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Abstract
We initiate research on self-stabilization in highly dynamic message-passing systems. We first
reformulate the definition of self-stabilization to accommodate with the highly dynamic context.
Then, we address the self-stabilizing leader election problem for three wide classes of time-vaying
graphs (TVGs): the class T CB(∆) of TVGs with temporal diameter bounded by ∆, the class T CQ(∆)
of TVGs with temporal diameter quasi-bounded by ∆, and the class T CR of TVGs with recurrent
connectivity, where T CB(∆) ⊆ T CQ(∆) ⊆ T CR.

In more detail, we present three self-stabilizing leader election algorithms for Classes T CB(∆),
T CQ(∆), and T CR, respectively. The first one stabilizes in at most 3∆ rounds; the stabilization time
of the two others cannot be bounded in general, however we exhibit small time complexity bounds
holding for them in more favorable cases, meaning that these solutions are speculative. Precisely, in
Class T CB(∆), both algorithms stabilize in O(∆) rounds.
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1 Introduction

Context and related work. Starting from an arbitrary configuration, a self-stabilizing
algorithm [13] makes a distributed system reach within finite time a configuration from which
its behavior is correct. Essentially, self-stabilizing algorithms tolerate transient failures, since
by definition these latter last a finite time (as opposed to crash failures, for example) and
their frequency is assumed to be low (as opposed to intermittent failures). Indeed, the
arbitrary initial configuration can be seen as the result of a finite number of transient faults,
and after faults cease, we can expect a sufficiently large time window without any fault so
that the system recovers and then exhibits a correct behavior for a long time.

Even though self-stabilization is not inherently suited to handle other failure patterns,
a.k.a., intermittent and permanent failures, several works show that in many cases self-
stabilization can be still achieved despite such faults occur. Indeed, strong forms of self-
stabilization have been proposed to tolerate permanent failures, e.g., fault-tolerant self-
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stabilization [3] to cope with process crashes, and strict stabilization [21] to withstand
Byzantine failures. Furthermore, several self-stabilizing algorithms, e.g., [11, 12], withstand
intermittent failures such as frequent lost, duplication, or reordering of messages, meaning
their convergence is still effective despite such faults continue to occur in the system. Hence,
even if at the first glance guaranteeing a convergence property may seem to be contradictory
with a high failure rate, the literature shows that self-stabilization may be a suitable answer
even in such cases.

All these aforementioned works assume static communication networks. Nevertheless,
self-stabilizing algorithms dedicated to arbitrary network topologies tolerate, up to a certain
extent, some topological changes (i.e., the addition or the removal of communication links
or nodes). Precisely, if topological changes are eventually detected locally at involved
processes and if the frequency of such events is low enough, then they can be considered as
transient faults. In particular, several approaches, like superstabilization [16] and gradual
stabilization [1], have been proposed to efficiently tolerate topological changes when they are
both spatially and timely sparse. However, these approaches become totally ineffective when
the frequency of topological changes drastically increase, in other words when topological
changes are intermittent rather than transient. Actually, in the intermittent case, the network
dynamics should be no more considered as an anomaly but rather as an integral part of
the system nature. Clearly, many of today’s networks are highly dynamic, e.g., MANET
(Mobile Ad-Hoc Networks), VANET (Vehicular Ad-Hoc Networks), and DTN (Delay-Tolerant
Networks), to only quote a few. Ensuring convergence in such networks regardless the initial
configuration may seem to be very challenging, even impossible in many cases [5]. However,
notice that a recent work [4] deals with the self-stabilizing exploration of a highly dynamic
ring by a cohort of synchronous robots equipped of visibility sensors, moving actuators, yet
no communication capabilities. Yet, self-stabilization still needs to be investigated in the
context of highly dynamic message-passing networks.

Several works aim at proposing a general graph-based model to capture the network
dynamics. In [22], the network dynamics is represented as a sequence of graphs called evolving
graphs. In [8], the topological evolution of the network is modeled by a (fixed) graph where
the nodes represent participating processes and the edges are communication links that may
appear during the lifetime of the network. Each edge is labeled according to its presence
during the lifetime of the network. Such graphs are called Time-Varying Graphs (TVGs, for
short). Still in [8], TVGs are gathered and ordered into classes according to the temporal
characteristics of edge presence. Such taxonomy allows to provide lower and upper bounds
w.r.t. the distributed tasks to be solved.

In highly dynamic distributed systems, an expected property is self-adaptiveness, i.e., the
ability of a system to accommodate with sudden and frequent changes of its environment.
By definition, achieving self-stabilization in highly dynamic networks is a suitable answer to
self-adaptiveness. Speculation [20] is another possible approach for adaptiveness. Roughly
speaking, speculation guarantees that the system satisfies its requirements for all executions,
but also exhibits significantly better performances in a subset of more probable executions.
The main idea behind speculation is that worst possible scenarios are often rare (even
improbable) in practice. So, a speculative algorithm is assumed to self-adapt its performances
w.r.t. the “quality” of the environment, i.e., the more favorable the environment is, the better
the complexity of the algorithm should be. Interestingly, Dubois and Guerraoui [17] have
investigated speculation in self-stabilizing, yet static, systems. They illustrate this property
with a self-stabilizing mutual exclusion algorithm whose stabilization time is significantly
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better when the execution is synchronous.

Contribution. We initiate research on self-stabilization in the context of highly dynamic
message-passing systems. We model the network dynamics using the TVG paradigm.

We first reformulate the definition of self-stabilization to accommodate with the highly
dynamic context. We then propose self-stabilizing leader election algorithms for three wide
classes of TVGs respectively denoted by T CB(∆), T CQ(∆), and T CR. T CB(∆) is the class
of TVGs with temporal diameter bounded by ∆ (introduced in [18]), T CQ(∆) is the class of
TVGs with temporal diameter quasi-bounded by ∆ (introduced in the present paper), and
T CR is the class of TVGs with recurrent temporal connectivity (introduced in [8]). Notice
that, contrary to [4], the three classes studied here never enforce the network to be in a
particular topology at a given time.

In more detail, we present a self-stabilizing leader election algorithm for Class T CB(∆)
with a stabilization time of at most 3∆ rounds. Then, we propose a self-stabilizing leader
election algorithm for Class T CQ(∆) assuming every process knows ∆ and n (the number of
processes). The stabilization time of this algorithm cannot be bounded in T CQ(∆), however
the algorithm is speculative in the sense that its stabilization time in T CB(∆) is at most 2∆
rounds. Finally, we propose a self-stabilizing leader election algorithm for Class T CR, where
∆ is unknown by processes, while n still is. Notice in particular that finding a self-stabilizing
solution in this class was rather challenging, since in this class there is no timeliness guarantee
at all. Again, the stabilization time of the algorithm cannot be bounded in T CR, however
the algorithm is speculative in the sense that its stabilization time in T CB(∆) is at most
∆ + 1 rounds.

An overview of the properties of the proposed algorithms is presented in the table 1.

Knowledge

TVG ∆ n Alg. Stabilization
time

Msg size Remarks

X × 1 3∆ O(log(n + ∆)) ∆ bounded
timestamps

T CB(∆) X X 2 2∆ O(n(log(n +
∆)))

∆ bounded
timestamps

× X 3 ∆ + 1 unbounded unbounded
timestamps

T CQ(∆) X X 2 unbounded O(n(log(n +
∆)))

∆ bounded
timestamps

T CR × X 3 unbounded unbounded unbounded
timestamps

Table 1 : Overview of self-stabilizing leader election algorithms

Roadmap. The remainder of the paper is organized as follows. In the next section, we
first define TVGs and their related concepts, and then the computational model. The three
next sections are dedicated to the three TVG classes in which we investigate self-stabilizing
solutions to the leader election problem. We give some perspectives in the last section.
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2 Preliminaries

2.1 Time-varying Graphs
A time-varying graph (TVG for short) [8] is a tuple G = (V,E, T , ρ) where V is a (static) set
of nodes, E is a (static) set of arcs between pairwise nodes, T is an interval over N∗ called
the lifetime of G, and ρ : E × T → {0, 1} is the presence function that indicates whether a
given arc exists at a given time. Notice that our definition of TVG is close to the model,
called evolving graphs, defined in [22].

Let G = (V,E, T , ρ) be a TVG. We denote by oT = min T the first instant in T . The
snapshot of G at time t ∈ T is the graph Gt = (V, {e ∈ E : ρ(e, t) = 1}). Let [t, t′] ⊆ T . The
temporal subgraph of G for the interval [t, t′], noted G[t,t′], is the TVG (V,E, [t, t′], ρ′) where ρ′ is
ρ restricted to [t, t′]. A journey is a sequence of ordered pairs J = (e1, t1), (e2, t2), . . . , (ek, tk)
where ∀i ∈ {1, . . . , k}, ei = (pi, qi) ∈ E satisfies ρ(ei, ti) = 1 and i < k ⇒ qi = pi+1∧ti < ti+1.
Nodes p1 and qk are respectively called the initial and final extremities of J . We respectively
denote by departure(J ) and arrival(J ) the starting time t1 and the arrival time tk of J . A
journey from p to q is a journey whose initial and final extremities are p and q, respectively.
Let J (p, q) be the set of journeys in G from p to q. Let  be the binary relation over V
such that p q if p = q or there exists a journey from p to q in G.

The temporal length of a journey J is equal to arrival(J ) − departure(J ) + 1. By
extension, we define the temporal distance from p to q at time t ≥ oT − 1, denoted d̂p,t(q), as
follows: d̂p,t(q) = 0, if p = q, d̂p,t(q) = min{arrival(J )−t : J ∈ J (p, q)∧departure(J ) > t}
otherwise (by convention, we let min ∅ = +∞). The temporal diameter at time t ≥ 0 is the
maximum temporal distance between any two nodes at time t.

We define ITV G(G) to be the predicate that holds if T is a right-open interval, in which
case G is said to be an infinite TVG; otherwise G is called a finite TVG.

2.2 TVG Classes
Let G = (V,E, T , ρ) be a TVG. We consider the following TVG classes.
Class T C (Temporal Connectivity): Every node can reach all the others at least once

through a journey. Formally,

G ∈ T C if ∀p, q ∈ V, p q.

This class is denoted by C3 in [8] and F2 in [7].
Class T CR (Recurrent Temporal Connectivity): At any point in time, every node can

reach all the others through a journey. Formally,

G ∈ T CR if ITV G(G) ∧ ∀t ∈ T ,G[t,+∞) ∈ T C.

This class is denoted by C5 in [8].
Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter): At any point in time, every

node can reach all the others through a journey of temporal length at most ∆, i.e., the
temporal diameter is bounded by ∆. Formally,

G ∈ T CB(∆) if ITV G(G) ∧ ∀t ∈ T ,G[t,t+∆) ∈ T C.

This class is denoted by T C(∆) in [18].
Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter): Every node can al-

ways eventually reach each other node through a journey of temporal length at most ∆.
Formally,

G ∈ T CQ(∆) if ITV G(G) ∧ ∀p, q ∈ V,∀t ∈ T ,∃t′ ≥ t− 1, d̂p,t′(q) ≤ ∆.
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T CT CR

T CQ(∆)

T CB(∆)

Figure 1 Hierarchy of the TVG classes considered in this paper (the sub-hierarchy inside the
rectangle comes from [6]).

I Theorem 1. ∀∆ ∈ N∗, T CQ(∆) * T CB(∆).

Proof. Let G be the TVG of two nodes p and q such that p and q are connected at time
2i, for every i ≥ 0. There is an infinite number of points in time where there is a journey
of length 1 ≤ ∆ between p and q so G ∈ T CQ(∆) but the temporal diameter cannot be
bounded so G /∈ T CB(∆) whatever the value of ∆ is. Hence, T CQ(∆) * T CB(∆). J

Figure 1 illustrates the hierarchy between those classes. An arrow from class A to class
B implies that A ⊆ B. T CB(∆) ⊆ T CQ(∆) ⊆ T CR

2.3 Computational Model
We consider the computational model defined in [2, 9]. We assume a distributed system made
of n processes, each of them having a local memory, a local sequential and deterministic
algorithm, and message exchange capabilities. We assume that each process p has a unique
identifier (ID for short). The identifier of p is noted id(p) and taken in an arbitrary domain
IDSET totally ordered by <. As commonly done in the literature, we assume that each
identifier can be stored using Θ(logn) bits. In the sequel, we denote by ` the process of
minimum identifier. Processes are assumed to communicate through an interconnected
network that evolves over the time. Hence, the topology of the network is conveniently
modeled by an infinite TVG G = (V,E, T , ρ), where nodes represent processes.
Configurations, rounds, and executions. The state of a process is defined by the values
of its variables. A configuration (of the system) is a vector of n components (s1, s2, . . . , sn)
where s1 to sn represent the states of the n processes in V . Processes communicate by
exchanging messages and proceed in synchronous rounds. For every i ≥ 1, the communication
network at Round i is defined by GoT +i−1, i.e., the snapshot of G after i− 1 rounds since
the initial time oT . So, ∀p ∈ V , we denote by N (p)i = {q ∈ V : ρ((p, q), oT + i − 1) = 1},
the set of p’s neighbors at Round i. Notice that N (p)i is assumed to be unknown by process
p, whatever the value of i is.

Let γ0 be the initial configuration of the system. For any round i ≥ 1, the system moves
from the current configuration γi−1 to some configuration γi, where γi−1 (resp. γi) is referred
to as the configuration at the beginning of Round i (resp. at the end of Round i). Such a
move is performed as follows:
1. Every process p sends a message consisting of all or a part of its local state in γi−1 using

the primitive SEND(),
2. using Primitive RECEIVE(), p receives all messages sent by processes in N (p)i, and
3. p computes its state in γi.
These three steps are described in the local algorithm of every process p. A distributed
algorithm is a collection of n local algorithms, one per process.

In this context, an execution of a distributed algorithm A in G is an infinite sequence of
configurations γ0, γ1, . . . such that ∀i > 0, γi is obtained by executing a synchronous round
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of A on γi−1 based on the communication network at Round i, i.e., the snapshot GoT +i−1.
Stabilizing systems. Self-stabilization has been originally defined for static networks. In
[13, 15], it is defined as follows: an algorithm is self-stabilizing if, starting from an arbitrary
configuration, it makes the system converge to a so-called legitimate configuration from
which every possible execution suffix satisfies the intended specification. Following [15], we
accommodate this concept with highly dynamic environments by splitting the definition into
two properties. The convergence property requires every execution of the algorithm in the
considered system to eventually reach a legitimate configuration. The correctness property
requires every possible execution suffix starting from a legitimate configuration to satisfy the
specification.

In [13, 15], self-stabilization is defined as follows: an algorithm is self-stabilizing if, starting
from an arbitrary configuration, it makes the system converge to a configuration from which
every possible execution suffix satisfies the intended specification.

I Definition 2 (Self-stabilization). An algorithm A is self-stabilizing for the specification SP
on the class C of infinite TVGs if there exists a non-empty subset of configurations L, called
the set of legitimate configurations, such that:
1. for every G ∈ C, for every configuration γ, every execution of A in G starting from γ

contains a legitimate configuration γ′ ∈ L (Convergence), and
2. for every G ∈ C, for every t ≥ oT , for every legitimate configuration γ ∈ L, for every

execution e in G[t,+∞) starting from γ, SP (e) holds (Correctness).
The length of the stabilization phase of an execution e is the length of its maximum prefix
containing no legitimate configuration. The stabilization time in rounds is the maximum
length of a stabilization phase over all possible executions.

Often self-stabilization requires the closure of L. Meaning that any step from a configura-
tion of L has to reach a configuration that is also legitimate. Nevertheless, some authors
define self-stabilization without including this property [15, 14]. Even without the closure of
L, self-stabilization ensures the closure of SP : any execution starting from a configuration
of L satisfies SP . So any self-stabilizing algorithm is pseudo-stabilizing but the converse is
not true. As the knowledge of the current configuration of a pseudo-stabilizing algorithm
cannot predict if the end of the execution satisfies SP .

Let C be a class of infinite TVGs, we say that C is recurring if ∀G ∈ C, for every t ≥ oT ,
G[t,+∞) ∈ C. The three classes we will consider (i.e., T CR, T CB(∆), T CQ(∆)) are recurring.
In this case, the definition of the self-stabilization can be slightly simplified as follows.
I Remark 3. An algorithm A is self-stabilizing for the specification SP on the recurring class
C of infinite TVGs if there exists a non-empty subset of legitimate configurations L such
that:
1. for every G ∈ C, for every configuration γ, every execution of A in G starting from γ

contains a legitimate configuration γ′ ∈ L (Convergence), and
2. for every G ∈ C, for every legitimate configuration γ ∈ L, for every execution e in G

starting from γ, SP (e) holds (Correctness).

2.4 Leader Election
The leader election problem consists in distinguishing a single process in the system. In
identified networks, the election usually consists in making the processes agree on one of
the identifiers held by processes. The identifier of the elected process is then stored at each
process p in an output variable, noted here lid(p).
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In the following, we call fake ID any value v ∈ IDSET (recall that IDSET is the
definition domain of the identifiers) such that v is not assigned as a process identifier in the
system, i.e., there is no process p ∈ V such that id(p) = v.

In the self-stabilizing context, the output variables lid may be initially corrupted; in
particular some of them may be initially assigned to fake IDs. Despite such fake IDs, the
goal of a self-stabilizing algorithm is to make the system converge to a configuration from
which a unique process is forever adopted as leader by all processes, i.e., ∃p ∈ V such
that ∀q ∈ V, lid(q) = id(p) forever. Hence, the leader election specification SPLE can be
formulated as follows: a sequence of configurations γ0, γ1, . . . satisfies SPLE if and only if
∃p ∈ V such that ∀i ≥ 0, ∀q ∈ V , the value of lid(q) in configuration γi is id(p).

In the sequel, we say that an algorithm is a self-stabilizing leader election algorithm for
the class of infinite TVG C if it is self-stabilizing for SPLE on C.

3 Class T CB(∆) with ∆ known

We propose a self-stabilizing algorithm (see Algorithm 1) for TVGs with bounded temporal
diameter, i.e., Class T CB(∆). The bound on the temporal diameter, ∆, is known by all
processes.
Algorithm 1. In this algorithm, each process p maintains two variables: the output lid(p)
will eventually contain the ID of the leader and ttl(p) represents the degree of mistrust of p
in lid(p) and allows to eliminate messages containing fake IDs. The value ttl(p) increases at
each round if p does not receive a message; otherwise it is updated thanks to the received
messages. The value of ttl(p) can increase up to 2∆ − 1. Process p never increases ttl(p)
from 2∆− 1 to 2∆; instead it locally resets and declares itself as the leader: lid(p) := id(p)
and ttl(p) := 0 (see Lines u1-u3).

At each round i, p first sends its leader ID together with its degree of mistrust (Line 2).
Then, p selects the received message 〈id, ttl〉 which is minimum using the lexicographic order
(i.e., the message with the lowest ID, and with the lowest ttl to break ties, see Line 7), if
any. If id is smaller than lid(p), p updates its leader lid(p) (see Lines 8-9). If id = lid(p), it
updates the ttl(p) by taking the smallest value between ttl(p) and ttl (in this way, p may
decrease its mistrust in lid(p), see Lines 11-12).

In either case, ttl(p) is then incremented if lid(p) 6= id(p). Finally, if lid(p) ≥ id(p), p
systematically resets (see Lines 15-17). If p believes to be the leader at the end of Round i
(i.e., lid(p) = id(p)), then it sends its own ID together with a degree of mistrust 0 at the
beginning of the next round, i+ 1.

Eventually, the elected process is the process of lowest ID, `. Once elected, ` sends
〈id(`), 0〉 at each round and since the temporal diameter is upper bounded by ∆, all processes
will regularly receive messages 〈id(`), d〉, with d ≤ ∆ < 2∆ (since ∆ ∈ N∗). Consequently,
they will never more reset, ensuring that ` will remain the leader forever.
Self-stabilization and complexity.

First, by definition of the algorithm, the next remark follows.
I Remark 4. Since the end of the first round, ∀p ∈ V , we have lid(p) ≤ id(p) ∧ (lid(p) =
id(p)⇒ ttl(p) = 0).

I Lemma 5. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, ∀p ∈
V, lid(p) = f ⇒ ttl(p) ≥ i− 1.

Proof. By induction on i.
Base case: The case i = 1 is trivial, since by definition ttl(p) ≥ 0.
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Algorithm 1: Self-stabilizing leader election for T CB(∆), for each process p.
Inputs:

∆ ∈ N∗ : upper bound on the temporal diameter
id(p) ∈ IDSET : ID of p

Local variables:
lid(p) ∈ IDSET : ID of the leader
ttl(p) ∈ {0, . . . , 2∆− 1} : degree of mistrust in lid(p)

Macros:
updateT T L(v):

u1: if v ≥ 2∆ then // Reset
u2: lid(p) := id(p)
u3: ttl(p) := 0
u4: else if lid(p) 6= id(p) then ttl(p) := v

1: Repeat Forever
2: SEND(〈lid(p), ttl(p)〉)

3: mailbox := RECEIVE()

4: if mailbox = ∅ then
5: updateT T L(ttl(p) + 1)
6: else
7: 〈lid, ttl〉 := min{messages in mailbox}
8: if lid < lid(p) then
9: lid(p) := lid

10: updateT T L(ttl + 1)
11: else if lid = lid(p) then
12: updateT T L(min(ttl(p), ttl) + 1)
13: else
14: updateT T L(ttl(p) + 1)

15: if lid(p) ≥ id(p) then // Reset
16: lid(p) := id(p)
17: ttl(p) := 0

Induction step: If i > 1, by induction hypothesis, ∀p ∈ V, lid(p) = f ⇒ ttl(p) ≥ i− 2 at the
beginning of Round i− 1. Notice that a process p can only change the value of lid(p) to
f if p receives a message containing f .
Let p ∈ V such that lid(p) = f at beginning of Round i. There are two cases to consider.
1. If lid(p) = f at the beginning of the Round i−1, either p increments the value of ttl(p)

during Round i− 1 (Line 4, 12, or 14), or p sets ttl(p) to t+ 1 such that p received a
message m = 〈f, t〉 from a neighbor q at Round i − 1 (Line 10 or 12). In the latter
case, at the beginning of Round i − 1, lid(q) = f and ttl(q) = t, and, by induction
hypothesis, t ≥ i− 2. In both cases, ttl(p) ≥ i− 1 at the beginning of Round i.

2. If lid(p) 6= f at the beginning of Round i− 1, p receives a message m = 〈f, t〉 from
some neighbor q. Similarly to Case 1, ttl(p) ≥ i− 1 at the beginning of Round i. J

Note that Lemma 5 implies that for every i > 0 and every fake ID f , ∀p ∈ V, lid(p) =
f ⇒ ttl(p) ≥ i at the end of Round i.

We define a quasi-legitimate configuration of Algorithm 1 as any configuration where
lid(`) = id(`) and ttl(`) = 0 and there is no fake ID in the system (i.e., ∀p ∈ V , lid(p) is not
a fake ID).

I Corollary 6. At the end of Round 2∆, the configuration is quasi-legitimate.

Proof. By Lemma 5 and since the maximum value of ttl is 2∆− 1, we have ∀p ∈ V , lid(p) is
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not a fake ID at the end of Round 2∆. Moreover, by definition, id(`) is the smallest non-fake
ID. So, ∀p ∈ V , lid(p) ≥ id(`) at the end of Round 2∆. This is in particular true for process
`: lid(l) ≥ id(`) at the end of Round 2∆. By Remark 4, we conclude that lid(`) = id(`) and
ttl(`) = 0 at the end of Round 2∆ (n.b., 2∆ > 1 since ∆ ∈ N∗). J

The proof of the next lemma consists in showing that the set of quasi-legitimate configu-
ration is closed. Recall that a set of configuration S is closed if every step of the algorithm
starting in a configuration of S leads to a configuration of S.

I Lemma 7. Let e be an execution of Algorithm 1 in an arbitrary TVG that starts from a
quasi-legitimate configuration. The configuration reached at the end of every round of e is
quasi-legitimate.

Proof. Consider any step from γ to γ′ such that γ is quasi-legitimate. First, since γ contains
no fake ID, no message containing a fake ID can be sent in the step from γ to γ′, and γ′
contains no fake ID too. Moreover, id(`) is the smallest non-fake ID. So, ∀p ∈ V , lid(p) ≥ id(`)
in γ′. By Remark 4, we conclude that lid(`) = id(`) and ttl(`) = 0 in γ′. Hence, γ′ is
quasi-legitimate, i.e., the set of quasi-legitimate configuration is closed and we are done. J

A process p has a legitimate state iff lid(p) = id(`), ttl(p) ≤ ∆, and p = `⇒ ttl(p) = 0.
We define a legitimate configuration of Algorithm 1 as any configuration where every process
has a legitimate state. By definition, every legitimate configuration is also quasi-legitimate.

I Lemma 8. Let G be a TVG of Class T CB(∆). Let t ≥ oT . Let e be an execution of
Algorithm 1 in G[t,+∞) starting in a quasi-legitimate configuration. For every r ≥ ∆, the
configuration at the end of Round r in e is legitimate.

Proof. First, remark that for every j > 0, the communication network at Round j in e is
Gt+j−1. Then, the proof of the lemma is based on the following claim:
(*) for every i ≥ 0, d ≥ 0, every process p such that d̂`,t+i−1(p) ≤ d satisfies: ∀j ∈
{1, . . . ,∆− d̂`,t+i−1(p) + 1}, lid(p) = id(`) and ttl(p) ≤ d̂`,t+i−1(p) + j − 1 at the beginning
of Round

(
i+ j + d̂`,t+i−1(p)

)
of e.

Proof of the claim: By induction on d.
Base case: If d = 0 and some p ∈ V satisfies d̂`,t+i−1(p) = d, then p = `. Then, the base

case is immediate since the initial configuration is quasi-legitimate (by hypothesis) and
every subsequent configuration is quasi-legitimate too (by Lemma 7).

Induction step: Consider any process p such that d̂`,t+i−1(p) ≤ d with d > 0. If d̂`,t+i−1(p) <
d, then the property is direct from the induction hypothesis. Consider now the case
where d̂`,t+i−1(p) = d. There is a journey J ∈ J (`, p) such that departure(J ) > t+ i− 1
and arrival(J ) = d + t + i − 1. We denote J by {(e0, t0), (e1, t1), . . . , (ek, tk)} where
tk = d+ t+ i− 1. Let q be the process such that ek = (q, p). By definition, d̂`,t+i−1(q) <
d̂`,t+i−1(p) = d. Hence, by induction hypothesis, ∀j ∈ {1, . . . ,∆ − d̂`,t+i−1(q) + 1},
lid(q) = id(`) and ttl(q) ≤ d̂`,t+i−1(q)+j−1 at the beginning of Round i+j+ d̂`,t+i−1(q).
Let j′ = d̂`,t+i−1(p)−d̂`,t+i−1(q). Since j′ ∈ {1, . . . ,∆−d̂`,t+i−1(q)+1}, we can instantiate
the previous property with j′. We obtain lid(q) = id(`) and ttl(q) ≤ d̂`,t+i−1(q)+ j′−1 =
d̂`,t+i−1(p)−1 = d−1 at the beginning of Round i+j′+d̂`,t+i−1(q) = i+d̂`,t+i−1(p) = i+d.
Now, since ρ(ek, tk) = 1 and tk = d+ t+ i− 1, q sends a message 〈id(`), tllq〉 to p during
Round i+ d with tllq ≤ d− 1, where tllq is the value of ttl(q) at the beginning of Round
i+ d.
By definition of id(`) and since there is no fake IDs (Lemma 7) the minimum message
received by p in Round i+ d is 〈id(`), ttl〉 with ttl ≤ tllq ≤ d− 1. From the algorithm,
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lid(p) = id(`) and ttl(p) = ttl+1 ≤ d at the end of Round i+d, and so at the beginning of
Round i+d+1. Then, by induction on j ∈ {1, . . . ,∆−d+1}, ttl(p) ≤ d+j−1 ≤ ∆ ≤ 2∆−1
at the beginning of Round i+ d̂`,t+i−1(p) + j since ttl(p) is at most incremented by one
during the previous round (see Lines 4-14) and p does not reset (Lines u1-u3). So, lid(p)
remains equal to id(`) at the beginning of Round i+ d̂`,t+i−1(p) + j.

Let r ≥ ∆ ∈ N∗. We now apply (*) to d = ∆ so that every process p is taken into account
by the claim: with i = r −∆, j = ∆ − d̂`,t+i−1(p) + 1, we obtain that lid(p) = id(`) and
ttl(p) ≤ ∆ at the beginning of Round r+ 1; in addition, ttl(`) = 0 at the beginning of Round
r + 1, by Remark 4. Hence, the configuration at the end of Round r is legitimate. J

As direct consequence of Corollary 6 and Lemma 8, we obtain the convergence.

I Corollary 9. Let G be a TVG of T CB(∆). For every i ≥ 3∆, at the end of Round i of any
execution of Algorithm 1 in G, the configuration is legitimate.

I Lemma 10. Let G be a TVG of T CB(∆). Let t ≥ oT . Let e be an execution of Algorithm 1
for G[t,+∞) starting in a legitimate configuration. For every r ∈ {1, ...,∆−1}, the configuration
e has reached at the end of Round r is such that for every process p, lid(p) = id(`) and
ttl(p) ≤ ∆ + r.

Proof. First, the lemma trivially holds for ∆ ≤ 1. So, we now show by induction on r that
the lemma holds in the case where ∆ > 1.
Base case: At the beginning of Round 1, ∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ as the

first configuration of e is legitimate. According to the algorithm, at the end of Round 1,
∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ + 1 < 2∆ (since ∆ > 1).

Induction step: Let i ∈ {2, ...,∆− 1}. At the end of Round i− 1, hence at the beginning of
Round i, ∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ + i− 1 < 2∆− 1, by induction hypothesis.
According to the algorithm, and since ∆ + i < 2∆, no process can reset. Hence, at the
end of Round i, ∀p ∈ V , lid(p) = id(`) and ttl(p) ≤ ∆ + i, and we are done. J

By Remark 3 (page 6), the correctness part of the self-stabilization of our algorithm can
be established by the following theorem.

I Theorem 11. For every G ∈ T CB(∆), for every legitimate configuration γ, for the execution
of Algorithm 1 in G starting from γ, SPLE holds.

Proof. Let e = γ0...γi... be an execution of Algorithm 1 in G starting from a legitimate
configuration. First, as γ0 is legitimate, we have lid(p) = id(`), for every process p (by
definition). Then, by Lemma 10, for every r ∈ {1, ...,∆ − 1}, at the end of Round r, i.e.,
in Configuration γr, we have lid(p) = id(`), for every process p. Finally, since γ0 is quasi-
legitimate (by definition, every legitimate configuration is also quasi-legitimate), Lemma 8
applies: for every r ≥ ∆, the configuration γr at the end of Round r is legitimate, so for
every process p lid(p) = id(`) in γr. Hence, SPLE(e) holds and we are done. J

By Corollary 9 and Theorem 11, follows.

I Corollary 12. Algorithm 1 is a self-stabilizing leader election algorithm for T CB(∆). Its
stabilization time is at most 3∆ rounds. It requires O(log(n + ∆)) bits per process and
messages of size O(log(n+ ∆)) bits.
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4 Class T CQ(∆) with ∆ known

We propose a self-stabilizing algorithm (see Algorithm 2) for TVGs with quasi bounded
temporal diameter, i.e., Class T CQ(∆). ∆ and the exact number of processes n are known
by all processes.
Algorithm 2. In this algorithm, each process p uses a variable members(p) to collect IDs.
Actually, members(p) is a (FIFO) queue containing at most n pairs 〈id, t〉, where id is an
identifier and t is a timestamp, i.e., an integer value less than or equal to ∆. (We denote by
members(p)[id] the timestamp associated to the identifier id belonging to members(p).)

At each round i, p sends all pairs 〈id, t〉 of members(p) such that t < ∆ at the end of
Round i − 1 (Line 2). (The timestamps allow to eventually remove all fake IDs.) Then,
p updates members(p) by calling function insert on each received pair 〈id, t〉 such that
id 6= id(p) (Lines 4-6).

The insertion function insert works as follows: if id already appears in members(p), then
the old pair tagged with id is removed first from the queue (Lines i1-i2), and in either case,
〈id, t〉 is appended at the tail of the queue (Lines i3 and i7). In particular, since the size of
members(p) is limited, if the queue is full, then the head of the queue is removed to make
room for the new value (Lines i5-i6). Using this FIFO mechanism, initial spurious values
eventually vanish from members(p).

After all received pairs have been managed, the timestamps of all pairs in the queue
are incremented (Line 7-8) and then, 〈id(p), 0〉 is systematically inserted at the tail of the
queue (Line 9). This mechanism ensures two main properties. First, every timestamp
associated to a fake ID in a variable members is eventually forever greater than or equal
to ∆; and consequently, eventually no message containing fake IDs are sent. Second, by
definition of T CQ(∆), for every two distinct processes p and q, there are journeys of length
at most ∆ infinitely often, so each process p regularly receives messages containing id(q)
with timestamps smaller than ∆. Thus, eventually members(p) exactly contains all IDs of
the networks.

Now, at the end of each round, p updates its leader variable with the smallest ID in
members(p) (Line 10). Hence, the process of lowest ID, `, is eventually elected.
Self-stabilization.

I Lemma 13. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, the following
property holds: ∀p ∈ V if f is in members(p), then members(p)[f ] ≥ i− 1.

Proof. By induction on i ≥ 1.
Base case: The case i = 1 is trivial since members(p)[f ] is a natural integer.
Induction step: Assume that i > 1. By induction hypothesis, at the beginning of Round

i− 1, we have: ∀p ∈ V , if f is in members(p), then members(p)[f ] ≥ i− 2. Let p ∈ V
such that f is in members(p) at the beginning of Round i. There are two cases to
consider.
1. Assume that f /∈ members(p) at the beginning of Round i− 1. So, p received the pair
〈f, t〉 during Round i − 1 with t ≥ i − 2, and then 〈f, tM〉 is added to members(p)
with tM = t by executing either Line i3 or i7. In both cases, after executing Line 8,
members(p)[f ] ≥ i− 1, and so is at the beginning of Round i.

2. Assume that f is in members(p) at the beginning of Round i − 1. There are two
cases: (i) p does not receive any pair 〈f,_〉 during Round i − 1. So, by executing
Line 8 and by induction hypothesis, members(p)[f ] ≥ i − 1 at the beginning of
Round i. (ii) p receives some pair 〈f, t〉 during Round i − 1. So, by executing
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Algorithm 2: Self-stabilizing leader election for T CQ(∆) with ∆ known, for each
process p.

Inputs:
n ∈ N : number of processes
∆ ∈ N∗ : recurrent bound on the temporal distance between processes
id(p) ∈ IDSET : ID of p

Local variables:
members(p) : queue of at most n elements

contains pairs 〈id, t〉 ∈ IDSET × {0, . . . , ∆}
lid(p) ∈ IDSET : ID of the leader

Macros:
insert(p, 〈id, t〉):

i1: if ∃t′,
〈
id, t′

〉
∈ members(p) then

i2: remove
〈
id, t′

〉
from members(p)

i3: push
〈
id, min(t, t′)

〉
at the tail of members(p)

i4: else
i5: if |members(p)| = n then
i6: remove the head of members(p)
i7: push 〈id, t〉 at the tail of members(p)

1: Repeat Forever
2: SEND(〈id, t〉 ∈ members(p) : t < ∆)

3: mailbox := RECEIVE()

4: forall pair 〈id, t〉 in a message of mailbox do
5: if id 6= id(p) then
6: insert(p, 〈id, t〉)

7: forall 〈id, t〉 ∈ members(p) : t < ∆ do
8: members(p)[id] + +
9: insert(p, 〈id(p), 0〉)

10: lid(p) := min{id : 〈id,_〉 ∈ members(p)}

Line i3, members(p)[f ] := min(t,members(p)[f ]). Again, by assumption t ≥ i − 2
and members(p)[f ] ≥ i − 2 at the beginning of Round i − 1. So, in both cases,
members(p)[f ]) ≥ i− 1 at the beginning of Round i. J

Since a process p does not send a pair 〈id, t〉 of members(p) with t ≥ ∆, we have the
following corollary.

I Corollary 14. In any round ∆ + i with i ≥ 1, no process receives a message containing
fake IDs.

I Lemma 15. ∀p, q ∈ V , if id(q) is inserted into members(p) during Round ∆ + i with
i ≥ 1, id(q) remains into members(p) forever.

Proof. If an ID id is in members(p), it can only be removed from members(p) if function
insert(p, 〈id′, t〉) is called and one of the following two situations occurs:

Line i2 if id = id′ but in this case id is immediately added at the tail of members(p)
(Line i3),
or Line i6 if id 6= id′, id is the head of the queue, and the size of members(p) is already n.
After id is inserted (at tail) into members(p), it requires the insertion of n different IDs

that are not into members(p) (and that are different from id) in order to get id at the head
of the queue and remove it.
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If id is inserted during Round (∆ + i), it is not a fake ID and the only other IDs that
can be inserted into members(p) are real IDs of processes in V since p will not receive any
fake ID (Corollary 14). Thus, at most n− 1 IDs different than id can be inserted after the
insertion of id. Hence, id cannot be removed from members(p). J

By definition of class T CQ(∆), for every pair of nodes p and q, there exists t ≥ ∆ such
that d̂q,oT +t−1(p) ≤ ∆. We denote by t(q, p) the minimum value t that satisfies the above
property, namely t(q, p) represents the first date after ∆ + oT − 1 (i.e., after ∆ rounds) from
which there exists a temporal journey from q to p of length no more than ∆.

I Lemma 16. ∀p, q ∈ V , by the end of Round t(q, p) + ∆, id(q) is in members(p) forever.

Proof. Let q ∈ V . Remark, first, that id(q) ∈ members(q) ∧members(q)[q] = 0 by the end
of Round 1, by definition of Algorithm 2, see Line 9.

Let p ∈ V . If q = p then using the remark above and since t(q, p)+∆ ≥ 1, we are done. We
now assume q 6= p. As d̂q,oT +t(q,p)−1(p) ≤ ∆, there exists a journey J = {(e1, t1), ..., (ek, tk)}
such that t1 > oT + t(q, p)− 1, tk = t(q, p) + d̂q,oT +t(q,p)−1(p) + oT − 1 ≤ t(q, p) + ∆ + oT − 1
and for every i ∈ {1, ..., k}, ei = (pi−1, pi) with p0 = q and pk = p. To simplify the notations,
let τi = ti− oT + 1 for every i in {1, ..., k} such that the edge ei = (pi−1, pi) is present during
Round τi. We have τ1 > t(q, p), τk ≤ t(q, p) + ∆, and τi − τ1 < ∆.

We prove (by induction on i) that for all i ∈ {1, ..., k}
id(q) is forever in members(pi) by the end Round τi

members(pi)[q] ≤ τi − τ1 + 1 at the end of Round τi.
Base case: For i = 1, the edge (q, p1) exists at Round τ1. Using the first remark in the

proof, at the beginning of Round τ1, since τ1 > t(q, p) ≥ ∆ ≥ 1, we have id(q) ∈
members(q) ∧members(q)[q] = 0. Hence, at Round τ1, q sends 〈id(q), 0〉 in its message
to p1. Following the algorithm, p1 insert id(q) in members(p1) during Round τ1 > ∆. So,
id(q) is forever in members(p1) by the end of Round τ1; see Lemma 15. Still following
the algorithm, members(p1)[q] = 1 at the end of Round τ1, p1, and we are done.

Induction Step: Let i > 1. We assume the result holds for i − 1: id(q) is forever in
members(pi−1) by the end of Round τi−1 and members(pi−1)[q] ≤ τi−1 − τ1 + 1 at the
end of Round τi−1. Hence, at the beginning of Round τi (and so, at the end of Round τi−1),
we have: id(q) in members(pi−1) and as the timestamps are at most incremented by one
at the end of each round, members(pi−1)[q] ≤ τi−1− τ1 + 1 + τi− 1− τi−1 = τi− τ1 < ∆.
During Round τi, the edge ei = (pi−1, pi) is present and pi−1 sends in its message to pi a
pair 〈id(q), tq〉 such that tq ≤ τi − τ1 since τi − τ1 < ∆. As pi receives it, it inserts id(q)
in members(pi) in Round τi. Since τi > τ1 > ∆, Lemma 15 ensures that id(q) remains
forever in members(pi) by the end of Round τi. Moreover, following the algorithm, at
the end of Round τi, we have members(pi)[q] ≤ τi − τ1 + 1.

With i = k, id(q) is forever in members(p) by the end Round τk ≤ t(q, p) + ∆. J

We define a legitimate configuration of Algorithm 2 as any configuration where for every
process p, we have lid(p) = id(`) and {id : 〈id,_〉 ∈ members(p)} = {id(q) : q ∈ V }.
Remark that the set of legitimate configurations is closed. Indeed, by definition of the
algorithm, no message containing a fake ID can be sent from such a configuration. Hence, the
set members(p) of every process p remains constant and lid(p) is computed as the minimum
of this set, i.e. id(`), forever. Hence the following lemma.

I Lemma 17. Every execution of Algorithm 2 that starts from a legitimate configuration in
an arbitrary TVG satisfies SPLE.
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I Lemma 18. ∃t ≥ ∆ such that the configuration reached at the end of Round t + ∆ is
legitimate.

Proof. Corollary 14 ensures that for every i > ∆ and p ∈ V , no fake ID is inserted in
members(p) at Round i. We let T = max{t(q, p) : q, p ∈ V }. By definition, T ≥ ∆. By
Lemma 16, we have that for every p, q ∈ V , members(p) contains id(q) at the end of Round
T + ∆. Let p ∈ V . As the size of members(p) is bounded by the number n of processes (see
Line i5), members(p) is exactly the set of IDs of every process. By Line 10, we also have
lid(p) = id(`). J

I Theorem 19. Algorithm 2 is a self-stabilizing leader election algorithm for T CQ(∆). It
requires O(n(log(n+ ∆))) bits per process and messages of size O(n(log(n+ ∆))) bits.

Speculation. The stabilization time of Algorithm 2 cannot be bounded in T CQ(∆). Indeed,
even if there exist infinitely many journeys of length bounded by ∆ between any pair of
distinct processes and ∆ is known by all processes, the time between any two consecutive
such journeys is unbounded, by definition of T CQ(∆). Consequently, we cannot bound the
time necessary to route any piece of information from some process p to another process q,
making the convergence of Algorithm 2 not bounded.

We now show that Algorithm 2 is speculative in the sense that its stabilization time
cannot be bounded in T CQ(∆), but in a more favorable case, actually in T CB(∆) ⊆ T CQ(∆),
its stabilization time is at most 2∆ rounds.

Since T CB(∆) ⊆ T CQ(∆) the previous proof holds for T CB(∆). Yet, for every processes
p and q, t(q, p) is exactly ∆ in this class of TVGs. Hence in the proof of Lemma 18, we
have T = max{t(q, p) : q, p ∈ V } = ∆; this ensures that in Class T CB(∆), the configuration
reached at the end of Round 2∆ is legitimate.

I Theorem 20. The stabilization time of Algorithm 2 in Class T CB(∆) is at most 2∆
rounds.

5 Class T CR

Algorithm 3. Similarly to Algorithm 2, in this algorithm, each process p uses a variable
members(p) to collect IDs. However, this time, members(p) is a map that can contain up
to n IDs, each of them being associated with a timestamp (we denote by members(p)[id]
the timestamp associated to the identifier id belonging to members(p)).

At each round i, p sends the content ofmembers(p) (Line 2). Then, p updatesmembers(p)
by calling function insert on each received pair 〈id, t〉 such that id 6= id(p) (Lines 4-5). The
function insert works as follows: if id already appears in members(p), then the associated
timestamp is updated by keeping the smallest value (Line i1). Otherwise, p tries to insert
〈id, t〉 in the map. Actually, 〈id, t〉 is inserted in the map if the map is not full (Line i2) or t
is smaller than the greatest timestamp tM in the map (Lines i3-i7). In this latter case, 〈id, t〉
overwrites any value having this timestamp in members(p) (Lines i6-i7). This overwriting
mechanism allows to eventually remove all fake IDs from members(p), since their timestamps
regularly increase.

After members(p) has been updated, all timestamps of members(p) are incremented
(Lines 6-7) and then, 〈id(0), 0〉 is systematically inserted in the map (Line 8).

Actually, Algorithm 2 guarantees two main properties. First, at the beginning of any
round i, any timestamp associated to a fake ID is greater than or equal to i−1; see Lemma 21.
Second, by definition of T CR, at any point in time, every node can reach all the others
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through a journey. The key property is then to show that if some broadcast initiated by
process p reaches a process q at Round i, then the value of the timestamp in the message is
small enough to ensure the insertion of id(p) into members(q); see Lemma 22. These two
properties ensure that eventually members(p) exactly contains all IDs of the network.

Now, at the end of each round, p updates its leader variable with the smallest ID in
members(p) (Line 9). Hence, the process of lowest ID, `, is eventually elected.

Algorithm 3: Self-stabilizing leader election for T CR, for each process p.
Inputs:

n ∈ N : number of processes
id(p) ∈ IDSET : ID of p

Local variables:
members(p) : map of size at most n

contains pairs 〈id, t〉 ∈ IDSET ×N
lid(p) ∈ IDSET : ID of the leader

Macros:
max(p):

m1: if |members(p)| < n then return ⊥
m2: else return 〈id, t〉 ∈ members(p) with maximum timestamp t

insert(p, 〈id, t〉):
i1: if 〈id, _〉 ∈ members(p) then members(p)[id] := min(t, members(p)[id])
i2: else if max(p) = ⊥ then add 〈id, t〉 in members(p)
i3: else
i4: 〈idM, tM〉 := max(p)
i5: if t < tM then
i6: remove 〈idM, tM〉 from members(p)
i7: add 〈id, t〉 in members(p)

1: Repeat Forever
2: SEND(〈members(p)〉)

3: mailbox := RECEIVE()

4: forall pair 〈id, t〉 in a message of mailbox do
5: if id 6= id(p) then insert(p, 〈id, t〉)
6: forall id : 〈id, _〉 ∈ members(p) do
7: members(p)[id] + +
8: insert(p, 〈id(p), 0〉)
9: lid(p) := min{id : 〈id,_〉 ∈ members(p)}

Self-stabilization.

I Lemma 21. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, the following
holds: ∀p ∈ V , if f is in members(p), then members(p)[f ] ≥ i− 1.

This lemma and its proof are identical to Lemma 13 of Algorithm 2, page 11.

I Lemma 22. For every i ≥ 1, at the end of Round i, the following property holds: ∀p, q ∈ V ,
if d̂p,oT (q) ≤ i− 1, then id(p) is in members(q) and members(q)[p] ≤ i− 1.

Proof. By induction on i ≥ 1.
Base case: In Round 1, p tries to insert 〈p, 0〉 in members(p) (Line 8). Since the timestamp

associated with every other ID in members(p) has been incremented beforehand (line 7),
〈p, 0〉 ∈ members(p) by the end of the first round.
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Induction step: Assume that i > 1. By induction, at the end of Round i−1, we have, for every
p, q ∈ V such that d̂p,oT (q) ≤ i−2, that id(p) is inmembers(q) andmembers(q)[p] ≤ i−2.
Let p, q ∈ V such that d̂p,oT (q) ≤ i− 1. There are two cases to consider.
1. If d̂p,oT (q) ≤ i− 2 then, by induction hypothesis, at the end of Round i− 1, id(p) is

in members(q) and members(q)[p] ≤ i− 2. During Round i, id(p) cannot be removed
from members(q). Indeed, by Lemma 21, the timestamps associated to fake IDs are
greater than or equal to i − 1. Now, timestamps are incremented during Round i

(Line 7), thus members(q)[p] ≤ i− 1 at the end of Round i.
2. If d̂p,oT (q) = i−1 then ∃r ∈ V such that d̂p,oT (r) ≤ i−2. This means that the arrival of

the journey from p to q which provides d̂p,oT (q) occurs at time oT +d̂p,oT (q) = oT +i−1.
Hence, (r, q) is present at the beginning of Round i and so q receives a message from
r during Round i. By induction hypothesis, at the end of Round i − 1, id(p) is in
members(r) and members(r)[p] ≤ i − 2. Hence, q receives the pair 〈p, tM〉 with
tM ≤ i− 2 during Round i. For the same reasons as in Case 1, this pair is not rejected
but inserted into members(q). Then, timestamps are incremented (Line 7), hence
members(q)[p] ≤ i− 1 at the end of Round i. J

Similarly to Algorithm 2, we define a legitimate configuration of Algorithm 3 as any
configuration where for every process p, we have lid(p) = id(`) and {id : 〈id,_〉 ∈
members(p)} = {id(q) : q ∈ V }. First, by definition of the algorithm, no message containing
a fake ID can be sent from such a configuration. So, from any legitimate configuration, the
set members(p) of every process p is constant and min{id : 〈id,_〉 ∈ members(p)} = id(`)
forever. Hence, the set of legitimate configurations is closed and so we have:

I Lemma 23. Every execution of Algorithm 3 that starts from a legitimate configuration in
an arbitrary TVG satisfies SPLE.

I Theorem 24. Algorithm 3 is a self-stabilizing leader election algorithm for T CR.

Proof. Let p ∈ V . By definition of T CR, ∀q ∈ V , ∃J ∈ J (p, q) such that departure(J ) > oT .
The temporal length of J is finite. Thus, ∃ δ(p) ∈ N such that ∀q ∈ V , d̂p,oT (q) ≤ δ(p).
Thus, at the end of Round δ(p) + 1, ∀q ∈ V , id(p) is in members(q) by Lemma 22. Since
members(q) contains at most n entries, after maxp∈V δ(p) + 1 rounds, members(q) contains
the ID of every process and no fake ID. So q chooses id(`) as leader at the end of Round
maxp∈V δ(p) + 1. Hence, the system is in a legitimate configuration at the end of this Round
and, by Lemma 23, we are done. J

Speculation. Similarly to T CQ(∆), stabilization time cannot be bounded in T CR (n.b.,
T CQ(∆) ⊆ T CR). We now show that Algorithm 3 is speculative in the sense that we
cannot bound its stabilization time in T CR, but in a more favorable case, precisely in
T CB(∆) ⊆ T CR, its stabilization time is at most ∆ + 1 rounds, despite ∆ being unknown by
processes.

I Theorem 25. The stabilization time of Algorithm 3 in T CB(∆) is at most ∆ + 1 rounds.

The proof is the same as the one of Theorem 24 but as we consider a TVG in T CB(∆),
for every p ∈ V , δ(p) ≤ ∆. Hence the system reaches a legitimate configuration at the end of
Round maxp∈V δ(p) + 1 = ∆ + 1.
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6 Conclusion

We initiated research on self-stabilization in highly dynamic message-passing systems by
proposing self-stabilizing leader election algorithms for three major classes of time-varying
graphs. Beyond extending our results to ever more general classes, our future work will focus
on studying expressiveness of self-stabilization in TVGs. As a matter of fact, we plan to
investigate broadcast problems, again in very general TVG classes. Indeed, coupled with our
leader election solutions, they should allow to build generic transformers [10, 19].
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