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Une modification des mécanismes d'inférence et d'apprentissage dans les modèles de Markov cachés autorégressifs est proposée pour prendre en compte des connaissances a priori. Ces modèles sont particulièrement intéressants pour représenter statistiquement des séries temporelles. Le fait de pouvoir ajouter des connaissances a priori permet de l'utiliser dans de nombreuses applications. Deux applications sont présentées : une première sur le pronostic avec l'estimation du temps restant avant défaillance de turboréacteurs ; et une seconde sur l'analyse d'ondes élastiques transitoires hautes fréquences rencontrées dans les structures mécaniques.

Introduction

Les modèles autorégressifs (AR) se sont révélés appropriés pour la représentation statistique de séries chronologiques dans divers domaines. En SHM par exemple (SHM : Structural Health Monitoring), ce type de modèle est très souvent utilisé pour la détection de défaillances dans les structures mécaniques dans le domaine aéronautique [5], les engrenages [START_REF] Wang | Autoregressive model-based gear fault diagnosis[END_REF], les portes d'ascenseur [START_REF] Yan | A prognostic algorithm for machine performance assessment and its application[END_REF], les roulements à billes [START_REF] Thanagasundram | A fault detection tool using analysis from an autoregressive model pole trajectory[END_REF] ou encore les batteries [START_REF] Saha | Comparison of prognostic algorithms for estimating remaining useful life of batteries[END_REF]. [START_REF] Lehman | Hemodynamic monitoring using switching autoregressive dynamics of multivariate vital sign time series[END_REF] utilisent des modèles ARHMM, couplant un modèle AR avec un modèle de Markov caché (HMM : Hidden Markov Model), pour analyser des séries temporelles représentant des signes vitaux (multivariés) avec l'objectif de détecter le risque de mortalité dans des unités de soins de patients recevant des traitements particuliers. Les auteurs pointent l'intérêt de ce type de modèle (ARHMM) pour analyser des données issues de systèmes non stationnaires avec différents régimes de fonctionnement. Cette caractéristique est aussi exploitée par [START_REF] Ailliot | Markov-switching autoregressive models for wind time series[END_REF] où les auteurs sont intéressés de représenter statistiquement l'évolution temporelle des caractéristiques des vents à proximité d'éoliennes.

La contribution porte sur la modification du critère utilisé pour l'apprentissage des paramètres d'un ARHMM afin d'inclure des a priori sur la chaîne de Markov dans le but de rectifier la loi a posteriori. Ce type de modèle se situe dans la lignée de travaux initiés par Vannoorenberghe et Smets [START_REF] Vannoorenberghe | Partially supervised learning by a credal EM approach[END_REF], Côme et al. [START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF] et Denoeux [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF]. Pour les séries temporelles, les travaux proposés dans [START_REF] Ramasso | Making use of partial knowledge about hidden states in hmms : an approach based on belief functions[END_REF] se concentrent sur les HMM, c'est à dire un cas particulier du modèle présenté dans cet article. Le modèle ARHMM avec a priori sera appelé ARWHMM par la suite pour AutoRegressive Weakly Hidden Markov Model. Alors que l'ARHMM a été principalement utilisée pour la détection et le diagnotic, nous proposons dans cet article d'exploiter les ARWHMM pour le pronostic. Nous proposons par ailleurs d'exploiter ce modèle pour la détection d'anomalie ce qui n'a pas encore été envisagé dans la littérature. Les premiers résultats sont présentés dans la dernière section.

Apprentissage avec états incertains dans les ARWHMM

Une mesure au temps t fournie par un capteur est notée x t et peut être la résultante d'une somme pondérée des mesures précédentes plus un terme d'erreur, où les poids sont définis conditionnellement à chaque état d'une chaîne de Markov :

x t = - ∆ δ=1 r δ (y t )x t-δ + ε ε ε t (y t ), 1 ≤ t ≤ T (1) 
pour une séquence de T observations. Le terme de bruit

ε ε ε t (y t ) ∼ N (0, Σ Σ Σ yt )
est supposé être un gaussienne de moyenne nulle et de variance Σ Σ Σ yt ajustée automatiquement pour chaque état caché dans la phase d'apprentissage.

Les coefficients AR pour l'état i sont notés r δ (y t = i) où δ = 1 . . . ∆ est le décalage temporel. L'ensemble des coefficients AR est donné par :

B i = r 1 (i), . . . , r δ (i), . . . , r ∆ (i) (2) 
La commutation entre états est régie par un processus stochastique prenant la forme d'une chaîne de Markov (Figure 1). Ce processus est caractérisé par une matrice de transition A dont un élément a ij = p(y t = j|y t-1 = i) représente la probabilité d'être dans l'état j à l'instant t étant donné que l'état était i à t -1. La probabilité a priori de la chaîne est notée Π Π Π = [π 1 . . . π K ], où π i est la probabilité de être dans l'état i à l'instant t = 1. Le problème est d'estimer les paramètres

λ = (A, Π, B i , Σ Σ Σ i ), 1 ≤ i ≤ K (3) 
en présence d'informations incertaines et imprécises sur les variables cachées. Ces informations sont supposées prendre la forme d'un jeu de masses de croyances comme proposé dans E2M [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF]. E2M permet de couvrir les cas non supervisé, supervisé, semi-supervisé et avec "labels bruités". Les a priori sont supposés être de la forme suivante :

W = [w 1 ; . . . ; w t ; . . . ; w T ] avec w t = [w t (1), . . . , w t (i), . . . , w t (K)] et w t (i) ≥ 0 [8] :
-Si w t (i) = 1 pour un état i et w t (j) = 0, j = i alors on retrouve le cas supervisé ; -Si ∀t, ∀i, w t (i) = 0, alors on retrouve le cas non supervisé. Ces a priori peuvent prendre la forme de plausibilités pour faciliter leur interprétation.

Les paramètres de l'ARHMM sont optimisés avec E2M où la fonction auxiliaire est

Q(λ, λ (q) ) = E λ (q) [log(L(λ; Z))|X] = Y p(Y |X, λ (q) ) log L(λ; Z) (4 
) où (q) est une itération de E2M, et Z = (X, Y ). La vraisemblance des données complètes est donnée par :

L(λ; Z) = p(y 1 ; Π Π Π) T t=2 p(y t |y t-1 ; A) × T t=1 p(x t |y t ; r ∆ (y t ), Σ Σ Σ (yt) )
(5) Donc la fonction auxiliaire devient

Q(λ, λ (q) ) = y w(y)p(y|x, λ (q) ) log L(λ; z) E λ [w(y)]
On peut alors développer Q, dériver l'expression par rapport aux paramètres afin d'obtenir l'expression des nouveaux paramètres pour l'itération q + 1. Pour la chaîne de Markov :

π (q+1) i = γ (q) 1i (6a) a (q+1) ij = T t=2 ξ (q) t-1,t,i,j T t=2 K l=1 ξ (q) t-1,t,i,l , (6b) 
Les expressions de probabilités a posteriori γ et ξ en présence d'informations incertaines peuvent être retrouvées avec la même démarche que celle présentée dans [START_REF] Ramasso | Making use of partial knowledge about hidden states in hmms : an approach based on belief functions[END_REF] et en utilisant une version modifiée de l'algorithme forwardbackward.

Pour le modèle d'observation, la covariance du bruit est donnée par [START_REF] Chiang | A hidden markov, multivariate autoregressive (hmm-mar) network framework for analysis of surface emg (semg) data[END_REF] :

Σ Σ Σ (q+1) i = 1 T t=1 γ (q) ti T t=1 γ (q) ti x t + ∆ δ=1 r (q) δ (i) x t-δ x t + ∆ δ=1 r (q) δ (i)x t-δ T , et l'expression des coefficients B (q+1) i = r (q+1) 1 (i), . . . , r (q+1) δ (i), . . . , r (q+1) ∆ (i) des processus AR est donnée par - T t=1 γ (q) ti x t u T t-1 T t=1 γ (q) ti u t-1 u T t-1 (7) avec u t-1 = x t-1 , x t-2 , ..., x t-∆ T , (8) 
et la vraisemblance b i (x t ) (pour un état caché i) est b i (x t ) = N (x t + ∆ δ=1 r δ (i)x t-δ | 0, Σ Σ Σ i ) (9)
La passe forward permet d'évaluer la vraisemblance des données comme dans les modèles HMM standards [START_REF] Ramasso | Making use of partial knowledge about hidden states in hmms : an approach based on belief functions[END_REF] :

α (q) 1i = π (q) i w 1i b i (x 1 ), (10a) α (q) 
t,j = b j (x t ) w tj a priori i α (q) t-1,i a (q) ij (10b) avec L(λ (q) ; X, W) = K i=1 α T i (11) 
3 ARWHMM pour le pronostic [START_REF] Ramasso | Investigating computational geometry for failure prognostics[END_REF] qui comporte très peu de paramètres lui permettant, de généraliser beaucoup mieux que la plupart des méthodes de la littérature.

L'intérêt des ARWHMM dans ce type d'application est en premier lieu dans la possibilité d'intégrer des a priori pendant l'apprentissage mais aussi et surtout pendant l'inférence (lorsque le système est en service). En effet, ceci permettra d'exploiter des modèles inverses issus de la physique pour, par exemple, améliorer le pronostic. L'autre intérêt est dans le fait qu'il s'agit d'un modèle avec un potentiel applicatif très large en monitoring.

ARWHMM pour la représentation d'ondes élastiques transitoires

Dans cette section, nous illustrons la méthode sur un autre type de données. Il s'agit de signaux transitoires générés par des endommagements dans des matériaux. Les endommagements libèrent en effet de l'énergie, dont une partie prend la forme d'ondes élastiques, se propageant à la surface du matériau et que l'on peut collecter par des capteurs piézo-électriques.

Les capteurs ont une empreinte importante sur les données qu'il est difficile de déconvoluer. De plus, les ondes, lors de la propagation, depuis l'endommagement jusqu'au capteur, subissent des distorsions importantes dues aux propriétés mécaniques du matériau, à sa géométrie ou à l'endommagement cumulé. Il est donc difficile de déduire l'endommagement à partir de la simple mesure du signal sur le capteur piézo-électrique.

Une démarche synthétisée dans [START_REF] Ramasso | Méthodologies d'analyse de séries temporelles sous incertitudes aléatoires et épistémiques pour le suivi et le pronostic de l'état de systèmes et structures : De l'estimation d'une cinétique d'endommagement à son contrôle[END_REF] et initiée à FEMTO-ST depuis 2012 dans le cadre du Labex "ACTION", consiste à mêler physique et statistique pour constuire des modèles inverses plus précis, fiables et robustes pour le monitoring de structures. Le ARWHMM permet, comme vu précédemment, d'intégrer des connaissances a priori, possiblement issues de la physique. Il s'agit d'un modèle très intéressant pour le monitoring partiellement supervisé.

La figure 4 montre un signal transitoire, et son spectre, collecté sur une structure composite tubulaire utilisée dans des rotors à grande vitesse (extrait de [START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems : Application to organic matrix composites[END_REF] à partir de données issues de la thèse de [7]). Ce signal fait partie d'un ensemble de plusieurs centaines de milliers de signaux collectés pendant un essai de caractérisation. Le spectre du signal prédit à partir d'un ARWHMM (3 états, 10 prédécesseurs) est superposé sur la figure de droite. Sans chercher à optimiser le modèle, le ARWHMM prédit très bien l'évolution d'un signal transitoire complexe.

Etant donné que les sources de signaux ne sont encore pas bien connues, une étape fondamentale est de créer des groupes de signaux avec des caractéristiques similaires, puis d'analyser ces groupes a posteriori. Des méthodes de partitionnement sont pour cela utilisées. Elles sont appliquées, comme cela est fait en reconnaissance de formes, sur des descripteurs extraits à partir des signaux. Le ARWHMM est actuellement exploité pour représenter statistiquement les signaux transitoires afin de ne pas utiliser de descripteurs. Il n'y a en effet pas vraiment de consensus concernant le choix des descripteurs et ce qui amène parfois un biais d'interprétation. Le ARWHMM permet ainsi de représenter un signal transitoire à l'aide de seulement quelques paramètres. L'intérêt est aussi de réduire la quantité d'information à stocker (les signaux sont généralement échantillonnés à plusieurs méga-Hertz) en ne conservant que les paramètres du modèle. Par exemple sur la figure 4, environ 50 paramètres sont utilisés pour représenter un signal de 1500 points quasiment parfaitement.

Conclusion

La modification apportée pour introduire des a priori dans des ARHMM repose sur l'algorithme E2M et permet de rectifier la distribution a posteriori sur les variables latentes au cours du temps, à la fois dans la phase d'apprentissage et de test. Le modèle résultant représente une solution intéressante pour différents problèmes liés au monitoring et pronostic de structures et systèmes mécaniques. Les travaux actuels portent sur le couplage entre reconnaissance de formes et physique de l'endommagement pour rendre ces modèles plus pertinents. [6] D.K. Frederick, J.A. DeCastro, and J.S. Litt. User's guide for the commercial modular aero-propulsion system simulation (C-MAPSS). Technical report, National Aeronautics and Space Administration (NASA), Glenn Research Center, Cleveland, Ohio 44135, USA, 2007.
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 1 Figure 1 -Modèle graphique d'un ARHMM : les cercles représentent les variables continues observées, les carrés les variables à valeur entière. Tirée de [9].
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 2 Figure 2 -Les jeux de données pour 4 conditions de fonctionnement.

Figure 3 -

 3 Figure 3 -Estimation du RUL pour différentes configurations de la structure latente dans le ARWHMM.

  Signal transitoire type, collecté pendant un essai sur matériau composite à fibres de carbone. Spectre d'amplitude du signal.
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 4 Figure 4 -Un signal type d'émission acoustique.
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