Multi-Dimensional Reversible Solid Oxide Fuel Cell Modeling for Embedded Applications - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Energy Conversion Année : 2018

Multi-Dimensional Reversible Solid Oxide Fuel Cell Modeling for Embedded Applications

Résumé

This paper presents a multi-physical modeling of a 2D reversible tubular solid oxide cell. The developed model can represent both a solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) operations. By taking into account of the electrochemical, fluidic and thermal physical phenomena, the presented model can accurately describe the multi-physical effects inside a cell for both fuel cell and electrolysis cell operation under entire working range of cell current and temperature. In addition, an iterative solver is proposed which is used to solve the 2D distribution of physical quantities along the tubular cell. The proposed model is suitable for embedded applications such as real-time simulation or online diagnostic control. The reversible solid oxide cell model is then validated experimentally in both SOEC and SOFC configurations under different species partial pressures, operating temperatures and current densities conditions.
Fichier non déposé

Dates et versions

hal-02376893 , version 1 (22-11-2019)

Identifiants

  • HAL Id : hal-02376893 , version 1

Citer

Rui Ma, Fei Gao, Elena Virginia Breaz, Yigeng Huangfu, Pascal Briois. Multi-Dimensional Reversible Solid Oxide Fuel Cell Modeling for Embedded Applications. IEEE Transactions on Energy Conversion, 2018, 33 (2), pp.692 - 701. ⟨hal-02376893⟩
23 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More