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Abstract

Several new satellite-derived and long-term surface water datasets at high-

spatial resolution have recently become available at the global scale, showing

different characteristics and abilities. They are either based on visible im-

agery from Landsat - the Global 3-second Water Body Map (G3WBM) and

the Global Surface Water Explorer (GSWE) - or on the merging of pas-

sive/active microwave and visible observations - Global Inundation Extent

from Multi-Satellite (GIEMS-D3) - that has been downscaled from a native

resolution of 25 km×25 km to the 90 m×90 m resolution. The objective of

this paper is to perform a thorough comparison of the different water surface
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estimates in order to identify the advantages and disadvantages of the two

approaches and propose a strategy for future developments of high-resolution

surface water databases. Results show that due to their very high spatial res-

olution (30 m) the Landsat-based datasets are well suited to retrieve open

water surfaces, even at very small size. GIEMS-D3 has a better ability to

detect water under vegetation and during the cloudy season, and it shows

larger seasonal dynamics. However, its current version overestimates surface

water extent on water-saturated soils, and due to its low original (i.e. be-

fore downscaling) spatial resolution, it is under-performing at detecting small

water bodies. The permanent waters for G3WBM, GSWE, GIEMS-D3 and

GLWD represent respectively: 2.76, 2.05, 3.28, and 3.04 million km2. The

transitory waters shows larger discrepancies: 0.48, 3.72, 10.39 and 8.81 mil-

lion km2.

Synthetic Aperture Radar (SAR) data (from ENVIronment SATellite (EN-

VISAT), Sentinel and soon the Surface Water Ocean Topography (SWOT))

would be a good complementary information because they have a high nom-

inal spatial resolution and are less sensitive to clouds than visible measure-

ments. However, global SAR datasets are still not available due to difficulties

in developing a retrieval scheme adequate at the global scale. In order to im-

prove our estimates of global wetland extents at high resolution and over

long-term records, three interim lines of action are proposed: (1) extend the

temporal record of GIEMS-D3 to exploit the full time series of microwave

observations (from 1978 to present), (2) develop an approach to fuse the

GSWE and GIEMS-D3 datasets leveraging the strengths of both, and (3)

prepare for the release of SAR global datasets.
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1. Introduction1

The distribution and dynamics of surface water, i.e. permanently and2

temporarily inundated areas including lakes, rivers, and wetlands, are impor-3

tant because of their interaction with climate, ecology and human wellbeing.4

For instance, nearly 30% of global methane emissions (Bousquet et al., 2006)5

originate from wetland areas, risk management responds to inundation pat-6

terns (Winsemius et al., 2015), and food security and rice paddy cultivation7

relies, in certain regions of the world, on surface waters. In return, surface8

water ecosystems are affected by human activity, land use, hydrologic al-9

terations, and climate change. The complex feedback mechanisms between10

surface water and climate are difficult to assess and can potentially exacer-11

bate the sensitivity and vulnerability of these regions to changes in precip-12

itation, evapotranspiration, and flow regimes (Gleick, 1989; Chahine, 1992)13

putting lakes, rivers, and wetlands at risk of rapid deterioration in quantity14

and quality. Among the many topics about wetlands and climate change, sea15

level rise and carbon sequestration are major issues. But wetlands are also16

threatened by land use change and invasive species.17

Global distribution and dynamics of surface waters at high-spatial res-18

olution (around 100 m) are still not available, in particular over densely19

vegetated areas, to satisfy all the needs of the large community of poten-20

tial users including hydrologists, water and disaster managers, or climate21
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scientists. Indeed, the global, long-term, frequent, and high-resolution char-22

acterisation of all surface water types is beyond the capabilities of current23

satellite observations.24

Visible satellite observations are a primary candidate for the detection of25

surface waters from space. Moderate Resolution Imaging Spectroradiometer26

(MODIS) observations have been used to derive global products every two27

days (http://oas.gsfc.nasa.gov/floodmap/) but visible/infrared observations28

suffer from the presence of clouds (about 70% of Earth surface at any time)29

(Wilson and Jetz, 2016) and vegetation. Despite the limitations from veg-30

etation canopy and cloud cover, this type of data is of great value to the31

community to detect open water. Yamazaki et al. (2015) introduced the32

Global 3 arc-second Water Body Map (G3WBM) at a pixel resolution of 333

arc-seconds (approximately 90 m at the equator) based on Landsat imagery.34

This dataset exploits multi-temporal acquisitions in order to distinguish per-35

manent from temporal open water areas. However, no full dynamics of the36

wetland map are provided. Other datasets have been built from Landsat37

imagery: (Feng et al., 2014) is global for the year 2000, (Mueller et al., 2016)38

focused on Australia, (Tulbure et al., 2016) created a three decade dataset39

over a semi-arid region, and (Verpoorter et al., 2014) mapped an inventory40

of global lakes. Pekel et al. (2016) recently produced a new Global Surface41

Water Explorer (GSWE) dataset also from Landsat imagery but using the42

full 32-year record, allowing for a better description of the trends of surface43

waters and their occurrence.44

Synthetic Aperture Radar (SAR) data has the potential to retrieve surface45

waters at high-spatial resolution ('10 m) as well as capture sub-canopy inun-46
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dation (L-band) as demonstrated by Santoro et al. (2010) using ENVISAT-47

ASAR, or more recently using the Sentinel 1 mission (Pham-Duc et al.,48

2017). Although existing SAR retrievals from a number of sensors cover49

a large extent of the globe, their use for mapping surface inundation has50

been protracted due to the local calibration needed for accuracy. The past51

or current availability of the data has not yet allowed for producing a full52

global high-spatial resolution surface water dataset from SAR data, although53

such initiatives have been suggested in the past, e.g. (Westerhoff et al., 2013).54

There is clearly a need to invest more time in retrieval algorithms and po-55

tentially perform data fusion in order to obtain a global, long-term, reliable,56

and high-resolution dataset of water extent from this type of observations.57

The NASA/CNES Surface Water and Ocean Topography (SWOT) mis-58

sion, planned for launch in 2021, is specifically designed to provide high-59

spatial resolution (' 10 m) and good temporal sampling (22 days repeat)60

of the extent (and altitude) of continental surface waters (Prigent et al.,61

2016; Biancamaria et al., 2016) thanks to an interferometric Ka-band radar62

(Rodriguez, 2015). Although the SWOT data is expected to deliver a new63

generation of global water surface extents at unprecedented quality and reso-64

lution, the availability of this product is still years in the future. Meanwhile,65

alternative efforts should be pursued to provide the community with the best66

possible information about the spatial and temporal variations of global sur-67

face water extents. Such efforts would also allow for the extension of the68

SWOT temporal record backward in time, with existing past imagery; this69

will be a crucial step in assembling multi-decadal measurements of surface70

water variation.71
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A possible approach in this direction it to use the synergy from multiple72

satellite observations. Following this idea, the Global Inundation Extent from73

Multi-Satellites (GIEMS) database has been developed through a retrieval74

scheme that combines satellite observations in the visible, near-infrared, and75

passive/active microwaves (Prigent et al., 2007, 2012; Papa et al., 2010).76

GIEMS provides a monthly-mean water surface extent at a low spatial resolu-77

tion (0.25◦ × 0.25◦ equal-area grid) over a 15-year period (1993-2007). In or-78

der to obtain global inundation estimate at high resolution, downscaling tech-79

niques have been developed on GIEMS (Aires et al., 2013, 2014). In partic-80

ular, Fluet-Chouinard et al. (2015) exploited topographic and hydrographic81

information derived from the Shuttle Radar Topography Mission (SRTM)82

and trained on a global land cover map to produce a 15 arc-second (∼500 m)83

resolution map of the minimum and maximum inundation extents at global84

scale (GIEMS-D15) (http://www.estellus.fr/index.php?static13/giems-d15).85

In (Aires et al., 2017), an evolution of this downscaling methodology was86

proposed to obtain a global and dynamic inundation dataset GIEMS-D3, at87

even higher spatial resolution of 3 arc-second (∼90 m), over 15 years with a88

monthly time step.89

Given the variety of remote sensing approaches, a cross comparison of90

existing products is needed to explore differences and combined uses of the91

resulting data. The objective of this paper is to compare and contrast two92

Landsat-based products (G3WBM and GSWE) and one multi-satellite-based93

product (GIEMS-D3). Section 2 presents the databases used in this work.94

A global-scale comparison of the three inundation datasets is performed in95

section 3, and section 4 presents regional comparisons. To evaluate inherent96
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uncertainties, we contrast the differences among surface water databases with97

tree and cloud cover data. The advantages and disadvantages of each type98

of data are then investigated. Finally, section 5 summarises the conclusions99

of this comparative study. We discuss ways forward to improve estimates100

of global, high-spatial resolution extents and long-term dynamics of surface101

waters of multiple types.102

As the descriptions of original data sources are not always using identical103

vocabulary, this paper explicitly defines the following terminology: The ex-104

pression “inundation” refers to all surfaces that are detected as water pixels105

in the original datasets, including lakes, rivers, temporarily inundated land,106

but also (by error or not) saturated soils. The expression “transient” is used107

throughout this paper for non-permanent inundation, including temporal,108

seasonal, intermittent, and ephemeral inundation, as well as spatio-temporal109

transitions such as moving river meanders or newly constructed reservoirs.110

The expression “wetland” is used only in descriptive terms without specific111

definition and may include all types of inundated areas (such as lakes, reser-112

voirs, and rivers) but also wet soils or non-inundated areas such as peatlands.113

2. Datasets114

2.1. G3WBM115

The Global 3 arc-second Water Body Map (G3WBM) uses an automated116

algorithm to process multi-temporal Landsat images from the Global Land117

Survey (GLS) database (Yamazaki et al., 2015). Over 33,000 scenes were used118

from four GLS snapshots at 5-year intervals between 1990 and 2010 in order119

to delineate a seamless water body map, without cloud and ice/snow gaps.120
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Permanent water bodies were distinguished from transitory water-covered121

areas by calculating the frequency of water body existence from overlapping,122

multi-temporal Landsat scenes. By analysing the frequency of water body123

existence at 3 arc-second resolution, the G3WBM separates river channels124

and floodplains (http://hydro.iis.u-tokyo.ac.jp/ yamadai/G3WBM/). De-125

spite distinguishing between permanent and transitory water surfaces, only126

permanent waterbodies are believed to be comprehensively mapped, while127

not all transitory waterbodies are captured by the four used used scenes (Ya-128

mazaki et al., 2015). The seven different G3WBM surface types are described129

in Tab. 1 and classes 1-4 represent transitory types.130

2.2. GSWE131

The Global Surface Water Occurrence (GSWE) dataset (Pekel et al.,132

2016) uses three million Landsat satellite images to quantify inundation over133

32 years (from 1984 to 2015) at a 30 m spatial resolution. The GSWE dataset134

is freely available at: https://global-surface-water.appspot.com/. Each Land-135

sat pixel has been classified as open water, land, or non-valid observation136

using an expert system. Open water is defined as any feature of water larger137

than 30 m × 30 m open to the sky, including fresh and saltwater. Validation138

against Google Earth images (i.e. from satellite datasets covering mostly139

the last three years from visible instruments such as Landsat) and labelling140

from experts shows that the classifier produces less than 1% of false water141

detections, and misses less than 5% of water. About 52% of the maximum142

inundation extent (over the 32 years) is found above 44◦N. In 2015, perma-143

nent bodies of water represented about 2.78 million km2, with 86% of that144

area present throughout the 32-year period (Pekel et al., 2016). A rigorous145
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G3WBM GLWD

Class (Yamazaki et al., 2015) (Lehner and Döll, 2004)

1 Snow Lake

2 Wet Soil, Wet Vegetation, Lava Reservoir

3 Salt Marsh River

4 Temporally Flooded Area Freshwater Marsh, Floodplain

5 Permanent Water Swamp Forest, Flooded Forest

6 Permanent Water (from SWBD) Coastal Wetland

7 Ocean (external land/sea mask) Pan, Brackish/Saline Wetland

8 Bog, Fen Mire (Peatland)

9 Intermittent Wetland/Lake

10 50–100% Wetland

11 25–50% Wetland

12 0–25% Wetland

Table 1: The seven surface classes of the G3WBM dataset, and the twelve classes of GLWD

(classes 1-3 corresponds to open water, 4-12 to wetlands).
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validation has been performed based on over 40,000 Landsat-derived control146

points spanning all three Landsats operational life spans dating back to 1985.147

When using visible observations, instantaneous estimates can be contam-148

inated by error, for instance due to the presence of clouds (only clear pixels149

are used to compute the occurrence, but this cloud detection can be erro-150

neous). Other potential errors and issues need also to be covered, i.e. omis-151

sion errors, algorithmic issues, and permanent water that was not present at152

all times during the 32-year period, such as newly built reservoirs or river153

meanders that have moved. Therefore, a threshold in occurrence of inun-154

dation is needed in order to distinguish permanent from transitory pixels.155

The GSWO (Global Surface Water Occurence) product provides the surface156

open water occurrence “O(surface water)” over the 32-year Landsat record.157

This occurrence was obtained using only cloud-free pixels. This clear-sky158

sampling aliasing increases the importance of the dry seasons and decrease159

that of the wet seasons. To alleviate this difficult, the occurrence in GSWE160

was normalised by month of the year. Note that the sampling during the day161

should still exclude boreal winter in the GSWO occurrence. In the following,162

we will refer to GSWO for the occurence product of the GSWE dataset.163

For the purpose of conducting baseline comparisons as conducted in this164

paper, we use:165

• The threshold of O(surface water) ≥ 90% for permanent waters.166

• and O(surface water) < 90% to identify transitory waters over the full167

32-year record in order to accommodate some uncertainties.168

This definition of permanency differs significantly from (Pekel et al., 2016)169
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who produced permanent water estimates only for shorter time periods (per-170

manent waters are defined at the yearly scale, not at the 32-year scale).171

The 0.9 threshold appears as a good pragmatic compromise: With a too172

low threshold, seasonal waters would be classified as permanent, and with173

a too high threshold, erroneous classifications would suppress truly perma-174

nent pixels. Erroneous classifications can be related for instance to omission175

errors, vegetation and algorithmic issues, and to include permanent water176

that was not present at all times during the 32 year periods, such as newly177

built reservoirs or river meanders that have moved. Note that by using a178

90% threshold on the occurence, if a dam is constructed for less time than179

the 10% of the full record, it will not be a permanent water body but a180

transitory. If we had chosen a 100% threshold, then even less such structures181

would be kept as permanent waters. It should be noted however that the182

selection of this threshold, which only represents our best guess in the ab-183

sence of conclusive and consistent evidence, will affect the results presented184

in this study. However, the maximum water extent (permanent plus transi-185

tory) is independent of this threshold. Other threshold or no threshold could186

be considered instead.187

2.3. GIEMS and GIEMS-D3 databases188

To minimise limitations and uncertainties related to measurements by189

individual instruments, a multi-sensor technique has been developed to esti-190

mate surface water extent and dynamics at global scale (Prigent et al., 2007,191

2012; Papa et al., 2010). The method exploits the complementary sensitiv-192

ities of different satellite observations to surface characteristics (e.g., water,193

vegetation, soil). Passive microwave observations are particularly sensitive194

11



to the presence of surface water, even under vegetation canopy. However,195

additional observations have to be used to subtract the contribution of con-196

founding factors such as vegetation from the signal and to avoid confusion197

with other surface types such as dry sand. The following satellite observa-198

tions were used to generate GIEMS: (1) passive microwaves from the Special199

Sensor Microwave/ Imager (SSM/I) measurements between 19 and 85 GHz;200

(2) active microwave backscattering coefficients at 5.25 GHz from scatterom-201

eters; and (3) visible and near-infrared reflectances and the derived NDVI202

(Normalized Difference Vegetation Index). The methodology is described in203

details in (Prigent et al., 2001). The use of multiple satellite sources is a204

true challenge, e.g. it is required to obtain a well calibrated dataset for each205

individual source. But it was shown that the GIEMS approach is able to206

benefit from the synergy of these satellite sources to obtain a general algo-207

rithm able to perform well in most environments. GIEMS data have been208

used for modelling of surface water dynamics and biogeochemical fluxes and209

have been thoroughly evaluated. Note that GIEMS estimates include all210

surface waters such as rivers, floodplains or lakes indiscriminately. The in-211

undation is expressed as the fractional inundation within each 773 km2 pixel212

of an equal-area grid with 0.25◦ resolution at the equator. Regional qual-213

ity assessments of the GIEMS database using SAR data indicate that the214

approach captures realistically complex wetlands. However, it can underesti-215

mate small surface waters comprising less than 10% fractional coverage of a216

grid cell (≤80 km2) due to its coarse spatial resolution and it can also overes-217

timate large surface waters comprising more than 90% of fractional coverage218

due to water-saturated soils (Prigent et al., 2012). GIEMS is available at219
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(http://lerma.obspm.fr/spip.php?article91lang=en).220

Downscaling methods have recently been developed to reduce the spatial221

resolution of GIEMS estimates from 25 km to 500 m (15 arc-second, GIEMS-222

D15) (Fluet-Chouinard et al., 2015) (http://www.estellus.fr/index.php?static13/giems-223

d15) and 90 m (3 arc-second, GIEMS-D3) (Aires et al., 2017). The method-224

ology uses a floodability index which is predicted for each pixel based on225

topography and hydrography information from the HydroSHEDS database226

(Lehner et al., 2008). This floodability index at high-spatial resolution is227

used to distribute the water fraction from coarse resolution into the high-228

resolution pixels. A smoothing procedure is applied during the downscaling229

to reduce transition artefacts at the edges of the low-resolution boxes from230

GIEMS. GIEMS-D3 has been assessed by analysing its spatial and tempo-231

ral variability, and evaluated by comparisons to other independent satellite232

observations (Aires et al., 2017). Topographic information is useful in pre-233

dicting natural inundation where hydrology is controlled by elevation, but234

is more limited in human-modified areas (e.g. artificial reservoirs or rice235

paddies). The probability of surface water “P(surface water)” is defined in236

GIEMS-D3 as the temporal recurrence (in percent per high-resolution pixel)237

of observed water in the available monthly time series (1993-2007).238

2.4. Auxiliary datasets239

2.4.1. GLWD240

The Global Lakes and Wetlands Database (GLWD) represents a compre-241

hensive dataset of global surface water area, including small and large lakes,242

reservoirs, rivers, and wetlands (Lehner and Döll, 2004). GLWD was gener-243

ated through a compilation and assimilation of existing analog and digital244
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maps and cartographic products, and due to the historic perspective of the245

majority of data included, it is assumed to represent maximum open water246

and wetland extents. In comparison to water and wetland extents from land247

cover maps, it is the most extensive water mask of its kind (Nakaegawa,248

2012). The “level 3” dataset of GLWD that is used here provides a global249

30 arc-second resolution grid describing twelve different surface water types250

(see Tab. 1). GLWD is static and offers little information on seasonality.251

2.4.2. Tree density252

In order to assess the surface water retrieval from visible observations253

when vegetation is present, the global percent tree cover map by (Hansen254

et al., 2009) is used. The MODIS vegetation continuous fields algorithm255

and a supervised regression algorithm were applied to estimate the percent256

tree cover over 500 m pixels. Results show that MODIS data yield greater257

spatial detail in characterising the tree cover compared to past efforts using258

for instance AVHRR data. Furthermore, validation efforts have shown a259

reasonable agreement between the MODIS-estimated and the observed tree260

cover over validation sites.261

2.4.3. Cloud fraction262

A cloud fraction dataset can be used over land to investigate where vis-263

ible observations (from Landsat) can actually retrieve surface parameters264

or not. Cloud cover dynamics are captured over a large extent yet at fine265

spatial grain twice-daily by the MODIS satellite images. A near-global, fine-266

resolution ('1 km) monthly cloud frequency dataset is presented in (Wil-267

son and Jetz, 2016) (http://www.earthenv.org/cloud), spanning a temporal268
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range over 15 years.269

Note that the tree density and the cloud fraction datasets are derived270

from the same instrument, MODIS, but their processing are independent271

from each other.272

3. Global comparison273

3.1. Surface water extents and probabilities274

Fig. 1 presents a comparison of the G3WBM and GSWE Landsat-derived275

datasets, along with the GIEMS-D3 multi-satellite estimate, at the global276

scale at 90 m spatial resolution. The three estimates share the major hydro-277

logical structures, with large surface water extents in Canada, Bangladesh,278

or Eastern Argentina.279

The two Landsat-derived products provide similar results over the boreal280

region with permanent surface water in large areas in Canada, over Scan-281

dinavia and in Siberia. The surface water occurrence (for GSWO) and sur-282

face water probability (GIEMS-D3) (as defined in the data section) in these283

regions is generally lower with GIEMS-D3. The differences can be partly284

related to the reference time periods to calculate the inundation statistics.285

Landsat only provides information under daylight conditions. As explained in286

the data section, the GSWO dataset provides statistics done at the monthly287

level so each month has the same weight in the overall statistics, indepen-288

dent of the number of valid observations in each month. However, during289

the boreal winter, no observation is available in the Landsat products due290

to lack of daylight which does not allow for the calculation of inundation291

occurrence. On the other hand, the GIEMS-D3 product is essentially based292
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on microwave observations that are available regardless of light conditions.293

The reference time period for the inundation probability includes the winter294

months when snow and ice cover the boreal region (this is not considered to295

be inundated in GIEMS-D3). As a consequence, the surface water probabil-296

ity is systematically lower with GIEMS-D3 than the GSWO occurrence in297

these regions.298

Compared to the GIEMS-D3 estimates, the Landsat-derived water esti-299

mates are more uniformly spread, with small surface water detected in most300

environments all over the globe. The GIEMS-D3 data is based on the low301

spatial resolution GIEMS product which has known difficulties in detecting302

water surfaces that cover less than 10% of the original 0.25◦ × 0.25◦ pix-303

els. The downscaling methodology partly compensates for these omissions304

through fusion with GLWD data (Aires et al., 2017), yet in general these305

omissions are propagated into the higher resolution version.306

In contrast, GIEMS-D3 detects larger areas of surface water than the307

Landsat estimates in equatorial forests, e.g. around the Amazon or the Congo308

Rivers. The microwave observations used to derive the GIEMS product can309

partly penetrate through the dense canopy whereas the Landsat measure-310

ments are blocked by the vegetation.311

In Australia and in South Africa, significant differences are observed be-312

tween the similar Landsat products and GIEMS-D3. More inundation is313

detected in South Africa with Landsat than with GIEMS-D3, while in the314

north of the Western Territories in Australia the opposite prevails with larger315

inundation detected by GIEMS-D3. Significant differences are also observed316

between the G3WBM and the GSWO products around Lake Mackay. This is317
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likely related to the difference in the processing record for these two products318

(32 years for GSWO and only four observations for G3WBM).319

3.2. Permanent and transitory surface water320

For further comparisons, Fig. 2 shows only the permanent water bodies321

for G3WBM, GSWO (O(surface water) > 0.9), and GIEMS-D3 (P(surface322

water) = 1), along with the difference between GSWO and GIEMS-D3. To323

improve the visual interpretation, the fraction of permanent inundation is324

aggregated into each 0.1◦× 0.1◦ pixel. Furthermore, the same HydroSHEDS325

land/sea mask has been applied to all datasets to avoid discrepancies along326

the marine coastlines and to exclude the Caspian Sea from all calculations.327

Overall, the three maps show generally good spatial agreement, with a total328

permanent surface water extent of 2.76 million km2 for G3WBM, 2.05 mil-329

lion km2 for GSWO, and 3.28 million km2 for GIEMS-D3 (Tab. 2). The330

estimate of GSWO increases to 2.78 million km2 when using a single year331

(i.e. 2015) and an O-threshold of 100% instead of the 32-year record with332

an O-threshold of 90%. All results are reasonably close to the reference data333

of GLWD (3.04 million km2). It can be seen in the difference map (D) that334

in the tropical regions, GIEMS has higher water surfaces (blue colour) prob-335

ably because it has the ability to better detect water through the presence336

of clouds or vegetation. Conversely, in higher latitudes, GSWO tends to337

show more water surfaces (red colour), probably due to spatial resolution338

limitations in GIEMS-D3. These hypotheses will be further discussed in the339

following. It should be noted, however, that the interpretation of permanent340

water is not identical in the three datasets as GIEMS-D3 includes inundation341

that is not visible from the sky (i.e. beneath vegetation).342
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Figure 1: (a) G3WBM classification into permanent and transitory inundation (0-1), (b)

the GSWO inundation occurrence (0-100%), and (c) the GIEMS-D3 inundation probability

(0-100%). The rendering of this figure is difficult at very high spatial resolution (90 m),

the maximum water extents are respectively: 3.74, 5.77 and 13.67 million km2 (Tab. 2).
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Fig. 3 presents the transitory water bodies: classes 1-4 from G3WBM,343

O(surface water)≤0.9 for GSWO, and P(surface water)<1 for GIEMS-D3.344

Here, much larger differences can be observed between the three products.345

The total transitory surface water is 0.48 million km2 for G3WBM, 3.72 mil-346

lion km2 for GSWO, and 10.39 million km2 for GIEMS-D3, compared to347

8.81 million km2 for GLWD (Tab. 2). Despite the common use of Landsat348

imagery, G3WBM detects much less transitory surface water than GSWO,349

which can be attributed both to differences in the observation period and350

the detection algorithms. The more extensive temporal coverage of GSWO351

is more likely to capture seasonal variations than the fewer composite snap-352

shots used for G3WBM.353

Disagreements between GSWO and GIEMS-D3 transitory water bodies354

have different origins, depending on the environment. First, all over the355

globe, small transitory water bodies are detected by GSWO and are likely356

missed by GIEMS-D3 due to the low detection limit of the original GIEMS357

data. Second, in Asia, GSWO detects much less transitory water surfaces358

than GIEMS-D3. Local analyses in the Ganges-Brahmaputra region (Papa359

et al., 2015) or in the Mekong Delta (see estimates from Sakamoto et al.360

(2007)) show that GIEMS tends to over-estimate the surface water in areas361

with saturated soils and irrigated rice culture. However, in these regions, vis-362

ible and near-infrared observations can also have difficulties in detecting and363

correctly classifying mixed surfaces with some vegetation coverage (Sakamoto364

et al., 2007; Crétaux et al., 2016). Hence in the GSWO dataset, some inun-365

dated pixels that are partly covered by vegetation may not be detected. In366

addition, these regions are under very persistent cloud cover, especially dur-367
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ing the wet season. Landsat observations cannot be used efficiently in these368

conditions to detect the presence of water, limiting drastically the possible369

detection of transitory surface water. Third, around extensive hydrological370

land-water systems (e.g., the Mississippi, Orinoco or Amazon Rivers and371

floodplains, or the Pantanal wetlands), the GSWO transitory water bodies372

occupy less area than in GIEMS-D3. With Landsat observations hampered373

by vegetation and clouds, an underestimation of the transitory water bodies374

can be expected in particular for densely vegetated areas prone to large cloud375

cover. Finally, at high latitudes, differences between GSWO and GIEMS-D3376

likely result from the combination of two factors: the lack of spatial reso-377

lution in the original GIEMS data to detect very small lake fractions and378

the difference in the reference period to calculate the temporal statistics of379

surface water (with or without the boreal winter).380

The longitudinal and latitudinal distribution of surface water extents are381

illustrated in Fig. 4 for permanent and transitory surface waters of all three382

estimates (G3WBM, GSWO, and GIEMS-D3). The agreement of the per-383

manent surface water extents is reasonable, with slightly higher values for384

GSWO in the tropical regions, especially in South America. The slight under-385

estimation around the equator of Landsat estimates with respect to GIEMS-386

D3 is expected to be related to the rain forest or clouds that block the visible387

and near infrared observations. Transitory water bodies, on the other hand,388

show much weaker agreement among sources, with substantially more transi-389

tory water surfaces from GIEMS-D3 in comparison to G3WBM and GSWO,390

especially over higher latitudes in North America and Eurasia. These spa-391

tial differences can also be observed in Figs. 2(D) and 3(D). More detailed392
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explanations on these differences will be given in the following sections.393

Fig. 5 presents histograms of the probability distribution function for per-394

manent and transitory surface water extents over 0.1◦× 0.1◦ pixels, at differ-395

ent latitudinal bands. G3WBM and GSWO estimates reveal strong agree-396

ment for permanent water bodies, regardless of the environment. GIEMS-D3397

shows slightly less pixels with a smaller percentage of permanent water cover-398

age (below 5%), across all latitudinal sections, yet slightly more with a higher399

percentage (above 10%). The increase in the probability for the surface wa-400

ter percentage close to 100% for all products is due to water bodies (mostly401

lakes) larger than the 0.1◦× 0.1◦ grid used for the calculation. For the tran-402

sitory water surfaces, the pattern of under-detected small water fractions403

and exceeding large water fractions by GIEMS-D3 compared to the other404

products is more prominent.405

A 0.1◦× 0.1◦ pixel-to-pixel comparison of the GSWO and GIEMS-D3406

datasets (from Fig.s 2 and 3) is provided in Fig. 6. The first row represents407

the GSWO/GIEMS-D3 confusion matrices for permanent (left) and tran-408

sitory (right) water extents (in percentage between 0 and 1). The colorbar409

represents the logarithm of the number of 0.1◦× 0.1◦ samples in each 0.1×0.1410

bin of the plot. We observe that for permanent water surfaces, this matrix is411

quite diagonal. This means that there is no notable difference between the412

two datasets, except for the differences that can result from random errors413

in both datasets. For the transitory pixels, GSWO has a reduced range of414

water extent percentages (x-axis), whereas GIEMS-D3 shows a much broader415

range and increasing frequencies of high water surface percentages. This can416

be explained by the fact that vegetated fractions in the 0.1◦× 0.1◦ pixels can417
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Figure 4: Averaged longitudinal (A and B) and latitudinal (C and D) surface water extents

(in 104 km2 per 1◦ bin), for G3WBM, GSWO, and GIEMS-D3 estimates. Distributions

are plotted for permanent and transitory surface water extents, and for their sum.
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Figure 5: Histograms of the permanent (top row) and transitory (bottom row) surface

water percentage over 0.1◦× 0.1◦ pixels, for GIEMS-D3 (red), G3WBM (blue), and

GSWO (green). From left to right: for -90◦/-45◦, -45◦/-15◦, -15◦/+15◦, +15◦/+45◦,

and +45◦/+90◦ latitudinal bands. The number of 0.1◦× 0.1◦ pixels for each dataset is

also indicated.
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Figure 6: Pixel-to-pixel (0.1◦× 0.1◦) comparison of the GSWO and GIEMS-D3 datasets,

for permanent (left) and transitory (right) surface waters. First row: GSWO/GIEMS-D3

confusion matrices for permanent (left) and transitory (right) water extents (in percentage

between 0 and 1). The colorbar represents the logarithm of the number of 0.1◦× 0.1◦ sam-

ples in each 0.1×0.1 bin of the plot. Second row: corresponding histogram of differences

between the GSWO and GIEMS-D3 water extent estimates (percentages are expressed

with the 0-1 range.

27



be detected in GIEMS-D3, but not in GSWO. This will be examined in more418

detail in the following sections. The lower row represents the corresponding419

histograms of differences between the GSWO and GIEMS-D3 water extent420

estimates. For the permanent waters, this distribution is centred around zero,421

and the distribution is symmetric meaning that no dataset is over-estimating422

the water extent compared to the other. For the transitory water extents, the423

distribution is skewed with a long tail to the left meaning that GIEMS-D3424

has more pixels with high transitory water extents.425

4. Regional evaluation426

In order to investigate the advantages and disadvantages of the various427

inundation datasets, a regional analysis is performed in this section over428

several contrasted environments.429

4.1. The Amazon River in a tropical forest environment430

Fig. 7 presents a comparison between Landsat estimates from G3WBM431

and GSWO, the GIEMS-D3 probabilities, and the GLWD classification, over432

the Amazon Basin. Tree cover density is also shown to support interpre-433

tation. Overall, this figure supports the general findings of the global-scale434

comparison (Fig. 1). The spatial structure of the inundation pattern is quite435

similar for all three satellite datasets and they exhibit very realistic distri-436

butions of major rivers and tributaries (Amazon, Solimoes, Negro, Tapajos,437

Tocantins) as well as major associated inundated areas and wetlands. This438

finding aligns with several previous studies where GIEMS was intensively439

evaluated over the Amazon Basin (Papa et al., 2008, 2013; Frappart et al.,440
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2012; Getirana et al., 2012). Nevertheless, on a finer spatial scale, clear dif-441

ferences can be observed in the morphological patterns, especially over the442

flooded zones of the Rio Negro Basin (2◦S-2◦N; 64◦W-61◦W), the Madeira443

Basin (15◦S-7◦S; 69◦W-62◦W), or the floodplains adjacent to the main chan-444

nel of the Amazon River. These regions are characterised by extensive sa-445

vanna or forest floodplains with dense vegetation canopies that are inundated446

for four to six months each year (Fig. 7e).447

To better illustrate the correlation between Landsat retrieval and vegeta-448

tion, Fig. 8 compares the GSWO and GIEMS-D3 inundation probabilities for449

ten tree density ranges (0-10% to 90-100%), over a 5◦× 5◦ cell in the Amazon450

region (5◦S-0◦S; 70◦W-65◦W). The fraction of pixels classified as inundated451

is estimated for each tree density bin. It can be seen in Fig. 7e that the452

tree density fall generally within the 90-100% or the 0-10% bins; however453

enough points (several thousand) are present in each intermediate tree den-454

sity bin so that the inundation probabilities are robust and reliable, which455

is also corroborated by the fact that the lines in Fig 8 are smooth rather456

than randomly spiking through the transition zone. The sum of permanent457

and transitory inundation probability for low vegetation (0-10% bin) is high458

for both GIEMS-D3 and GSWO datasets, at 97% and 89%, respectively.459

However, the distribution of permanent and transitory inundation is quite460

different: 82% permanent and 15% transitory for GIEMS-D3, and 40% per-461

manent and 49% transitory for GSWO. For the GSWO dataset, permanently462

inundated pixels can be found only in the 0-10% bin while transitory pixels463

decrease linearly from 50% to 0% with increasing tree cover. This behaviour464

may, at least in part, be influenced by the thicker forest density in upland465
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B)	

E)	

A)	

D)	C)	

F)	

Figure 7: Comparison of the different surface water dataset over the Amazon: G3WBM

(A), GSWO (B), GIEMS-D3 (C), GLWD (D), tree density from MODIS for interpretation

(E), and indication of the two commented basins and four rivers (F). See Tab. 1 for the

definition of the G3WBM and GLWD classes.
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areas compounded with the limitations of Landsat detection.466

For GIEMS-D3, the transitory inundation probability in tree density bins467

is fairly constant from 10 to 90%, then experiences a steep decline in the 90-468

100% bin. A peak occurs at 80-90% which might be related to the overesti-469

mation of transitory inundation for water-saturated soils. With GIEMS-D3,470

still 13% of transitory inundation is observed for the highest tree density bin,471

confirming that flooding can be detected by GIEMS-D3 even under densely472

vegetated areas.
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Figure 8: Probability of inundation for ten tree density ranges (0-10% to 90-100%), over

a 5◦× 5◦ cell in the Amazon region (5◦S-0◦S; 70◦W-65◦W). The probability of being

inundated (permanently in continuous lines, or transitory in dashed lines) is estimated for

each tree density bin, for GIEMS-D3 (blue) and GSWO (green).
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4.2. Small water bodies at higher latitudes474

Fig. 9 illustrates the surface water estimates of the G3WBM, GSWO,475

GIEMS-D3, and GLWD datasets over a high-latitude area (56◦N-60◦N; 105W◦-476

100◦W) in Canada and supports that the larger hydrological features are very477

similar from one dataset to another. The reference data of GLWD shows an478

extensive homogeneous area of a wetland complex (classified as “25-50% wet-479

land”), likely representing a generalised peatland region. This “biome class”480

is not replicated in the other datasets that convey a water classification in-481

formation. Landsat estimates (G3WBM and GSWO) show no transitory482

surface waters but only permanent ones. This pattern is likely related to483

an inundation definition issue or a time sampling problem causing confusion484

with snow/ice cover, as inundation variation occurs during snowmelt periods485

at these latitudes. Another possible explanation is also the presence of veg-486

etation since Landsat cannot sense water beneath vegetation. On the other487

hand, GIEMS-D3 shows a gradient of inundation probability, from the center488

of the hydrological objects to the borders influenced likely by some confusion489

with snow/ice cover and the limited ability to capture small lake features in490

the landscape. The problem may be amplified by the downscaling scheme491

relying on global-scale topographic and hydrographic information that is too492

uncertain to adequately represent small variations in elevation within flat493

regions. This regional case study over the northern latitudes highlights the494

sampling issues in Landsat, and the difficulty for GIEMS-D3 to retrieve small495

water bodies.496
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Figure 9: Inundation estimates from G3WBM (a), GSWO (b), GIEMS-D3 (c) and GLWD

(d), over a 5 ◦× 5◦ cell in Canada. See Tab. 1 for the definition of the G3WBM and GLWD

classes.
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4.3. The Ganges-Brahmaputra region and related cloud issues497

Characterising the distribution and variability of surface freshwater at498

high resolution is critical for the Indian sub-continent and surrounding areas499

where the availability of water resources is highly influenced by anthropogenic500

pressure. Fig. 10 compares, over the Ganges-Brahmaputra River system501

and the Bengal Delta, the various datasets. To support the interpretations,502

Fig. 10 also shows tree density (E), the mean climatological cloud fraction503

from MODIS in August over the region (F), the seasonality of the cloud cover504

(G), and the number of months in which water is present during 2014 from505

GSWO (H).506

For reference, the GLWD map coarsely depicts three larger homogeneous507

wetland areas classified as freshwater marsh and floodplains (C4), coastal508

wetlands (C6), and 0-25% wetlands (C12). The three satellite-derived prod-509

ucts agree in their representation of the permanent major rivers (Ganges-510

Brahmaputra-Meghna River systems) and their large tributaries, as well as511

some of the associated large inundated areas or wetlands of the Meghna River512

and the Bengal Delta. However, this region is characterised by the presence513

of complex areas with extensive transitory and seasonal flooding, which are514

better captured by the more complete temporal coverage of GSWO com-515

pared to G3WBM. For instance, the flooding region along the confluence516

of the Ganges and the Kosi River in India as well as the floodplain of the517

Meghna River are captured in GSWO, yet they are not visible in G3WBM.518

The overall low coverage of surface water in both Landsat estimates is in high519

contrast to GIEMS-D3 estimates, which are characterised by extensive and520

in some cases overestimated flooded areas. The issue of overestimation in521
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the original GIEMS data over the Indian subcontinent has been discussed in522

several publications (Papa et al., 2006, 2008, 2015; Salameh et al., 2017) and523

while GIEMS is broadly able to capture the distributions and variations of524

surface freshwater in the Ganges-Brahmaputra Basin, some analysis suggests525

that the method encounters difficulties in accurately discriminating between526

very saturated/moist soil and standing open water which can lead to poten-527

tial overestimations of actual surface water extents, especially for saturated528

soil in pixels with high flood coverage such as the delta region (Papa et al.,529

2010).530

Unlike in the Amazon Basin, low surface water detection in GSWO and531

G3WBM over the Ganges-Brahmaputra region are not associated with dense532

tree cover, see Fig. 10(E). On the other hand, Fig. 10(F) reveals that in533

August the entire region is covered by clouds, in particular the areas around534

the lower Ganges-Brahmaputra and delta which are covered by clouds for535

90% of the month. August is also the month when excessive rainfall caused536

by the South-West Indian monsoon produces maximum river discharge in the537

Ganges-Brahmaputra system (Papa et al., 2012) along with associated large538

flooding in the basin and in the lower delta. The persistent presence of cloud539

cover during the monsoon season from May to September, see Fig. 10(G),540

suggests that GSWO and G3WBM might encounter difficulties to properly541

retrieve the maximum extent of inundation and seasonal surface water bodies542

during their peak season. This might explain why GSWO detects most of543

the surface water in April-May or October-December as shown in Fig. 10(G).544

545
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A)	 B)	

H)	

C)	

G)	

E)	 F)	

D)	

Figure 10: Comparison of surface water datasets for the Ganges-Brahmaputra region:

G3WBM (A), GSWO (B), GIEMS-D3 (C), and GLWD (D). Tree density from MODIS

(E), cloud fraction in August (F), seasonal cloud fraction (G) and GSWO season duration

(in months) (H) are also represented for interpretation purposes. See Tab. 1 for the

definition of G3WBM and GLWD classes.
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5. Conclusion and perspectives546

5.1. Conclusion547

A comparison of Landsat-based (G3WBM and GSWO) and multi-satellite548

(GIEMS-D3) datasets was conducted at global and regional scales to iden-549

tify advantages and disadvantages in terms of detecting water surface areas550

for both types of approaches. Overall, good agreement in permanent water551

bodies was found for all datasets. Due to differences in observation methods,552

discrepancies are apparent in particular for transitory (i.e. not permanently553

inundated) zones. Landsat-based datasets have a very high nominal spatial554

resolution and can detect even small water bodies at high accuracy, such as555

those ubiquitous in northern latitudes. However, Landsat observations are556

affected by cloud cover, snow/ice and vegetation. As a result, Landsat prod-557

ucts are most apt at detecting open water bodies and variation within them,558

but provide incomplete representation of seasonal wetlands or inundation559

areas where the spectral signature is confounded by vegetation.560

The multiple sensors behind GIEMS-D3 can penetrate vegetation and561

clouds and are thus capable of retrieving non-open water wetland types and562

of detecting temporal dynamics even if seasonal cloud cover is prevalent dur-563

ing the periods of the year when inundation occurs. Current implementations564

of the GIEMS-D3 downscaling method, however, have used topographic in-565

formation which does not provide spatial accuracy comparable to direct ob-566

servations from Landsat sensors. Furthermore, the current version of GIEMS567

probably over-estimates inundation over water-saturated soils, and due to its568

low nominal spatial resolution, it is not able to retrieve small water bodies.569

SAR data (from ENVISAT, Sentinel and soon SWOT) would be a good570
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supplement because they warrant high-spatial resolution and are less sensi-571

tive to clouds than the visible observations. However, long-term and global572

mapping of surface waters has remained challenging due to localised param-573

eterisation necessary for obtaining locally accurate maps. Regardless, SAR574

remains among the most promising approaches for global baseline mapping of575

inundation in vegetated areas, even if it cannot provide a long-term historic576

time record such as available from GIEMS or Landsat.577

In summary, the data sources compared possess complimentary strengths578

which could be leveraged through assimilation and combination. The ex-579

tensive archive of Landsat imagery provides reliable estimates of open water580

bodies and variation, while downscaled GIEMS maps such as GIEMS-D3581

provide a more complete, if less locally accurate, extent of inundation under582

canopy and cloud cover.583

5.2. Perspectives584

In order to obtain the best estimate of global wetland extents at high585

spatial resolution and with a long-term record, several ways forward should586

be investigated which are listed in the following.587

588

Improvement of GIEMS and GIEMS-D3 - It was shown that GIEMS and589

GIEMS-D3 have some good complementary information to Landsat observa-590

tions. However, GIEMS and GIEMS-D3 also need to be further enhanced.591

Three main ways are suggested to improve the original GIEMS dataset: (1)592

The retrieval algorithm could be corrected to reduce the over-estimation of593

inundated areas over saturated soils. (2) The temporal resolution could be594

increased, from the monthly to a 10-day scale. (3) Most importantly, the time595
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record of GIEMS (currently 1993-2007) could be extended on both ends. The596

time period covered by GIEMS is limited by auxiliary information (e.g. tem-597

porally coherent surface temperatures, cloud flags) required for the GIEMS598

retrievals, whereas the microwave observations are available for a longer pe-599

riod (1972-present). This information was obtained form the ISCCP (In-600

ternational Satellite Cloud Climatology Project)(Rossow and Schiffer, 1999).601

Alternative ways could be investigated to perform the retrieval without these602

auxiliary information, which would allow for building a GIEMS dataset from603

1978 to present (about 40 years).604

GIEMS-D3 could also be improved in several ways, for instance by using605

a better downscaling scheme: (1) The floodability index used in the down-606

scaling could be trained on Landsat data instead of GLWD. (2) A floodability607

index could be developed with regional tuning adapted to different wetland608

types (currently, the same model is used for arid, tropical, temperate or po-609

lar areas) (Aires et al., 2017). (3) Other Digital Elevation Models (DEMs)610

could be used instead of, or in combination with, SRTM/HydroSHEDS. For611

instance, the newer version of SRTM at 30 m resolution could be tested.612

New DEMs (Yamazaki et al., 2017) could also correct some artefacts such as613

vegetation noise or tree height contamination (e.g., (Simard et al., 2011)).614

615

Data fusion of several sources of information - Since both Landsat-based616

data and GIEMS-D3 carry complementary information, it would be valuable617

to combine them to obtain a better inundation product. There are several618

avenues to achieve this: (1) The permanent water body area from Landsat619

could be used to correct the minimum values of GIEMS-D3 which currently620
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tend to be underestimated due to the limited retrieval capability of GIEMS621

in areas of low water fractions. (2) The Landsat occurrence could also replace622

the topography-based floodability index that is used to perform the downscal-623

ing of GIEMS-D3. In this way, an updated version of GIEMS-D3 would be624

more compatible to Landsat products because it would follow similar spatial625

patterns. The difficulty with of this approach is that the maximum GIEMS626

inundation estimate is higher than that from Landsat, hence a Landsat-based627

probability map is not covering the required extent. This shortcoming could628

be solved by fusing the Landsat-based and topography-based probability in-629

dices.630

Aside from water and inundation masks, categorising surface water types631

could benefit from developments of databases specific to discriminated wa-632

terbody types. For instance, lakes and reservoirs (HydroLAKES) (Messager633

et al., 2016) or the Global River Widths from Landsat (GRWL) (Allen and634

Pavelsky, 2015) could be used to improve downscaling of GIEMS or for post-635

hoc classification efforts.636

637

Combination with SAR data - Although global SAR coverage may eventually638

provide the most comprehensive estimates of surface waters on its own, steps639

improving global SAR retrieval would benefit from the use of GIEMS or640

Landsat datasets. For instance, the GIEMS/Landsat estimates could help641

in the development of a global SAR retrieval algorithm by serving either as642

an a priori mask or as a first guess. GIEMS/Landsat combination would643

also be a good tool to select the sites of validation campaigns for the SWOT644

mission that will be launched in 2021 (Rodriguez, 2015; Prigent et al., 2016).645
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Finally, it could help in assessing the sensitivity of hydrological models to646

this kind of high resolution data (e.g. assimilation experiments to estimate647

river discharges), feed the SWOT simulator, or measure signal-to-noise ratio648

constraints.649

Arguably the most important reason for a continued improvement of sur-650

face water datasets based on Landsat or multi-sensor products like GIEMS651

is that they are our most promising tools to preserve the best possible in-652

undation record of the past. Once reliable global SAR estimates become653

available (from ENVISAT, Sentinel-1 or SWOT), they can be combined with654

historic GIEMS/Landsat estimates to construct an instantaneous record of655

inundation areas back to 1978, which then will be carried into the future by656

the new and advanced SAR measurements.657
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Papa, F., Frappart, F., Güntner, A., Prigent, C., Aires, F., Getirana,787

A.C.V., Maurer, R., 2013. Surface freshwater storage and variabil-788

ity in the Amazon basin from multi-satellite observations, 1993–2007.789

Journal of Geophysical Research: Atmospheres 118, 11,951–11,965.790

URL: http://onlinelibrary.wiley.com/doi/10.1002/2013JD020500/791

full, doi:10.1002/2013JD020500.792

Papa, F., Frappart, F., Malbeteau, Y., Shamsudduha, M., Vuruputur, V.,793

Sekhar, M., Ramillien, G., Prigent, C., Aires, F., Pandey, R.K., Bala, S.,794

Calmant, S., 2015. Satellite-derived surface and sub-surface water storage795

in the Ganges–Brahmaputra River Basin. Journal of Hydrology: Regional796

Studies 4, 15–35. URL: http://dx.doi.org/10.1016/j.ejrh.2015.03.797

004, doi:10.1016/j.ejrh.2015.03.004.798

Papa, F., Guntner, A., Frappart, F., Prigent, C., Rossow, W.B., 2008. Vari-799

ations of surface water extent and water storage in large river basins: A800

comparison of different global data sources. Geophysical Research Let-801

ters 35, L11401. URL: http://doi.wiley.com/10.1029/2008GL033857,802

doi:10.1029/2008GL033857.803

Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W.B., Matthews, E.,804

2010. Interannual variability of surface water extent at the global scale,805

1993–2004. Journal of Geophysical Research: Atmospheres (1984–2012)806

115. URL: http://onlinelibrary.wiley.com.ezproxy.cul.columbia.807

edu/doi/10.1029/2009JD012674/full, doi:10.1029/2009JD012674.808

Papa, F., Prigent, C., Rossow, W.B., 2006. Inundated wetland dynamics809

over boreal regions from remote sensing: The use of Topex-Poseidon dual-810

47

http://onlinelibrary.wiley.com/doi/10.1002/2013JD020500/full
http://onlinelibrary.wiley.com/doi/10.1002/2013JD020500/full
http://onlinelibrary.wiley.com/doi/10.1002/2013JD020500/full
http://dx.doi.org/10.1002/2013JD020500
http://dx.doi.org/10.1016/j.ejrh.2015.03.004
http://dx.doi.org/10.1016/j.ejrh.2015.03.004
http://dx.doi.org/10.1016/j.ejrh.2015.03.004
http://dx.doi.org/10.1016/j.ejrh.2015.03.004
http://doi.wiley.com/10.1029/2008GL033857
http://dx.doi.org/10.1029/2008GL033857
http://onlinelibrary.wiley.com.ezproxy.cul.columbia.edu/doi/10.1029/2009JD012674/full
http://onlinelibrary.wiley.com.ezproxy.cul.columbia.edu/doi/10.1029/2009JD012674/full
http://onlinelibrary.wiley.com.ezproxy.cul.columbia.edu/doi/10.1029/2009JD012674/full
http://dx.doi.org/10.1029/2009JD012674


frequency radar altimeter observations 27, 4847–4866. URL: http://www.811

tandfonline.com/doi/abs/10.1080/01431160600675887, doi:10.1080/812

01431160600675887.813

Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution814

mapping of global surface water and its long-term changes. Nature 540,815

418–422. URL: http://adsabs.harvard.edu/cgi-bin/nph-data_816

query?bibcode=2016Natur.540..418P&link_type=EJOURNAL,817

doi:10.1038/nature20584.818

Pham-Duc, B., Prigent, C., Aires, F., 2017. Surface Water Monitoring within819

Cambodia and the Vietnamese Mekong Delta over a Year, with Sentinel-820

1 SAR Observations. Water 9, 366–21. URL: http://www.mdpi.com/821

2073-4441/9/6/366, doi:10.3390/w9060366.822

Prigent, C., Lettenmaier, D.P., Aires, F., Papa, F., 2016. Toward823

a High-Resolution Monitoring of Continental Surface Water Extent824

and Dynamics, at Global Scale: from GIEMS (Global Inunda-825

tion Extent from Multi-Satellites) to SWOT (Surface Water Ocean826

Topography). Surveys in Geophysics 37, 339–355. URL: http:827

//adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016SGeo.828

..37..339P&link_type=EJOURNAL, doi:10.1007/s10712-015-9339-x.829

Prigent, C., Matthews, E., Aires, F., Rossow, W.B., 2001. Remote sensing830

of global wetland dynamics with multiple satellite data sets. Geophysical831

Research Letters 28, 4631–4634. URL: http://adsabs.harvard.edu/832

cgi-bin/nph-data_query?bibcode=2001GeoRL..28.4631P&link_type=833

EJOURNAL, doi:10.1029/2001GL013263.834

48

http://www.tandfonline.com/doi/abs/10.1080/01431160600675887
http://www.tandfonline.com/doi/abs/10.1080/01431160600675887
http://www.tandfonline.com/doi/abs/10.1080/01431160600675887
http://dx.doi.org/10.1080/01431160600675887
http://dx.doi.org/10.1080/01431160600675887
http://dx.doi.org/10.1080/01431160600675887
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016Natur.540..418P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016Natur.540..418P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016Natur.540..418P&link_type=EJOURNAL
http://dx.doi.org/10.1038/nature20584
http://www.mdpi.com/2073-4441/9/6/366
http://www.mdpi.com/2073-4441/9/6/366
http://www.mdpi.com/2073-4441/9/6/366
http://dx.doi.org/10.3390/w9060366
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016SGeo...37..339P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016SGeo...37..339P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016SGeo...37..339P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016SGeo...37..339P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016SGeo...37..339P&link_type=EJOURNAL
http://dx.doi.org/10.1007/s10712-015-9339-x
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001GeoRL..28.4631P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001GeoRL..28.4631P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001GeoRL..28.4631P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001GeoRL..28.4631P&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001GeoRL..28.4631P&link_type=EJOURNAL
http://dx.doi.org/10.1029/2001GL013263


Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W.B., Matthews,835

E., 2012. Changes in land surface water dynamics since the 1990s836

and relation to population pressure. Geophysical Research Letters 39,837

L08403. URL: http://adsabs.harvard.edu/cgi-bin/nph-data_838

query?bibcode=2012GeoRL..39.8403P&link_type=EJOURNAL,839

doi:10.1029/2012GL051276.840

Prigent, C., Papa, F., Aires, F., Rossow, W.B., Matthews, E., 2007.841

Global inundation dynamics inferred from multiple satellite observations,842

1993–2000. Journal of Geophysical Research: Atmospheres (1984–2012)843

112. URL: http://onlinelibrary.wiley.com.ezproxy.cul.columbia.844

edu/doi/10.1029/2006JD007847/full, doi:10.1029/2006JD007847.845

Rodriguez, E., 2015. Surface Water and Ocean Topography Mission (SWOT).846

Technical Report JPL D-61923. NASA JPL.847

Rossow, W.B., Schiffer, R.A., 1999. Advances in understanding clouds from848

ISCCP. Bull. Amer. Meteor. Soc. 80, 2261–2287.849

Sakamoto, T., Van Nguyen, N., Kotera, A., Ohno, H., Ishitsuka, N.,850

Yokozawa, M., 2007. Detecting temporal changes in the extent of an-851

nual flooding within the Cambodia and the Vietnamese Mekong Delta852

from MODIS time-series imagery. Remote Sensing of Environment853

109, 295–313. URL: http://linkinghub.elsevier.com/retrieve/pii/854

S0034425707000466, doi:10.1016/j.rse.2007.01.011.855

Salameh, E., Frappart, F., Papa, F., Güntner, A., Venugopal, V., Geti-856
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