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Abstract
We initiate research on self-stabilization in highly dynamic message-passing systems by addressing
the self-stabilizing leader election problem in three wide classes of time-varying graphs (TVGs): the
class T CB(∆) of TVGs with temporal diameter bounded by ∆, the class T CQ(∆) of TVGs with
temporal diameter quasi-bounded by ∆, and the class T CR of TVGs with recurrent connectivity
only, where T CB(∆) ⊆ T CQ(∆) ⊆ T CR. We first study conditions under which our problem can be
solved. We introduce the notion of size-ambiguity to show that the assumption on the knowledge
of the number n of processes is crucial. Our results show that any deterministic self-stabilizing
leader election algorithm working in the class T CQ(∆) or T CR cannot be size-ambiguous, justifying
then the necessity of assuming the exact knowledge of n in those classes. We then present three
self-stabilizing leader election algorithms for Classes T CB(∆), T CQ(∆), and T CR, respectively. Our
algorithm for T CB(∆) stabilizes in at most 2∆ rounds. In T CQ(∆) and T CR, stabilization time
cannot be bounded. However, we show that our solutions are speculative in the sense that their
stabilization time in T CB(∆) is O(∆) rounds.
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1 Introduction

Context and Related Work. Starting from an arbitrary configuration, a self-stabilizing
algorithm [12] makes a distributed system reach within finite time a configuration from which
its behavior is correct. Essentially, self-stabilizing algorithms tolerate transient failures, since
by definition such failures last a finite time (as opposed to crash failures, for example) and
their frequency is low (as opposed to intermittent failures). Indeed, the arbitrary initial
configuration can be seen as the result of a finite number of transient faults, and after those
faults cease, we can expect a sufficiently large time window without any fault so that the
system recovers and then exhibits a correct behavior for a long time.

Even though self-stabilization is not inherently suited to handle other failure patterns,
a.k.a., intermittent and permanent failures, several works show that in many cases self-
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stabilization can be still achieved despite such faults occur. Indeed, strong forms of self-
stabilization have been proposed to tolerate permanent failures, e.g., fault-tolerant self-
stabilization [4] to cope with process crashes, and strict stabilization [20] to withstand
Byzantine failures. Furthermore, several self-stabilizing algorithms, e.g., [11], withstand
intermittent failures such as frequent lost, duplication, or reordering of messages, meaning
their convergence is still effective despite such faults continue to occur in the system. Hence,
even if at the first glance guaranteeing a convergence property may seem to be contradictory
with a high failure rate, the literature shows that self-stabilization may be a suitable answer
even in such cases.

All these aforementioned works assume static communication networks. Nevertheless,
self-stabilizing algorithms dedicated to arbitrary network topologies tolerate, up to a certain
extent, some topological changes (i.e., the addition or the removal of communication links
or processes). Precisely, if topological changes are eventually detected locally at involved
processes and if the frequency of such events is low enough, then they can be considered as
transient faults. In particular, several approaches, like superstabilization [15] and gradual
stabilization [1], have been proposed to efficiently tolerate topological changes when they are
both spatially and timely sparse. However, these approaches become totally ineffective when
the frequency of topological changes drastically increase, in other words when topological
changes are intermittent rather than transient. Actually, in the intermittent case, the network
dynamics should be no more considered as an anomaly but rather as an integral part of the
system nature. Ensuring convergence in such networks regardless of the initial configuration
may seem to be very challenging, even impossible in many cases [7]. However, notice that
a recent work [6] deals with the self-stabilizing exploration of a highly dynamic ring by a
cohort of synchronous robots equipped with visibility sensors, moving actuators, yet no
communication capabilities. Yet, self-stabilization still needs to be investigated in the context
of highly dynamic message-passing networks.

Several works aim at proposing a general graph-based model to capture the network
dynamics. In [22], the network dynamics is represented as a sequence of graphs called evolving
graphs. In [9], the topological evolution of the network is modeled by a (fixed) graph where
the processes represent participating processes and the edges are communication links that
may appear during the lifetime of the network. Each edge is labeled according to its presence
during the lifetime of the network. Such graphs are called Time-Varying Graphs (TVGs, for
short). Still in [9], TVGs are gathered and ordered into classes according to the temporal
characteristics of edge presence.

In highly dynamic distributed systems, an expected property is self-adaptiveness, i.e., the
ability of a system to accommodate with sudden and frequent changes of its environment.
By definition, achieving self-stabilization in highly dynamic networks is a suitable answer to
self-adaptiveness. Speculation [19] is another possible approach for self-adaptiveness. Roughly
speaking, speculation guarantees that the system satisfies its requirements for all executions,
but also exhibits significantly better performances in a subset of more probable executions.
The main idea behind speculation is that worst possible scenarios are often rare (even
unlikely) in practice. So, a speculative algorithm is assumed to self-adapt its performances
w.r.t. the “quality” of the environment, i.e., the more favorable the environment is, the better
the complexity of the algorithm should be. Interestingly, Dubois and Guerraoui [17] have
investigated speculation in self-stabilizing, yet static, systems. They illustrate this property
with a self-stabilizing mutual exclusion algorithm whose stabilization time is significantly
better when the execution is synchronous.

Contribution. We initiate research on self-stabilization in highly dynamic message-passing
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systems, where the network dynamics is modeled using the TVG paradigm. We reformu-
late the definition of self-stabilization to accommodate with the highly dynamic context,
and investigate the self-stabilizing leader election problem in three wide classes of TVGs,
respectively denoted by T CB(∆), T CQ(∆), and T CR, where T CB(∆) ⊆ T CQ(∆) ⊆ T CR:
T CB(∆) is the class of TVGs with temporal diameter bounded by ∆ [18], T CQ(∆) is the
class of TVGs with temporal diameter quasi-bounded by ∆ (introduced here), and T CR is
the class of TVGs with recurrent temporal connectivity [9]. Note that, contrary to [6], the
three classes studied here never enforce the network to have a particular topology at a given
time.

We first study conditions under which our problem can be solved. Actually, our results
show that the assumption on the knowledge of the number n of processes is crucial. To see
this, we introduce the notion of size-ambiguity, which formalizes the fact that processes do
not shared enough initial knowledge of n to be able to eventually select the same leader. In
other words, such an ambiguity comes from the fact that n is only partially known by the
processes. Our results show that any deterministic self-stabilizing leader election algorithm
working in the class T CQ(∆) or T CR cannot be size-ambiguous. Hence, to make the problem
solvable in those classes, we will assume each process knows exactly n.

We then propose self-stabilizing leader election algorithms for three considered classes.
In more detail, we present a self-stabilizing leader election algorithm for Class T CB(∆) with
a stabilization time of at most 3∆ rounds, assuming every process knows ∆, yet using no
information on n. This in particular shows that our necessary condition is tight. Then, we
propose a self-stabilizing leader election algorithm for Class T CQ(∆) assuming every process
knows ∆ and n. Stabilization time cannot be bounded in T CQ(∆); nevertheless we show
that the algorithm is speculative since its stabilization time in T CB(∆) is at most 2∆ rounds.
Finally, we propose a self-stabilizing leader election algorithm for Class T CR, where only n is
known (n.b., by definition of the class, there is no bound on the temporal diameter), however
it requires unbounded local memories. Notice in particular that finding a self-stabilizing
solution in this class was rather challenging, since there is no timeliness guarantee at all.
Again, stabilization time cannot be bounded in T CR, yet we show that the algorithm is
speculative since its stabilization time in T CB(∆) is at most ∆ + 1 rounds.

An overview of the properties of the proposed algorithms is presented in the table 1.

Knowledge size Stabilization

TVG of ∆ ambiguity Alg. time Msg size

X X 1 3∆ O(log(n + ∆))

T CB(∆) X × 2 2∆ O(n(log(n + ∆)))

× × 3 ∆ + 1 unbounded

T CQ(∆) X × 2 unbounded O(n(log(n + ∆)))

T CR × × 3 unbounded unbounded
Table 1 : Overview of self-stabilizing leader election algorithms

Roadmap. In Section 2, we present the computational model. In Section 3, we propose
and justify our definition of self-stabilization for highly dynamic environments; we then study
the impact of the knowledge of n on the solvability of the self-stabilizing leader election. In
the three next sections, we present our solutions. We conclude in the last section.
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2 Preliminaries

Time-varying Graphs. A time-varying graph (TVG for short) [9] is a tuple G = (V,E, T , ρ)
where V is a (static) set of processes, E is a (static) set of arcs between pairwise processes, T
is an interval over N∗ called the lifetime of G, and ρ : E×T → {0, 1} is the presence function
that indicates whether a given arc exists at a given time. Notice that our definition of TVG is
close to the model, called evolving graphs, defined in [22]. We denote by oT = min T the first
instant in T . The snapshot of G at time t ∈ T is the graph Gt = (V, {e ∈ E : ρ(e, t) = 1}).
Let [t, t′] ⊆ T . The temporal subgraph of G for the interval [t, t′], noted G[t,t′], is the TVG
(V,E, [t, t′], ρ′) where ρ′ is ρ restricted to [t, t′]. A journey is a sequence of ordered pairs
J = (e1, t1), (e2, t2), . . . , (ek, tk) where ∀i ∈ {1, . . . , k}, ei = (pi, qi) ∈ E satisfies ρ(ei, ti) = 1
and i < k ⇒ qi = pi+1 ∧ ti < ti+1. processes p1 and qk are respectively called the initial and
final extremities of J . We respectively denote by departure(J ) and arrival(J ) the starting
time t1 and the arrival time tk of J . A journey from p to q is a journey whose initial and
final extremities are p and q, respectively. Let J (p, q) be the set of journeys in G from p to q.
Let  be the binary relation over V such that p q if p = q or there exists a journey from p

to q in G. The temporal length of a journey J is equal to arrival(J )− departure(J ) + 1. By
extension, we define the temporal distance from p to q at time t ≥ oT − 1, denoted d̂p,t(q), as
follows: d̂p,t(q) = 0, if p = q, d̂p,t(q) = min{arrival(J )−t : J ∈ J (p, q)∧departure(J ) > t}
otherwise (by convention, we let min ∅ = +∞). The temporal diameter at time t ≥ 0 is the
maximum temporal distance between any two processes at time t.

We define ITV G(G) to be the predicate that holds if T is a right-open interval, in which
case G is said to be an infinite TVG; otherwise G is called a finite TVG.
TVG Classes. Let G = (V,E, T , ρ) be a TVG. We consider the following TVG classes.
Class T C (Temporal Connectivity), also denoted by C3 in [9] and F2 in [8]: every process

can reach all the others at least once through a journey. Formally, G ∈ T C if ∀p, q ∈
V, p q.

Class T CR (Recurrent Temporal Connectivity), denoted by C5 in [9]: at any point in time,
every process can reach all the others through a journey. Formally, G ∈ T CR if ITV G(G)∧
∀t ∈ T ,G[t,+∞) ∈ T C.

Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter), denoted by T C(∆) in [18]:
at any point in time, every process can reach all the others through a journey of
temporal length at most ∆, i.e., the temporal diameter is bounded by ∆. Formally,
G ∈ T CB(∆) if ITV G(G) ∧ ∀t ∈ T ,G[t,t+∆) ∈ T C.

Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter): every process can al-
ways eventually reach each other process through a journey of temporal length at most
∆. Formally, G ∈ T CQ(∆) if ITV G(G) ∧ ∀p, q ∈ V,∀t ∈ T ,∃t′ ≥ t− 1, d̂p,t′(q) ≤ ∆.

Notice that, ∀∆ ∈ N∗, T CB(∆) ⊆ T CQ(∆) ⊆ T CR ⊆ T C, by definition. Furthermore, we
say that a TVG class C is recurring if C only contains infinite TVGs and, for every G ∈ C and
every t ≥ oT , G[t,+∞) ∈ C. The three classes we will consider (i.e., T CR, T CB(∆), T CQ(∆))
are recurring.
Computational Model. We consider the computational model defined in [3, 10]. We
assume a distributed system made of a set of n processes, noted V . Each process has a local
memory, a local sequential and deterministic algorithm, and message exchange capabilities.
We assume that each process p has a unique identifier (ID for short). The identifier of p is
noted id(p) and taken in an arbitrary domain IDSET totally ordered by <. As commonly
done in the literature, we assume that each identifier can be stored using Θ(logn) bits. In
the sequel, we denote by ` the process of minimum identifier.
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Processes are assumed to communicate by message passing through an interconnected
network that evolves over the time. The topology of the network is then conveniently modeled
by an infinite TVG G = (V,E, T , ρ). Processes execute their local algorithms in synchronous
rounds. For every i > 0, the communication network at Round i is defined by GoT +i−1, i.e.,
the snapshot of G after i− 1 instants elapse from the initial time oT . So, ∀p ∈ V , we denote
by N (p)i = {q ∈ V : ρ((p, q), oT + i− 1) = 1}, the set of p’s neighbors at Round i. Notice
that N (p)i is assumed to be unknown by process p, whatever the value of i is.

A distributed algorithm A for V is a collection of n local algorithms A(p), one per process.
The state of any process p in A is defined by the values of its variables in A(p). We denote
by SV

A (p) the set of p’s possible local states in A with processes set V . Notice that some
variables may be constants in which case their values are predefined. A configuration of A
for V is a vector of n components (s1, s2, . . . , sn), where s1 to sn represent the states of the
processes in V .

Let γ0 be the initial configuration of A for V . For any (synchronous) round i ≥ 1, the
system moves from the current configuration γi−1 to some configuration γi, where γi−1 (resp.
γi) is referred to as the configuration at the beginning of Round i (resp. at the end of Round
i). Such a move is atomically performed by every process p ∈ V according to the following
three steps, defined in its local algorithm A(p):
1. p sends a message consisting of all or a part of its local state in γi−1 using the primitive

SEND(),
2. using Primitive RECEIVE(), p receives all messages sent by processes in N (p)i, and
3. p computes its state in γi.
An execution of a distributed algorithm A in the TVG G = (V,E, T , ρ) is an infinite sequence
of configurations γ0, γ1, . . . of A for V such that ∀i > 0, γi is obtained by executing a
synchronous round of A on γi−1 based on the communication network at Round i, i.e., the
snapshot GoT +i−1.

3 Self-stabilization in Highly Dynamic Environments

Definition. Self-stabilization has been originally defined for static networks. In [12, 13], it is
defined as follows: an algorithm is self-stabilizing if, starting from an arbitrary configuration,
it makes the system converge to a so-called legitimate configuration from which every
possible execution suffix satisfies the intended specification. Following the reference book of
Dolev [13], we accommodate this concept with highly dynamic environments by splitting
the definition into two properties: the convergence property, which requires every execution
of the algorithm in the considered system to eventually reach a legitimate configuration;
and the correctness property, which requires every possible execution suffix starting from a
legitimate configuration to satisfy the specification.

I Definition 1 (Self-stabilization). An algorithm A is self-stabilizing for the specification
SP on a class C of infinite TVGs if for every set of processes V , there exists a subset of
configurations L of A for V , called legitimate configurations, such that:
1. for every G ∈ C with set of processes V and every configuration γ of A for V , every execu-

tion of A in G starting from γ contains a legitimate configuration γ′ ∈ L (Convergence),
and

2. for every G ∈ C with set of processes V , every t ≥ oT , every legitimate configuration
γ ∈ L, and every execution e in G[t,+∞) starting from γ, SP (e) holds (Correctness).

The length of the stabilization phase of an execution e is the length of its maximum prefix
containing no legitimate configuration. The stabilization time in rounds is the maximum
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length of a stabilization phase over all possible executions.

I Remark 2. In the case of a recurring class of TVG, the definition of self-stabilization for
an algorithm A and a specification SP can be slightly simplified. Indeed, the correctness
property can be equivalently rewritten as follows: given a set of processes V and a set of
configurations L on V , for every G ∈ C with set of processes V , every legitimate configuration
γ ∈ L, and every execution e in G starting from γ, SP (e) holds (Recurring-Correctness).

It is worth noticing that Definition 1, as the one given in the reference book of Dolev [13],
does not include the notion of closure: intuitively, a set of configurations S is closed if every
step of the algorithm starting in a configuration of S leads to a configuration of S (see
Definition 3 for a formal definition). Now, when dealing with high-level models (such as the
atomic-state model), closure is most of the time present in definitions of self-stabilization.
However, in the more practical message passing model, closure is usually simply given up;
see, e.g., [2, 16, 21]. Even if this absence is never motivated, this may be explained by the
lack of functional significance of the closure property as compared to the convergence and
correctness properties. Closure is rather a nice property that often helps to write elegant,
and so simpler, proofs. Moreover, closure may be sometimes too restrictive as we will show
in Theorem 6. Below, we reformulate closure in the context of TVGs.

I Definition 3 (Closure). Let A be a distributed algorithm, C be an infinite TVG class, V be
a set of processes, and S be a set of configurations of A for V . S is closed in C if for every
G ∈ C with set of processes V , every t ≥ oT , and every configuration γ ∈ S, every execution
of A in G[t,+∞) starting from γ only contains configurations of S.

I Remark 4. Again, when the considered class of TVGs is recurring, the definition of closure
can be slightly simplified. If A is a distributed algorithm, C a recurring TVG class, V a set
of processes, and S a set of configurations of A for V , we have that S is closed in C if for
every G ∈ C with set of processes V and every configuration γ ∈ S, every execution of A in
G starting from γ only contains configurations of S.

Self-stabilizing Leader Election. The leader election problem consists in distinguishing
a single process in the system. In identified networks, the election usually consists in making
the processes agree on one of the identifiers held by processes. The identifier of the elected
process is then stored at each process p in an output variable, noted here lid(p).

In the following, we call fake ID any value v ∈ IDSET (recall that IDSET is the
definition domain of the identifiers) such that v is not assigned as a process identifier in the
system, i.e., there is no process p ∈ V such that id(p) = v. In the self-stabilizing context, the
output variables lid may be initially corrupted; in particular some of them may be initially
assigned to fake IDs. Despite such fake IDs, the goal of a self-stabilizing algorithm is to
make the system converge to a configuration from which a unique process is forever adopted
as leader by all processes, i.e., ∃p ∈ V such that ∀q ∈ V, lid(q) = id(p) forever. Hence, the
leader election specification SPLE can be formulated as follows: a sequence of configurations
γ0, γ1, . . . satisfies SPLE if and only if ∃p ∈ V such that ∀i ≥ 0, ∀q ∈ V , the value of lid(q)
in configuration γi is id(p). In the sequel, we say that an algorithm is a self-stabilizing leader
election algorithm for the class of infinite TVG C if it is self-stabilizing for SPLE on C.

Knowledge of n and Closure in T CB(∆). We advocate that closure of legitimate
configurations may be cumbersome in T CB(∆) since to achieve it, any (deterministic) self-
stabilizing leader election algorithm somehow requires the exact knowledge of n (the number
of processes in the network), i.e., even partial knowledge such as an upper bound on n is not
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sufficient; see Theorem 6. To that goal, we need to first define what we mean by not exactly
knowing n.

When an algorithm A uses the number of its processes, this means that this information
is given as an input in the local state of each process. So, the definition of the set of possible
local states of each process is adjusted according to the size of the system it belongs to.
Conversely, if an algorithm A does not know its exact size, this means that there are sizes of
systems that cannot be distinguished by part of its processes using their local inputs (and
so their possible local states). More precisely, for a given set of processes V executing A,
there should exist a size k < |V | for which the processes of any k-subset U of V do not share
enough initial information to distinguish whether the system is made of the process-set V or
U . Below, we formalize this intuitive idea by the notion of size-ambiguity.

I Definition 5 (Size-Ambiguity). Let V be a set of processes. Let k ∈ N. A distributed
algorithm A is (k, V )-ambiguous if 0 < k < |V | and for every U ⊂ V such that |U | = k and
every p ∈ U , SU

A(p) = SV
A (p). If there exists V and k such that A is (k, V )-ambiguous, we

simply say that A is size-ambiguous.

Let consider some examples. First, if each process has a constant input whose value is
the number n of processes in the system (i.e., each process "exactly knows n"), then from
our definition, the algorithm is not size-ambiguous since, in this case, the set of possible
local states of any process differs from one size of system to another, at least because of the
input storing n. Conversely, if the processes do not know the exact number of processes but
its parity, then we can choose any set V of at least three processes and any positive value
k < |V | with same parity as |V |: for every subset U of V such that |U | = k, the constant
input giving the parity will be the same at each process of U whether running its algorithm
in a TVG with process-set V or U . Consequently, every process p ∈ U will have the same set
of possible local states in both TVGs; hence the size-ambiguity. Similarly, an algorithm is
size-ambiguous if processes only know an upper bound N ≥ 2 on the number of processes in
the TVG since any set V of at least two processes and any value k such that 0 < k < |V | ≤ N
satisfy the property.

I Theorem 6. Let A be a deterministic self-stabilizing leader election algorithm for T CB(∆)
(with ∆ ≥ 2), V a set of processes, L a set of legitimate configurations of A for V , and
k ∈ N. If A is (k,V )-ambiguous, L is not closed in T CB(∆).

Proof. Let n = |V | and V = {p0, . . . , pn−1}. Assume, by the contradiction, that L is closed
in T CB(∆). Let G = (V,E, T , ρ) be an infinite TVG such that
1. E = {(pi, pj) : pi, pj ∈ V ∧ i 6= j}
2. ∀t ≥ oT , ∀(pi, pj) ∈ E, ρ((pi, pj), t) = 1 if and only if either t is odd, or i /∈ { t

2 mod
n, . . . , ( t

2 + n− k − 1) mod n} and j /∈ { t
2 mod n, . . . , ( t

2 + n− k − 1) mod n}.
Notice first that, ∀t ≥ oT , the snapshot Gt of G is fully connected when t is odd. Consequently,
G belongs to T CB(∆), with ∆ ≥ 2. Then, by definition, we have:

Claim 1: For every x ∈ {0, . . . , n − 1} and every i ≥ 0, in the snapshot Gtx,i of G at
time tx,i = 2((i+ oT ).n+ x), the set V \ {px, . . . , p(x+n−k−1) mod n} is fully connected and
all processes in the set {px, . . . , p(x+n−k−1) mod n} are isolated.

Let γ ∈ L. Let p` ∈ V be the elected process in γ. ∀i ≥ 0, we inductively define
Configuration γi as follows. γ0 = γ. ∀i > 0, γi is the configuration at the end of the first
round of the execution of A in G[t`,i,+∞) starting from γi−1.

Since T CB(∆) is recurring, we can show by induction:
Claim 2: ∀i ≥ 0, γi is legitimate and ∀pj ∈ V , lid(pj) = p` in γi.
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Let V − = V \ {p`, . . . , p(`+n−k−1) mod n}. Let E− = {(pi, pj) : pi, pj ∈ V − ∧ i 6= j}.
Let G− = (V −, E−, T , ρ−) be the infinite TVG having k processes such that ∀t ≥ oT ,
∀(pi, pj) ∈ E−, we have ρ((pi, pj), t) = 1. In other word, G− is a static fully connected
network. Consequently, G− in particular belongs to T CB(∆) with ∆ ≥ 2 (actually, it also
belongs to T CB(∆) with ∆ = 1). Let γ−0 be the configuration of A for V − where each
process has the same state as in the configuration γ0 (such a configuration is well-defined by
definition of (k,V )-ambiguity). We now consider the execution e = γ−0 , . . . , γ

−
i , . . . of A in

G− starting from the configuration γ−0 .
Claim 3: ∀i ≥ 0, the state of each process in V − in γ−i is the same as in γi.
Proof of the claim: By induction on i. The base case i = 0 is trivial. Consider now the

case where i > 0. γ−i−1 is the configuration at the beginning of Round i in e. By induction
hypothesis, the state of each process in V − in γ−i−1 is the same as in γi−1. By Claim 1, each
process of V − has the same neighborhood in G−i−1 and in Gt`,i

. Hence, during Round i they
receive the same set of messages as during the first round of A in G[t`,i,+∞) starting from
γi−1. So, since A is a deterministic, each process of V − behaves exactly as in the first round
of A in G[t`,i,+∞) starting from γi−1. Thus, in the configuration γ−i at the end of Round i,
the state of each process of V − is the same as in γi, and we are done.

By Claims 2 and 3, for every process pj in V −, in every configuration γ−i , we have
lid(pj) = p` /∈ V −, i.e., lid(pj) is a fake ID. Hence, no suffix of e satisfies SPLE . As a
consequence, A is not a self-stabilizing leader election algorithm for T CB(∆) (with ∆ ≥ 2), a
contradiction. J

I Remark 7. The condition ∆ ≥ 2 is necessary in Theorem 6, indeed if ∆ = 1, there is a
trivial deterministic self-stabilizing leader election algorithm for T CB(∆) that does not need
information on n and has a closed set of legitimate configuration: it simply consists of all
processes sending their own IDs at each round; since ∆ = 1, all processes receive the exact
set of all IDs present in the network at each round and just have to choose, e.g., the smallest
one, id(`). The legitimate configurations are then all configurations where every process p
satisfies lid(p) = id(`).

The contrapositive of Theorem 6 is given in Corollary 8. This latter underlines the fact
that, to obtain a closed set of legitimate configurations, any deterministic self-stabilizing
leader election algorithm for T CB(∆), with ∆ ≥ 2, needs the exact knowledge of the number
of processes.

I Corollary 8. Let A be a deterministic self-stabilizing leader election algorithm for T CB(∆)
(with ∆ ≥ 2), V a set of processes, and L a set of legitimate configurations of A for V . If L
is closed in T CB(∆), then A should not be not size-ambiguous.

I Remark 9. The scheme uses in the proof of Theorem 6 can be adapted to handle problems
consisting in computing a constant output whose value depends on the set of processes
(i.e., there exists a set of processes and one of its subsets for which the expected output is
different). For example, one can show that no deterministic self-stabilizing size-ambiguous
algorithm for T CB(∆) can both compute the exact number of processes and achieve the
closure of its legitimate configurations.

Knowledge of n and Closure in T CQ(∆). We show that every execution of a self-
stabilizing algorithm for a recurring specification in T CQ(∆) necessarily converges to a
closed set of (legitimate) configurations; see Theorem 12. Consequently, no deterministic
self-stabilization leader election algorithm for T CQ(∆) can be size-ambiguous (Theorem 14
and Corollary 15); justifying why algorithms presented in Sections 5 and 6 assume the exact
knowledge of n.
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I Definition 10 (Recurring Specification). We say that a specification SP is recurring if for
every sequence of configurations γ0, γ1, . . ., SP (γ0, γ1, . . .)⇒ (∀i ≥ 0, SP (γi, γi+1, . . .)).

Notice that, by definition, SPLE (as most of specifications used in self-stabilization) is a
recurring specification.

I Definition 11 (Sequential Composition). Let G = (V,E, T , ρ) be an infinite TVG and
G′ = (V ′, E′, [a, b], ρ′) be a finite TVG. The sequential composition of G′ and G, noted
G′ B G, is the infinite TVG G′′ = (V ′′, E′′, T ′′, ρ′′) defined as follows: V ′′ = V ∪ V ′,
E′′ = E ∪ E′, T ′′ = [a,+∞), and ∀e ∈ E′′,
∀t ∈ [a, b], ρ′′(e, t) = 1 if and only if e ∈ E′ ∧ ρ′(e, t) = 1, and
∀t > b, ρ′′(e, t) = 1 if and only if e ∈ E ∧ ρ(e, oT + t− b− 1) = 1.

B Property 1. Let G = (V,E, T , ρ) ∈ T CQ(∆) and G′ = (V ′, E′, T ′, ρ′) be a finite TVG. If
V ′ ⊆ V , G′ B G ∈ T CQ(∆).

Proof. Let G” be the TVG G′ B G. By definition V ” = V .
As G ∈ T CQ(∆) we have ∀p, q ∈ V,∀t ≥ oT ∈ T ,∃t′ ≥ t− 1, d̂p,t′(q) ≤ ∆ in G. In detail

∀p, q ∈ V,∀t ≥ oT ∈ T it exists a journey of J (p, q), (e1, t1), (e2, t2), . . . , (ek, tk), in G where
t1 > t′ and tk − t′ ≤ ∆.

As ρ′′(e, t − oT + b + 1) = 1 if and only if ρ(e, t) = 1, the journey (e1, t1 − oT + 1 +
b), (e2, t2− oT + 1 + b), . . . , (ek, tk− oT + 1 + b) exists in G”. So, we have d̂p,t′−oT +1+b(q) ≤ ∆
in G”. Hence, ∀p, q ∈ V,∀t ≥ 0 ∈ T ,∃t′ ≥ t− 1, d̂p,t′(q) ≤ ∆ in G”. G” ∈ T CQ(∆). J

I Theorem 12. Let SP be a recurring specification, A a self-stabilizing algorithm for SP
on T CQ(∆), and V a set of processes. There exists a set of legitimate configurations of A
for V which is closed in T CQ(∆).

Proof. Assume, by the contradiction, that every set of legitimate configurations of A for
V is not closed in T CQ(∆). Consider the largest set L of legitimate configurations of A
for V . Since L is not closed in T CQ(∆), there exists γ0 ∈ L, G = (V,E, T , ρ) ∈ T CQ(∆)
with V as set of processes, and an execution e = γ0, . . . , γi, . . . in G starting from γ0 which
contains a configuration γi /∈ L. By maximality of L, there exists G′ ∈ T CQ(∆) with set
of processes V and an execution e′ in G′ starting from γi such that ¬SP (e′) (otherwise γi

should be included in L). Now, G[oT ,oT +i−1] B G′ ∈ T CQ(∆), by Property 1. Consequently,
γ0, . . . , γi−1, e

′ is an execution of A in T CQ(∆) that starts from γ0 and violates SP since
¬SP (e′) and SP is recurring. By the correctness property of the self-stabilizing definition
(see Remark 2), γ0 cannot be a legitimate configuration, a contradiction. J

I Corollary 13. Let A be any self-stabilizing leader election algorithm for T CQ(∆) and V be
a set of processes. There exists a set of legitimate configurations of A for V which is closed
in T CQ(∆).

Since T CB(∆) ⊆ T CQ(∆), from Corollaries 8 and 13, Theorem 14 and Corollary 15
below.

I Theorem 14. No deterministic self-stabilizing leader election algorithm for T CQ(∆), with
∆ ≥ 2, can be size-ambiguous.

I Corollary 15. No deterministic self-stabilizing leader election algorithm for T CR can be
size-ambiguous.

I Remark 16. Any recurring specification defining a problem of computing a constant
output whose value depends on the set of processes (e.g., n) does not admit a deterministic
self-stabilizing size-ambiguous solution for T CB(∆).
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4 Class T CB(∆) with ∆ known

Overview of Algorithm 1. Each process p maintains two variables: the output lid(p)
will eventually contain the ID of the leader and ttl(p) represents the degree of mistrust of p
in lid(p) and allows to eliminate messages containing fake IDs. The value ttl(p) increases at
each round if p does not receive a message; otherwise it is updated thanks to the received
messages. The value of ttl(p) can increase up to 2∆ − 1. Process p never increases ttl(p)
from 2∆− 1 to 2∆; instead it locally resets and declares itself as the leader: lid(p) := id(p)
and ttl(p) := 0 (see Lines u1-u1).

At each round i, p first sends its leader ID together with its degree of mistrust (Line 2).
Then, p selects the received message 〈id, ttl〉 which is minimum using the lexicographic order
(i.e., the message with the lowest ID, and with the lowest ttl to break ties, see Line 6), if
any. If id is smaller than lid(p), p updates its leader lid(p) (see Lines 7-7). If id = lid(p), it
updates the ttl(p) by taking the smallest value between ttl(p) and ttl (in this way, p may
decrease its mistrust in lid(p), see Lines 8-8). In either case, ttl(p) is then incremented
if lid(p) 6= id(p). Finally, if lid(p) ≥ id(p), p systematically resets (see Lines 10-10). If p
believes to be the leader at the end of Round i (i.e., lid(p) = id(p)), then it sends its own ID
together with a degree of mistrust 0 at the beginning of the next round, i+ 1.

Eventually, the elected process is the process of lowest ID, `. Once elected, ` sends
〈id(`), 0〉 at each round and since the temporal diameter is upper bounded by ∆, all processes
will regularly receive messages 〈id(`), d〉, with d ≤ ∆ < 2∆ (since ∆ ∈ N∗). Consequently,
they will no longer reset, ensuring that ` will remain the leader forever.

Algorithm 1: Self-stabilizing leader election for T CB(∆), for each process p.
Inputs:

∆ ∈ N∗ : upper bound on the temporal diameter
id(p) ∈ IDSET : ID of p

Local Variables:
lid(p) ∈ IDSET : ID of the leader
ttl(p) ∈ {0, . . . , 2∆− 1} : degree of mistrust in lid(p)

Macros:
updateT T L(v):

u1: if v ≥ 2∆ then lid(p) := id(p); ttl(p) := 0 // Reset
u2: else if lid(p) 6= id(p) then ttl(p) := v

1: Repeat Forever
2: SEND(〈lid(p), ttl(p)〉)
3: mailbox := RECEIVE()
4: if mailbox = ∅ then updateT T L(ttl(p) + 1)
5: else
6: 〈lid, ttl〉 := min{messages in mailbox}
7: if lid<lid(p) then lid(p) := lid; updateT T L(ttl + 1)
8: else if lid=lid(p) then updateT T L(min(ttl(p), ttl)+1)
9: else updateT T L(ttl(p) + 1)

10: if lid(p) ≥ id(p) then lid(p) := id(p); ttl(p) := 0 // Reset

A process p has a legitimate state iff lid(p) = id(`), ttl(p) ≤ ∆, and p = `⇒ ttl(p) = 0.
We define a legitimate configuration of Algorithm 1 as any configuration where every process
has a legitimate state.

As the algorithm 1 is size-ambiguous, the legitimate set is not closed (corollary 8).
Self-stabilization and Complexity. First, by definition of the algorithm, the next remark
follows.
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I Remark 17. Since the end of the first round, ∀p ∈ V , we have lid(p) ≤ id(p) ∧ (lid(p) =
id(p)⇒ ttl(p) = 0).

I Lemma 18. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, ∀p ∈
V, lid(p) = f ⇒ ttl(p) ≥ i− 1.

Proof. By induction on i: the base case, i = 1 is trivial since by definition ttl(p) ≥ 0. For
the induction step, if i > 1, by induction hypothesis, ∀p ∈ V, lid(p) = f ⇒ ttl(p) ≥ i− 2
at the beginning of Round i− 1. Notice that a process p can only change the value of lid(p)
to f if p receives a message containing f .

Let p ∈ V such that lid(p) = f at beginning of Round i. There are two cases to consider.
(1) If lid(p) = f at the beginning of the Round i− 1, either p increments the value of

ttl(p) during Round i − 1 (Line 4, 8, or 9), or p sets ttl(p) to t+ 1 such that p received a
message m = 〈f, t〉 from a neighbor q at Round i− 1 (Line 7 or 8). In the latter case, at the
beginning of Round i− 1, lid(q) = f and ttl(q) = t, and, by induction hypothesis, t ≥ i− 2.
In both cases, ttl(p) ≥ i− 1 at the beginning of Round i.

(2) If lid(p) 6= f at the beginning of Round i− 1, p receives a message m = 〈f, t〉 from
some neighbor q. Similarly to Case (1), ttl(p) ≥ i− 1 at the beginning of Round i. J

Note that Lemma 18 implies that for every i > 0 and every fake ID f , ∀p ∈ V, lid(p) = f ⇒
ttl(p) ≥ i at the end of Round i. We define a quasi-legitimate configuration of Algorithm 1
as any configuration where lid(`) = id(`) and ttl(`) = 0 and there is no fake ID in the system
(i.e., ∀p ∈ V , lid(p) is not a fake ID).

I Corollary 19. At the end of Round 2∆, the configuration is quasi-legitimate.

Proof. By Lemma 18 and since the maximum value of ttl is 2∆−1, we have ∀p ∈ V , lid(p) is
not a fake ID at the end of Round 2∆. Moreover, by definition, id(`) is the smallest non-fake
ID. So, ∀p ∈ V , lid(p) ≥ id(`) at the end of Round 2∆. This is in particular true for process
`: lid(l) ≥ id(`) at the end of Round 2∆. By Remark 17, we conclude that lid(`) = id(`)
and ttl(`) = 0 at the end of Round 2∆ (n.b., 2∆ > 1 since ∆ ∈ N∗). J

The proof of the next lemma consists in showing that for every set of processes V , the
set of quasi-legitimate configuration of Algorithm 1 for V is closed in T CB(∆).

I Lemma 20. Let e be an execution of Algorithm 1 in an arbitrary TVG that starts from a
quasi-legitimate configuration. The configuration reached at the end of every round of e is
quasi-legitimate.

Proof. Consider any step from γ to γ′ such that γ is quasi-legitimate. First, since γ contains
no fake ID, no message containing a fake ID can be sent in the step from γ to γ′, and γ′
contains no fake ID too. Moreover, id(`) is the smallest non-fake ID. So, ∀p ∈ V , lid(p) ≥ id(`)
in γ′. By Remark 17, we conclude that lid(`) = id(`) and ttl(`) = 0 in γ′. Hence, γ′ is
quasi-legitimate. J

I Remark 21. Every legitimate configuration is also quasi-legitimate.

I Lemma 22. Let G be a TVG of Class T CB(∆). Let t ≥ oT . Let e be an execution
of Algorithm 1 in G[t,+∞) starting in a quasi-legitimate configuration. For every i ≥ 0,
d ≥ 0, every process p such that d̂`,t+i−1(p) ≤ d satisfies: ∀j ∈ {1, . . . ,∆− d̂`,t+i−1(p) + 1},
lid(p) = id(`) and ttl(p) ≤ d̂`,t+i−1(p) + j − 1 at the beginning of Round

(
i+ j + d̂`,t+i−1(p)

)
of e.
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Proof. By induction on d. The base case occurs if d = 0 and some p ∈ V satisfies
d̂`,t+i−1(p) = d, then p = `. Then, it is immediate since the initial configuration is quasi-
legitimate (by hypothesis) and every subsequent configuration is quasi-legitimate too (by
Lemma 20).

For the induction step, consider any process p such that d̂`,t+i−1(p) ≤ d with d > 0. If
d̂`,t+i−1(p) < d, then the property is direct from the induction hypothesis. Consider now the
case where d̂`,t+i−1(p) = d. There is a journey J ∈ J (`, p) such that departure(J ) > t+i−1
and arrival(J ) = d + t + i − 1. We denote J by {(e0, t0), (e1, t1), . . . , (ek, tk)} where
tk = d+ t+ i− 1. Let q be the process such that ek = (q, p). By definition, d̂`,t+i−1(q) <
d̂`,t+i−1(p) = d. Hence, by induction hypothesis, ∀j ∈ {1, . . . ,∆− d̂`,t+i−1(q) + 1}, lid(q) =
id(`) and ttl(q) ≤ d̂`,t+i−1(q) + j − 1 at the beginning of Round i + j + d̂`,t+i−1(q). Let
j′ = d̂`,t+i−1(p) − d̂`,t+i−1(q). Since j′ ∈ {1, . . . ,∆ − d̂`,t+i−1(q) + 1}, we can instantiate
the previous property with j′. We obtain lid(q) = id(`) and ttl(q) ≤ d̂`,t+i−1(q) + j′ − 1 =
d̂`,t+i−1(p)−1 = d−1 at the beginning of Round i+ j′+ d̂`,t+i−1(q) = i+ d̂`,t+i−1(p) = i+d.
Now, since ρ(ek, tk) = 1 and tk = d + t + i − 1, q sends a message 〈id(`), tllq〉 to p during
Round i + d with tllq ≤ d − 1, where tllq is the value of ttl(q) at the beginning of Round
i+ d.

By definition of id(`) and since there is no fake IDs (Lemma 20) the minimum message
received by p in Round i + d is 〈id(`), ttl〉 with ttl ≤ tllq ≤ d − 1. From the algorithm,
lid(p) = id(`) and ttl(p) = ttl + 1 ≤ d at the end of Round i+ d, and so at the beginning of
Round i+d+1. Then, by induction on j ∈ {1, . . . ,∆−d+1}, ttl(p) ≤ d+j−1 ≤ ∆ ≤ 2∆−1
at the beginning of Round i + d̂`,t+i−1(p) + j since ttl(p) is at most incremented by one
during the previous round (see Lines 4-9) and p does not reset (Lines u1-u1). So, lid(p)
remains equal to id(`) at the beginning of Round i+ d̂`,t+i−1(p) + j. J

I Lemma 23. Let G be a TVG of Class T CB(∆). Let t ≥ oT . Let e be an execution of
Algorithm 1 in G[t,+∞) starting in a quasi-legitimate configuration. For every r ≥ ∆, the
configuration at the end of Round r in e is legitimate.

Proof. First, remark that for every j > 0, the communication network at Round j in e is
Gt+j−1.

Let r ≥ ∆ ∈ N∗. We now apply Lemma 22 to d = ∆ so that every process p is taken into
account by the claim: with i = r −∆, j = ∆− d̂`,t+i−1(p) + 1, we obtain that lid(p) = id(`)
and ttl(p) ≤ ∆ at the beginning of Round r + 1; in addition, ttl(`) = 0 at the beginning of
Round r+1, by Remark 17. Hence, the configuration at the end of Round r is legitimate. J

As direct consequence of Corollary 19 and Lemma 23, we obtain the convergence.

I Corollary 24. Let G be a TVG of T CB(∆). For every i ≥ 3∆, at the end of Round i of
any execution of Algorithm 1 in G, the configuration is legitimate.

I Lemma 25. Let G be a TVG of T CB(∆). Let t ≥ oT . Let e be an execution of Algorithm 1
for G[t,+∞) starting in a legitimate configuration. For every r ∈ {1, ...,∆−1}, the configuration
e has reached at the end of Round r is such that for every process p, lid(p) = id(`) and
ttl(p) ≤ ∆ + r.

Proof. First, the lemma trivially holds for ∆ ≤ 1. So, we now show by induction on r that
the lemma holds in the case where ∆ > 1. For the base case, at the beginning of Round 1,
∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ as the first configuration of e is legitimate. According
to the algorithm, at the end of Round 1, ∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ + 1 < 2∆
(since ∆ > 1).
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Induction step: Let i ∈ {2, ...,∆−1}. At the end of Round i−1, hence at the beginning
of Round i, ∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ + i− 1 < 2∆− 1, by induction hypothesis.
According to the algorithm, and since ∆ + i < 2∆, no process can reset. Hence, at the end
of Round i, ∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ + i, and we are done. J

By Remark 2 (page 6), the correctness part of the self-stabilization of our algorithm can
be established as follows.

I Theorem 26. For every G = (V,E, T , ρ) ∈ T CB(∆), for every legitimate configuration of
Algorithm 1 for V γ, for the execution of Algorithm 1 in G starting from γ, SPLE holds.

Proof. Let e = γ0...γi... be an execution of Algorithm 1 in G such that γ0 is legitimate. First,
as γ0 is legitimate, we have lid(p) = id(`), for every process p (by definition). Then, by
Lemma 25, for every r ∈ {1, ...,∆− 1}, at the end of Round r, i.e., in Configuration γr, we
have lid(p) = id(`), for every process p. Finally, since γ0 is quasi-legitimate (by definition,
every legitimate configuration is also quasi-legitimate), Lemma 23 applies: for every r ≥ ∆,
the configuration γr at the end of Round r is legitimate, so for every process p lid(p) = id(`)
in γr. Hence, SPLE(e) holds. J

By Corollary 24 and Theorem 26, follows.

I Corollary 27. Algorithm 1 is a self-stabilizing leader election algorithm for T CB(∆). Its
stabilization time is at most 3∆ rounds. It requires O(log(n + ∆)) bits per process and
messages of size O(log(n+ ∆)) bits.

5 Class T CQ(∆) with ∆ and n known

Overview of Algorithm 2. Each process p uses a variable members(p) to collect IDs.
Actually, members(p) is a (FIFO) queue containing at most n pairs 〈id, t〉, where id is an
identifier and t is a timestamp, i.e., an integer value less than or equal to ∆. (We denote by
members(p)[id] the timestamp associated to the identifier id belonging to members(p).)

At each round i, p sends all pairs 〈id, t〉 of members(p) such that t < ∆ at the end of
Round i − 1 (Line 2). (The timestamps allow to eventually remove all fake IDs.) Then,
p updates members(p) by calling function insert on each received pair 〈id, t〉 such that
id 6= id(p) (Lines 4-5).

The insertion function insert works as follows: if id already appears in members(p), then
the old pair tagged with id is removed first from the queue (Lines i1-i1), and in either case,
〈id, t〉 is appended at the tail of the queue (Lines i1 and i4). In particular, since the size of
members(p) is limited, if the queue is full, its head is removed to make room for the new
value (Lines i3-i3). Using this FIFO mechanism, initial spurious values eventually vanish
from members(p).

After all received pairs have been managed, the timestamps of all pairs in the queue
are incremented (Line 6-6) and then, 〈id(p), 0〉 is systematically inserted at the tail of the
queue (Line 7). This mechanism ensures two main properties. First, every timestamp
associated to a fake ID in a variable members is eventually forever greater than or equal
to ∆; and consequently, eventually no message containing fake IDs are sent. Second, by
definition of T CQ(∆), for every two distinct processes p and q, there are journeys of length
at most ∆ infinitely often, so each process p regularly receives messages containing id(q)
with timestamps smaller than ∆. Thus, eventually members(p) exactly contains all IDs of
the networks. Now, at the end of each round, p updates its leader variable with the smallest
ID in members(p) (Line 7). Hence, the process of lowest ID, `, is eventually elected.
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Algorithm 2: Self-stabilizing leader election for T CQ(∆) with ∆ known, for each
process p.

Inputs:
n ∈ N : number of processes
∆ ∈ N∗ : recurrent bound on the temporal distance between processes
id(p) ∈ IDSET : ID of p

Local Variables:
members(p) : queue of at most n elements contains pairs 〈id, t〉 ∈ IDSET × {0, . . . , ∆}
lid(p) ∈ IDSET : ID of the leader

Macros:
insert(p, 〈id, t〉):

i1: if ∃t′,
〈
id, t′

〉
∈ members(p) then remove

〈
id, t′

〉
from members(p) ; push

〈
id, min(t, t′)

〉
at the tail of members(p)

i2: else
i3: if |members(p)| = n then remove the head of members(p)
i4: push 〈id, t〉 at the tail of members(p)

1: Repeat Forever
2: SEND(〈id, t〉 ∈ members(p) : t < ∆)
3: mailbox := RECEIVE()
4: forall pair 〈id, t〉 in a message of mailbox do
5: if id 6= id(p) then insert(p, 〈id, t〉)
6: forall 〈id, t〉 ∈ members(p) : t < ∆ do members(p)[id] + +
7: insert(p, 〈id(p), 0〉) ; lid(p) := min{id : 〈id,_〉 ∈ members(p)}

Self-stabilization.

I Lemma 28. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, the following
property holds: ∀p ∈ V if f is in members(p), then members(p)[f ] ≥ i− 1.

Proof. By induction on i ≥ 1. The base case, i = 1, is trivial since members(p)[f ] is a
natural integer. For the induction step, assume that i > 1. By induction hypothesis, at the
beginning of Round i−1, we have: ∀p ∈ V , if f is inmembers(p), thenmembers(p)[f ] ≥ i−2.
Let p ∈ V such that f is in members(p) at the beginning of Round i. There are two cases to
consider.

(1) Assume that f /∈ members(p) at the beginning of Round i− 1. So, p received the pair
〈f, t〉 during Round i−1 with t ≥ i−2, and then 〈f, tM〉 is added tomembers(p) with tM = t

by executing either Line i1 or i4. In both cases, after executing Line 6, members(p)[f ] ≥ i−1,
and so is at the beginning of Round i.

(2) Assume that f is in members(p) at the beginning of Round i − 1. There are two
cases: (i) p does not receive any pair 〈f,_〉 during Round i − 1. So, by executing Line 6
and by induction hypothesis, members(p)[f ] ≥ i − 1 at the beginning of Round i. (ii) p
receives some pair 〈f, t〉 during Round i − 1. So, by executing Line i1, members(p)[f ] :=
min(t,members(p)[f ]). Again, by assumption t ≥ i− 2 and members(p)[f ] ≥ i− 2 at the
beginning of Round i − 1. So, in both cases, members(p)[f ]) ≥ i − 1 at the beginning of
Round i. J

Since a process p does not send a pair 〈id, t〉 of members(p) with t ≥ ∆, we have the
following corollary.

I Corollary 29. In any round ∆ + i with i ≥ 1, no process receives a message containing
fake IDs.
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I Lemma 30. ∀p, q ∈ V , if id(q) is inserted into members(p) during Round ∆ + i with
i ≥ 1, id(q) remains into members(p) forever.

Proof. If an ID id is in members(p), it can only be removed from members(p) if function
insert(p, 〈id′, t〉) is called and one of the following two situations occurs:

Line i1 if id = id′ but in this case id is immediately added at the tail of members(p)
(Line i1),
or Line i3 if id 6= id′, id is the head of the queue, and the size of members(p) is already n.
After id is inserted (at tail) into members(p), it requires the insertion of n different IDs

that are not into members(p) (and that are different from id) in order to get id at the head
of the queue and remove it.

If id is inserted during Round (∆ + i), it is not a fake ID and the only other IDs that
can be inserted into members(p) are real IDs of processes in V since p will not receive any
fake ID (Corollary 29). Thus, at most n− 1 IDs different than id can be inserted after the
insertion of id. Hence, id cannot be removed from members(p). J

By definition of class T CQ(∆), for every pair of processes p and q, there exists t ≥ ∆
such that d̂q,oT +t−1(p) ≤ ∆. We denote by t(q, p) the minimum value t that satisfies the
above property, namely t(q, p) represents the first date after ∆ + oT − 1 (i.e., after ∆ rounds)
from which there exists a temporal journey from q to p of length no more than ∆.

I Lemma 31. ∀p, q ∈ V , by the end of Round t(q, p) + ∆, id(q) is in members(p) forever.

Proof. Let q ∈ V . Remark, first, that id(q) ∈ members(q) ∧members(q)[q] = 0 by the end
of Round 1, by definition of Algorithm 2, see Line 7.

Let p ∈ V . If q = p then using the remark above and since t(q, p)+∆ ≥ 1, we are done. We
now assume q 6= p. As d̂q,oT +t(q,p)−1(p) ≤ ∆, there exists a journey J = {(e1, t1), ..., (ek, tk)}
such that t1 > oT + t(q, p)− 1, tk = t(q, p) + d̂q,oT +t(q,p)−1(p) + oT − 1 ≤ t(q, p) + ∆ + oT − 1
and for every i ∈ {1, ..., k}, ei = (pi−1, pi) with p0 = q and pk = p. To simplify the notations,
let τi = ti− oT + 1 for every i in {1, ..., k} such that the edge ei = (pi−1, pi) is present during
Round τi. We have τ1 > t(q, p), τk ≤ t(q, p) + ∆, and τi − τ1 < ∆.

We prove (by induction on i) that for all i ∈ {1, ..., k}
id(q) is forever in members(pi) by the end Round τi

members(pi)[q] ≤ τi − τ1 + 1 at the end of Round τi.
Base case: For i = 1, the edge (q, p1) exists at Round τ1. Using the first remark in

the proof, at the beginning of Round τ1, since τ1 > t(q, p) ≥ ∆ ≥ 1, we have id(q) ∈
members(q) ∧ members(q)[q] = 0. Hence, at Round τ1, q sends 〈id(q), 0〉 in its message
to p1. Following the algorithm, p1 insert id(q) in members(p1) during Round τ1 > ∆. So,
id(q) is forever in members(p1) by the end of Round τ1; see Lemma 30. Still following the
algorithm, members(p1)[q] = 1 at the end of Round τ1, p1, and we are done.

Induction Step: Let i > 1. We assume the result holds for i − 1: id(q) is forever in
members(pi−1) by the end of Round τi−1 and members(pi−1)[q] ≤ τi−1 − τ1 + 1 at the end
of Round τi−1. Hence, at the beginning of Round τi (and so, at the end of Round τi − 1), we
have: id(q) in members(pi−1) and as the timestamps are at most incremented by one at the
end of each round, members(pi−1)[q] ≤ τi−1 − τ1 + 1 + τi − 1− τi−1 = τi − τ1 < ∆.

During Round τi, the edge ei = (pi−1, pi) is present and pi−1 sends in its message to pi a
pair 〈id(q), tq〉 such that tq ≤ τi − τ1 since τi − τ1 < ∆. As pi receives it, it inserts id(q) in
members(pi) in Round τi. Since τi > τ1 > ∆, Lemma 30 ensures that id(q) remains forever
in members(pi) by the end of Round τi. Moreover, following the algorithm, at the end of
Round τi, we have members(pi)[q] ≤ τi − τ1 + 1.

With i = k, id(q) is forever in members(p) by the end Round τk ≤ t(q, p) + ∆. J
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Let V be a set of processes. We define a legitimate configuration of Algorithm 2 for V
as any configuration of Algorithm 2 for V where for every process p, we have lid(p) = id(`)
and {id : 〈id,_〉 ∈ members(p)} = {id(q) : q ∈ V }. Remark that the set of legitimate
configurations of Algorithm 2 for V is closed in T CQ(∆). Indeed, by definition of the
algorithm, no message containing a fake ID can be sent from such a configuration. Hence, the
set members(p) of every process p remains constant and lid(p) is computed as the minimum
of this set, i.e. id(`), forever. Hence the following lemma.

I Lemma 32. Any execution of Algorithm 2 that starts from a legitimate configuration in
an arbitrary TVG satisfies SPLE.

I Lemma 33. ∃t ≥ ∆ such that the configuration reached at the end of Round t + ∆ is
legitimate.

Proof. Corollary 29 ensures that for every i > ∆ and p ∈ V , no fake ID is inserted in
members(p) at Round i. We let T = max{t(q, p) : q, p ∈ V }. By definition, T ≥ ∆. By
Lemma 31, we have that for every p, q ∈ V , members(p) contains id(q) at the end of Round
T + ∆. Let p ∈ V . As the size of members(p) is bounded by the number n of processes (see
Line i3), members(p) is exactly the set of IDs of every process. By Line 7, we also have
lid(p) = id(`). J

By Lemmas 32-33, follows.

I Theorem 34. Algorithm 2 is a self-stabilizing leader election algorithm for T CQ(∆). It
requires O(n(log(n+ ∆))) bits per process and messages of size O(n(log(n+ ∆))) bits.

Speculation. Stabilization time cannot be bounded in T CQ(∆). Indeed, even if there
exist infinitely many journeys of length bounded by ∆ between any pair of distinct processes
and ∆ is known by all processes, the time between any two consecutive such journeys is
unbounded, by definition of T CQ(∆). Consequently, we cannot bound the time necessary
to route any piece of information from some process p to another process q, making the
stabilization time unbounded in any case.

We now show that Algorithm 2 is speculative in the sense that its stabilization time
cannot be bounded in T CQ(∆), but in a more favorable case, actually in T CB(∆) ⊆ T CQ(∆),
its stabilization time is at most 2∆ rounds.

Since T CB(∆) ⊆ T CQ(∆) the previous proof holds for T CB(∆). Yet, for every processes
p and q, t(q, p) is exactly ∆ in this class of TVGs. Hence in the proof of Lemma 33, we
have T = max{t(q, p) : q, p ∈ V } = ∆; this ensures that in Class T CB(∆), the configuration
reached at the end of Round 2∆ is legitimate.

I Theorem 35. The stabilization time of Algorithm 2 in Class T CB(∆) is at most 2∆
rounds.

6 Class T CR with n known

Overview of Algorithm 3. Similarly to Algorithm 2, each process p uses a variable
members(p) to collect IDs. However, this time, members(p) is a map that can contain up
to n IDs, each of them being associated with a timestamp (we denote by members(p)[id]
the timestamp associated to the identifier id belonging to members(p)).

At each round i, p sends the content ofmembers(p) (Line 2). Then, p updatesmembers(p)
by calling function insert on each received pair 〈id, t〉 such that id 6= id(p) (Lines 4-5). The
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function insert works as follows: if id already appears in members(p), then the associated
timestamp is updated by keeping the smallest value (Line i1). Otherwise, p tries to insert
〈id, t〉 in the map. Actually, 〈id, t〉 is inserted in the map if the map is not full (Line i2) or t
is smaller than the greatest timestamp tM in the map (Lines i3-i5). In this latter case, 〈id, t〉
overwrites any value having this timestamp in members(p) (Lines i5-i5). This overwriting
mechanism allows to eventually remove all fake IDs from members(p), since their timestamps
regularly increase. After members(p) has been updated, all timestamps of members(p) are
incremented (Lines 6-6) and then, 〈id(0), 0〉 is systematically inserted in the map (Line 7).

Actually, Algorithm 2 guarantees two main properties. First, at the beginning of any
round i, any timestamp associated to a fake ID is greater than or equal to i−1; see Lemma 36.
Second, by definition of T CR, at any point in time, every process can reach all the others
through a journey. The key property is then to show that if some broadcast initiated by
process p reaches a process q at Round i, then the value of the timestamp in the message is
small enough to ensure the insertion of id(p) into members(q); see Lemma 37. These two
properties ensure that eventually members(p) exactly contains all IDs of the network. Now,
at the end of each round, p updates its leader variable with the smallest ID in members(p)
(Line 7). Hence, the process of lowest ID, `, is eventually elected.

Algorithm 3: Self-stabilizing leader election for T CR, for each process p.
Inputs:

n ∈ N : number of processes
id(p) ∈ IDSET : ID of p

Local Variables:
members(p) : map of size at most n; contains pairs 〈id, t〉 ∈ IDSET ×N
lid(p) ∈ IDSET : ID of the leader

Macros:
max(p):

m1: if |members(p)| < n then return ⊥
m2: else return 〈id, t〉 ∈ members(p) with maximum timestamp t

insert(p, 〈id, t〉):
i1: if 〈id, _〉 ∈ members(p) then members(p)[id] := min(t, members(p)[id])
i2: else if max(p) = ⊥ then add 〈id, t〉 in members(p)
i3: else
i4: 〈idM, tM〉 := max(p)
i5: if t < tM then remove 〈idM, tM〉 from members(p); add 〈id, t〉 in members(p)

1: Repeat Forever
2: SEND(〈members(p)〉)
3: mailbox := RECEIVE()
4: forall pair 〈id, t〉 in a message of mailbox do
5: if id 6= id(p) then insert(p, 〈id, t〉)
6: forall id : 〈id, _〉 ∈ members(p) do members(p)[id] + +
7: insert(p, 〈id(p), 0〉); lid(p) := min{id : 〈id,_〉 ∈ members(p)}

Self-stabilization. The lemma below and its proof are identical to Lemma 28 of Algorithm 2,
page 14.

I Lemma 36. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, the following
holds: ∀p ∈ V , if f is in members(p), then members(p)[f ] ≥ i− 1.

I Lemma 37. For every i ≥ 1, at the end of Round i, the following property holds: ∀p, q ∈ V ,
if d̂p,oT (q) ≤ i− 1, then id(p) is in members(q) and members(q)[p] ≤ i− 1.
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Proof. By induction on i ≥ 1. For the base case, in Round 1, p tries to insert 〈p, 0〉 in
members(p) (Line 7). Since the timestamp associated with every other ID in members(p)
has been incremented beforehand (line 6), 〈p, 0〉 ∈ members(p) by the end of the first round.

Induction step: Assume that i > 1. By induction, at the end of Round i − 1, we
have, for every p, q ∈ V such that d̂p,oT (q) ≤ i − 2, that id(p) is in members(q) and
members(q)[p] ≤ i − 2. Let p, q ∈ V such that d̂p,oT (q) ≤ i − 1. There are two cases to
consider.

(1) If d̂p,oT (q) ≤ i − 2 then, by induction hypothesis, at the end of Round i − 1, id(p)
is in members(q) and members(q)[p] ≤ i − 2. During Round i, id(p) cannot be removed
from members(q). Indeed, by Lemma 36, the timestamps associated to fake IDs are greater
than or equal to i − 1. Now, timestamps are incremented during Round i (Line 6), thus
members(q)[p] ≤ i− 1 at the end of Round i.

(2) If d̂p,oT (q) = i−1 then ∃r ∈ V such that d̂p,oT (r) ≤ i−2. This means that the arrival
of the journey from p to q which provides d̂p,oT (q) occurs at time oT + d̂p,oT (q) = oT + i− 1.
Hence, (r, q) is present at the beginning of Round i and so q receives a message from r during
Round i. By induction hypothesis, at the end of Round i− 1, id(p) is in members(r) and
members(r)[p] ≤ i− 2. Hence, q receives the pair 〈p, tM〉 with tM ≤ i− 2 during Round i.
For the same reasons as in Case (1), this pair is not rejected but inserted into members(q).
Then, timestamps are incremented (Line 6), hence members(q)[p] ≤ i − 1 at the end of
Round i. J

Let V be a set of processes. Similarly to Algorithm 3, we define a legitimate configuration
of Algorithm 3 for V as any configuration of Algorithm 3 for V where for every process p, we
have lid(p) = id(`) and {id : 〈id,_〉 ∈ members(p)} = {id(q) : q ∈ V }. First, by definition
of the algorithm, no message containing a fake ID can be sent from such a configuration. So,
from any legitimate configuration, the set members(p) of every process p is constant and
min{id : 〈id,_〉 ∈ members(p)} = id(`) forever. Hence, the set of legitimate configurations
Algorithm 3 for V is closed in T CR and so we have:

I Lemma 38. Any execution of Algorithm 3 that starts from a legitimate configuration in
an arbitrary TVG satisfies SPLE.

I Theorem 39. Algorithm 3 is a self-stabilizing leader election algorithm for T CR.

Proof. Let p ∈ V . By definition of T CR, ∀q ∈ V , ∃J ∈ J (p, q) such that departure(J ) > oT .
The temporal length of J is finite. Thus, ∃ δ(p) ∈ N such that ∀q ∈ V , d̂p,oT (q) ≤ δ(p).
Thus, at the end of Round δ(p) + 1, ∀q ∈ V , id(p) is in members(q) by Lemma 37. Since
members(q) contains at most n entries, after maxp∈V δ(p) + 1 rounds, members(q) contains
the ID of every process and no fake ID. So q chooses id(`) as leader at the end of Round
maxp∈V δ(p) + 1. Hence, the system is in a legitimate configuration at the end of this Round
and, by Lemma 38, we are done. J

Speculation. Similarly to T CQ(∆), stabilization time cannot be bounded in T CR (n.b.,
T CQ(∆) ⊆ T CR). We now show that Algorithm 3 is speculative in the sense that we
cannot bound its stabilization time in T CR, but in a more favorable case, precisely in
T CB(∆) ⊆ T CR, its stabilization time is at most ∆ + 1 rounds, despite ∆ being unknown.

The proof of the theorem below is the same as the one of Theorem 39 but as we consider
a TVG in T CB(∆), for every p ∈ V , δ(p) ≤ ∆. Hence the system reaches a legitimate
configuration at the end of Round maxp∈V δ(p) + 1 = ∆ + 1.

I Theorem 40. The stabilization time of Algorithm 3 in T CB(∆) is at most ∆ + 1 rounds.
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7 Conclusion

We initiated research on self-stabilization in highly dynamic message-passing systems by
proposing self-stabilizing leader election algorithms for three major classes of time-varying
graphs: T CB(∆), T CQ(∆), and T CR. It is worth noticing that, for every n ≥ 0, the
impossibility result of Braud-Santoni et al. [7] applies to the class of always connected over
the time TVGs of n processes which is actually included and so stronger than T CR, as well
as T CB(∆) and T CQ(∆), for every ∆ ≥ n − 1. Precisely, this result forbids the existence
of silent self-stabilizing solutions for all static problems, including leader election. Actually,
silent self-stabilization additionally requires all processes to eventually keep their local state
constant [14]. Hence, to circumvent this impossibility result, we had to propose non-silent,
a.k.a., talkative solutions [5], i.e., in our algorithms, a small part of the local state of each
process (namely, the timestamps) is modified infinitely often.

References
1 Karine Altisen, Stéphane Devismes, Anaïs Durand, and Franck Petit. Gradual stabilization.

JPDC, 123:26–45, 2019.
2 Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, and Shlomi Dolev. Self-stabilization by

local checking and global reset (extended abstract). In Distributed Algorithms, 8th International
Workshop, WDAG, pages 326–339, 1994.

3 Matthieu Barjon, Arnaud Casteigts, Serge Chaumette, Colette Johnen, and Yessin M. Neggaz.
Maintaining a distributed spanning forest in highly dynamic networks. Comput. J., 62(2):231–
246, 2019.

4 Joffroy Beauquier and Synnöve Kekkonen-Moneta. On FTSS-solvable distributed problems.
In PODC, page 290, 1997.

5 Lélia Blin and Sébastien Tixeuil. Compact deterministic self-stabilizing leader election on a
ring: the exponential advantage of being talkative. Distributed Computing, 31(2):139–166,
2018.

6 Marjorie Bournat, Ajoy K. Datta, and Swan Dubois. Self-stabilizing robots in highly dynamic
environments. Theor. Comput. Sci., 772:88–110, 2019.

7 Nicolas Braud-Santoni, Swan Dubois, Mohamed-Hamza Kaaouachi, and Franck Petit. The
next 700 impossibility results in time-varying graphs. IJNC, 6(1):27–41, 2016.

8 Arnaud Casteigts, Serge Chaumette, and Afonso Ferreira. Characterizing topological as-
sumptions of distributed algorithms in dynamic networks. In SIROCCO, volume 5869, pages
126–140, 2009.

9 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. Inter. J. of Parall., Emergent and Dist. Systems, 27(5):387–408,
2012.

10 Bernadette Charron-Bost and Shlomo Moran. The firing squad problem revisited. In STACS,
pages 20:1–20:14, 2018.

11 Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization with r-operators
revisited. J. of Aerospace Comp., Inf., and Comm., 3(10):498–514, 2006.

12 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

13 Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
14 Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory requirements for silent

stabilization. Acta Inf., 36(6):447–462, 1999.
15 Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems.

Chicago Journal of Theoretical Computer Science, 1995.
16 Shlomi Dolev, Amos Israeli, and Shlomo Moran. Resource bounds for self-stabilizing message-

driven protocols. SIAM J. Comput., 26(1):273–290, 1997.



20 Self-stabilizing Systems in Spite of High Dynamics

17 S. Dubois and R. Guerraoui. Introducing speculation in self-stabilization: an application to
mutual exclusion. In PODC, pages 290–298, 2013.

18 Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea. A connectivity
model for agreement in dynamic systems. In Euro-Par, pages 333–345, 2015.

19 R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong. Zyzzyva: Speculative byzantine
fault tolerance. ACM Trans. Comp. Syst., 27:1–39, 2009.

20 Mikhail Nesterenko and Anish Arora. Dining philosophers that tolerate malicious crashes. In
ICDCS, pages 191–198, 2002.

21 George Varghese. Self-stabilization by counter flushing. SIAM Journal on Computing, 30(2):486–
510, 2000.

22 B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in
dynamic networks. IJFCS, 14(02):267–285, 2003.


	Introduction
	Preliminaries
	Self-stabilization in Highly Dynamic Environments
	Class TCB() with  known
	Class TCQ() with  and n known
	Class TCR with n known
	Conclusion

