC) using the combination of a Kalman filter and a closure constraint (see Table 1). The

resulting “analysis" dataset is not a pure EO product since the VIC model is largely used. In fact, the authors show that the

Kalman filtering plus the closure constraint is equivalent to a traditional Kalman filtering, and then to the application of an15

independent post-filtering that constrains the closure (De Geeter et al., 1997; Simon and Tien Li Chia, 2002; Aires, 2014). This

post-filtering acts by redistributing the budget residuals within each water component based on the uncertainties of each EO

source. Several papers have been published based on this approach (Troy and Wood, 2009; McCabe et al., 2008; Sahoo et al.,

2011; Troy et al., 2011; Pan et al., 2012). For instance, in Sheffield et al. (2009), two different precipitation datasets were used

over the Mississippi basin. Evapotranspiration was calculated using a revised Penman-Monteith formulation and changes in20

water storage were estimated from GRACE. For comparison, land surface model outputs, reanalyses data and in situ discharge

measurements were used too. The authors concluded that a positive bias of the precipitation datasets leads to an overestimation

of the discharge component when the estimation relies on EO data. Meanwhile, the land surface model shows a high degree

of agreement with in situ data. The analysis also highlights the importance of error characterization in the individual WC

components. Yilmaz et al. (2011) relaxed the closure constraint during the assimilation. This is an important feature because25

strong closure constraint can result in high-frequency oscillations in the resulting combined dataset. A relaxed constraint is

used in our approach (see Table 1).

The NASA-NEWS project - The project aims at a better characterization of the water cycle using EO data. The first step was

to improve the coherency of the satellite retrievals; then to gather the EO dataset, and calibrate them. Some information about

the uncertainties of the EO datasets was gathered from the data producers, but these information cannot be straightforwardly30

used further in the integration process since their evaluation are not homogeneous but product-dependent. The water cycle

budget can be closed using the satellite datasets (Rodell et al., 2015). However, this closure is obtained at the global and annual

scale only, and residuals are still significant at regional and monthly scales (Rodell et al., 2015) uses then an interpolation

for a monthly closure. Closing the budget at the global scale was a first step, and closure must now be obtained at thinner

spatial and temporal scales to monitor more precisely the distribution of the water components as the EO data are designed to.35
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In Rodell et al. (2015), the storage terms (e.g. ground water storage) had no significant change when considering annual and

global means. This hypothesis was then straightforwardly used at the monthly scale with an optimized interpolation scheme to

relax the storage change at the monthly scale. This translates into a quadratic quality criterion where storage and fluxes terms

are minimized when using annual means, at the global scale (see Table 1). One interesting feature in this approach is that both

the water (Rodell et al., 2015) and energy (L’Ecuyer et al., 2015) cycles were considered simultaneously in the assimilation5

taking into account the physical link between the two cycles through the Latent Heat flux.

The ESA water cycle initiative - In the context of the ESA WATCHFUL project on water budget closure, Aires (2014)

developed several methodologies (Table 1) to integrate different hydrological datasets with a budget closure constraint. No

surface or atmospheric model outputs were used in these integration methods, making the obtained product interesting for

model calibration and validation. One of the proposed methods, the so-called Simple Weighting+Post Filtering (SW+PF), was10

applied by Munier et al. (2014) over the Mississippi basin, using satellite datasets for P , E and ∆S and gauge observations

for R. The integrated components were compared to various in situ observations, showing good performances of the method.

This integration approach can also be performed at the entire basin level however, one of the main limitations is the datasets

availability, in particular for the in situ river discharges. Another concern was the downscaling of the basin closure constraint

to the pixel-scale. A Closure Correction Model (CCM) was developed based on the integrated product (Munier et al., 2014),15

allowing to correct each dataset independently and to greatly reduce the budget residual. This calibration was applied over the

basins where river discharges are available and extended to the global scale using an index characterizing the various surface

types (Munier and Aires, 2017). This type of post-processing step is anchored in the combination approach, but it can be

applied to long time records, at any time or spatial resolution.

In this paper, we propose several improvements of this line of research. In particular, we propose to close the WC20

budget not only over land, but also over ocean and in the atmosphere. The budget closure constraint is used simultane-

ously at different spatial (basin and sub-basin) and temporal (monthly and annual) scales. A new spatial interpolation

scheme is proposed to downscale the basin-scale closure constraint to the pixel scale. This new framework is applied to

the Mediterranean basin to provide an updated WC budget.

Section 2 presents the study domain and introduces the datasets used in the following. The integration approaches are de-25

scribed together with the other combination techniques in Section 3. Section 4 presents the evaluation metrics for the integrated

product: its ability to close the WC and its validation with in situ data at the sub-basin or pixel scale. Section 5 presents the

water cycle analysis for the period 2004-2009 using our resulting integrated dataset. Finally, Section ?? concludes the analysis

and presents some perspectives. All notations used in the following are summarized in Table A1 in appendix.

2 Case study and datasets30

This section presents the spatial domain and the datasets used in this study. Table B1 in appendix summarizes the main

characteristics of these products and more details can be found in Pellet et al. (2017). All products have different temporal

extents but share a common coverage period 2004-2009.
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2.1 Mediterranean region

The study domain is represented in Fig. 1. It is the catchment basin of the whole Mediterranean Sea drainage area, computed

from each coastal pixel, including all rivers that flows into the Sea. Basins have been computed using a hydrographic model

(Wu et al., 2011) at a spatial resolution of 0.25◦. The resolution of the hydrographic model used to compute land/Sea mask or

catchment basin may have an impact on the spatial-average estimates and then on the WC budget residual. This area uncertainty5

is taken into account into the relaxation of the closure constrain at sub-basin scale (see Table 1). The Mediterranean Sea area

with the Black Sea is 3.0 million km2, and its drainage area is more than 5 million km2.

Sub-basins have been introduced in Pellet et al. (2017). They facilitate the analysis of local climate and specific hydrological

features. The Mediterranean Sea and the terrestrial sub-basins used in the following are defined as:

– The west Maghreb mainly based on the Atlas mountain discharge (MA-DZ-TN);10

– The Nile Basin and Libyan coast characterizing Saharan and sub-Saharan climate (LY-EG);

– The Spanish coasts and Pyrenees (ES-Pyr);

– The French coast, Italy and Adriatic Sea, freshwater from the Alps and the Balkans mountains (Alp-IT-ADR);

– The eastern part of the Mediterranean Sea, Greece, Turkey and Israel (GR-TR-IL);

– The whole Black Sea drainage catchment, Bulgaria, Georgia, Romania, Russia, Turkey, Ukraine, Slovakia, Hungary,15

Austria, Slovenia, Bosnia and Serbia (BLS).

In the current study, even if the closure methods (PF) is applied over the LY-EG sub-basin, the high uncertainty of the Nile

discharge and its particular climate (African monsoon) as well as anthropogenic conditions (most of its water is used for

irrigation) make this sub-basin really different from the other sub-basins (Margat, 2004; Mariotti et al., 2002). In this study,

the closure is ensured for the Nile sub-basin but no spatial extension will be extrapolated over the LY-EG and toward central20

Africa in the analysis (see Section 3).

2.2 Original EO datasets

The datasets presented in this section will be used in the integration process over the Mediterranean region. Most of them

are satellite products and are commonly used for studying the water cycle. In order to integrate them, the datasets have been

projected on a common 0.25◦ spatial resolution grid, and re-sampled at the monthly scale.25

Precipitation (P )- Four satellite-based datasets have been selected. Two are gauge-calibrated products: the Tropical Rainfall

Measuring Mission Multi-satellite Precipitation Analysis (TMPA, 3B42 V7) presented in Huffman et al. (2007) and the Global

Precipitation Climatology Project (GPCP, v2) introduced by Adler et al. (2003). Two are uncalibrated products: Joyce et al.

(2004) has unveiled the NOAA CPC Morphing Technique (CMORPH, v1) and Ashouri et al. (2015) developed the Precipi-30

tation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN, v1). In this study, we use
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a mix of gauged/ungauged-calibrated precipitation datasets. This choice is motivated by the will of preserving the original

EO spatial pattern where limited gauge density in some areas may corrupt the signal during the gauge-calibration process (in

TMPA and GPCP product).

Evapotranspiration (E)- Three satellite-based products were chosen to describe evapotranspiration (over land): the Global5

Land Evaporation Amsterdam Model (GLEAM-V3B, Martens et al., 2016; Miralles et al., 2011); the MODIS Global Evapo-

transpiration Project (MOD16, Mu et al., 2011); and the Numerical Terradynamic Simulation Group product (NSTG, Zhang

et al., 2010).

Two products were chosen for the evaporation (over the Sea): the Objectively Analyzed air-Sea Fluxes for Global Oceans

(OAflux, Sun et al., 2003); and The Global Energy and Water Cycle Exchanges Project product (GEWEX-Seaflux, Curry10

et al., 2004).

Water storage change (∆S)- The terrestrial and Sea water storage datasets are all derived from the GRACE mission. The

estimates of water storage implicitly include the underground water. Four satellite datasets are based on the spherical decom-

position of GRACE measurement: the Jet Propulsion Laboratory (JPL, Watkins and Yuan, 2014) product; the Centre for Space15

ReSearch (CSR, Bettadpur, 2012) product, the German ReSearch Centre for Geoscience (GFZ, Dahle et al., 2013) product; and

the land-only product from the Groupe de Recherche de Géodésie Spatiale (GRGS, Biancale et al., 2005). One extra solution

based on the JPL-MASCONS decomposition of GRACE measurement (Watkins et al., 2015) is also used in this work. In order

to compute the monthly change in water storage, we applied a centred derivative smoothing filter: [5/24 3/8 -3/8 -5/24] (Pellet

et al., 2017). The filter is a slightly smoother version of the filter [1/8 1/4 -1/4 -1/8] presented by Eicker et al. (2016). It has20

been compared with several other filters (results not shown). The chosen filter is a good compromise between its low smoothing

(that suppress information) and its ability to de-noise the time series.

Discharge (Rl)- No satellite-based product is available for the discharge with sufficient temporal extent and few rivers are

still monitored by public or private network for the Global Runoff Data Centre (GRDC) that collects discharge data at the

global scale. The two discharge datasets used in the following are described in Pellet et al. (2017). Groundwater discharge is25

neglected and considered as uncertainty.

The CEFREM-V2 dataset of coastal annual discharge into the Mediterranean Sea (Ludwig et al., 2009) is based on in situ

observations and some indirect estimates using the Pike formula (Pike, 1964). In addition, developed at the Laboratoire de

Météorologie Dynamique (Polcher et al., 1998; Ducharne et al., 2003), the land surface model Organising Carbon and Hy-

drology In Dynamic Ecosystems (ORCHIDEE) is chosen here to describe the monthly dynamics of the discharge. Two coastal30

discharge outputs are available from its routing scheme with two different precipitation forcings: GPCC and Climatic ReSearch

Unit (CRU) products. We therefore projected the monthly dynamical patterns from ORCHIDEE towards the CEFREM grid.

We then scaled the monthly values of ORCHIDEE to match the CEFREM annual values. For comparison purpose, CEFREM

total freshwater inflow into the Mediterranean, without the Black Sea is 400 Km3 yr−1; while ORCHIDEE is 380 Km3 yr−1.

The scaling is then a simple way to take into account the anthropogenic impact that is not modelled at the annual and the 0.5◦35
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scales. The final product has then the spatial resolution and the annual cumulative value of CEFREM, but with the monthly

dynamics of the ORCHIDEE model.

Precipitable water change (∆W )- We considered two datasets for the precipitable water: the ESA Globvapor dataset

(Schneider et al., 2013) and the 6-hour reanalysis product from the ECMWF reanalyses (ERA-I, Dee et al., 2011). The ERA-I5

reanalysis has been considered here because precipitable water, although model-based, is largely constrained by satellite ob-

servations. In order to compute changes in precipitable water, we also applied the derivative filter: [5/24 3/8 -3/8 -5/24].

Moisture divergence (Div)- Due to the limited temporal extent of the satellite-based data, we use the 6-hour ERA-I reanal-

ysis product (Dee et al., 2011). Among the various re-analyses, ERA-I was adopted for this study in view of previous results10

demonstrating advantages in the representation of long term wind variability in Stopa and Cheung (2014) which plays a key

role in the representation of moisture divergence. Nevertheless, Seager and Henderson (2013) have shown the limitation of the

reanalysis that do not catch moisture divergence events shorter than at the 6-hour temporal scale. This limitation must be taken

into account when closing the water cycle.

15

Gibraltar netflow (Gib)- The only multiannual estimate of the Gibraltar netflow based on observations is the one presented in

Jordà et al. (2016). We use there a monthly reconstruction of the net transport where the effects of the atmospheric pressure have

been removed. This is done for consistency with the GRACE estimates of ocean water storage. The reconstruction technique

used to generate that estimate has proven to be effective to simulate the variability but the uncertainties in the mean value are

large. In Jordà et al. (2017) an expert-based assessment of the mean transport is presented. Therefore, in this work we substitute20

the 2004-2016 mean value of the Jordà et al. (2016) estimate by the estimate proposed in Jordà et al. (2017).

The Mediterranean Sea is also connected to the Red Sea with the Suez channel and to the Black Sea with the Strait of Bosporus.

The netflow at the Strait of Suez is neglected (Mariotti et al., 2002; Harzallah et al., 2016). Since no in situ reference is available

on the Bosporus netflow, the current work gathers the Mediterranean and the Black Seas into a single reservoir.

2.3 Validation datasets25

The ENSEMBLES observation dataset (EOBS) - In order to validate the precipitation, an additional dataset is used: the EOBS

dataset developed from the EU-FP6 project ENSEMBLES (Haylock et al., 2008). It is a regional, well documented and vali-

dated in situ gridded daily dataset at 0.25◦ spatial resolution, covering the period 1950-2007.

FLUXNET - Ground-based FLUXNET data (Falge et al., 2017) are used to validate the evapotranspiration and precipitation30

over several sites in Europe 1. These flux measurements are based on eddy covariance technique. All stations available in Eu-

rope for the 2004-2009 period have been selected. In order to avoid coastal contamination, the three Seaside towers “IT-Ro2”,

1FLUXNET2015 datasets; https://fluxnet.fluxdata.org

6



“IT-Noe” and “ES-Amo” have been suppressed.

Total and thermosteric Sea level datases-To validate the Sea level output from the integration technique, we use and in-

dependent estimate of Mediterranean water content. The water content can be estimated (Fenoglio-Marc et al., 2006; Jordà

and Gomis, 2006) as total Sea level minus the thermosteric variations (i.e. changes in Sea level due to thermal expan-5

sion/contraction). Total Sea level is obtained from the Ssalto/Duacs altimeter data produced and distributed by the Coper-

nicus Marine and Environment Monitoring Service 2 . The thermosteric Sea level variations are estimated using two ocean

regional reanalyses (MEDRYS, Hamon et al., 2016; Bahurel et al., 2012, MyOcean,) and two global products that include the

Mediterranean (the Met Office Hadley Centre EN-v4 Good et al., 2013; Ishii et al., 2003, ISHII).

2.4 EO uncertainty assumptions10

Some studies aimed at characterizing the uncertainty of satellite retrieved products : estimating relative uncertainty of numerous

datasets by the distance to the average product (Pan et al., 2012; Zhang et al., 2016) or using non-satellite datasets (Sahoo et al.,

2011). Nevertheless, such characterizations are generally product- and site-specific, and for some products used in this work,

no uncertainty characterization can be found in the literature. For these reasons we considered the same uncertainty for all the

datasets of a given parameter after de-biasing, following Aires (2014).15

Table 2 summarizes the uncertainty used in the various integration techniques. The uncertainty is associated to a weight which

is the ratio of the sum of all the uncertainty in the WC equation and the uncertainty of the considered variable (computed as

σ2
i /
∑
iσ

2 and expressed in percentage). Note that uncertainty in Table 2 stands for the merged product and not for particular

satellite dataset (see Eq. (6)). Following Munier et al. (2014), the uncertainties are prescribed by the literature but slightly

modified from Munier et al. (2014) to handle the special case of the Mediterranean region. Munier et al. (2014) used uncertainty20

values of 10 mm/month for each of the four P products and the threeE products (leading to 5 and 5.8 mm/month for the merged

P and E estimate), 5 mm/month for each of the three ∆S products (leading to 2.9 mm/month for the merged product) and 1

mm/month for only one R. The choice of these values was motivated by results of the studies cited in Section 1. In order to

be closer to Rodell et al. (2015), on the one hand, we decide to reduce P uncertainty to 4 mm/month. This is justified since

the de-biasing was done toward the gauge-calibrated TMPA dataset (see Pellet et al. (2017) for details). On the other hand,25

we increased E uncertainty up to 6 mm/month. The uncertainty of the merged ∆S is estimate to be broadly the same since

it is mainly driven by the large pixel resolution of GRACE. Finally, the uncertainty of the discharge R has been increased

since the product is partially based on model simulations and the groundwater discharge is not included in the analysis (see

Section 2). For the atmospheric variables, we consider an uncertainty proportional to the range of variability for the precipitable

water change: 1 mm/month. Following the suggestion from Seager and Henderson (2013), the reanalysis moisture divergence30

uncertainty has been set to 6 mm/month due to its large range of variability and time scale.

2CMEMS http://www.marine.copernicus.eu
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3 EO integration methodologies

This section presents the integration techniques used to optimize the EO datasets.

3.1 Closing the water cycle budget

In this section, the notations are introduced but additional details can be found in Aires (2014).

The WC can be described by the following time-varying budget equations:5

δSl
δt

= Pl−El−Rl (Terrestrial)

δSo
δt

= Po−Eo +R∗l −Gib (Oceanic) (1)

δW

δt
= El/o−Pl/o−Div (Atmospheric)

where l stands for land and o for ocean. If all the components in Eq. (1) are expressed in mm/month (area-normalized)

then a fourth equality is defined: R∗l = Aland
ASea

·Rl for total freshwater input/output with Aland is the total drainage area10

of the Mediterranean with the Black Sea, and ASea the total of the two Sea areas.

We first consider the six terrestrial water components Xt
l = (Pl, El, Rl, ∆Sl, ∆Wl, Divl) and the six oceanic water compo-

nents Xt
o = (Po, Eo, ∆So, ∆Wo, Divo,Gib) (t is the transpose symbol). We then define Xt

lo = [Xl, Xo]
t. The closure of the

water budget can be relaxed using a centred Gaussian random variable r and Xt ·Gtlo = r, with r ∼N (O,
∑

) where:

Glo =

 1 −1 −1 −1 0 0 0 0 0 0 0 0

−1 1 0 0 −1 −1 0 0 0 0 0 0

0 0
Aland
ASea

0 0 0 1 −1 −1 0 0 −1

0 0 0 0 0 0 −1 1 0 −1 −1 0

 (2)15

which is equivalent to the water budget in Eq. (1) and

Σ =

σl 0

0 σo



with σl =

2 0

0 2

 represents the standard deviation of the constrained terrestrial and atmospheric water budget resid-

ual over land; and σo =

2 0

0 2

 represents the standard deviations of the constrained oceanic and atmospheric water

budget residual over sea. Σ assumes no correlation in the imbalance of the 3 water cycles at monthly and annual scales,20

at sub-basin or entire basin scales.

Let:

Yl
t =

(P1, . . . ,Pp, E1, . . . ,Eq, R1, . . . ,Rr,

∆S1, . . . ,∆Ss, ∆W1, . . . ,∆Wv, Div1, . . . ,Divd)
(3)
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be the vector of dimension nl = p+ q+m+s+v+d gathering the multiple observations available for each water component

over land (similarly Yo of dimension no is defined over Sea):

– (P1, P2, . . . , Pp), the p precipitation estimates;

– (E1, E2, . . . , Eq), the q sources of information for evapotranspiration;

– (R1, R2, . . . , Rm), the m discharge estimates;5

– (∆S1, ∆S2, . . . , ∆Ss), the s sources of information for the water storage change;

– (∆W1, ∆W2, . . . , ∆Wv), the v precipitable water change estimates;

– (Div1, Div2, . . . , Divd), the d moisture divergence.

The aim of this approach is to obtain a linear filter Kan used to obtain an estimate Xan (“an” stands for analysis) of Xlo based

on the observations Ylo:10

Xan =Kan ·Ylo with Ylo = [Yl, Yo] (4)

where Kan is a 12× (nl +no) matrix.

3.2 Simple Weighing (SW)

A general approach to deal with EO datasets in the analysis of the WC is to choose the best individual dataset for

each one of the water components. This is the approach developed, for example, in the GEWEX project. In (Pellet15

et al., 2017), an Optimal Selection (OS) was based on the minimization of the water budget residuals to select the best

combination of individual dataset. Using the OS principle facilitates finding datasets coherent to each other and with

independent errors (Rodell et al., 2015). But this kind of strategy limits the use of several source of information to

reduce the uncertainties.

On the other hand, SW approach benefits from the multiplicity of the observations. EO products and more generally any20

estimation of a variable via observations, presents two types of errors. (1) Systematic errors related, for instance, to the absolute

calibration of the sensor. These can be represented by a bias and/or a scaling factor. (2) Random errors related to retrieval

algorithm uncertainties or to missing or inaccurate auxiliary information (e.g cloud mask) or to the sensor itself. These are

often characterized by a standard deviation using a Gaussian hypothesis. From a statistical point-of-view, using the average of

several estimates reduces the random errors of the estimation if no bias errors are present in the estimates. The merging process25

such as in Eq. (4) requires then un-biased estimates (Aires, 2014). The difficulty is that, as for uncertainties (Section 2.2.4), it is

rather difficult to obtain bias estimates from the literature for every dataset used in this approach. A pragmatic strategy is to set

the reference as the mean state for each component. Then, all the sources of information for this component are bias-corrected

toward this reference (Munier and Aires, 2017). A slightly modified version of the bias correction is to choose one reference

among the datasets and apply the bias-correction. The author opted for the modified version and de-biased the EO using the30
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TMPA Season (Pellet et al., 2017). Therefore, the SW methodology, presented for instance in Aires (2014), is first based on a

Seasonal bias correction to reduce the systematic biases and is then followed by a weighted average of the corrected estimates

to reduce the random errors. After the seasonal de-biasing, all the precipitation products will have a similar season, but

their long-term trend, inter-annual or monthly variations will still be different. In particular, the seasonal de-biasing

will not change the trend of the EO products.5

The SW methodology uses the diversity of WC component estimations to reduce the random errors. let us consider the

p precipitation observations Pi associated with Gaussian errors εi ∼N (O, σi) . The σi is the standard deviation of the

estimate ith. The SW precipitation estimate PSW is given by the weighted average:

PSW =
1

p− 1

p∑
i=1

∑
k 6=i(σk)2∑
k(σk)2

Pi. (5)

This equation is valid when there is no bias error in the Pis (thanks to the preliminary bias correction) and is optimal when the10

errors εi are statistically independent from each other. This expression is valid for the other WC components. The variance of

the PSW estimate is then given by:

var(PSW ) =
1

(p− 1)2

p∑
i=1

(∑
k 6=i(σk)2∑
k(σk)2

)2

σ2
i . (6)

This is an important information because it gives the uncertainty of the estimate of Eq. (5). It shows that the PSW errors can

be significantly reduced by increasing the number p of observations.15

Following Eq. (5) the state vector estimate via SW method XSW can be defined as:

XSW =KSW ·Ylo, (7)

where KSW is a 12× (nl +no) matrix in which each line represent Eq. (5) for one of the 12 water components (the first

one for the precipitation estimate, the second for the evapotranspiration, ect.) and based on the (nl +no) observations. Since

no specific uncertainty estimates were available in the literature for the Mediterranean basin, the uncertainties are20

assumed to have a same standard deviation σi in the following.

3.3 Post-Filtering (PF)

In the SW approach, each water component is weighted (see Eqs. (6-7)) based on its a priori uncertainties (Section 2) but

no closure constraint is imposed on the solution XSW . Several methods were considered in Aires (2014) to introduce a WC

budget closure constraint on the SW solution. However, Monte-Carlo simulations have shown that the SW solution associated25

to a so-called Post-Filtering (PF) provides results as good as more complex techniques such as variational assimilation.

The PF approach has been introduced (Pan and Wood, 2006) to impose the closure constraint on a previously obtained

solution. Here we used XSW as the first guess on the state vector Xlo. In Aires (2014), the PF was used and tested without

any model, as a simple post-processing step after the SW. Following Yilmaz et al. (2011), the current study implements the PF

filter with a relaxed closure constraint characterized by its uncertainty covariance
∑

:30

XPF = (I −KPF ·Glo
∑−1

Gtlo) ·XSW , (8)
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where KPF = (B−1
lo +Glo

∑−1
Gtlo)

−1 and Blo is the error covariance matrix of the first estimate on Xlo.

In expressing XSW with Ylo, we can express explicitly the linear operator Kan of Eq. (4):

Xan =XPF = (I −KPF ·Glo
∑−1

Gtlo) ·KSW ·Ylo,

Xan =Kan ·Ylo, (9)

WhereKan = (I−KPF ·Glo
∑−1

Gtlo)·KSW . The PF step (budget closure) consists in partitioning the budget residual among5

the twelve components at each time step, independently. This technique allows obtaining a satisfactory WC budget closure for

each basin. The residual term r could be reduced in SW+PF approach by decreasing the variance
∑

in Eq. (8). If the relaxation

term is too small, the closure is constrained but this is to the detriment of some hypotheses (such as unknown ground water)

and some uncertainties (e.g. size of the drainage area used to compute spatial average of the water components).

Following (Aires, 2014; Munier et al., 2014) we enforced the budget closure by frequency range to avoid high-frequency10

errors to impact the low-frequency variables such as evapotranspiration (mainly driven by annual vegetation growth (Allen

et al., 1998)). We first decomposed each parameter into a high and low-frequency components considering a cut-off frequency

of 6 months (using a FFT decomposition). The budget is then applied independently on low and high frequencies. The high

frequency component of E is then not included in the high budget closure. The linearity of PF and FFT ensures the budget

closure of the re-composed final product. In the following temporal multi-scaling, the annual constraint is applied only on the15

low-frequency budget closure.

Spatial multi-scaling - It is possible to impose a WC budget closure simultaneously over the six sub-basins, the full basin and

over the ocean (i.e. Mediterranean and Black Seas). Let us consider the total WC state vector:

Xt = [X
(1)
l , X

(2)
l , X

(3)
l , X

(4)
l , X

(5)
l , X

(6)
l , Xo]

t. (10)20

that includes the six water components Xi
l over each sub-basin i of area A(i)

l and ocean. The “closure” matrix becomes:

Glo =



G
(1)
l 0 · · · 0 0

0 G
(2)
l · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · G

(6)
l 0

L
(1)
lo L

(2)
lo · · · L

(6)
lo Go


(11)

11



with:

G
(i)
l =

 1 −1 −1 −1 0 0

−1 1 0 0 −1 −1


L

(i)
lo =

0 0
A

(i)
l

ASea
0 0 0

0 0 0 0 0 0

 (12)

Go =

 1 −1 −1 0 0 1

−1 1 0 −1 −1 0


5

The last row of Glo represents the overall budget closure, including all the sub-basins and the ocean. The dimension of the

covariance matrices Blo and
∑

are increased following the new size of the state vector Xlo. No cross terms in Blo and
∑

are

included, meaning that there is no dependency of the first guess and closure errors among the sub-basins.

Temporal multi-scaling - It is also possible to impose a WC budget closure simultaneously at monthly and annual scales. With10

monthly closure, the annual closure should automatically be obtained but due to the relaxation of the closure constrain, the

annual closure would be relaxed too. We control here the yearly closure constrain with an uncertainty of 1 mm. Furthermore,

we impose a yearly closure assuming no groundwater storage change at the annual scale over land (representing an additional

constraint on ∆Sl to ensure that no bias is introduced for this variable during the PF process). In this framework, monthly

closures are now interdependent in the given year and the new state vector is :15

Xt
year = [XJan, · · · , XDec]t, (13)

with Xm is the total state vector X defined in Eq. (10), for month m. The closure is applied independently for the four years of

the 2004-2009 period but the twelve months of each year are closed independently.

The closure matrixGAlo that includes closure for the twelve months of the year and the full year is derived from the monthly

constraint Eq. 11 and defined as:20

GAlo =



Glo 0 · · · 0

0 Glo · · · 0

· · · · · · · · · · · ·
0 0 · · · Glo

Nlo Nlo · · · Nlo


(14)

where Nlo is the modified closure matrix Glo in which the matrix G(i)
l is rewriten in N (i)

l by imposing ∆Sl = 0 :

N
(i)
l =

 1 −1 −1 0 0 0

−1 1 0 0 −1 −1


(15)
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The last row of GAlo represents the annual budget closure considering no storage change at the annual scale over land, includ-

ing all the sub-basins and the ocean. The dimension of the covariance matrices Blo and
∑

are increased once again following

the new size of the state vector Xyear. No cross terms in Blo and
∑

are included, meaning that there is no dependency of the

first guess and closure errors between the months.

5

This SW+PF technique is able to deal only with time series (the average on the considered sub-basins), not with maps (pixel)

since the discharge is not available at this resolution. Therefore, in order to obtain a multi-component dataset that closes the

WC budget and has spatial patterns at the pixel level, another technique needs to be used.

3.4 INTegration (INT)

The INT methodology allows extrapolating the results obtained with the previous SW+PF, from the sub-basin to the pixel10

scale. To obtain a pixel-wise closure, Zhang et al. (2017) assimilate satellite data into the VIC model at the pixel scale (0.5◦)

using the VIC pixel water storage and runoff information. Munier and Aires (2017) extrapolated at the global scale the results

of the WC closure of several large river basins around the globe, by using surface classes that intend to discriminate between

EO error types, preserving as much as possible the hydrological coherency.

The INT approach proposed here uses the WC closure over the Mediterranean sub-basins to extrapolate the closure correction15

to the surrounding area. The methodology is presented in its various steps in Fig. 2 for precipitation and evaporation, for a

particular month. In this analysis, we consider only the Mediterranean sub-basins and their close neighborhood, so a simple

spatial interpolation of the closure correction is supposed to be sufficient.

The SW+PF method (Fig. 2, second row) provides a WC budget closure over the six sub-basins, for each month m=

1, · · · ,72 of the 2004-2009 period.20

The INT method requires a scaling factor to go from the SW to the SW+PF solution at the sub-basin scale. We define

β(i)(m) = P
(i)
PF (m)/P

(i)
SW (m) (for precipitation here), the ratio between the SW and the SW+PF solution, for each sub-basin

i and month m. This ratio can be used to scale the SW dataset towards the SW+PF solution at the basin scale, for a particular

month m, in the following way:

P
(i)
INT (m) = β(i)(m) ·P (i)

SW (m)
(

= P
(i)
PF (m)

)
. (16)25

For water storage change or moisture divergence, this β could become negative. In this case, the bias-correction γ(i)(m) =

P
(i)
PF (m)−P (i)

SW (m) is used instead:

∆S
(i)
INT (m) = ∆S

(i)
SW (m) + γ(i)(m)

(
= ∆S

(i)
PF (m)

)
. (17)

The β scaling is defined at the sub-basin scale, but if interpolated spatially, it could be used at the pixel scale to obtain a truly

spatialized solution.30

Let us define a scaling map at the pixel level α such that: for each pixel j in sub-basin i, for each month m: α(j,m) = β(i)(m)

(or γ(i)(m)). When used as it is, the convolution of SW and α maps allows for the spatialisation of the sub-basins closure
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(Fig. 2, third row) with :

∫∫
j∈A(i)

l

PSW (j,m)α̇(j,m) = β(i)(m) ·P (i)
SW (m) = P

(i)
INT (m) (18)

However, this product presents not only a discontinuity across the sub-basins (where different scaling factors β are defined)

but also no value can be provided outside of the sub-basins.5

To solve these two issues, the α scaling maps are interpolated/extrapolated:

– Interpolation - A region of 200 km on either side of the frontier between two sub-basins i1 and i2 is defined, and

a smooth interpolation is performed between the two scaling factors β(i1)(m) and β(i2)(m) based on the distance to

the frontier. This interpolation of the scaling factors α between two sub-basins can introduce errors (closure residuals

can slightly increase) but it will be shown that this effect is limited and that the bottom equations (in parenthesis) in10

Eqs. (16-17) stand overall.

– Extrapolation - An extrapolation of the α maps is then performed to have a scaling factor α outside of the sub-basins

domain. This extrapolation is weighted according to the respective distances to the two closest sub-basins.

The INT product is the convolution between the SW EO dataset with the resulting scaling map α that constrains the WC budget

closure. INT is then an optimized version of SW in which the WC budget closure has been extended at the pixel scale. The15

fourth row of Fig. 2 shows the resulting INT product and its spatial coverage. The continuity issues between the sub-basins

have been solved, and the extrapolation allows for a spatial coverage over the entire domain.

The extrapolation of a closure constraint is interesting at the technical level because for other regions, or when

working at the global scale, some form of inter/extrapolation between the monitored sub-basins is required (Munier

and Aires, 2017). The extrapolation outside of the Mediterranean region will also allow for the use of more in situ20

observations for the evaluation, this will help the testing of the generalization ability of the extrapolation scheme. The

justification of this inter/extrapolation is based on the assumption that most of the WC imbalance is due to satellite

errors (this assumption is used for the CAL methodology too). The closure constrain is supposed to improve the satellite

estimate by reducing the bias and random errors. If no other information is used (such as surface type, see (Munier and

Aires, 2017)), the EO errors should have a spatial continuity and it then makes sense to extrapolate results based on this25

spatial continuity. We perform the main analysis over the Mediterranean basin and test the extrapolation scheme over

well monitored locations.

The difference between the SW and INT estimates, represented in the last row of Fig. 2, is then directly related to the pixel-

wise interpolated scaling factor α. Discontinuity between the sub-basins is smoothed. The north of Europe excluding France

is mainly driven by the scaling factor on the BLS region. That is consistent with the updated köppen climate classification30

(Kottek et al., 2006). Since the SW+PF solution is available over the 2004-2009 period only, INT can be obtained only over

this period.
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3.5 CALibration (CAL)

To obtain the INT solution, many EO datasets were combined: multiple datasets for each water component (the SW part), and

for the various WC components (the PF part). However, if one of the datasets is missing, the INT solution cannot be estimated

and this will result in a gap in the time record, and shorter time series of the integrated database.

In Munier et al. (2014), a “Closure Correction Model" (CCM) was introduced to correct each dataset independently, based5

on the results of the SW+PF integration. The CCM is defined as a simple affine transformation with a scaling factor a and an

offset b, such that Xnew = a ·X + b. The CCM parameters a and b were calibrated by computing a linear regression between

the original observation datasets and the SW+PF components.

A similar approach can be used, with the INT solution as a reference instead of the SW+PF. Instead of calibrating the

original EO datasets using basin scale data, we propose here to calibrate the SW solution towards the INT solution at the10

pixel scale. This calibration of the SW allows obtaining a long-term dataset at the pixel scale like the SW solution, see Ta-

ble 3, but with WC budget closure statistics closer to the INT solution. In our tests (not shown), the linear regression is quite

satisfactory for the calibration, and it is not necessary to use a more complex statistical regression tool such as a neural network.

The merging/integration techniques used in this study are described in Table 3.15

4 Evaluation of the integrated datasets

In this section, the obtained integrated datasets are first evaluated in terms of WC budget closure. Our EO datasets

integration technique is based on the closure of the WC budget. This is a physical constraint but in some cases (e.g.

missing important water component), this constraint could result in a degraded estimation of the components. There-

fore, available in situ data (precipitation, evapotranspiration and sea water level) are used to validate some of the water20

components of the integrated dataset. This evaluation is performed at two different spatial scales: the sub-basin scale

and the pixel scale.

4.1 Water cycle budget closure

The residuals of the surface and atmospheric WC budgets for the Mediterranean region are computed at the monthly scale,

over the 2004-2009 period. The Root Mean Square (RMS) statistics of these residuals are summarized in Table 4 for the six25

considered products (ERA-I, OS, SW, SW+PF, INT and CAL). Percentage of improvement of the RMS of the residuals with

respect to the SW solution are also shown for comparison purposes.

ERA-I stands for the reanalyses product for all variables except for the water storage and the discharge, to keep the compar-

ison consistent. It should be noted that ERA-I does not have any water conservation constrain. The optimal selection is given

by: TMPA precipitation; GLEAM evapotranspiration and OAFlux evaporation; GRGS water storage change over land and JPL30

water storage change over Sea; GPCC-forced ORCHIDEE-CEFREM discharge; and the derivate Globvapor for atmospheric
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water vapour change. Only one dataset is available for the moisture divergence (Pellet et al., 2017). As shown in (Aires, 2014;

Munier et al., 2014; Pellet et al., 2017), the SW merging procedure reduces the WC budget residuals at the sub-basin scale,

by reducing the random errors of the EO data. The product outperforms the ERA-I reanalysis and the OS product. However,

the full closure is generally not satisfactory with this technique. The SW+PF procedure closes the water budget over all the

sub-basins, and over the surface and in the atmosphere, with a RMS of the residual of about 4 mm/month. The surface budget5

residuals are drastically reduced: from 72% over the GR-TR-IL sub-basin and up to 94% for the Mediterranean Sea. This

shows the necessity to use a WC budget closure constraint that links the six water components.

The INT product provides satisfactory budget closure results (from 61% to 94%), even if they are slightly degraded com-

pared to the SW+PF (due to the interpolation process between sub-basins). Since no interpolation has been applied over the

Mediterranean Sea, the statistics are equal to the SW+PF.10

The CAL product improves less the WC budget residuals compared to INT. Nevertheless, the RMS of the residuals for these

products are reduced over all sub-basins compared to SW solution.

Fig. A1 gives, in Appendix, the 2004-2009 time series of all the water components estimate for the various methodologies

(SW, SW+PF, INT and CAL) over the various sub-basin as well as the probability density function of the residual. This figure15

shows how the WC closure impact the time series.

4.2 Evaluation at the sub-basin scale

Since the WC budget closure constraint was imposed at the sub-basin scale (see Section 3), the evaluation of the integrated

product is done at this scale too. Two metrics are used here, the RMS of the Difference (RMSD) with in situ measurements

and the CORRelation (CORR). Only multiple-EO integrated datasets are compared in the two following sections.20

Terrestrial precipitation - Table 5 provides the comparison of the EOBS gridded gauge precipitation dataset (section 2.2) with

the SW, SW+PF, INT and CAL solutions, in terms of temporal correlation (at the monthly and sub-basins scales), and RMSD,

for each sub-basin and for the “continental” scale (land included in Fig. 1). Since the SW+PF product is defined only on the

Mediterranean drainage sub-basins, no statistic is shown for this approach over the continental region (last column). For the25

RMSD error statistics, results are also provided as improvements compared to the SW solution.

Over all the sub-basins, the SW+PF methodology improves results compared to the un-constrained SW method. Even if

the correlation of SW with EOBS is already good, the closure constraint improves this correlation to 0.84 (0.81) over e.g.

the MA-DZ-TN sub-basin. This is true even over the complex sub-basins Alp-IT-ADR. SW+PF also reduces the RMSD with

EOBS (by up to 20%). These results show the merit of the closure constraint on precipitation. Without explicitly constraining30

satellite precipitation products towards the in situ data, SW+PF statistics are still improved.

The INT product shows similar CORR and RMSD statistics as SW+PF over the Mediterranean sub-basins, with a slight

decrease of the CORR with EOBS over the ES-Pyr sub-basin. Over the continental region, INT improves the correlation

compared to SW (from 0.78 to 0.80) while reducing by 17% the RMSD. Therefore, the interpolation process between the
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sub-basins (see the spatialization in Section 3.3.4) does not degrade the solution inside the sub-basins, while the extrapolation

outside of them allows to improve the un-constrained SW statistics over the whole continent. This is a true benefit since INT

presents comparable performances to SW+PF in terms of closure capability and closeness to in situ measurements, with the

advantage of the spatial variability at the pixel scale.

Finally, the CAL precipitation product shows results as good as SW (slightly better for the whole continental region) for the5

CORR, and smaller RMSD with EOBS. The CAL product does not close as well the WC budget as the INT solution, but it has

the advantage of being available over a longer time-record (1980-2012) compared to the 2004-2009 INT period.

Sea Water Level change - The Seawater storage (related to the Sea water level) change over the Mediterranean Sea (excluding

the Black Sea) is tested using altimetry and thermal datasets over the 2004-2009 period. First, the thermal content estimates10

of the four datasets presented in Section 2.2 are merged into one single estimate. The merge thermal content estimate is then

subtracted from the AVISO Altimetry Sea water level. The monthly change is then computed using the same derivative filter

as the one used for GRACE:[5/24 3/8 -3/8 -5/24].

Fig. 3 shows the altimetry estimate and the various methodologies estimates. Since the Mediterranean Sea is considered

without the Black Sea for this evaluation, there is no SW+PF estimate (that added the Mediterranean Sea and the Black Sea).15

While the SW solution has a 0.52 CORR and a 12.2 mm/month RMSD with respect to Altimetry estimate, INT statistic are

0.58 for the CORR and 11.8 mm/month for the RMSD and CAL 0.56 for the CORR and 11.8 mm/month for the RMSD. Here

again, the INT estimate outperforms the unconstrained SW methodology in both CORR and RMSD. CAL presents also better

results than SW but the CORR with altimetry is slightly reduced compared to INT. No inter/extrapolation have been used in

INT for the "Mediterranean Sea plus the Black Sea" sub-basin and the improvement of INT versus SW is due only to20

the impact of the closure constraint. Nevertheless, the SW+PF approach closes the water cycle over the Mediterranean

within the Black Sea (no information about the Bosporus netflow) and the spatial downscaling in INT is needed to

discriminate the closure correction above the two seas. Using the closure of WC over the Mediterranean and Black Seas

improves the water storage change estimates.

4.3 Evaluation at the pixel scale25

The INT and CAL estimates are here evaluated at the pixel scale, for precipitation and evapotranspiration. Improvements of

SW by INT and CAL are measured using in situ measurements of precipitation and evapotranspiration from the FLUXnet

database, available over the Mediterranean region, for the 2004-2009 period (section 2.2).

Fig. 4 presents the scatter-plots of the RMSD between the SW estimate (Esw) and INT or CAL (Ecor for "corrected")

datasets with the FLUXnet evapotranspiration data (EFLUX ), for each station. The 1:1 line is also shown in scatter-plots.30

This line characterizes the (un)improvement due to the closure: each dots under the 1:1 line represents an improvement at

the corresponding station from SW solution to INT or/and CAL. INT and CAL improve evapotranspiration estimates for

more than 53% of the sites. The distribution of the differences in the encapsulated figure is slightly narrowed by the INT and

CAL compared to the SW solution. Location of the station where the closure improves the RMSD with the flux measurement
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is shown in green if INT and CAL both improves the estimate, blue when only CAL improves, and magenta when only INT

improves. Red dots represent station where there is a degradation in both INT and CAL. The evaluation of EO estimate at 0.25◦

spatial resolution using tower sites should be taken with caution. The poor performance of satellite estimate over particularly

complex topography (mountainous rainfall) or coastal pixels with land/sea contamination could explain the difference between

the INT estimate and the FLUXNET measurement at this particular location.5

Fig. 5 presents the scatter-plots of the RMSD between the SW estimate (Psw) and INT or CAL (Pcor for "corrected") datasets

with the FLUXnet precipitation data (PFLUX ), for each station. Over most of the stations (82%), the INT and CAL solutions

improve precipitation estimate compared to SW. Location of improved sites are shown with the same color code as in Fig. 4. It

can be seen in Fig. 5 that red dots are located mainly in mountainous or coastal region. These two type of landscape are really

challenging for precipitation estimate due to snow precipitation on one side and coastal Sea/land contamination on the other.10

5 A coherent multi-component dataset for the water cycle monitoring

In this section, the integrated datasets are used to deliver updated estimate of the Mediterranean WC budget. The

impact of hydrological constraint (PF) as well as the INTegration (INT) and CALibration (CAL) processes on the spatial

averaging of the water component estimates and the WC budget residuals, over the several Mediterranean sub-basins,

is summarized on Figure A.1 in the Appendix.15

5.1 Analysis of the Mediterranean WC

The mean fluxes of the Mediterranean water cycle and associated variability, over the 2004-2009 period are depicted in Fig. 6.

The water cycle is analyzed over its natural sub-basin’s boundaries. The variability is computed as the standard deviation

of the annual values over the period. These value have been computed over the respective terrestrial or oceanic sub-basins;

considering all the drainage area in Europe (within Turkish) or in Africa (without considering the Nile river basin for which20

just its discharge is represented), Black Sea or Mediterranean Sea. The large font numbers are the estimates resulting from the

INT methodology while the little font is for SW. The two values for the netflow estimate at Bosporus strait are estimated as the

deficit term of the water budget equation, computed over the Mediterranean and Black Seas independently. Using INT estimate

(i.e. closure of the two Seas at once) the two values are in better agreement to each other than to the two SW estimate. In the

following, only the INT values are described.25

Fig. 6 shows the uneven water contribution between the European (316±57 km3 yr−1 for the total discharge) and the

African (83±30 km3 yr−1 within the Nile discharge) drainage area to the Mediterranean Sea budget. Furthermore, it shows

the role of the Black Sea in the global Mediterranean WC. Most of the European freshwater flows to the BLS (398±70 km3

yr−1; it represents more than 50% of the European discharge), where the E-P balance allows for an equal contribution to the30

Mediterranean Sea budget though the Bosporus Strait input. Considering the Nile discharge, the closure optimization increase

a lot the discharge value (from 19±6 to 76±30 km3 yr−1). The new value is higher to what has been monitored by GRDC near
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the delta (El Ekhase) in the final reported period (59±30 km3 yr−1). Recent discussions on the Nile discharge can be found in

Jordà et al. (2017). Our new discharge estimate includes the groundwater discharge passing through the aquifers.

After closure optimization, the annual precipitation, evapotranspiration and moisture divergence over European drainage area

are estimated to be: 2,760±103, 2,151±102 and -540±103 km3 yr−1 respectively. Europe accumulates most of the moisture

coming from the Mediterranean Sea (1,787±200 km3 yr−1) while the Black Sea poorly evacuates its moisture towards land5

(91±60 km3 yr−1). Over land the contribution of the African part to the global moisture divergence is small (87±14 km3

yr−1 mainly due to the presence of the mountain Atlas). The two netflow estimates at Bosporus Strait are very close, with a

difference lower than its associated uncertainty in Fig. 6. Freshwater inputs at the two Mediterranean Straits (Bosporus and

Gibraltar) compensate the very large evaporation loss (3,372±88 km3 yr−1) occurring in the Mediterranean Sea. This process

represents more than twice the precipitation (1,499±102 km3 yr−1).10

Fig. 6 represents the whole water cycle over the region of interest with its main feature: the role of the Mediterranean Sea

as the moisture and energy reservoir for the surrounding land; the poor contribution of the African coast in term of water

resource, and the role of the Black Sea as the buffer process for the freshwater input. This quasi-triangular process emphasizes

the hydrological link between the surrounding land and the two Seas.

15

5.2 Comparison of the Mediterranean fluxes estimates with literature

Table 6 summarizes the comparison of the various estimates of the water fluxes in the current analysis with what can be found

in the literature. The various annual mean estimates are based on different time periods and comparison must be taken with

caution since some variability is likely to be due to the change in hydrologic regime. Sanchez-Gomez et al. (2011) focused on

the Mediterranean Sea heat and water budget using an ensemble of ERA-40-driven high resolution Regional Climate Models20

(RCMs) from the FP6-EU ENSEMBLE database. The atmospheric budget was not considered in Sanchez-Gomez et al. (2011)

and no moisture divergence estimate was provided. For comparison purposes, we decided to select the RCM ensemble-mean

estimate and two particular models: the Danish HIRHAM (Hesselbjerg Christensen and Meteorologisk Institut, 1996) and the

Canadian CRCM (Plummer et al., 2006). These two models have been selected since their E−P estimates are the extremes

of the RCMs ensemble. In Sanchez-Gomez et al. (2011), the netflow at Gibraltar was estimated as the deficit term of the WC:25

Gib= E−P −R−Bos.
Mariotti et al. (2002) analyzed the WC over the Mediterranean region in the context of the NAO teleconnection over the

1979-1993 period using two reanalyses (ERA-40 and NCEP-NCAR) for precipitation, evaporation and moisture divergence.

They used the discharge data from the monitored rivers through the Mediterranean Hydrological Cycle Observing System

(MED-HYCOS) and GRDC. Their estimate includes a total Mediterranean input of 100 mm.yr−1 from MED-HYCOS and the30

Bosporus input of 75 mm.yr−1 from the literature (Lacombe and Tchernia 1972). Mariotti et al. (2002) estimated the netflow at

Gibraltar as the balance of the Mediterranean water deficit using the equation Gib=Div−R−Bos coming from the oceanic

and atmospheric budgets and the null assumptions about the storage change. Mariotti et al. (2002) used old versions of the

reanalyses and some remarks have already been raised on the precipitation and evapotranspiration estimates for these versions.
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Nevertheless, from our knowledge, Mariotti et al. (2002) was the last effort to estimate the WC over the Mediterranean consid-

ering the atmosphere.

Jordà et al. (2017) reviewed the state-of-the-art in the quantification of the various water component estimates. Their estimates

presented in Table 6 are the best consensual values among the scientific community. They are based on several studies and take

into account the results of Mariotti et al. (2002) and Sanchez-Gomez et al. (2011) for example. In particular, the mean Gibraltar5

netflow estimate from (Jordà et al., 2016) has been commented and new mean is provided in Jordà et al. (2017).

Table 6 also shows the results from Rodell et al. (2015) before and after their satellite data optimization based on a variational

assimilation at the annual scale. The constraint of the fluxes over the Mediterranean Sea and the Black Sea were made inde-

pendently (considering no netflow at Bosporus strait). The Mediterranean Sea was closed with no exchange to the Atlantic at

Gibraltar (no netflow). Rodell et al. (2015) provided no explicit discharge for the Mediterranean Sea but only for the Eurasian10

continent.

For the four mentioned articles, only the Mediterranean Sea without the black Sea is considered. No estimate from SW+PF

methodology is provided in Table 6. Our integrated dataset is the only one to use direct observations for the netflow at Gibraltar

and to compute the Bosporus’s via a WC budget. For all estimates, Table 6 presents the associated variability. While the vari-

ability of real product is computed as the standard deviation of annual values, the variability associated with the RCM mean is15

the inter-model spread (i.e. closer to an uncertainty estimate).

Evaporation - The RCM ensemble mean for the annual evaporation is 1,254 mm.yr−1 with an inter-model spread of

164 mm.yr−1. Some RCM evaluated higher annual evaporation as HIRHAM that estimated 1,377± 55 mm.yr−1. On the

contrary, Mariotti et al. (2002) found comparatively low evaporation with the reanalyses (1,113 and 934 mm yr−1 with respect20

to NCEP and ERA). Rodell et al. (2015) estimated much higher evaporation and higher annual variability with an mean annual

value of 1,391±157 mm.yr−1 using only OAFlux and 1,420±109 mm.yr−1 after optimization. Our unconstrained SW solution

gives an annual value of 1,300±34 mm.yr−1 and our constrained INT product gives 1,295±33 mm.yr−1. The CAL estimate is

close to INT.

25

Precipitation - The RCM ensemble mean for the annual precipitation was 442±84 mm yr−1 which is quite close to the

NCEP reanalyses value in Mariotti et al. (2002). Satellite estimates in both Rodell et al. (2015) and the current study indicate

higher precipitation: from 576 to 571 mm.yr−1 in (Rodell et al., 2015) after optimization and from 573 to 577 mm.yr−1 in this

work after the closure constraint. SW, INT and CAL products present similar precipitation estimates at the annual scale due to

the quite low uncertainty associated with the precipitation during the optimization. Even if the spread among the RCMs was30

lower than for the evaporation, some RCMs as CRCM did compute even larger precipitation than what have been retrieved

from satellites (606±80 mm.yr−1). Sanchez-Gomez et al. (2011) had already noted that gauges-calibrated satellite datasets

such as GPCP and TMPA tend to give higher precipitation values than what was simulated in the RCMs. Precipitation over the

Sea is a sensitive variable and its validation is difficult due to the lack of buoys for in situ measurements. The ERA reanalyses
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value in Mariotti et al. (2002) was low compared with the NCEP estimate.

Evaporation minus Precipitation - Sanchez-Gomez et al. (2011) focused on theE−P budget to assess the physic consistency

in the RCM. They assumed that a model having a high evaporation tends to have a high precipitation. The average E−P bud-

get among the RCM was 812±180 mm.yr−1 and the range was between 952±80 (HIRHAM model) and 602±107 mm.yr−15

(CRCM model). The inter-model spread was high for the E−P budget stressing the difficulties to provide realistic water bud-

get evaluation. Rodell et al. (2015) found similarE−P budget but the associated variability was high too due to the uncertainty

in evaporation. Our E−P estimates are respectively 726±57 and 719±60 mm.yr−1 before and after the closure constraint.

These values are lower but still in the RCM ensemble range. They are closer to what Mariotti et al. (2002) found with NCEP re-

analyses. Jordà et al. (2017) consider the net surface flux to be 900±200 mm yr−1 which is in good agreement with the CRCM10

model estimate. Rodell et al. (2015) found similar E−P budget but with far higher evaporation estimate which seemed quite

unrealistic. Furthermore, their closure constraint tends to increase the evaporation value and then the E−P budget.

Discharge - Only the RCMs providing the runoff have been used to compute the annual value of R (124±46 mm.yr−1) in

Sanchez-Gomez et al. (2011). Mariotti et al. (2002) found comparable values for the discharge, considering only the monitored15

rivers. Rodell et al. (2015) did not include explicit discharge into the Mediterranean Sea since the closure was done at the global

scale (Eurasian continent) and no value was provided for Mediterranean freshwater input. Our discharge estimate is increased

from 144±21 in SW to 155±15 mm.yr−1 in INT after the optimization. This increase is mainly driven by the re-evaluation of

the Nile discharge that present larger discharge (76 km3.yr−1) after closure. All these discharge estimates are lower than the

value prescribed in Jordà et al. (2017) (200±10 mm.yr−1).20

Black Sea discharge - The RCM ensemble-mean value for the freshwater input through the Bosporus strait was 87±60 mm.yr−1

stressing the high discrepancies among the RCMs. Rodell et al. (2015) closed independently the Mediterranean and the Black

Sea, with no exchange between the two oceanic basins (i.e. the netflow equals to zero). In the current approach, the Black

Sea discharge is computed as the deficit in the water budget for the Mediterranean Sea, in considering the netflow at Gibraltar25

(Gib) corrected from Jordà et al. (2016): Bos= E−P −R−Gib. The SW product presents unrealistic value for the Black

Sea discharge (2.0±615 mm.yr−1), this is mainly due to the high uncertainty associated to the netflow at Gibraltar. On the

other hand, the closure constraint improves the Bosporus netflow estimate which equals 129±60 mm.yr−1 with INT, after

optimization. The value is close to the deficit of the Black Sea water budget (computed after optimization): 132±60 mm.yr−1

(not shown in Table 6) stressing the consistency between the two Seas water budget. The value is still higher than the estimate30

of 75 mm.yr−1 in Mariotti et al. (2002).

Gibraltar netflow - Rodell et al. (2015) considered no flow at Gibraltar when closing the Mediterranean WC and then pro-

vided no estimate for this variable. Both Sanchez-Gomez et al. (2011) and Mariotti et al. (2002) evaluated the netflow by

closing the WC over the Mediterranean region but they used different assumptions and equations. The estimate in Sanchez-35
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Gomez et al. (2011) is based on the oceanic closure while it is based on both the oceanic and atmospheric closure in Mariotti

et al. (2002). The RCM ensemble mean was 540±150 mm.yr−1 in Sanchez-Gomez et al. (2011), while Mariotti et al. (2002)

found lower value with the reanalyses (493 and 370 mm.yr−1 with NCEP and ERA). Jordà et al. (2017) give two values for the

netflow at Gibraltar: one from direct observations but suffering from large uncertainties (850±400 mm.yr−1), and the other as

the deficit of the water budget (600±200 mm.yr−1). The value in INT and CAL estimate are impacted by the closure constraint.5

The netflow estimate after optimization (428±124 mm.yr−1) is lower than what can be found in Jordà et al. (2017) but in the

range of the RCM water budget deficit.

Moisture divergence - No moisture divergence was provided by the RCMs in Sanchez-Gomez et al. (2011). Mariotti et al.

(2002) found moisture divergence to be 659 mm yr−1 in NCEP and 488 mm.yr−1 in ERA. Rodell et al. (2015) estimated the10

divergence to be 848±105 mm.yr−1 after optimization. The difference between Rodell et al. (2015) or Mariotti et al. (2002)

estimates and what is found in the current study is mainly driven by the discrepancy between the three reanalyses: Modern-Era

Retrospective Analysis for ReSearch and Applications (MERRA) used by Rodell et al. (2015), NCEP and ERA-40 in Mariotti

et al. (2002), and ERA-I used in the current analysis. Recent works focusing on atmospheric reanalyses comparisons have

demonstrated the ERA-I quality. Stopa and Cheung (2014) have stressed the ERA-I performances in the representation of long15

term wind variability, critical for the representation of moisture divergence. Brown and Kummerow (2013) have pointed out

that satellite derived E−P (SeaFlux- GPCP) correlates well with ERA-Interim atmospheric moisture divergence. Trenberth

et al. (2011) have assess the performance of ERA-I reanalysis for atmospheric moisture budgets consideration.

6 Conclusions

The main goal of this work was to build a multi-component dataset describing the water cycle by constraining the WC closure.20

Various methodologies have been presented and particular attention has been put on the INTegration method. This approach

full-fills the previous stated objectives: being a pixel-wise dataset but in which the WC closure is controlled. INT is an integrated

dataset that shows several benefits compared with previous studies. The INT product allows to reduce the RMS of the WC

budget residual down to 3.55 mm/month over land and 5.27 mm/month in the atmosphere. These reductions represent an

improvement of respectively 78% and 80% compared with the best un-constrained satellite combination dataset. The temporal25

coverage of INT is limited by the common coverage period 2004-2009 of all the satellite estimates used in this study (see

Table B1).

The INT dataset has been evaluated at various scales. Even if the evaluation is a difficult task and the presented work

is not exhaustive, our results show that the consideration of the WC closure allows to reduce differences with the in situ

measurements. At the sub-basin scale, the overall precipitation is closer to the in situ gridded EOBS dataset after being30

constrained. The Sea Water Level estimate is also improved compared to the altimetry estimate. At the pixel scale, the INT

estimate shows a better agreement with in situ tower measurements from the FLUXnet2015 database.
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The WC has been analyzed in terms of long-term means over the 2004-2009 period and compared with previous literature.

The INT methodology has improved estimates of the Mediterranean water components. The INT product provides more real-

istic values for both Bosporus and Gibraltar netflows by constraining it with the satellite observations. Note that the estimate

of the Bosporus is mainly driven by the Gibraltar estimate and can then be improved as the Gibraltar netflow evaluation would

become more accurate.5

This study conducted on the Mediterranean Sea is innovative from previous work. The Mediterranean WC has already been

well investigated by Mariotti et al. (2002) and Sanchez-Gomez et al. (2011) relying on models and reanalyses. At global scale,

Rodell et al. (2015) close independently the Mediterranean and Black Seas using satellite observation while Sanchez-Gomez

et al. (2011) close the Mediterranean Sea WC in estimating the Gibraltar netflow as the WC budget deficit. This study aims at

providing a full description of the WC, based on fewer hypothesis. It is the first effort to close the WC, at the surface and in the10

atmosphere over the whole Mediterranean region, using satellite observations and in situ measurement for Gibraltar netflow.

There are still large uncertainties on the WC components but the INT methodology appears to be a valuable ap-

proach, in particular to include coherency among these components. The current work has introduced also the CAL

product which is a calibration of the satellite products that can be used to extrapolate in time the closure constraint.

The CAL product is less efficient to close the WC but presents the advantage to have longer temporal coverage. Several15

improvements will be considered in the future: (1) more accurate in situ observations (e.g. Bosporus netflow estimate or

coastal discharges) should lead to improved estimates. (2) New WC inputs could be considered (e.g. ground water ex-

change or horizontal exchange at oceanic sub-basin scale) to better characterize the flux and stock terms in the WC. (3)

The use of other source of EO estimates should be considered. For example, the evapotranspiration estimate based on

the closure of the energy cycle (Su, 2002; Chen et al., 2013) could be tested. This dataset could be an opportunity to (4)20

close simultaneously the water and the energy cycles and should lead to a better estimate of the evapotranspiration over

land that is of major importance for the Mediterranean. The multiple-components dataset INT shows promising aspect

for forcing, calibrating or constraining regional models with a water conservation constraint. Some developments and

evaluations are still required before the production of a Climate Data Record (Su et al., 2018) can be started. The two

databases (INT and CAL) can however be obtained under request to the corresponding author or via the HyMeX data25

server (http://mistrals.sedoo.fr/HyMeX/).
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Figure 1. Region of interest. Sub-basins have been computed using a hydrological model (Wu et al., 2011), and rivers are from HydroShed

(http://www.hydrosheds.org/). See text for the definition of the sub-basins.
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Figure 2. Steps of the spatialisation of the budget closure for the INT solution, from the SW to the INT solutions: Precipitation (left) and

evapotranspiration (right), for July 2008. Units are in mm/month.
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Figure 3. Sea water level evaluation of SW, INT and CAL estimates compared to altimetry minus thermal content. The correlation differ-

ence is statistically significant at the 70%-level based on the T-test.

31



Figure 4. Top panel: Scatterplot of the RMSD between FLUXnet station and the SW, INT and CAL products, for evapotranspiration.

Dots under the 1:1 line (green) show improvement, and dots over the line (red) show degradation. INT and CAL results are superposed

for some locations, meaning that the linear approximation in CAL is enough to mimic the INT scaling factors at these location.

The encapsulated figure shows the distribution of the differences with the Fluxnet estimates. Bottom panel: Location of the FLUXnet

stations used for validation: green dots show an improvement for INT and CAL compared to SW (INT+& CAL+), blue dots show

improvement only for CAL(INT-& CAL+), and magenta only for INT (INT+& CAL-). Red dots is where no improvement is observed

(INT-& CAL-). Blue line limits the total basin area.
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Figure 5. same as Fig. 4 but for precipitation.
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terrestrial sub-basins, the oceanic part and the total land (in column) through the various methodologies presented in the study: SW, SW+PF,

INT and CAL.
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Princeton NASA NEWS ESA

Integration Simple Weighting Variational Simple Weighting

method + CKF for budget closure Assimilation + PF for budget closure

References Pan and Wood (2006) Rodell et al. (2015) Aires (2014); Munier et al. (2014)

Sahoo et al. (2011); Pan et al. (2012) L’Ecuyer et al. (2015) Munier and Aires (2017)

Strategy Assimilation with VIC model Fluxes optimization Fluxes optimization

Source model +observations model+ observations observations

Budget
Terrestrial WC only

Terrestrial, oceanic Terrestrial, oceanic
& atmospheric WC & atmospheric WC

Spatial scale basin(1) continent pixel to basin scale

Multiplicity of yes weighted average
only forE

yes weighted average

datasets

Uncertainty gauges density average product prescribed (literature)

reference & average product

Spatial no yes: dependent continents yes: simultaneously at basin
multi-scaling through one ocean and sub-basins scales

Temporal no: monthly no: annually + interpolation(2) yes: monthly & annually
multi-scaling

State vector XT =[Pl El Rl ∆Sl ]t F=[P E RDiv]t Xl=[Pl El Rl ∆Sl ∆Wl Divl]t

over land
Res=[∆S ∆W]t Xo=[Po Eo ∆So Gib]t over Sea

Xlo=[Xl Xo] for both

Uncertainties BT is the error covariance ofXT SRes and SF Blo is the error covariance ofXlo
error covariance matrices

Model

GT =[1,-1,-1,-1] A: Matrix of budgets(3)

Gl=

[
1 −1 −1 −1 0 0

−1 1 0 0 −1 −1

]

Go=

[
1 −1 −1 0 0 −1

−1 1 0 −1 −1 0

]

Llo=

[
0 0

Aland
ASea

0 0 0

0 0 0 0 0 0

]

Glo=

(
Gl 0

Llo Go

)
Closure equation GT ·XT = 0 Res= A ·F Glo ·Xlo = r, r∼N (0,

∑
)

with
√∑

=2 mm/month

Type of constraint
strong constraint

strong constraint +
relaxed constraint

Interpolation

Closure solution
XTc=XT +KT ·(0−GTXT ) Fc = F +Q−1JtS−1

Res(Res−AF ) Xloc = (I −KPFGlo
∑−1Gtlo) ·Xlo

with KT = BTGT · (GTBTGtT )−1 J the Jacobian ofRes w/r to F KPF = (B−1
lo +Glo

∑−1Gtlo)−1

and Q= (JtS−1
ResJ +S−1

F )−1

Table 1. The three main initiatives for budget closure constraint and their technical differences. [In the third column, bold font indicates the

new features of the methodology presented in this article]. Subscript are: l for land, o for ocean, both include the atmosphere. All notations

are summerized in Table A1. (1) Zhang et al. (2016) recently developed a WC-VIC assimilation scheme at the 0.5◦ pixel scale; (2) Rodell

et al. (2015) used a two-step integration methods with annual closure simply downscaled at the monthly scale, plus a Lagrange interpolation

for closure relaxation; (3) see Rodell et al. (2015) for details and hypothesizes.
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Zhang et al. (2017) Sahoo et al. (2011) Munier et al. (2014) Rodell et al. (2015) Our study

Area Europe Danube basin Mississippi basin Eurasia Med. region

P - - 5 mm/month 3 mm/month 4 mm/month

36% 47% 37% 24% 25%

E - - 5.8 mm/month 5 mm/month 6 mm/month

41% 32% 49% 65% 55%

R - - 1 mm/month 3 mm/month 2 mm/month

7% 3% 1.5% 11% 6%

∆S - - 2.9 mm/month - 3 mm/month

14% 18% 12.5% - 14%
Table 2. Comparison of the uncertainty specifications for terrestrial water components. The weights associated to a variable (computed as

the ratio between the particular variable uncertainty with respect to the sum of all the uncertainties σ2
i /

∑
iσ

2) are expressed in percentage.
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EO Spatial Coverage WC

merging resol. period* budget closure

OS no pixel 1993-2012 - -

SW yes pixel 1980-2012 -

SW+PF yes
basin

2004-2009 ++
scale

INT yes pixel 2004-2009 ++

CAL yes pixel 1980-2012 +
Table 3. Main characteristics of the five merging methods in this study: EO stands for Earth Observation satellite datasets, and * means not

considering the GRACE period coverage. The last column shows the capability of the methodology to close the WC budget. ’- -’ means bad

closure, ’-’ means quite bad closure, ’+’ means quite good closure and ’+ +’ means good closure.
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Climatic sub-basins LAND OCEAN

MA-DZ-TN ES-Pyr Alp-IT-ADR GR-TR-IL BLS

surf atm surf atm surf atm surf atm surf atm surf atm surf atm

ERA-I 34.3 15.3 37.8 18.1 31.2 13.7 30.6 12.0 18.0 8.0 13.6 13.8 86.7 6.2

OS 25.1 36.0 27.5 43.5 28.5 37.7 25.8 39.7 25.4 27.3 19.8 15.1 75.2 24.7

SW 18.2 31.8 17.5 40.7 21.5 38.3 17.6 35.6 25.1 26.5 16.6 16.6 74.3 15.7

SW+PF 4.46 3.04 4.38 3.99 4.42 3.07 4.46 3.21 3.64 2.82 2.78 2.28 7.18 3.13

75% 90% 74% 90% 79% 91% 74% 90% 85% 89% 83% 91% 91% 80%

INT 5.23 5.82 5.15 6.47 7.70 7.65 6.62 8.16 4.21 3.20 3.79 4.07 7.18 3.13

71% 81% 70% 84% 64% 80% 62% 77% 83% 87% 77% 84% 91% 80%

CAL 13.14 14.48 13.38 17.77 20.13 20.21 14.51 16.77 18.00 13.03 12.79 11.44 24.63 12.50

27% 54% 23% 56% 6% 47% 17% 52% 28% 50% 22% 56% 66% 17%

Table 4. RMS of the WC budget residual (in mm/month) over the sub-basin using OS,SW,SW+PF,INT and CAL solution and for the period

2004-2009. Percentage of improvement of the RMS of the residuals from SW solution to constrained methods is also shown. For comparison

purpose, result using ERA-I dataset is also depicted.
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Climatic sub-basins Continental

MA-DZ-TN ES-Pyr Alp-IT-ADR GR-TR-IL BLS

Correlation SW 0.81 0.88 0.87 0.87 0.79 0.78

SW+PF 0.84 0.90 0.88 0.87 0.81 -

INT 0.84 0.89 0.88 0.87 0.81 0.80

CAL 0.81 0.88 0.87 0.87 0.79 0.79

RMSD SW 14.01 16.69 21.78 23.04 20.56 15.68

SW+PF 13.60 14.10 22.42 21.98 16.64 -

2% 15% -3% 4% 19% -

INT 13.59 14.35 21.88 21.83 16.84 12.93

2% 14% -1% 5% 18 % 17%

CAL 14.00 14.83 22.06 21.64 17.23 13.16

0% 11% -2% 6% 16% 16%
Table 5. Comparison of the SW, SW+PF, INT and CAL precipitation solutions with the EOBS dataset, in terms of correlations, RMSD, and

percentage of improvement of the RMSD compared to the SW solution.
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References E P E-P R Bos Gib Div

Sanchez-Gomez et al. (2011) HIRHAM 1,377±55 425±57 952±80 116±30 116±30 720±100 -

1957-2002 MEAN 1,254(±164) 442(±84) 812(±180) 124(±46) 87(±60) 540(±150) -

CRCM 1,208±72 606±80 602±107 73±40 110±50 420±130 -

Mariotti et al. (2002) NCEP 1,113 433 680 100 75 494 659

1979-1993 ERA-40 934 331 603 100 75 370 488

Jordà et al. (2017) Prescribed - - 900±200 200±10 100±20 850±400 -

2005-2010 values 600±200

Rodell et al. (2015) orginal 1,391±157 576±76 815±157 - 0 0 866±131

2000-2010 optimized 1,420±109 571±73 849±109 - 0 0 848±105

Current study SW 1,300±34 573±36 726±57 144±21 2±615 575±561 620±44

2004-2009 INT 1,295±33 577±40 719±60 155±15 129±60 428±124 677±77

CAL 1,295±34 574±36 721±57 155±20 80±250 428±196 680±53
Table 6. Comparison in the literature for the Mediterranean Sea (without the Black Sea) average annual mean fluxes and their associated

variability (in mm yr−1). While the variability of real product is computed as the standard deviation of annual values, the uncertainty

associated with the Regional Climate Models mean is the inter-model spread. The period of analysis for the various studies are recalled.
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Mathematical symbols

Mt Transpose

∆M Differenciation
δM
δt Derivative

N Normal distribution

σ Standard deviation

RMS Root Mean Square

RMSD Root Mean Square of the Difference

Subscript

MT Terrestrial

Ml Over land (terrestrial plus atmospheric)

Mi
l Over the ith sub-basin (terrestrial plus atmospheric)

Mo Over ocean(oceanic plus atmospheric)

Mlo Global: land + ocean

Mc Constrained

MSW Estimate through SW merging technique

MPF Estimate through SW+PF approach

MINT Estimate through INT approach

Water components

P Precipitation

E Evapotranspiration

S Water storage

W Precipitable water

Div Vertically integrated Moisture divergence

Gib Gibraltar oceanic netflow

Bos Bosporus oceanic netflow

WC State vector and associated uncertainty matrices

XT , BT Terrestrial state vector

Xl Water cycle state vector over land (within the atmospheric aspect)

X
(i)
l Water cycle state vector over the ith sub-basin (terrestrial plus atmospheric)

Xo Water cycle state vector over Sea (within the atmospheric aspect)

Xlo,Blo Gobal water cycle state vector

XMonthlo Gobal water cycle state vector for a particular month

r,
∑

Tolerated WC budget residuals

Closure matrices

GT Terrestrial budget

Gl WC closure over land (within the atmospheric closure)

G
(i)
l Water cycle closure over the ith sub-basin (terrestrial plus atmospheric)

Go Water cycle closure over Sea (within the atmospheric aspect)

Glo, Gobal water cycle closure

Llo, Freshwater equality between land and Sea

Aland Total drainage area of the Mediterranean Sea within the Black Sea

A
(i)
l Drainage area of the ith sub-basin

ASea Sea area

L
(i)
lo , Freshwater equality between the ith sub-basin and Sea

GAlo Global water cycle closure for all the month within the year

Nlo Modified version ofGlo
N

(i)
l Modified version ofG(i)

l

constraint filter

KT Terrestrial constraint

Kmerge Merging matrix in SW methodology

KPF Global water cycle constraint via PF methodology

Kan Theoretical analysis filter

Table A1. Notation used in this study
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Dataset Time coverage Spatial res. (◦) Temporal res. Description Producer Reference

Precipitation

GPCP 1979-2015 2.5 daily from multiple satellites and gauges U. of Maryland Adler et al. (2003)

CMORPH 1998-2015 0.25 30 min from microwave and infrared NOAA Joyce et al. (2004)

TMPA 1998-2015 0.25 3h from multiple satellites and gauges NASA Huffman et al. (2007)

PERSIANN 2000-2013 0.25 3h from microwave and infrared CHRS Ashouri et al. (2015)

ERA-I Precipitation 1980-2015 0.25 12h reanalysis ECMWF Dee et al. (2011)

EOBS Precipitation 1950-2006 0.25 daily in situ gridded project ENSEMBLES Haylock et al. (2008)

FLUXnet precipitation 2002-2010 - monthly in situ FLUXnet Falge et al. (2017)

Evapotranspiration

GLEAM 1980-2012 0.25 daily satellite observation, U. of Amsterdam Martens et al. (2016)

gauges and reanalysis and U. of Ghent

MOD16 2000-2012 0.25 8 days satellite observation NTSG Mu et al. (2011)

NTSG 1983-2012 0.25 monthly satellite observation and reanalysis NSTG Zhang et al. (2010)

ERA-I evapotranspiration 1980-2015 0.25 12h reanalysis ECMWF Dee et al. (2011)

FLUXnet evapotranspiration 2002-2010 - monthly in situ FLUXnet Falge et al. (2017)

Evaporation

OAflux 1985-2015 1 daily from satellite and reanalysis WHOI Sun et al. (2003)

Seaflux 1998-2015 0.25 3h from satellite, reanalysis and in situ GEWEX Curry et al. (2004)

ERA-I Evaporation 1980-2015 0.25 6h reanalysis ECMWF Dee et al. (2011)

Water storage

CSR 2002-2012 0.25 monthly GRACE CSR Bettadpur (2012)

GFZ 2002-2012 0.25 monthly GRACE GFZ Dahle et al. (2013)

GRGS (land only) 2002-2012 0.25 monthly GRACE CNES Biancale et al. (2005)

JPL 2002-2012 0.25 monthly GRACE JPL Watkins and Yuan (2014)

MSC-JPL 2002-2015 0.25 monthly GRACE JPL (Watkins et al., 2015)

Precipitable water

Globalvapor 1996-2015 0.5 daily merged estimates from satellite DWD, GEWEX Schneider et al. (2013)

ERA-I Wator vapor 1979-2015 0.25 6h reanalysis ECMWF Dee et al. (2011)

Discharge

CEFREM 1980-2009 < 0.25 annual in situ Cefrem Ludwig et al. (2009)

ORCHIDEE 1980-2009 0.5 monthly model LMD Polcher et al. (1998)

Moisture flux divergence

ERA-I Moisture divergence 1979-2015 0.25 6h reanalysis ECMWF Dee et al. (2011)

Gibraltar netflow

IMEDEA- netflow 2004-2010 - monthly in situ & model IMEDEA Jordà et al. (2016)

Table B1. Overview of the various datasets used in this study. Their common coverage period, on which the WC budget is estimated, is

2004-2009.
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