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Introduction

Context. Starting from an arbitrary configuration, a self-stabilizing algorithm [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF] makes a distributed system reach within finite time a configuration from which its behavior is correct. Essentially, selfstabilizing algorithms tolerate transient failures, since by definition such failures last a finite time (as opposed to crash failures, for example) and their frequency is low (as opposed to intermittent failures). Indeed, the arbitrary initial configuration can be seen as the result of a finite number of transient faults, and after those faults cease, we can expect a sufficiently large time window without any fault so that the system recovers and then exhibits a correct behavior for a long time.

Even though self-stabilization is not inherently suited to handle other failure patterns, a.k.a., intermittent and permanent failures, several works show that in many cases self-stabilization can still be achieved despite such faults occur. Indeed, strong forms of self-stabilization have been proposed to tolerate permanent failures, e.g., fault-tolerant self-stabilization [START_REF] Beauquier | On FTSS-solvable distributed problems[END_REF] to cope with process crashes, and strict stabilization [START_REF] Nesterenko | Dining philosophers that tolerate malicious crashes[END_REF] to withstand Byzantine failures. Furthermore, several self-stabilizing algorithms, e.g., [START_REF] Delaët | Self-stabilization with r-operators revisited[END_REF], withstand intermittent failures such as frequent lost, duplication, or reordering of messages, meaning their convergence is still effective despite such faults continue to often occur in the system. Hence, even if at the first glance guaranteeing a convergence property may seem to be contradictory with a high failure rate, the literature shows that self-stabilization may be a suitable answer even in such cases.

All these aforementioned works assume static communication networks. Nevertheless, selfstabilizing algorithms dedicated to arbitrary network topologies tolerate, up to a certain extent, some topological changes (i.e., the addition or the removal of communication links or nodes). Precisely, if topological changes are eventually detected locally at involved processes and if the frequency of such events is low enough, then they can be considered as transient faults. Actually, a number of works, e.g., [START_REF] Ajoy | Self-stabilizing leader election in dynamic networks[END_REF][START_REF] Dolev | Optimal time self-stabilization in uniform dynamic systems[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF] (n.b., in particular [START_REF] Ajoy | Self-stabilizing leader election in dynamic networks[END_REF] deals with leader election), use this kind of argument to claim that they are suited for the dynamic context. Furthermore, several approaches, like superstabilization [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF] and gradual stabilization [START_REF] Altisen | Gradual stabilization[END_REF], aims at additionally providing specific countermeasures to efficiently treat topological changes when they are both spatially and timely sparse. However, all these aforementioned approaches, e.g., [START_REF] Altisen | Gradual stabilization[END_REF][START_REF] Ajoy | Self-stabilizing leader election in dynamic networks[END_REF][START_REF] Dolev | Optimal time self-stabilization in uniform dynamic systems[END_REF][START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF], become totally ineffective when the frequency of topological changes drastically increase, in other words when topological changes are intermittent rather than transient. Actually, in the intermittent case, the network dynamics should be no more considered as an anomaly but rather as an integral part of the system nature.

Several works aim at proposing a general graph-based model to capture the network dynamics. In [START_REF] Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF], the network dynamics is represented as a sequence of graphs called evolving graphs. In [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF], the topological evolution of the network is modeled by a (fixed) graph where the nodes represent participating processes and the edges are communication links that may appear during the lifetime of the network. Each edge is labeled according to its presence during the lifetime of the network. Such graphs are called Time-Varying Graphs (TVGs, for short).

In highly dynamic distributed systems, an expected property is self-adaptiveness, i.e., the ability of a system to accommodate with sudden and frequent changes of its environment. By definition, achieving self-stabilization in highly dynamic networks is a suitable answer to self-adaptiveness. Speculation [START_REF] Kotla | Zyzzyva: Speculative byzantine fault tolerance[END_REF] is another possible approach for self-adaptiveness. Roughly speaking, speculation guarantees that the system satisfies its requirements for all executions, but also exhibits significantly better performances in a subset of more probable executions. The main idea behind speculation is that worst possible scenarios are often rare (even unlikely) in practice. So, a speculative algorithm is assumed to self-adapt its performances w.r.t. the "quality" of the environment, i.e., the more favorable the environment is, the better the complexity of the algorithm should be. Interestingly, Dubois and Guerraoui [START_REF] Dubois | Introducing speculation in self-stabilization: an application to mutual exclusion[END_REF] have investigated speculation in self-stabilizing, yet static, systems. They illustrate this property with a self-stabilizing mutual exclusion algorithm whose stabilization time is significantly better when the execution is synchronous.

Contribution. We initiate research on self-stabilization in highly dynamic identified message-passing systems where dynamics is modeled using TVGs to obtain solutions tolerating both transient faults and high dynamics. We reformulate the definition of self-stabilization to accommodate with TVGs, and investigate the self-stabilizing leader election problem. This problem is fundamental in distributed computing since it allows to synchronize and self-organize a network. Thus, leader election is a basic component in many protocols, e.g., spanning tree constructions, broadcasts, and convergecasts.

We study self-stabilizing leader election in three wide classes of TVGs, respectively denoted by

T C B (∆), T C Q (∆), and T C R , where T C B (∆) ⊆ T C Q (∆) ⊆ T C R : T C B (∆)
is the class of TVGs with temporal diameter bounded by ∆ [START_REF] Gómez-Calzado | A connectivity model for agreement in dynamic systems[END_REF], T C Q (∆) is the class of TVGs with temporal diameter quasi-bounded by ∆ (introduced here), and T C R is the class of TVGs with recurrent temporal connectivity [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF]; this latter class is the most general infinite TVG class introduced so far [START_REF] Casteigts | A Journey through Dynamic Networks (with Excursions)[END_REF][START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF]. 1We first study conditions under which our problem can be solved. Actually, our results show that the assumption on the knowledge of the number n of processes is central. To see this, we introduce the notion of size-ambiguity, which formalizes the fact that some subsets of processes do not shared enough initial knowledge on n to detect that the system is not limited to themselves. In other words, such an ambiguity comes from the fact that n is only partially known by the processes. Our results show that, despite the existence of unique process identifiers, any deterministic self-stabilizing leader election algorithm working in the class T C Q (∆) or T C R cannot be size-ambiguous. Hence, to make the problem solvable in those classes, we will assume each process knows exactly n.

We then propose self-stabilizing leader election algorithms for the three considered classes. In more detail, we present a self-stabilizing leader election algorithm for Class T C B (∆) with a stabilization time of at most 3∆ rounds, assuming every process knows ∆, yet using no information on n. This in particular shows that our necessary condition is tight. Then, we propose a selfstabilizing leader election algorithm for Class T C Q (∆) assuming every process knows ∆ and n. In general, stabilization time cannot be bounded in T C Q (∆); nevertheless we show that the algorithm is speculative since its stabilization time in T C B (∆) is at most 2∆ rounds. Finally, we propose a self-stabilizing leader election algorithm for Class T C R , where only n is known, yet requiring unbounded local memories. Finding a self-stabilizing solution in this class was rather challenging, since there is no timeliness guarantee at all (n.b., by definition of the class, there is no bound on the temporal diameter). Again, in general, stabilization time cannot be bounded in T C R , yet we show that the algorithm is speculative since its stabilization time in T C B (∆) is at most ∆ + 1 rounds. Related Work. Ensuring convergence in highly dynamic networks regardless of the initial configuration may seem to be very challenging, even impossible in many cases [START_REF] Braud-Santoni | The next 700 impossibility results in time-varying graphs[END_REF]. However, there are a few works [START_REF] Bournat | Self-stabilizing robots in highly dynamic environments[END_REF][START_REF] Cai | How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model[END_REF][START_REF] Dolev | Self-stabilizing endto-end communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic networks[END_REF] that deal with this issue, yet in widely different models and assumptions than ours.

A recent work [START_REF] Bournat | Self-stabilizing robots in highly dynamic environments[END_REF] deals with the self-stabilizing exploration of a highly dynamic ring by a cohort of synchronous robots equipped with visibility sensors, moving actuators, yet no communication capabilities. Note that, contrary to [START_REF] Bournat | Self-stabilizing robots in highly dynamic environments[END_REF], the three classes studied the present paper never enforce the network to have a particular topology at a given time.

In [START_REF] Cai | How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model[END_REF], Cai et al. tackles the self-stabilizing leader election problem in highly dynamic systems through the population protocol model. In this model, communications are achieved by atomic rendezvous between pair of anonymous processes, where ties are nondeterministically broken. Authors assume global fairness, which means that each pair of processes interacts infinitely often. This dynamic pattern is identified as Class C13 in [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF] and is a particular subclass of T C Q (∆) (for ∆ = 1), which is itself included in T C R ; both classes being studied here. Notice also that our communication primitive is weaker, since we assume processes can only communicate using a local broadcast that allows the process to send at each round a common message to its unknown set of current neighbors. Cai et al. show that, in their model, self-stabilizing leader election is deterministically solvable if and only if the number of processes n is known, despite processes being anonymous. In our model, even with the knowledge of n, (deterministic) self-stabilizing leader election cannot be solved if processes are anonymous. 2 Moreover, our results show that (maybe surprisingly) even with process identifiers, the knowledge of n is necessary to solve self-stabilizing leader election in T C Q (∆) and T C R .

Finally, Dolev et al. [START_REF] Dolev | Self-stabilizing endto-end communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic networks[END_REF] assume the system is equipped with a routing algorithm, which allows any two processes to communicate, providing that the sender knows the identifier of the receiver. This blackbox protocol abstracts the dynamics of the system: the dynamics makes it fair lossy, non-FIFO, and duplication-prone. Moreover, the channel capacity is assumed to be bounded. Based on this weak routing algorithm, they build a stronger routing protocol which is reliable, FIFO, and which prevents duplication. We should remark that techniques used here can be reengineered to implement their input black box routing protocol.

Roadmap. In Section 2, we present the computational model. In Section 3, we propose and justify our definition of self-stabilization for highly dynamic environments; we then study the impact of the knowledge of n on the solvability of the self-stabilizing leader election. In the three next sections, we present our algorithms. The last section is dedicated to conclusions and perspectives.

Preliminaries

Time-varying Graphs. A time-varying graph (TVG for short) [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF] is a tuple G = (V, E, T , ρ) where V is a (static) set of nodes, E is a (static) set of arcs between pairwise nodes, T is an interval over N * (the set of positive integers) called the lifetime of G, and ρ : E × T → {0, 1} is the presence function that indicates whether or not a given arc exists at a given time. Notice that our definition of TVG is close to the model, called evolving graphs, defined in [START_REF] Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF]. We denote by o T = min T the first instant in T . The snapshot of G at time t ∈ T is the graph

G t = (V, {e ∈ E : ρ(e, t) = 1}). Let [t, t ] ⊆ T . The temporal subgraph of G for the interval [t, t ], denoted by G [t,t ] , is the TVG (V, E, [t, t ], ρ ) where ρ is ρ restricted to [t, t ].
A journey is a sequence of ordered pairs J = (e 1 , t 1 ), (e 2 , t 2 ), . . . , (e k , t k ) where ∀i ∈ {1, . . . , k}, e i = (p i , q i ) ∈ E satisfies ρ(e i , t i ) = 1 and i < k ⇒ q i = p i+1 ∧ t i < t i+1 . Nodes p 1 and q k are respectively called the initial and final extremities of J . We respectively denote by departure(J ) and arrival(J ) the starting time t 1 and the arrival time t k of J . A journey from p to q is a journey whose initial and final extremities are p and q, respectively. Let J (p, q) be the set of journeys in G from p to q. Let be the binary relation over V such that p q if p = q or there exists a journey from p to q in G. The temporal length of a journey J is equal to arrival(J ) -departure(J ) + 1. By extension, we define the temporal distance from p to q at time t ≥ o T -1, denoted dp,t (q), as follows: dp,t (q) = 0, if p = q, dp,t (q) = min{arrival(J ) -t : J ∈ J (p, q) ∧ departure(J ) > t} otherwise (by convention, we let min ∅ = +∞). The temporal diameter at time t ≥ 0 is the maximum temporal distance between any two nodes at time t. We define IT V G(G) to be the predicate that holds if T is a right-open interval, in which case G is said to be an infinite TVG; otherwise G is called a finite TVG.

TVG Classes. Let G = (V, E, T , ρ) be a TVG. We consider the following TVG classes. Class T C (Temporal Connectivity), also denoted by C 3 in [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF] and F 2 in [START_REF] Casteigts | Characterizing topological assumptions of distributed algorithms in dynamic networks[END_REF]: every node can reach all the others at least once through a journey. Formally, G ∈ T C if ∀p, q ∈ V, p q. Class T C R (Recurrent Temporal Connectivity), denoted by C 5 in [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF]: at any point in time, every node can reach all the others through a journey. Formally,

G ∈ T C R if IT V G(G) ∧ ∀t ∈ T , G [t,+∞) ∈ T C. Class T C B (∆) with ∆ ∈ N * (Bounded Temporal Diameter), denoted by T C(∆) in [27]:
at any point in time, every node can reach all the others through a journey of temporal length at most ∆, i.e., the temporal diameter is bounded by Computational Model. We consider the computational model defined in [START_REF] Barjon | Maintaining a distributed spanning forest in highly dynamic networks[END_REF][START_REF] Charron-Bost | The firing squad problem revisited[END_REF]. We assume a distributed system made of a set of n processes, denoted by V . Each process has a local memory, a local sequential and deterministic algorithm, and message exchange capabilities. We assume that each process p has a unique identifier (ID for short). The identifier of p is denoted by id(p) and taken in an arbitrary domain IDSET totally ordered by <. We assume that each identifier is stored using B bits. In the sequel, we denote by the process of minimum identifier. Processes are assumed to communicate by message passing through an interconnected network that evolves over the time.

∆. Formally, G ∈ T C B (∆) if IT V G(G)∧∀t ∈ T , G [t,t+∆) ∈ T C. Class T C Q (∆) with ∆ ∈ N * (Quasi
G ∈ T C Q (∆) if IT V G(G) ∧ ∀p, q ∈ V, ∀t ∈ T , ∃t ≥ t -1, dp,t (q) ≤ ∆. Notice that, ∀∆ ∈ N * , T C B (∆) ⊆ T C Q (∆) ⊆ T C R ⊆ T C,
The topology of the network is then conveniently modeled by an infinite TVG G = (V, E, T , ρ).

Processes execute their local algorithms in synchronous rounds. For every i > 0, the communication network at Round i is defined by G o T +i-1 , i.e., the snapshot of G after i -1 instants elapse from the initial time o T . So, ∀p ∈ V , we denote by N (p) i = {q ∈ V : ρ((p, q), o T + i -1) = 1}, the set of p's neighbors at Round i. N (p) i is assumed to be unknown by process p, whatever the value of i is.

A distributed algorithm A is a collection of n local algorithms A(p), one per process p ∈ V (n.b., different processes may have different codes). The state of each process p ∈ V in A is defined by the values of its variables in A(p). We denote by S V A (p) the set of p's possible local states in A. Some variables may be constants in which case their values are predefined. A configuration of A for V is a vector of n components (s 1 , s 2 , . . . , s n ), where s 1 to s n represent the states of the processes in V .

Let γ 0 be the initial configuration of A for V . For any (synchronous) round i ≥ 1, the system moves from the current configuration γ i-1 to some configuration γ i , where γ i-1 (resp. γ i ) is referred to as the configuration at the beginning of Round i (resp. at the end of Round i). Such a move is atomically performed by every process p ∈ V according to the following three steps, defined in its local algorithm A(p): 1. p sends a message consisting of all or a part of its local state in γ i-1 using the primitive SEND(), 2. using Primitive RECEIVE(), p receives all messages sent by processes in N (p) i , and 3. p computes its state in γ i . An execution of a distributed algorithm A in the TVG G = (V, E, T , ρ) is an infinite sequence of configurations γ 0 , γ 1 , . . . of A for V such that ∀i > 0, γ i is obtained by executing a synchronous round of A on γ i-1 based on the communication network at Round i, i.e., the snapshot G o T +i-1 .

Self-stabilization in Highly Dynamic Environments

Definition. Self-stabilization has been originally defined for static networks. In [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF][START_REF] Dolev | Self-Stabilization[END_REF], it is defined as follows: an algorithm is self-stabilizing if, starting from an arbitrary configuration, it makes the system converge to a so-called legitimate configuration from which every possible execution suffix satisfies the intended specification (n.b., we define a specification as a predicate over configuration sequences). Following the reference book of Dolev [START_REF] Dolev | Self-Stabilization[END_REF], we accommodate this concept with highly dynamic environments by splitting the definition into two properties: the convergence property, which requires every execution of the algorithm in the considered system to eventually reach a legitimate configuration; and the correctness property, which requires every possible execution suffix starting from a legitimate configuration to satisfy the specification.

Definition 1 (Self-stabilization). An algorithm A is self-stabilizing for the specification SP on a class C of infinite TVGs if for every set of processes V , there exists a subset of configurations L of A for V , called legitimate configurations, such that:

1. for every G ∈ C with set of processes V and every configuration γ of A for V , every execution of A in G starting from γ contains a legitimate configuration γ ∈ L (Convergence), and 2. for every G ∈ C with set of processes V , every t ≥ o T , every legitimate configuration γ ∈ L, and every execution e in G [t,+∞) starting from γ, SP (e) holds (Correctness). The length of the stabilization phase of an execution e is the length of its maximum prefix containing no legitimate configuration. The stabilization time in rounds is the maximum length of a stabilization phase over all possible executions. Remark 2. In the case of a recurring class of TVG, the definition of self-stabilization for an algorithm A and a specification SP can be slightly simplified. Indeed, the correctness property can be equivalently rewritten as follows: given a set of processes V and a set of configurations L on V , for every G ∈ C with set of processes V , every legitimate configuration γ ∈ L, and every execution e in G starting from γ, SP (e) holds (Recurring-Correctness).

It is worth noticing that Definition 1, as the one given in the reference book of Dolev [START_REF] Dolev | Self-Stabilization[END_REF], does not include the notion of closure: intuitively, a set of configurations S is closed if every step of the algorithm starting in a configuration of S leads to a configuration of S (see Definition 3 for a formal definition). Now, when dealing with high-level models (such as the atomic-state model), closure is most of the time present in definitions of self-stabilization. However, in the more practical message passing model, closure is usually simply given up; see, e.g., [START_REF] Awerbuch | Self-stabilization by local checking and global reset (extended abstract)[END_REF][START_REF] Dolev | Resource bounds for self-stabilizing message-driven protocols[END_REF][START_REF] Varghese | Self-stabilization by counter flushing[END_REF]. Even if this absence is never motivated, this may be explained by the lack of functional significance of the closure property as compared to the convergence and correctness properties. Closure is rather a nice property that often helps to write elegant, and so simpler, proofs. Moreover, closure may be sometimes too restrictive, as we will show in Theorem 6 for example. Below, we reformulate closure in the context of TVGs.

Definition 3 (Closure).

Let A be a distributed algorithm, C be an infinite TVG class, V be a set of processes, and S be a set of configurations of A for V . S is closed in C if for every G ∈ C with set of processes V , every t ≥ o T , and every configuration γ ∈ S, every execution of A in G [t,+∞) starting from γ only contains configurations of S. Remark 4. Again, when the considered class of TVGs is recurring, the definition of closure can be slightly simplified. If A is a distributed algorithm, C is a recurring TVG class, V is a set of processes, and S is a set of configurations of A for V , then S is closed in C if for every G ∈ C with set of processes V and every configuration γ ∈ S, every execution of A in G starting from γ only contains configurations of S.

Self-stabilizing Leader Election. The leader election problem consists in distinguishing a single process in the system. In identified networks, the election usually consists in making the processes agree on one of the identifiers held by processes. The identifier of the elected process is then stored at each process p in an output variable, denoted here by lid(p). In the following, we call fake ID any value v ∈ IDSET (recall that IDSET is the definition domain of the identifiers) such that v is not assigned as a process identifier in the system, i.e., there is no process p ∈ V such that id(p) = v. In the self-stabilizing context, the output variables lid may be initially corrupted; in particular some of them may be initially assigned to fake IDs. Despite such fake IDs, the goal of a self-stabilizing algorithm is to make the system converge to a configuration from which a unique process is forever adopted as leader by all processes, i.e., ∃p ∈ V such that ∀q ∈ V, lid(q) = id(p) forever. Hence, the leader election specification SP LE can be formulated as follows: a sequence of configurations γ 0 , γ 1 , . . . satisfies SP LE if and only if ∃p ∈ V such that ∀i ≥ 0, ∀q ∈ V , the value of lid(q) in configuration γ i is id(p). In the sequel, we say that an algorithm is a self-stabilizing leader election algorithm for the class of infinite TVG C if it is self-stabilizing for SP LE on C. Knowledge of n and Closure in T C B (∆). We now advocate that closure of legitimate configurations may be cumbersome in T C B (∆) since to achieve it, any (deterministic) self-stabilizing leader election algorithm somehow requires the exact knowledge of n (the number of processes in the network), i.e., even partial knowledge such as an upper bound on n is not sufficient; see Theorem 6. To that goal, we need to first define what we mean by not exactly knowing n.

When an algorithm A uses the number of its processes, this means that this information is given as an input in the local state of each process. So, the definition of the set of possible local states of each process is adjusted according to the size of the system it belongs to. Conversely, if an algorithm A does not know its exact size, this means that there are sizes of systems that cannot be distinguished by part of its processes using their local inputs (and so their possible local states). More precisely, for a given set of processes V executing A, there should exist a size k < |V | for which the processes of any k-subset U of V do not share enough initial information to distinguish whether the system is made of the process-set V or U . Below, we formalize this intuitive idea by the notion of size-ambiguity.

Definition 5 (Size-Ambiguity). Let V be a set of processes and

k ∈ N. A distributed algorithm A is (k, V )-ambiguous if 0 < k < |V | and for every U ⊂ V such that |U | = k and every p ∈ U , S U A (p) = S V
A (p). We simply say that A is size-ambiguous if there exists V and k such that A is (k, V )-ambiguous.

Consider now some examples. First, if each process has a constant input whose value is the number n of processes in the system (i.e., each process "exactly knows n"), then from our definition, the algorithm is not size-ambiguous since, in this case, the set of possible local states of any process differs from one size of system to another, at least because of the input storing n. Conversely, if the processes do not know the exact number of processes but its parity, then we can choose any set V of at least three processes and any positive value k < |V | with same parity as |V |: for every subset U of V such that |U | = k, the constant input giving the parity will be the same at each process of U whether running its algorithm in a TVG with process-set V or U . Consequently, every process p ∈ U will have the same set of possible local states in both TVGs; hence the size-ambiguity. Similarly, an algorithm is size-ambiguous if each process p only knows an upper bound N p ≥ 2 on the number of processes in the TVG (n.b., processes may not know the same bound) since the property can be achieved with any set V of at least two processes and any value k such that 0 < k < |V |. Theorem 6. Let A be a deterministic self-stabilizing leader election algorithm for T C B (∆) (with ∆ ≥ 2), V be a set of processes, L be a set of legitimate configurations of A for V , and

k ∈ N. L is not closed in T C B (∆) if A is (k,V )-ambiguous. Proof. Let n = |V | and V = {p 0 , . . . , p n-1 }. Assume, by the contradiction, that L is closed in T C B (∆). Let G = (V, E, T , ρ) be an infinite TVG such that 1. E = {(p i , p j ) : p i , p j ∈ V ∧ i = j} 2. ∀t ≥ o T , ∀(p i , p j ) ∈ E, ρ((p i , p j ), t) = 1 if and only if either t is odd, or i / ∈ { t 2 mod n, . . . , ( t 2 + n -k -1) mod n} and j / ∈ { t 2 mod n, . . . , ( t 2 + n -k -1) mod n}. Notice first that, ∀t ≥ o T , the snapshot G t of G is fully connected when t is odd. Consequently, G belongs to T C B (∆), with ∆ ≥ 2.
Then, by definition, we have: Claim 1: For every x ∈ {0, . . . , n -1} and every i ≥ 0, in the snapshot G tx,i of G at time t x,i = 2((i+o T ).n+x), the set V \{p x , . . . , p (x+n-k-1) mod n } is fully connected and all processes in the set {p x , . . . , p (x+n-k-1) mod n } are isolated.

Let γ ∈ L and p ∈ V be the elected process in γ. ∀i ≥ 0, we inductively define Configuration γ i as follows. γ 0 = γ. ∀i > 0, γ i is the configuration at the end of the first round of the execution of A in G [t ,i ,+∞) starting from γ i-1 . Since T C B (∆) is recurring, we can use the closure of L to show by induction Claim 2 below (n.b., Claim 2 is the only result of the proof where closure of L is used).

Claim 2: ∀i ≥ 0, γ i is legitimate and ∀p j ∈ V , lid(p j ) = p in γ i .

Proof of the claim: By induction on i. The induction is trivial for i = 0. Consider now the case where i > 0. By induction hypothesis, γ i-1 is legitimate and

∀p j ∈ V , lid(p j ) = p . By definition, G [t ,i ,+∞) ∈ T C B (∆) since T C B (∆) is recurring. So, since L is closed in T C B (∆), γ i is legitimate.
Moreover, by applying the correctness property to the execution of A in G [t ,i ,+∞) starting from γ i-1 , we deduce that ∀p j ∈ V , lid(p j ) = p in γ i ; see the definition of SP LE .

Let V -= V \ {p , . . . , p ( +n-k-1) mod n } and E -= {(p i , p j ) : p i , p j ∈ V -∧ i = j}. Let G -= (V -, E -, T , ρ -) be the infinite TVG having k processes such that ∀t ≥ o T , ∀(p i , p j ) ∈ E -, we have ρ((p i , p j ), t) = 1. In other word, G -is a static fully connected network. Consequently, G - in particular belongs to T C B (∆) with ∆ ≥ 2 (actually, it also belongs to T C B (∆) with ∆ = 1). Let γ - 0 be the configuration of A for V -where each process has the same state as in the configuration γ 0 (such a configuration is well-defined by definition of (k,V )-ambiguity). We now consider the execution e = γ - 0 , . . . , γ - i , . . . of A in G -starting from the configuration γ - 0 . Claim 3: ∀i ≥ 0, the state of each process in V -in γ - i is the same as in γ i . Proof of Claim 3: By induction on i. The base case i = 0 is trivial. Consider now the case where i > 0. γ - i-1 is the configuration at the beginning of Round i in e. By induction hypothesis, the state of each process in V -in γ - i-1 is the same as in γ i-1 . By Claim 1, each process of V -has the same neighborhood in G - i-1 and in G t ,i . Hence, during Round i they receive the same set of messages as during the first round of A in G [t ,i ,+∞) starting from γ i-1 . So, since A is deterministic, each process of V -behaves exactly as in the first round of A in G [t ,i ,+∞) starting from γ i-1 . Thus, in γ - i at the end of Round i, the state of each process of V -is the same as in γ i ; this ends the proof of Claim 3.

By Claims 2 and 3, for every process p j in V -, in every configuration γ - i , we have lid(p j ) = p / ∈ V -, i.e., lid(p j ) is a fake ID (for V -). Hence, no suffix of e satisfies SP LE . As a consequence, A is not a self-stabilizing leader election algorithm for T C B (∆) (with ∆ ≥ 2), a contradiction.

Remark 7. The condition ∆ ≥ 2 is necessary in Theorem 6, indeed if ∆ = 1, there is a trivial deterministic self-stabilizing leader election algorithm for T C B (∆) that does not need information on n and has a closed set of legitimate configurations: it simply consists of all processes sending their own IDs at each round; since ∆ = 1, all processes receive the exact set of all IDs present in the network at each round and just have to choose, e.g., the smallest one, id( ). The legitimate configurations are then all configurations where every process p satisfies lid(p) = id( ).

According to Theorem 6, the set of legitimate configurations of our solution for T C B (∆) (Algorithm 1) is not closed, since by making no assumption on n, this algorithm is size-ambiguous. The contrapositive of Theorem 6 is given in Corollary 8. This latter justify the need of the exact knowledge of the number of processes to obtain a closed set of legitimate configurations in a deterministic self-stabilizing leader election algorithm for T C B (∆), with ∆ ≥ 2.

Corollary 8.

Let A be a deterministic self-stabilizing leader election algorithm for T C B (∆) (with ∆ ≥ 2), V be a set of processes, and L be a set of legitimate configurations of A for V . If L is closed in T C B (∆), then A should not be size-ambiguous. Remark 9. The scheme used in the proof of Theorem 6 can be adapted to handle other problems consisting in computing a constant output whose value depends on the set of processes. For example, one can show that no deterministic self-stabilizing size-ambiguous algorithm for T C B (∆) can both compute the exact number of processes and achieve the closure of its legitimate configurations.

Knowledge of n and Closure in T C Q (∆). We now show that every execution of a self-stabilizing algorithm for a recurring specification in T C Q (∆) necessarily converges to a closed set of (legitimate) configurations; see Theorem 12. Consequently, no deterministic self-stabilization leader election algorithm for T C Q (∆) can be size-ambiguous (Theorem 14 and Corollary 15); justifying why algorithms presented in Sections 5 and 6 assume the exact knowledge of n. Definition 10 (Recurring Specification). We say that a specification SP is recurring if for every sequence of configurations γ 0 , γ 1 , . . ., SP (γ 0 , γ 1 , . . .) ⇒ (∀i ≥ 0, SP (γ i , γ i+1 , . . .)).

SP LE (as most of specifications used in self-stabilization) is a recurring specification. 

G = (V , E , T , ρ ) such that V = V ∪ V , E = E ∪ E , T = [a,
+ t -b -1) = 1. Property 1. Let G = (V, E, T , ρ) ∈ T C Q (∆) and G = (V , E , T , ρ ) be a finite TVG. If V ⊆ V , G G ∈ T C Q (∆).
Theorem 12. Let SP be a recurring specification, A be a self-stabilizing algorithm for SP on T C Q (∆), and V be a set of processes. There exists a set of legitimate configurations of A for V which is closed in T C Q (∆).

Proof. Assume, by the contradiction, that every set of legitimate configurations of A for V is not closed in T C Q (∆). Let L be the set of legitimate configurations of A for V defined as follows: for every configuration γ of A for V , γ ∈ L if and only if for every G ∈ T C Q (∆) with set of processes V and every execution e of A in G starting from γ, SP (e) holds. Since L is not closed in T C Q (∆), there exists γ 0 ∈ L, G = (V, E, T , ρ) ∈ T C Q (∆) with V as set of processes, and an execution γ 0 , . . . , γ i , . . . in G starting from γ 0 which contains a configuration γ i / ∈ L. By definition of L, there exists G ∈ T C Q (∆) with set of processes V and an execution e in G starting from γ i such that ¬SP (e ) (otherwise

γ i should be in L). Now, G [o T ,o T +i-1] G ∈ T C Q (∆)
, by Property 1. Consequently, γ 0 , . . . , γ i-1 , e is an execution of A in T C Q (∆) that starts from γ 0 and violates SP since ¬SP (e ) and SP is recurring. By the correctness property of the self-stabilizing definition (see Remark 2), γ 0 cannot be a legitimate configuration, a contradiction.

Corollary 13.

Let A be any self-stabilizing leader election algorithm for T C Q (∆) and V be a set of processes. There exists a set of legitimate configurations of A for V which is closed in T C Q (∆).

Since T C B (∆) ⊆ T C Q (∆), from Corollaries 8 and 13, we deduce Theorem 14 and Corollary 15: Theorem 14. No deterministic self-stabilizing leader election algorithm for T C Q (∆), with ∆ ≥ 2, can be size-ambiguous.

Corollary 15.

No deterministic self-stabilizing leader election algorithm for T C R can be sizeambiguous.

Remark 16. Like in Remark 9, one can show, for example, that no deterministic self-stabilizing size-ambiguous algorithm for T C Q (∆) (resp. T C R ) can compute the exact number of processes.

Class T C B (∆) with ∆ known

Overview of Algorithm 1. Each process p maintains two variables: the output lid(p) will eventually contain the ID of the leader; ttl(p) represents the degree of mistrust of p in lid(p) and allows to eliminate messages containing fake IDs. The value ttl(p) increases at each round if p does not receive a message; otherwise it is updated thanks to the received messages. The value of ttl(p) can increase up to 2∆ -1. Process p never increases ttl(p) from 2∆ -1 to 2∆; instead it locally resets and declares itself as the leader: lid(p) := id(p) and ttl(p) := 0 (see Line u1).

At each round i, p first sends its leader ID together with its degree of mistrust; see Line 2. Then, p selects the received message id, ttl which is minimum using the lexicographic order (i.e., the message with the lowest ID and with the lowest ttl to break ties, if any; see Line 6). If id is smaller than lid(p), p updates its leader lid(p); see Line 7. If id = lid(p), it updates the ttl(p) by taking the smallest value between ttl(p) and ttl (in this way, p may decrease its mistrust in lid(p); see Line 8). In either case, ttl(p) is then incremented if lid(p) = id(p). Finally, if lid(p) ≥ id(p), p systematically resets; see Line 10. If p believes to be the leader at the end of Round i (i.e., lid(p) = id(p)), then it sends its own ID together with a degree of mistrust 0 at the beginning of the next round, i + 1.

Eventually, the elected process is the process of lowest ID, . Once elected, sends id( ), 0 at each round and since the temporal diameter is upper bounded by ∆, all processes will regularly receive messages id( ), d , with d ≤ ∆ < 2∆ (since ∆ ∈ N * ). Consequently, they will no longer reset, ensuring that will remain the leader forever. Let p ∈ V such that lid(p) = f at beginning of Round i. There are two cases to consider.

(1) If lid(p) = f at the beginning of the Round i -1, either p increments the value of ttl(p) during Round i -1 (Line 4, 8, or 9), or p sets ttl(p) to t + 1 such that p received a message m = f, t from a neighbor q at Round i -1 (Line 7 or 8). In the latter case, at the beginning of Round i -1, lid(q) = f and ttl(q) = t, and, by induction hypothesis, t ≥ i -2. In both cases, ttl(p) ≥ i -1 at the beginning of Round i.

(2) If lid(p) = f at the beginning of Round i -1, p receives a message m = f, t from some neighbor q at Round i -1. Similarly to Case (1), ttl(p) ≥ i -1 at the beginning of Round i.

Lemma 18 implies that for every i > 0 and every fake ID f , ∀p ∈ V, lid(p) = f ⇒ ttl(p) ≥ i at the end of Round i. We define a quasi-legitimate configuration of Algorithm 1 as any configuration where lid( ) = id( ) and ttl( ) = 0 and there is no fake ID in the system (i.e., ∀p ∈ V , lid(p) is not a fake ID). So, from Lemma 18 and thanks to the reset mechanism of Algorithm 1, we deduce the following corollary.

Corollary 19. At the end of Round 2∆, the configuration is quasi-legitimate.

Proof. By Lemma 18 and since the maximum value of ttl is 2∆ -1, we have ∀p ∈ V , lid(p) is not a fake ID at the end of Round 2∆. Moreover, by definition, id( ) is the smallest non-fake ID. So, ∀p ∈ V , lid(p) ≥ id( ) at the end of Round 2∆. This is in particular true for process : lid(l) ≥ id( ) at the end of Round 2∆. By Remark 17, we conclude that lid( ) = id( ) and ttl( ) = 0 at the end of Round 2∆ (n.b., 2∆ > 1 since ∆ ∈ N * ).

The proof of the next lemma consists in showing that for every set of processes V , the set of quasi-legitimate configurations of Algorithm 1 for V is closed in T C B (∆).

Lemma 20.

Let e be an execution of Algorithm 1 in an arbitrary TVG that starts from a quasilegitimate configuration. The configuration reached at the end of every round of e is quasi-legitimate.

Proof. Consider any step from γ to γ such that γ is quasi-legitimate. First, since γ contains no fake ID, no message containing a fake ID can be sent in the step from γ to γ , and γ contains no fake ID too. Moreover, id( ) is the smallest non-fake ID. So, ∀p ∈ V , lid(p) ≥ id( ) in γ . By Remark 17, we conclude that lid( ) = id( ) and ttl( ) = 0 in γ . Hence, γ is quasi-legitimate.

A process p has a legitimate state iff lid(p) = id( ), ttl(p) ≤ ∆, and p = ⇒ ttl(p) = 0. We define a legitimate configuration of Algorithm 1 as any configuration where every process has a legitimate state. By definition, every legitimate configuration is also quasi-legitimate.

Lemma 21.

Let G be a TVG of Class T C B (∆), t ≥ o T , and e be an execution of Algorithm 1 in G [t,+∞) starting in a quasi-legitimate configuration. For every r ≥ ∆, the configuration at the end of Round r in e is legitimate.

Proof. First, remark that for every j > 0, the communication network at Round j in e is G t+j-1 . Then, the proof of the lemma is based on the claim below.

Claim (*): for every i ≥ 0, d ≥ 0, every process p such that

d ,t+i-1 (p) ≤ d satisfies: ∀j ∈ {1, . . . , ∆ -d ,t+i-1 (p) + 1}, lid(p) = id( ) and ttl(p) ≤ d ,t+i-1 (p) + j -1 at the beginning of Round i + j + d ,t+i-1 (p) of e.
Proof of Claim (*): By induction on d. The base case occurs if d = 0 and some p ∈ V satisfies d ,t+i-1 (p) = d, then p = . Then, it is immediate since the initial configuration is quasi-legitimate (by hypothesis) and every subsequent configuration is quasi-legitimate too (by Lemma 20).

Induction step: consider any process p such that d ,t+i-1 (p) ≤ d with d > 0. If d ,t+i-1 (p) < d, the property is direct from the induction hypothesis. Consider now the case where d ,t+i-1 (p) = d. There is a journey J ∈ J ( , p) such that departure(J ) > t + i -1 and arrival(J ) = d + t + i -1. We denote J by {(e 0 , t 0 ), (e 1 , t 1 ), . . . , (e k , t k )} where t k = d + t + i -1. Let q be the process such that e k = (q, p). By definition, d ,t+i-1 (q) < d ,t+i-1 (p) = d. Hence, by induction hypothesis, ∀j ∈ {1, . . . , ∆ -d ,t+i-1 (q) + 1}, lid(q) = id( ) and ttl(q) ≤ d ,t+i-1 (q) + j -1 at the beginning of Round i + j + d ,t+i-1 (q). Let j = d ,t+i-1 (p) -d ,t+i-1 (q). Since j ∈ {1, . . . , ∆ -d ,t+i-1 (q) + 1}, we can instantiate the previous property with j . We obtain lid(q) = id( ) and ttl(q) ≤ d ,t+i-1 (q) + j -1 = d ,t+i-1 (p) -1 = d -1 at the beginning of Round i+j + d ,t+i-1 (q) = i+ d ,t+i-1 (p) = i+d. Now, since ρ(e k , t k ) = 1 and t k = d+t+i-1, q sends a message id( ), ttl q to p during Round i + d with ttl q ≤ d -1, where ttl q is the value of ttl(q) at the beginning of Round i + d.

By definition of id( ) and since there is no fake IDs (Lemma 20) the minimum message received by p in Round i + d is id( ), ttl with ttl ≤ ttl q ≤ d -1. From the algorithm, lid(p) = id( ) and ttl(p) = ttl + 1 ≤ d at the end of Round i + d, and so at the beginning of Round i + d + 1. Then, by induction on j ∈ {1, . . . , ∆ -d + 1}, ttl(p) ≤ d + j -1 ≤ ∆ ≤ 2∆ -1 at the beginning of Round i + d ,t+i-1 (p) + j since ttl(p) is at most incremented by one during the previous round and p does not reset. So, lid(p) remains equal to id( ) at the beginning of Round i + d ,t+i-1 (p) + j. This ends the proof of Claim (*).

Let r ≥ ∆ ∈ N * . We now apply Claim (*) to d = ∆ so that every process p is taken into account by the claim: with i = r -∆, j = ∆ -d ,t+i-1 (p) + 1, we obtain that lid(p) = id( ) and ttl(p) ≤ ∆ at the beginning of Round r + 1; in addition, ttl( ) = 0 at the beginning of Round r + 1, by Remark 17. Hence, the configuration at the end of Round r is legitimate.

As a direct consequence of Corollary 19 and Lemma 21, we obtain the convergence.

Corollary 22.

Let G be a TVG of T C B (∆). For every i ≥ 3∆, at the end of Round i of any execution of Algorithm 1 in G, the configuration is legitimate.

Lemma 23.

Let G be a TVG of T C B (∆), t ≥ o T , and e be an execution of Algorithm 1 for G [t,+∞) starting in a legitimate configuration. For every r ∈ {1, ..., ∆ -1}, the configuration e has reached at the end of Round r satisfies lid(p) = id( ) and ttl(p) ≤ ∆ + r, for every process p.

Proof. First, the lemma trivially holds for ∆ ≤ 1. So, we now show by induction on r that the lemma holds in the case where ∆ > 1. For the base case, at the beginning of Round 1, ∀p ∈ V , lid(p) = id( ) and ttl(p) ≤ ∆ as the first configuration of e is legitimate. According to the algorithm, at the end of Round 1, ∀p ∈ V , lid(p) = id( ) and ttl(p) ≤ ∆ + 1 < 2∆ (since ∆ > 1).

Induction step: let i ∈ {2, ..., ∆ -1}. At the end of Round i -1, hence at the beginning of Round i, ∀p ∈ V , lid(p) = id( ) and ttl(p) ≤ ∆ + i -1 < 2∆ -1, by induction hypothesis. According to the algorithm, and since ∆ + i < 2∆, no process can reset. Hence, at the end of Round i, ∀p ∈ V , lid(p) = id( ) and ttl(p) ≤ ∆ + i, and we are done.

Theorem 24 below is a direct consequence of Lemmas 21 and 23.

Theorem 24.

For every G = (V, E, T , ρ) ∈ T C B (∆), for every legitimate configuration γ of Algorithm 1 for V , the execution of Algorithm 1 in G starting from γ satisfies SP LE .

Proof. Let e = γ 0 ...γ i ... be an execution of Algorithm 1 in G such that γ 0 is legitimate. First, as γ 0 is legitimate, we have lid(p) = id( ), for every process p (by definition). Then, by Lemma 23, for every r ∈ {1, ..., ∆ -1}, at the end of Round r, i.e., in Configuration γ r , we have lid(p) = id( ), for every process p. Finally, since γ 0 is quasi-legitimate (by definition, every legitimate configuration is also quasi-legitimate), Lemma 21 applies: for every r ≥ ∆, the configuration γ r at the end of Round r is legitimate, so for every process p lid(p) = id( ) in γ r . Hence, SP LE (e) holds.

By Corollary 22 and Theorem 24, we have the following corollary. 

Class T C Q (∆) with ∆ and n known

Overview of Algorithm 2. Each process p uses a variable members(p) to collect IDs. Actually, members(p) is a (FIFO) queue containing at most n pairs id, t , where id is an identifier and t is a timestamp, i.e., an integer value less than or equal to ∆. (We denote by members(p) [id] the timestamp associated to the identifier id belonging to members(p).)

At each round i, p sends all pairs id, t of members(p) such that t < ∆ at the end of Round i -1 (Line 2). (The timestamps allow to eventually remove all fake IDs.) Then, p updates members(p) by calling function insert on each received pair id, t such that id = id(p) (Lines 4-5).

The insertion function insert works as follows: if id already appears in members(p), then the old pair tagged with id is removed first from the queue (Line i1), and in either case, id, t is appended at the tail of the queue (Lines i1 and i4). In particular, since the size of members(p) is limited, if the queue is full, its head is removed to make room for the new value (Line i3). Using this FIFO mechanism, initial spurious values eventually vanish from members(p).

After all received pairs have been managed, the timestamps of all pairs in the queue are incremented (Line 6) and then, id(p), 0 is systematically inserted at the tail of the queue (Line 7). This mechanism ensures two main properties. First, every timestamp associated to a fake ID in a variable members is eventually forever greater than or equal to ∆; and consequently, eventually no message containing fake IDs is sent. Second, by definition of T C Q (∆), for every two distinct processes p and q, there are journeys of length at most ∆ infinitely often, so each process p regularly receives messages containing id(q) with timestamps smaller than ∆. Thus, eventually members(p) exactly contains all IDs of the networks. Now, at the end of each round, p updates its leader variable with the smallest ID in members(p) (Line 7). Hence, the process of lowest ID, , is eventually elected.

Algorithm 2: Self-stabilizing leader election for T C Q (∆) for each process p. insert(p, id(p), 0 ) ; lid(p) := min{id : id, _ ∈ members(p)} Self-stabilization.

Inputs

Lemma 26. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, the following property holds:

∀p ∈ V if f is in members(p), then members(p)[f ] ≥ i -1.
Proof. By induction on i ≥ 1. The base case, i = 1, is trivial since members(p)[f ] is a natural integer. For the induction step, assume that i > 1. By induction hypothesis, at the beginning of Round i -1, we have: ∀p ∈ V , if f is in members(p), then members(p)[f ] ≥ i -2. Let p ∈ V such that f is in members(p) at the beginning of Round i. There are two cases to consider.

(1) Assume that f / ∈ members(p) at the beginning of Round i -1. So, p received the pair f, t during Round i -1 with t ≥ i -2, and then f, tM is added to members(p) with tM = t by executing either Line i1 or i4. In both cases, after executing Line 6, members(p)[f ] ≥ i -1, and so is at the beginning of Round i.

(2) Assume that f is in members(p) at the beginning of Round i -1. There are two cases: (i) p does not receive any pair f, _ during Round i - Since a process p does not send a pair id, t of members(p) with t ≥ ∆, we have: Corollary 27. In any round ∆ + i with i ≥ 1, no process receives a message containing fake IDs. Lemma 28. ∀p, q ∈ V , if id(q) is inserted into members(p) during Round ∆ + i with i ≥ 1, id(q) remains into members(p) forever.

Proof. If an ID id is in members(p), it can only be removed from members(p) if function insert(p, id , t ) is called and one of the following two situations occurs: Line i1: if id = id but in this case id is immediately added at the tail of members(p), Line i3: if id = id , id is the head of the queue, and the size of members(p) is already n. After id is inserted (at tail) into members(p), it requires the insertion of n different IDs that are not into members(p) (and that are different from id) in order to get id at the head of the queue and remove it. If id is inserted during Round ∆ + i, it is not a fake ID and the only other IDs that can be inserted into members(p) are IDs of processes in V since p will not receive any fake ID (Corollary 27). Thus, at most n -1 IDs different from id can be inserted after the insertion of id. Hence, id cannot be removed from members(p).

By definition of class T C Q (∆), for every pair of processes p and q, there exists t ≥ ∆ such that dq,o T +t-1 (p) ≤ ∆. We denote by t(q, p) the minimum value t that satisfies the above property, namely t(q, p) represents the first date after ∆ + o T -1 (i.e., after ∆ rounds) from which there exists a temporal journey from q to p of length no more than ∆. Lemma 29. ∀p, q ∈ V , by the end of Round t(q, p) + ∆, id(q) is in members(p) forever.

Proof. Let q ∈ V . Remark, first, that id(q) ∈ members(q) ∧ members(q)[q] = 0 by the end of Round 1, by definition of Algorithm 2, see Line 7.

Let p ∈ V . If q = p then using the remark above and since t(q, p) + ∆ ≥ 1, we are done. We now assume q = p. As dq,o T +t(q,p)-1 (p) ≤ ∆, there exists a journey J = {(e 1 , t 1 ), ..., (e k , t k )} such that t 1 > o T + t(q, p) -1, t k = t(q, p) + dq,o T +t(q,p)-1 (p) + o T -1 ≤ t(q, p) + ∆ + o T -1 and for every i ∈ {1, ..., k}, e i = (p i-1 , p i ) with p 0 = q and p k = p. To simplify the notations, let τ i = t i -o T + 1 for every i in {1, ..., k} such that the edge e i = (p i-1 , p i ) is present during Round τ i . We have τ 1 > t(q, p), τ k ≤ t(q, p) + ∆, and τ i -τ 1 < ∆.

We prove (by induction on i) that for all i ∈ {1, ..., k}, (1) id(q) is forever in members(p i ) by the end Round τ i and (2) members(p i )[q] ≤ τ i -τ 1 + 1 at the end of Round τ i .

Base case: for i = 1, the edge (q, p 1 ) exists at Round τ 1 . Using the first remark in the proof, at the beginning of Round τ 1 , since τ 1 > t(q, p) ≥ ∆ ≥ 1, we have id(q) ∈ members(q) ∧ members(q)[q] = 0. Hence, at Round τ 1 , q sends id(q), 0 in its message to p 1 . Following the algorithm, p 1 inserts id(q) in members(p 1 ) during Round τ 1 > ∆. So, id(q) is forever in members(p 1 ) by the end of Round τ 1 ; see Lemma 28. Still following the algorithm, members(p 1 )[q] = 1 at the end of Round τ 1 .

Induction Step: Let i > 1. We assume the result holds for i-1: id(q) is forever in members(p i-1 ) by the end of Round τ i-1 and members(p i-1 )[q] ≤ τ i-1 -τ 1 + 1 at the end of Round τ i-1 . Hence, at the beginning of Round τ i (and so, at the end of Round τ i -1), we have: id(q) in members(p i-1 ) and as the timestamps are at most incremented by one at the end of each round,

members(p i-1 )[q] ≤ τ i-1 -τ 1 + 1 + τ i -1 -τ i-1 = τ i -τ 1 < ∆.
During Round τ i , the edge e i = (p i-1 , p i ) is present and p i-1 sends in its message to p i a pair id(q), t q such that t q ≤ τ i -τ 1 since τ i -τ 1 < ∆. As p i receives it, it inserts id(q) in members(p i ) in Round τ i . Since τ i > τ 1 > ∆, Lemma 28 ensures that id(q) remains forever in members(p i ) by the end of Round τ i . Moreover, following the algorithm, at the end of Round τ i , we have members(p i )[q] ≤ τ i -τ 1 + 1.

With i = k, id(q) is forever in members(p) by the end Round τ k ≤ t(q, p) + ∆.

Let V be a set of processes. We define a legitimate configuration of Algorithm 2 for V as any configuration of Algorithm 2 for V where for every process p, we have lid(p) = id( ) and {id : id, _ ∈ members(p)} = {id(q) : q ∈ V }. Remark that the set of legitimate configurations of Algorithm 2 for V is closed in T C Q (∆). Indeed, by definition of the algorithm, no message containing a fake ID can be sent from such a configuration. Hence, the set members(p) of every process p remains constant and min{id : id, _ ∈ members(p)} = id( ) forever. Hence: Lemma 30. Any execution of Algorithm 2 that starts from a legitimate configuration in an arbitrary TVG satisfies SP LE .

The next lemma is a direct consequence of Corollary 27 and Lemma 29. Lemma 31. ∃t ≥ ∆ such that the configuration reached at the end of Round t + ∆ is legitimate.

Proof. Corollary 27 ensures that for every i > ∆ and p ∈ V , no fake ID is inserted in members(p) at Round i. We let T = max{t(q, p) : q, p ∈ V }. By definition, T ≥ ∆. By Lemma 29, we have that for every p, q ∈ V , members(p) contains id(q) at the end of Round T + ∆. Let p ∈ V . As the size of members(p) is bounded by the number n of processes (see Line i3), members(p) is exactly the set of IDs of every process. By Line 7, we also have lid(p) = id( ).

By Lemmas 30-31, follows. Theorem 32. Algorithm 2 is a self-stabilizing leader election algorithm for T C Q (∆). It requires O(n(B + log ∆)) bits per process and messages of size O(n(B + log ∆)) bits.

Speculative Stabilization. Stabilization time cannot be bounded in T C Q (∆), except for trivial specifications. Indeed, even if there exist infinitely many journeys of length bounded by ∆ between any pair of distinct processes and ∆ is known by all processes, the time between any two consecutive such journeys is unbounded, by definition of T C Q (∆). Consequently, we cannot bound the time necessary to route any piece of information from some process p to another process q, making the stabilization time unbounded in any case. We now show that Algorithm 2 is speculative in the sense that its stabilization time cannot be bounded in T C Q (∆), but in a more favorable case, actually in T C B (∆) ⊆ T C Q (∆), its stabilization time is at most 2∆ rounds. To see this, remark that the previous proof holds for T C B (∆) since T C B (∆) ⊆ T C Q (∆). Yet, for every processes p and q, t(q, p) is exactly ∆ in this class of TVGs. Hence in the proof of Lemma 31, we have T = max{t(q, p) : q, p ∈ V } = ∆; ensuring that in Class T C B (∆), the configuration reached at the end of Round 2∆ is legitimate. 

Class T C R with n known

Overview of Algorithm 3. Similarly to Algorithm 2, each process p uses a variable members(p) to collect IDs. However, this time, members(p) is a map that can contain up to n IDs, each of them being associated with a timestamp (we denote by members(p) [id] the timestamp associated to the identifier id belonging to members(p)).

At each round i, p sends the content of members(p) (Line 2). Then, p updates members(p) by calling function insert on each received pair id, t such that id = id(p) (Lines 4-5). The function insert works as follows: if id already appears in members(p), then the associated timestamp is updated by keeping the smallest value (Line i1). Otherwise, p tries to insert id, t in the map. Actually, id, t is inserted in the map if the map is not full (Line i2) or t is smaller than the greatest timestamp tM in the map (Lines i3-i5). In this latter case, id, t overwrites any value having this timestamp in members(p) (Line i5). This overwriting mechanism allows to eventually remove all fake IDs from members(p), since their timestamps will regularly increase. After members(p) has been updated, all timestamps of members(p) are incremented (Line 6) and then, id(0), 0 is systematically inserted in the map (Line 7).

Actually, Algorithm 2 guarantees two main properties. First, at the beginning of any round i, any timestamp associated to a fake ID is greater than or equal to i -1; see Lemma 34. Second, by definition of T C R , at any point in time, every process can reach all the others through a journey. The key property is then to show that if some broadcast initiated by process p reaches a process q at Round i, then the value of the timestamp in the message is small enough to ensure the insertion of id(p) into members(q); see Lemma 35. These two properties ensure that eventually members(p) exactly contains all IDs of the network. Now, at the end of each round, p updates its leader variable with the smallest ID in members(p) (Line 7). Hence, the process of lowest ID, , is eventually elected. forall pair id, t in a message of mailbox do Lemma 34. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, the following holds: ∀p ∈ V , if f is in members(p), then members(p)[f ] ≥ i -1. Lemma 35. For every i ≥ 1, at the end of Round i, the following property holds: ∀p, q ∈ V , if dp,o T (q) ≤ i -1, then id(p) is in members(q) and members(q)[p] ≤ i -1.

Proof. By induction on i ≥ 1. For the base case, in Round 1, p tries to insert p, 0 in members(p) (Line 7). Since the timestamp associated with every other ID in members(p) has been incremented beforehand (line 6), p, 0 ∈ members(p) by the end of the first round.

Induction step: Assume that i > 1. By induction, at the end of Round i -1, we have, for every p, q ∈ V such that dp,o T (q) ≤ i -2, that id(p) is in members(q) and members(q)[p] ≤ i -2. Let p, q ∈ V such that dp,o T (q) ≤ i -1. There are two cases to consider.

(1) If dp,o T (q) ≤ i -2 then, by induction hypothesis, at the end of Round i -1, id(p) is in members(q) and members(q)[p] ≤ i -2. During Round i, id(p) cannot be removed from members(q). Indeed, by Lemma 34, the timestamps associated to fake IDs are greater than or equal to i -1. Now, timestamps are incremented during Round i (Line 6), thus members(q)[p] ≤ i -1 at the end of Round i.

(2) If dp,o T (q) = i -1 then ∃r ∈ V such that dp,o T (r) ≤ i -2. This means that the arrival of the journey from p to q which provides dp,o T (q) occurs at time o T + dp,o T (q) = o T + i -1. Hence, (r, q) is present at the beginning of Round i and so q receives a message from r during Round i. By induction hypothesis, at the end of Round i -1, id(p) is in members(r) and members(r)[p] ≤ i -2. Hence, q receives the pair p, tM with tM ≤ i -2 during Round i. For the same reasons as in Case (1), this pair is not rejected but inserted into members(q). Then, timestamps are incremented (Line 6), hence members(q)[p] ≤ i -1 at the end of Round i.

Let V be a set of processes. We define a legitimate configuration of Algorithm 3 for V as any configuration of Algorithm 3 for V where lid(p) = id( ) and {id : id, _ ∈ members(p)} = {id(q) : q ∈ V }, for every process p. By definition of the algorithm, no message containing a fake ID can be sent from such a configuration. So, from any legitimate configuration, the set members(p) of every process p is constant and min{id : id, _ ∈ members(p)} = id( ) forever. Thus, the set of legitimate configurations of Algorithm 3 for V is closed in T C R and we have: Lemma 36. Any execution of Algorithm 3 that starts from a legitimate configuration in an arbitrary TVG satisfies SP LE . Theorem 37. Algorithm 3 is a self-stabilizing leader election algorithm for T C R .

Proof. Let p ∈ V . By definition of T C R , ∀q ∈ V , ∃J ∈ J (p, q) such that departure(J ) > o T . The temporal length of J is finite. Thus, ∃ δ(p) ∈ N such that ∀q ∈ V , dp,o T (q) ≤ δ(p). Thus, at the end of Round δ(p) + 1, ∀q ∈ V , id(p) is in members(q) by Lemma 35. Since members(q) contains at most n entries, after max p∈V δ(p) + 1 rounds, members(q) contains the ID of every process and no fake ID. So q chooses id( ) as leader at the end of Round max p∈V δ(p) + 1. Hence, the system is in a legitimate configuration at the end of this round and, by Lemma 36, we are done. Speculative Stabilization. Similarly to T C Q (∆), stabilization time cannot be bounded in T C R , except for trivial specifications (n.b., T C Q (∆) ⊆ T C R ). We now show that Algorithm 3 is speculative in the sense that we cannot bound its stabilization time in T C R , but in a more favorable case, precisely in T C B (∆) ⊆ T C R , its stabilization time is at most ∆ + 1 rounds, despite ∆ is unknown. The proof of the theorem below is the same as the one of Theorem 37 but as we consider a TVG in T C B (∆), for every p ∈ V , δ(p) ≤ ∆. Hence the system reaches a legitimate configuration at the end of Round max p∈V δ(p) + 1 = ∆ + 1.

Definition 11 (

 11 Sequential Composition). Let G = (V, E, T , ρ) be an infinite TVG and G = (V , E , [a, b], ρ ) be a finite TVG. The sequential composition of G and G, denoted by G G, is the infinite TVG

Algorithm 1 :

 1 Self-stabilizing leader election for T C B (∆), for each process p. Inputs: ∆ ∈ N * : upper bound on the temporal diameter id(p) ∈ IDSET : ID of p Local Variables: lid(p) ∈ IDSET : ID of the leader ttl(p) ∈ {0, . . . , 2∆ -1} : degree of mistrust in lid(p) Macros: updateT T L(v): u1: if v ≥ 2∆ then lid(p) := id(p); ttl(p) := 0 // Reset u2: else if lid(p) = id(p) then ttl(p) := v 1: Repeat Forever 2:SEND( lid(p), ttl(p) )if mailbox = ∅ then updateT T L(ttl(p) + 1) 5:

else 6 : 8 : 9 :Lemma 18 .

 68918 lid, ttl := min{messages in mailbox} 7: if lid<lid(p) then lid(p) := lid; updateT T L(ttl + 1) else if lid=lid(p) then updateT T L(min(ttl(p), ttl)+1) else updateT T L(ttl(p) + 1) 10: if lid(p) ≥ id(p) then lid(p) := id(p); ttl(p) := 0 // Reset Self-stabilization and Complexity. First, by definition of the algorithm, the next remark follows. Remark 17. Since the end of the first round, ∀p ∈ V , we have lid(p) ≤ id(p) ∧ (lid(p) = id(p) ⇒ ttl(p) = 0). Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, ∀p ∈ V, lid(p) = f ⇒ ttl(p) ≥ i -1. Proof. By induction on i: the base case, i = 1 is trivial since by definition ttl(p) ≥ 0. For the induction step, if i > 1, by induction hypothesis, ∀p ∈ V, lid(p) = f ⇒ ttl(p) ≥ i -2 at the beginning of Round i -1. Notice that a process p can only change the value of lid(p) to f if p receives a message containing f .

Corollary 25 .

 25 Algorithm 1 is a self-stabilizing leader election algorithm for T C B (∆). Its stabilization time is at most 3∆ rounds. It requires O(B + log ∆) bits per process and messages of size O(B + log ∆) bits.

1 .

 1 So, by executing Line 6 and by induction hypothesis, members(p)[f ] ≥ i -1 at the beginning of Round i. (ii) p receives some pair f, t during Round i -1. So, by executing Line i1, members(p)[f ] := min(t, members(p)[f ]). Again, by assumption t ≥ i -2 and members(p)[f ] ≥ i -2 at the beginning of Round i -1. So, in both cases, members(p)[f ]) ≥ i -1 at the beginning of Round i.

Theorem 33 .

 33 The stabilization time of Algorithm 2 in Class T C B (∆) is at most 2∆ rounds.

Algorithm 3 :

 3 Self-stabilizing leader election for T C R , for each process p.Inputs: n ∈ N : number of processes id(p) ∈ IDSET : ID of p Local Variables: members(p) : map of size at most n; contains pairs id, t ∈ IDSET × N lid(p) ∈ IDSET : ID of the leader Macros: max(p): m1: if |members(p)| < n then return ⊥ m2: else return id, t ∈ members(p) with maximum timestamp t insert(p, id, t ): i1: if id, _ ∈ members(p) then members(p)[id] := min(t, members(p)[id]) i2: else if max(p) = ⊥ then add id, t in members(p) i3: else i4: idM, tM := max(p) i5: if t < tM then remove idM, tM from members(p); add id, t in members(p) 1: Repeat Forever

5 : 6 :

 56 if id = id(p) then insert(p, id, t )forall id : id, _ ∈ members(p) do members(p)[id] + + 7:insert(p, id(p), 0 ); lid(p) := min{id : id, _ ∈ members(p)} Self-stabilization. The lemma below and its proof are identical to those of Lemma 26.

Bounded Temporal Diameter): every

  node can always eventually reach each other node through a journey of temporal length at most ∆. Formally,

  by definition. Furthermore, we say that a TVG class C is recurring if C only contains infinite TVGs and, for every G ∈ C and every t ≥ o T , G [t,+∞) ∈ C. (In other words, every recurring TVG class is suffix-closed.) The three classes we will consider (i.e., T C R , T C B (∆), T C Q (∆)) are recurring.

  :

		n ∈ N ∆ ∈ N *	: number of processes : recurrent bound on the temporal distance between processes
		id(p) ∈ IDSET : ID of p
		Local Variables:
		members(p)	: queue of at most n elements contains pairs id, t ∈ IDSET × {0, . . . , ∆}
		lid(p) ∈ IDSET : ID of the leader
		Macros:
		insert(p, id, t ):
	i1:	if ∃t , id, t ∈ members(p) then remove id, t from members(p) ; push id, min(t, t ) at the
		tail of members(p)
	i2:	else
	i3:	if |members(p)| = n then remove the head of members(p)
	i4:	push id, t at the tail of members(p)
	1: Repeat Forever
	2:	SEND( id, t ∈ members(p) : t < ∆)
	3:	mailbox := RECEIVE()
	4:	forall pair id, t in a message of mailbox do
	5:	if id = id(p) then insert(p, id, t )
	6:	forall id, t ∈ members(p) : t < ∆ do members(p)[id] + +
	7:	

Considering finite TVGs, i.e., dynamic systems whose lifetime is limited, does not really make sense in the selfstabilizing context, since commonly self-stabilizing algorithms do not terminate[START_REF] Altisen | Introduction to Distributed Self-Stabilizing Algorithms[END_REF]

, 20].[START_REF] Altisen | Gradual stabilization[END_REF] Every static network is a very particular case of TVG, which belongs to all classes studied here, so the impossibility result of Angluin[START_REF] Angluin | Local and global properties in networks of processors[END_REF] still applies.
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Self-stabilizing Systems in Spite of High Dynamics

Theorem 38. The stabilization time of Algorithm 3 in T C B (∆) is at most ∆ + 1 rounds.

Conclusion

We have addressed self-stabilization in highly dynamic identified message-passing systems by proposing self-stabilizing leader election algorithms for three major classes of time-varying graphs: T C B (∆), T C Q (∆), and T C R . It is worth noticing that the impossibility result of Braud-Santoni et al. [START_REF] Braud-Santoni | The next 700 impossibility results in time-varying graphs[END_REF] applies to the class of always connected over the time TVGs of n processes which is actually included and so stronger than T C R , as well as T C B (∆) and T C Q (∆), for every n ≥ 0 and ∆ ≥ n-1. Precisely, this result forbids the existence of silent self-stabilizing solutions for many non-trivial static problems. Actually, silent self-stabilization additionally requires all processes to eventually keep their local state constant [START_REF] Dolev | Memory requirements for silent stabilization[END_REF]. Now, leader election is a static problem. We have chosen to avoid this issue by proposing non-silent, a.k.a., talkative [START_REF] Blin | Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative[END_REF] solutions, i.e., in our algorithms, a small part of the local state of each process (namely, the timestamps) is modified infinitely often. Beyond extending our results to other particular problems, our future work will focus on studying expressiveness of self-stabilization in TVGs. To that goal, we plan to first investigate broadcast problems, again in very general TVG classes. Indeed, coupled with our leader election solutions, they should allow to build generic transformers, following, for example, the approaches proposed in [START_REF] Cournier | The expressive power of snap-stabilization[END_REF][START_REF] Katz | Self-stabilizing extensions for message-passing systems[END_REF].