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Temporal extensions of nonnegative matrix
factorization
Cédric Févotte, Paris Smaragdis, Nasser Mohammadiha and Gautham J. Mysore

Temporal continuity is one of the most important features of time series data. Our
aim here is to present some of the basic as well as advanced ideas to make use of
this information by modeling time dependencies in NMF. The dependencies between
consecutive frames of the spectrogram can be imposed either on the basis matrix B
or on the activations H (introduced in Chapter 8). The former case is known as the
convolutive NMF, reviewed in Section 1.1. In this case, the repeating patterns within
data are represented with multidimensional bases which are not vectors anymore,
but functions that can span an arbitrary number of dimensions (e.g., time and fre-
quency). The other case consists in imposing temporal structure on the activations
H, in line with traditional dynamic models that have been studied extensively in sig-
nal processing. Most models considered in the NMF literature can be cast as special
cases of a unifying state-space models that will be discussed in Section 1.2. Special
cases will be reviewed in subsequent sections. Continuous models are addressed in
Sections 1.3 and 1.4, while Section 1.5 reviews models that involve a discrete latent
state variable. Sections 1.6 and 1.7 provide quantitative and qualitative comparisons
of the proposed methods, while Section 1.8 summarizes. This chapter is an extended
version of the review paper (Smaragdis et al., 2014).

In this chapter, we will denote by bV the nonnegative spectral data, with columns
ˆv(n) and coe�cients v̂

fn

. In most cases, bV is either the magnitude spectrogram |X|
or the power spectrogram |X|2, i.e., v̂

fn

= |x(n, f)| or |x(n, f)|2. We will also
denote V = BH, with coe�cients v

fn

. Note that traditionally the NMF literature
instead denotes the data by V and the approximate factorization by bV. However
the chosen notation is here consistent with the convention used in this book, where
variable with a hat denote statistics (observed quantities) and variables without a hat
denote model parameters.
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1.1
Convolutive NMF

Convolutive NMF (Smaragdis, 2007; O’Grady and Pearlmutter, 2008; Wang et al.,
2009) is a technique that is used to model each sound source as a collection of time-
frequency templates that each span multiple time frames and/or frequency bins (of-
ten all frequency bins). As we will show shortly, these templates often correspond to
basic elements of sounds, such as phonemes of speech, notes of music, or other tem-
porally coherent units of sound. By using this approach, we can capture a lot of the
temporally important nuances that make up a given sound. However, since it directly
captures a whole time-frequency patch, it can be quite inflexible and can not model
sounds of varying lengths and pitches. For example, a template of a given vowel will
have di�culty modeling the same vowel of a longer length or di�erent pitch. On the
other hand, sounds of a fixed length and pitch, such as a drum hit, can be modeled
quite well using this technique. These models can be seen as a deterministic way to
model temporal dependencies.

1.1.1

1-D Convolutive NMF

We will start by formulating the 1-dimensional (1-D) version of convolutive NMF
and build up from there. Recall that traditional NMF performs the approximation:

bV ⇡ BH (1.1)

where B 2 RF⇥K

+ and H 2 RK⇥N

+ are the K bases and activations respectively
(see Chapter 8). A significant shortcoming of this model is that the temporal struc-
ture of the input signal is not represented in any way. The basis matrixBwill contain
a set of spectra that can be used to compose an input sound, but there is no represen-
tation of their temporal relationships. In order to address this problem we consider
an alternative decomposition that explicitly encodes sequences of spectra. We start
using the following formulation:

v(n)(n, · · · , N 0
+ n) = B(n)H (1.2)
bV ⇡

X

n

v(n) (1.3)

wherev(n)(n, · · · , N 0
+n) represents an additive part of then-th toN 0

+n columns
(time frames) of bV. The constant N 0 is chosen so that for the maximum value of n
we would have N = N

0
+ n, for reasons that should become clear momentarily.

There are a couple of observations to make about this model. First of all, we now
have a di�erent representation of the bases. Instead of a single basis matrixB, where
each column is a basis, we have a set of basis matricesB(n), where the parenthesized
index relates to a time shift relating to its input. We note that each of these matrices
is used to approximate a time-shifted version of the input and that all these matrices
share the same activations patterns. By doing so we e�ectively force the bases of
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B(n+1) to always get activated the same way as the bases of B(n) have been in the
previous time frame. In other words, we would always expect to see the kth basis of
B(n) to be followed in the next time frame by the kth basis of B(n+1), etc. By doing
so we create a set of bases that have a deterministic temporal evolution which spans
as many time steps as we have B(n) matrices.

To consider the e�ects of this new structure let us consider the toy input shown in
Fig. 1.1. The toy input in this case is shown in the top right panel and consists of
a “spectrogram” that contains two types of repeating patterns. One pattern consists
of two parallel components which over time drop by one frequency bin for a dura-
tion of two frames, and another consists of two components which similarly rise in
frequency. Although we could decompose this input using a regular NMF model,
the resulting representation would not be very illuminating (it would be a set of 6
unordered bases, not revealing temporal structure very clearly). Instead we analyze
this using the model above. We will ask for three matrices B(n), n 2 {1, 2, 3}, each
being made up by two bases B(n) 2 RF⇥2

+ . This will allow us to learn two time-
frequency components which extend for three time frames each. Since this is exactly
the structure in the input, we would expect to e�ectively learn the patterns therein.
After estimating these parameters, we show the results in the remaining plots in the
same figure. At the top left we see the three matrices B(n). Note that the nth matrix
will contain the nth time frame of all the bases. Below these plots we show the same
information reordered so that each basis is grouped with its temporal components.
In order to obtain the kth convolutive basis B

k

, we use:

B
k

=

⇥
B(1)(k),B(2)(k),B(3)(k), · · ·

⇤
(1.4)

i.e. in the case of figure 1.1 for the first basis we would concatenate the matrices
B(1)(1),B(2)(1),B(3)(1). Doing so, we now clearly see that the two learned bases
have a temporal structure that reflects the input. The first one contains two rising
components, and the second one contains two descending components. These two,
when combined using the activations shown in the lower right plot will compose the
original input. From the activations we see that the second basis is activated at times
1, 9 and 12 (which are the start times of the descending components), and the other
at times 5, 14, 18, which are the start times of the other component. The fact that
some of the components overlap is not a notable complication, since NMF is very
good at resolving mixing.

1.1.2

Convolutive NMF as a meta-model

We now turn to the problem of parameter estimation for the above model NMF. There
are of course many variants of NMF depending on how one likes to describe the cost
function, the underlying noise model, any probabilistic aspects, etc. In order to not
get caught up with these details we will introduce this model as a meta-model, so
that we can easily use an existing NMF algorithm and adapt it to this process.

We note that in the above description we defined this model as a combination of
multiple NMF models that are defined on time-shifted versions of the input and share
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(3)(2)(1)

Figure 1.1 Learning temporal dependencies. The top right plot shows the input matrix

bV
which has a very consistent left-right structure. The top left plot shows the learned

matrices B(n), the bottom right plot shows the learned activations H. The bottom left plot

shows the bases again, only this time we concatenate the corresponding columns from

each Bk. We clearly see that this sequence of columns learns bases that extend over

time.

their activations. The number of models that we use maps to the temporal extent of
the estimates bases. Since we used this modular formulation, we will take advantage
of it to define a training procedure that averages these models in order to perform
estimation. The resulting meta-model will inherit the model specifications of the
underlying NMF models.

We will start by observing that the factorization to solve is a set of tied factoriza-
tions over di�erent lags of the input, which share the same activations:

v(1)(1, · · · , N 0
+ 1) = B(1)H

v(2)(2, · · · , N 0
+ 2) = B(2)H

v(3)(3, · · · , N 0
+ 3) = B(3)H

. . .

Each of these problems is easy to resolve independently using any NMF algorithm,
but solving them together such that bV ⇡

P
n

v(n) requires a slightly di�erent ap-
proach.

To illustrate, let us show how this works with the KL-NMF model. In this model
the objective is to minimize the KL-divergence between the input bV and its approx-
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imation BH. In this case we iterate over the following parameter updates:

R =

bV
BH (1.5)

B = B � (RH>
) (1.6)

H = H � (B>R) (1.7)

where the � operator is element-wise multiplication, and the fraction is element-
wise division. In order to resolve an ambiguity in this model, after every update we
additionally have to normalize either B or H to a fixed `1 norm. Traditionally, we
normalize the bases B to sum to 1. In order to estimate each B(n) and H we will use
the same form as with the equations above, but we need to modify the computation
of R to account for the time shifting. We simply do so by:

r
n

=

bv(n)P
t B(n)·h(n�t�1) (1.8)

B(n) = B(n) � (RH>
) (1.9)

H = H � (B>
(n)R) (1.10)

The only di�erence being that when we approximate the input using our model we
need to add all the time-shifted reconstructions using each B(n). This is done when
computing the denominator of the expression to compute R.

In a similar fashion we can adapt other NMF update algorithms to act the same way.
We need to account for all time-shifts and use the appropriate B(n) in each, and at
the end of each iteration we average the estimates of H for each corresponding B(n)

to obtain a single estimate for H. Iterating in this manner can produce the model
parameters by simply building on whichever basic NMF model we choose to start
with. In the next section we will show a di�erent approach, which results in the
same updates, albeit via a direct derivation and not as a meta-model heuristic.

1.1.3

N-D model

We can take the idea above and extend it to more dimensions. This will allow us to
obtain components that cannot only be arbitrarily positioned left-right (correspond-
ing to a shift along the time axis for spectrograms), but also up-down (corresponding
to a shift along the frequency axis space), or in the case of higher-dimensional input
over other dimensions as well. The general form will then include a whole set of tied
factorization where each will not only approximate a di�erent time-lag of the input,
but also a di�erent frequency lag as well. In this case it will be easier to move to a
more compact notation.

Although so far we have referred to this model as a convolutive model, we have
encountered no convolutions. We will now show a more compact form that can be
used to express the above operation, and also easily extend to more dimensions, albeit
one that does not work as well as a meta-model and does not allow incorporating
existing NMF models as easily.
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We start with the 1-D version and we reformulate it as:
bV ⇡

X

k

B
k

? h
k

(1.11)

where the ? operator denotes convolution over the left-right axis. In other terms, we
have

bv(n) ⇡
KX

k=1

N

0X

n

0=1

B
k

(n

0
)h

k

(n� n

0
). (1.12)

In this version we have K matrix bases that extend over N 0 frames as self-contained
matrices B

k

2 RF⇥N

0

+ , and each one will be convolved with a 1-D vector h
k

2
R1⇥N

+ . The matrices B
k

are the ones shown in the bottom left plots in Fig. 1.1,
and the vectors h

k

are the rows of the matrix H shown in the bottom right of the
same figure. Intuitively, what we do in this model is that we shift and scale each
time-frequency basis using a convolution operation and then sum them all up.

Using this notation allows us to extend this model to employ shifting on other axes
as well. For example, we can ask for components that shift not only left-right, but
also up-down. That implies a model like:

bV ⇡
KX

k=1

B
k

?H
k

(1.13)

where now the ? operator performs 2-D convolution between the matrices B
k

2
RF

0⇥N

0

+ and H
k

2 RF⇥N

+ . In other terms:

v̂

fn

⇡
X

k

X

n

0
,f

0

b

k

(n

0
, f

0
)h

k

(n� n

0
, f � f

0
). (1.14)

Depending on our preference we can crop the result of this convolution to return an
output sized as F⇥N , or restrict the size ofH

k

to be (F�F

0
+1)⇥(N�N

0
+1).

We can derive the estimation procedure as above using a meta-model formulation,
or directly optimize the above formulation. For the case of using NMF with a KL-
divergence cost function, the update equations for the 2-D convolutional model above
look as:

r(n, f, n

0
, f

0
, k) =

P
n

0
,f

0 b
k

(n

0
, f

0
)h

k

(n� n

0
, f � f

0
)

P
k

0
P

n

0
,f

0 b
k

0
(n

0
, f

0
)h

k

0
(n� n

0
, f � f

0
)

(1.15)

b

k

(n

0
, f

0
) =

X

n,f

b

k

(n, f)r(n, f, n

0
, f

0
, k) (1.16)

h

k

(n, f) =

X

n

0
,f

0

h

k

(n, f)r(n, f, n

0
, f

0
, k). (1.17)

In order to avoid an oscillation assigning more energy to the components or the ac-
tivations, we traditionally normalize the components to have their elements sum to
a fixed value (usually 1). For more details and for the derivation of the general M -
dimensional case see (Smaragdis and Raj, 2007).
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1.1.4

Illustrative examples

Finally, we would like to turn to some applications that this model can be used for.
In this section we will show three common applications, that of constructing time-
frequency dictionaries, that of extracting coherent time-frequency objects from a
mixture, and that of discovering shift-invariant structure from a recording. These
applications serve as lower level steps on which one can build signal separators,
pitch-detectors, and content analysis systems.

Time-frequency component extraction
Quite often, what we would refer to as a component will have time-frequency struc-
ture. This is the case with many sounds which do not exhibit a sustained spectral
structure. To illustrate such an example, consider the recording in Fig. 1.2. It shows
the spectrogram of a drum pattern which is composed out of four di�erent sounding
drums. Since these drums do not have a static spectral profile it would be inappropri-
ate to attempt to extract them using plain NMF methods. Doing so would potentially
produce only an average spectrum for each sound, and in other cases not work at all.
In this case an appropriate model for analysis is a 1-D convolutive NMF with four
components, one for each drum sound. The results of this analysis are shown in the
same figure. On the left we see the four extracted templates B

k

which, as we can
easily see, have taken the shape of the four distinct drum spectra. Their correspond-
ing activations, shown in the bottom right, show us where in time these templates
are active. If we convolve B

k

with H
k

we would obtain a reconstruction using only
one of the drum sounds. These are shown in the bottom left, and upon inspection we
note that they have successfully extracted each drum sound’s contribution.

Time-frequency dictionaries
Another application of this method is that of extracting time-frequency dictionaries
for a type of sound. Using plain NMF, this is a standard approach to building dictio-
naries of sounds that we can later use for various applications. Using this model we
can learn slightly more rigid dictionaries that also learn some of the temporal aspects
of each basis.

To do this we simply decide on the number of bases to use, and their temporal ex-
tent. As an example consider extracting such a dictionary out of a speech recording.
For this example we will take a recording of a speaker and decompose it as a 1-D
convolutive NMF model of a few dozen bases. As compared to the previous section,
this is a longer recording with more variation. Decomposing it with multiple com-
ponents would extract common time-frequency elements that one might expect to
encounter in this recording. As one might guess, such a set of components would be
phoneme-like elements at various pitches. We show a subset of such learned com-
ponents from speech in Fig. 1.3. Such a dictionary model works well as the basis for
source separation using NMF for sounds with consistent temporal structure (usually
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Figure 1.2 Extraction of time-frequency sources. The input to this case is shown in the top

right plot. It is a drum pattern composed out of four distinct drum sounds. The set of four

top left plots shows the extracted time-frequency templates using 2-D convolutive NMF.

Their corresponding activations are shown in the step plots in the bottom right, and the

individual convolutions of each template with its activation as the lower left set of plots. As

one can see this model learns the time-frequency profile of the four drum sounds and

correctly identifies where they are located.

music). Because of its rigid temporal constraints it does not always work as well for
sounds exhibiting much more temporal variability, such as speech.

Shift invariant transforms
Finally we would like to present an application for the 2-D convolutive NMF model.
In this case we will make use of shifting over the frequency axis. To obtain meaning-
ful results in this case we need to use a time-frequency transformation that exhibits
a semantically relevant shift-invariance along the frequency axis. One such case is
the constant-Q transform (Brown, 1991), which exhibits a frequency axis such that
a pitch shift would simply translate a spectrum along the frequency axis without
changing its shape. This means that, unlike before, we can use a single component
to represent all possible pitches of a specific sound, which can result in a signifi-
cantly more compact dictionary. Obviously this approach has many applications to
music signal analysis where pitch is a quantity that needs to be taken into account
frequently.

To show how this model would be useful in such a case consider the recording in
Fig. 1.4. In this recording we have a violin recording playing a melody that often
has two simultaneous notes. In the top right plot we see the constant-Q transform of
this sound. Since we have only one instrument we decompose it using the model in
Eq. (1.13), with one vector-sized component B 2 RF/2⇥1

+ , which will be convolved
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Figure 1.3 Convolutive NMF dictionary elements (Bk) for a speech recording. Note that

each component has the form of a short phoneme-like speech inflection.

with a 2-D activation H 2 R(F/2+1)⇥N

+ . What this will result in is estimating a
1-D function that will be shifted over both dimensions and replicated such that it
approximates the input. Naturally, this function would be the constant-Q spectrum
of a violin note, which will be shifted across frequency to represent di�erent pitches,
and shifted across time to represent all the played notes. The results of this analysis
are shown in Fig. 1.4. It is easy to see that the extracted template B looks like a
harmonic series. A more interesting form is found for the activation matrix H. Since
this is the function that will specify the pitch and time o�set, it will e�ectively tell us
what the pitch of the input was at every time step (corresponding to the peaks along
the vertical dimension), and also encode the energy of the signal over time. This
e�ectively becomes a pitch-time representation of the input that we can use to infer
the notes being played.

1.2
Overview of dynamical models

In the remainder of this chapter, we investigate dynamical models that impose a tem-
poral structure of the matrixH, where the previous section was about imposing some
temporal structure of the dictionary B. The two scenarios are not mutually exclusive
and can easily be combined. The dynamical NMF models that we will review are
special cases of the general dynamic model given by

bv(n) ⇠ p (

bv(n) | Bh(n)) (1.18)
h(n) ⇠ p (h(n) | h(n� 1)) (1.19)

where Eq. (1.18) defines a probabilistic NMF observation model such that
E
⇣
bV | BH

⌘
= BH and Eq. (1.19) introduces temporal dynamics by assuming

a Markov structure for the activation coe�cients.
The variety of models proposed for the dynamical part (1.19) will be the topic of

the next sections. Regarding the observation part (1.18), the literature concentrates
on four models that we sketch here (see also Chapter 8 and see Section 1.9 for the
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H

Input recordingB

Figure 1.4 Convolutive NMF decomposition for a violin recording. Note how the one

extracted basis B corresponds to a constant-Q spectrum that when 2-D convolved with

the activation H, approximates the input. The peaks in H produce a pitch transcription of

the recording, by indicating energy at each pitch and time o�set.

definition of the random variables considered next).

1) The additive Gaussian noise (AGN) model v̂
fn

= v

fn

+ ✏

fn

, with ✏

fn

⇠
N (0,�

2
), is a popular NMF model. It is however not a true generative model

of nonnegative data because it can theoretically produce negative data values in
low SNR regimes. It underlies the common quadratic cost function in the sense
that � log p(

bV|V) =

1
�

2

P
fn

(v̂

fn

� v

fn

)

2
+ cst (where the notation cst ev-

erywhere defines the terms independent of the parameters) .
2) The Poisson model v̂

fn

⇠ P(v

fn

) generates integer values and underlies a KL
cost function.

3) Though formally a generative model of integer values as well, the multinomial
model bv

n

⇠ M(kbv
n

k1,vn

) is a popular model in audio. It is the model that
supports probabilistic latent component analysis (PLCA) and underlies a weighted
KL divergence (Smaragdis et al., 2006).

4) Finally the multiplicative Gamma noise model v̂
fn

= v

fn

.✏

fn

, where ✏

fn

⇠
G(↵,↵) is Gamma distributed with expectation 1, is a generative model of non-
negative data. It underlies the Itakura-Saito divergence. When v̂

fn

= |x
fn

|2 and
the Gamma shape parameter ↵ equals one, i.e., the multiplicative noise has an ex-
ponential distribution, the model is equivalent to x

fn

⇠ N
c

(0, v̂

fn

), the so-called
Gaussian composite model (Févotte et al., 2009).

Except in the multinomial model, the observations are assumed conditionally in-
dependent, such that p( bV|BH) =

Q
fn

p(v̂

fn

|v
fn

). In the multinomial model, the
observations are tied by the sum constraint (a sample from M(N, p) sums to N ) but
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nevertheless assumed conditionally independent in time.

1.3
Smooth NMF

1.3.1

Generalities

A straightforward approach to use temporal continuity is to apply some constraints
that reduce fluctuations in each individual row of H. This corresponds to the as-
sumption that di�erent rows of H are independent. Smoothing the rows of H is
a way of capturing the temporal correlation of sound. Because it corresponds to a
more physically realistic assumption, it can also improve the semantic relevance of
the dictionary B and leads to more pleasant audio components in source separation
scenarios. In this approach, the general equation (1.19) can be written as:

h(n) ⇠
KY

k=1

p (h

k

(n) | h
k

(n� 1)) . (1.20)

A natural choice for p(h
k

(n)|h
k

(n � 1)) is a PDF that either takes its mode at
h

k

(n� 1) or is such that E (h

k

(n)|h
k

(n� 1)) = h

k

(n� 1). A classical choice is
the Gaussian random walk of the form

p(h

k

(n)|h
k

(n� 1),�) = N (h

k

(n) | h
k

(n� 1),�

2
), (1.21)

which underlies the squared di�erences penalty:

� log p(H) =

1

2�

2

X

kn

(h

k

(n)� h

k

(n� 1))

2
+ cst. (1.22)

This choice of dynamical model has used in MAP settings with an AGN observation
model in (Chen et al., 2006) and with a Poisson observation model in (Virtanen,
2007; Essid and Févotte, 2013).

Like the AGN observation model, the Gaussian Markov chain does not comply
with the nonnegative assumption ofH, from a generative perspective. As such, other
works have considered other nonnegativity preserving-models based on Gamma or
inverse-Gamma distribution. For instance, (Févotte et al., 2009) proposes the use of
Markov chains of the form

p(h

k

(n)|h
k

(n� 1)) = IG(h
k

(n)|↵, (↵+ 1)h

k

(n� 1)) (1.23)

or

p(h

k

(n)|h
k

(n� 1)) = G(h
k

(n)|↵, (↵� 1)/h

k

(n� 1)), (1.24)

where IG refers to the inverse-Gamma distribution defined in Section 1.7. Both
priors are such that the mode of p(h

k

(n)|h
k

(n � 1)) is h

k

(n � 1). The shape
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parameter ↵ controls the peakiness of the distribution and as such the correlation
between the activations of adjacent frames. (Févotte et al., 2009) describes an
EM algorithm for MAP estimation in the multiplicative noise observation model.
(Févotte, 2011) describes a faster MM algorithm for a similar model where the dy-
namical model reduces to penalizing the IS data fitting term with the smoothing termP

kn

DIS(hk

(n)|h
k

(n� 1)).
Finally, (Virtanen et al., 2008) introduced the use of hierarchical Gamma priors

for smooth NMF. The construction of the chain involves a latent variable z
k

(n) such
that

p(h

k

(n)|z
k

(n)) = G(h
k

(n)|↵
h

,↵

h

z

k

(n)) (1.25)
p(z

k

(n)|h
k

(n� 1)) = G(z
k

(n)|↵
z

+ 1,↵

z

h

k

(n� 1)). (1.26)

The expectation of h
k

(n) given h

k

(n� 1) is shown to be h
k

(n� 1):

E (h

k

(n)|h
k

(n� 1)) =

Z

hk(n)
h

k

(n)p(h

k

(n)|h
k

(n� 1))dh

k

(n)

=

Z

hk(n)
h

k

(n)

"Z

zk(n)
p(h

k

(n), z

k

(n)|h
k

(n� 1))dz

k

(n)

#

dh

k

(n)

=

Z

hk(n)

Z

zk(n)
h

k

(n)p(h

k

(n)|z
k

(n))p(z

k

(n)|h
k

(n� 1))dz

k

(n)dh

k

(n)

=

Z

zk(n)

1

z

k

(n)

p(z

k

(n)|h
k

(n� 1))dh

k

(n� 1) = h

k

(n� 1).

(1.27)

As explained in (Cemgil and Dikmen, 2007), the hyper-parameters ↵
h

and ↵

z

con-
trol the variance and skewness of p(h

k

(n)|h
k

(n � 1)). The hierarchical Gamma
Markov chain o�ers a more flexible model than the plain Gamma Markov chain,
while o�ering computational advantages (conjugacy with the Poisson observation
model). Cemgil and Dikmen (2007); Dikmen and Cemgil (2010) have also inves-
tigated hierarchical inverse-Gamma Markov chain and mixed variants. Hierarchical
Gamma Markov chains have been considered in NMF under the Poisson observation
model in (Virtanen et al., 2008; Nakano et al., 2011; Yoshii and Goto, 2012).

1.3.2

A special case

For tutorial purposes, we now show how to derive a smooth NMF algorithm in a
particular case. We will assume a multiplicative Gamma noise model for bV and
independent Gamma Markov chains for H. As explained earlier, the multiplicative
Gamma noise model is a truly generative model for nonnegative data, that underlies a
generative Gaussian variance model of complex-valued spectrograms when ↵ = 1.
The Gamma Markov chain is a simple model to work with – the proposed procedure
can be generalised to more complex prior. The proposed procedure is a variant of
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(Févotte, 2011) and a special case of (Févotte et al., 2013).

Our goal is to find a stationary point of the log-likelihood:

C(B,H) = � log p(

bV,H|B) = � log p(

bV|BH)� log p(H) (1.28)

where

p(

bV|BH) =

Y

fn

G(v̂
fn

|↵,↵/[BH]

fn

) (1.29)

p(H) =

KY

k=1

"
NY

n=2

G(h
k

(n)|↵
h

,↵

h

/h

k

(n� 1))

#

. (1.30)

These assumptions imply that E
⇣
bV|BH

⌘
= BH and E (h(n)|h(n� 1)) =

h(n � 1). In the following we will assume by convention (and for simplicity),
h

k

(0) = h

k

(N + 1) = 1. It is easily found that

� log p(

bV|BH) = ↵

X

fn

v̂

fn

[BH]

fn

+ log[BH]

fn

+ cst (1.31)

� log p(H) =

X

kn


↵

h

h

k

(n)

h

k

(n� 1)

+ ↵

h

log h

k

(n� 1) + (1� ↵

h

) log h

k

(n)

�
+ cst,

(1.32)

where we recall that cst denotes the terms independent of the parameters B or H.
Typical NMF algorithms proceed with alternate updates of B and H. The update of
B given the current estimate of H boils downs to standard Itakura-Saito NMF and
can be performed with standard multiplicative rules (see Chapter 8). The norm of
B should however be controlled (via normalisation or penalisation) so as to avoid
degenerate solutions such that kBk ! 1 and kHk ! 0. Indeed, let ⇤ be a
nonnegative diagonal matrix with coe�cients {�

k

}. We have:

C(B⇤�1
,⇤H) = C(B,H) +N

X

k

log �

k

(1.33)

which shows how degenerate solutions can be obtained by letting �

k

go to zero
(Févotte, 2011; Févotte et al., 2013). We now concentrate on the update of H given
B. As can be seen from Eqs. (1.31) and (1.32), adjacent columns of H are coupled
in the optimization. We propose a left-to-right block-coordinate descent approach
that updates h(n) at iteration i conditionally on h(i)

(n) and h(i�1)
(n + 1), for

1 < n < N . As such, the optimization of (1.28) with respect to H involves the
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sequential optimization of

F(h(n)) = ↵

X

f

"
v̂

fnP
k
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k

(f)h

k

(n)

+ log

X

k
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(f)h
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(n)

#
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log h
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(1.34)

where ˜h
k

(n� 1) and ˜

h

k

(n+ 1) denote the values of h
k

(n� 1) and h

k

(n+ 1) at
current and previous iteration, respectively. The minimum ofF(h(n)) does not have
a closed form expression and we need to resort to numerical optimization. A handy
choice, very common in NMF, is to use majorization-minimization (MM). It consists
of replacing the infeasible closed-form minimization of F(h(n)) by the iterative
minimization of an upper bound G(h(n), ˜h(n)) that is locally tight in the current
parameter estimate ˜h(n), see, e.g., (Févotte and Idier, 2011; Smaragdis et al., 2014).
Denoting ṽ

fn

=

P
k

b

k

(f)

˜

h

k

(n), the following inequalities apply, with equality for
h(n) = ˜h(n). By convexity of 1/x and Jensen’s inequality, we have:

1P
k
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k

(f)h
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(n)

 1
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2
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k

b

k
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. (1.35)

By concavity of log x and the tangent inequality, we have

log h

k

(n)  (log

˜

h

k

(n)� 1) +

h

k

(n)

˜

h

k

(n)

, (1.36)
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Plugging the latter inequalities in Eq. (1.34), we obtain

G(h(n), ˜h(n)) =
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+
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with
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(f)

v̂

fn

ṽ
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(1.39)

Minimization of G(h(n), ˜h(n)) leads to

h

k

(n) =

 
↵ p̃
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(n)
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2
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(n) + ↵

h

˜
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(n) +
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�1
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(n� 1)

! 1
2

. (1.40)
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unpenalized IS-NMF

smooth IS-NMF with alpha
h
 = 1

smooth IS-NMF with alpha
h
 = 10

smooth IS-NMF with alpha
h
 = 100

Figure 1.5 E�ect of regularization for ↵h = {1, 10, 100}. We display a segment of one of

the rows of H, corresponding to the activations of the accompaniment (piano and double

bass). A trumpet solo occurs in the middle of the displayed time interval, where the

accompaniment vanishes; the regularization smoothes out coe�cients with small energies

that remain in unpenalized IS-NMF.

1.3.3

Illustrative exemple

Like in (Févotte, 2011), we consider for illustration the decomposition of a 108
seconds-long music excerpt from My Heart (Will Always Lead Me Back To You)
recorded by Louis Armstrong and His Hot Five in the twenties. The band features
a trumpet, a clarinet, a trombone, a piano and a double bass. A STFT X = [x

fn

]

of the original signal x (sampled at 11kHz) was computed using a sinebell analysis
window of length L = 256 (23 ms) with 50 % overlap, leading to F = 129 fre-
quency bins and N = 9312 frames. To illustrate the e�ect of smoothing of the rows
of H we perform the following experiment. First we run unpenalized NMF with
the Itakura-Saito divergence (IS-NMF) with K = 10, retaining the solution with
lowest final cost value among ten runs from 10 random initializations. Then we run
the smooth IS-NMF algorithm presented in Section 1.3.2 with B and H respectively
fixed and initialized to the unpenalized solution. Fig. 1.5 reports results with ↵ = 1

and di�erent values of↵
h

. It shows how the value of the hyperparemeter↵
h

controls
the degree of smoothness of H. Some works have addressed the estimation of this
hyperparemeter together with B and H, see, e.g., (Dikmen and Cemgil, 2010).
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1.4
Non-negative state-space models

1.4.1

Generalities

Smooth NMF does not capture the full extent of frame-to-frame dependencies in
its input. In practice we will observe various temporal correlations between adja-
cent time frames which will be more nuanced than the continuity that smooth NMF
implies. In other words, there is correlation both across (smoothness) and between
(transitions) the coe�cients of H. For real-valued time series, this type of structure
can be handled with the classical linear dynamical system, using dynamics of the
formh(n) = Dh(n�1)+✏(n), where ✏(n) is a centered Gaussian innovation. This
model is not natural in the NMF setting because it may not maintain non-negativity
in the activations. However it is possible to design alternative dynamic models that
maintain non-negativity while preserving

E (h(n) | Dh(n� 1)) = Dh(n� 1). (1.41)

A non-negative dynamical system (NDS) with multiplicative Gamma innovations
was proposed in (Févotte et al., 2013), in conjunction with multiplicative Gamma
noise for the observation (IS-NMF model), similar to the model considered in Sec-
tion 1.3.2. Note that in the case of the Gaussian linear dynamical system, integration
of the activation coe�cients from the joint likelihood p(

bV,H | B) is feasible using
the Kalman filter. Such computations are unfortunately intractable with NDS, and a
MAP approach based on a MM algorithm like in Section 1.3.2 is pursued in (Févotte
et al., 2013).

Dynamic filtering of the activation coe�cients in the PLCA model has also been
considered in (Nam et al., 2012; Mohammadiha et al., 2013), where the proposed
algorithms use Kalman-like prediction strategies. (Mohammadiha et al., 2013) con-
sider a more general multi-step predictor such that h(n) ⇡

P
n

0 D(n

0
)h(n � n

0
),

and describes an approach for both the smoothing (which relies on both past and
future data) and causal filtering (which relies only on the past data) problems.

1.4.2

A special case

In this section we review the dynamic NMF model from (Mohammadiha et al., 2015)
which uses a continuous state-space approach to utilize the temporal dependencies
in NMF. The model and underlying assumptions are described here and the main
derivation steps are reviewed.

Statistical model
We consider a dynamic NMF model in which the NMF coe�cientsh(n) are assumed
to evolve over time according to the following nonnegative vector autoregressive (N-
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VAR) model:

p(

bv(n)|B,h(n)) = M (

bv(n)|�(n),Bh(n)) (1.42)

p(h(n)|D,h(n� 1), . . . ,h(n�N

0
)) = E

0

@h(n)|
N

0X

n

0=1

D(n

0
)h(n� n

0
)

1

A
,

(1.43)

where �(n) =

P
f

v̂

fn

, N 0 is the order of the N-VAR model, D(n

0
) is a K ⇥ K

matrix, D denotes the union ofD(n

0
), 8n0, and E(x|�) andM(x|N,p) refer to the

exponential and multinomial distributions defined in Section 1.9. Eq. (1.42) defines
a PLCA observation model, in which the columns of B and H are assumed to sum
to 1 so that Bh(n) defines a discrete probability distribution.

The conditional expected values of h(n) and bv(n) under the model (1.42)-(1.43)
are given by:

E (h(n) | D,h(n� 1), . . .h(n�N

0
)) =

N

0X

n

0=1

D(n

0
)h(n� n

0
), (1.44)

E (

bv(n) | B,h(n)) =

0

@
X

f

v̂

fn

1

ABh(n), (1.45)

which is used to obtain an NMF approximation of the input data as bv(n) ⇡
(

P
f

v̂

fn

)Bh(n).
The distributions in (1.42)-(1.43) are chosen to be appropriate for nonnegative data.

For example, it is well known that the conjugate prior for the multinomial likelihood is
the Dirichlet distribution. However, it can be shown that the obtained state estimates
in this case are no longer guaranteed to be nonnegative. Therefore, the exponential
distribution is used in (1.42) for which, as will be shown later in Section 1.4.2, the
obtained state estimates are always nonnegative.

As already mentioned, if we discard Eq. (1.43), we recover the basic PLCA model
of (Smaragdis et al., 2006). In this formulation, the observations ˆv(n) are assumed
to be count data over F possible categories. Each vector h(n) is a probability vector
that represents the contribution of each basis vector in explaining the observation,
i.e., h

k

(n) = P (z(n) = k) where z(n) is a latent variable used to index the basis
vectors at time n. Moreover, each column of B is a probability vector that contains
the underlying structure of the observations given the latent variable z and is referred
to as a basis vector. More precisely, b

k

(f) is the probability that the f -th element
of ˆv(n) will be chosen in a single draw from the multinomial distribution in (1.42),
i.e., b

k

(f) = P (

ˆv(n) = e(f) | z(n) = k) with e(f) being an F -dimensional in-
dicator vector whose f -th element is equal to one (see Mohammadiha et al. (2013)
for more explanation). Note that (by definition) b

k

(f) is time-invariant. In the fol-
lowing, this notation is abbreviated to b

k

(f) = P (f | z(n) = k).
It is worthwhile to compare (1.42)-(1.43) to the state-space model utilized in the

Kalman filter and to highlight the main di�erences between the two. First, all the
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variables are constrained to be nonnegative in (1.42)-(1.43). Second, the process and
observation noises are embedded into the specified distributions, which is di�erent
from the additive Gaussian noise utilized in the Kalman filtering. Finally, in the
process equation, a multi-lag N-VAR model is used. It is also important to note
that both state-space model parameters (B and D) and state variables H, should be
estimated simultaneously.

In the following section, an expectation-maximization (EM) algorithm is derived
to compute maximum likelihood (ML) estimates of D and B and to compute a max-
imum a posteriori (MAP) estimate of the state variables H. In the latter case, the
estimation consists of prediction/propagation and update steps, similarly to the clas-
sical Kalman filter. However, a nonlinear update function is derived here in contrast
to the linear additive update at Kalman filtering.

Estimation algorithm
Let us denote the the nonnegative parameters in (1.42)-(1.43) by ✓ = {D,H,B}.
Given a nonnegative data matrix bV, ✓ can be estimated by maximizing the MAP
objective function for the model in (1.42)-(1.43), i.e., as

QMAP
= log p

⇣
bV,H | B,D

⌘

= log p

⇣
bV | B,H

⌘
+ log p (H | D) . (1.46)

Maximizing QMAP w.r.t. B,D and H results in a MAP estimate of H and ML esti-
mates of B and D. For this maximization, an EM algorithm is derived in (Moham-
madiha et al., 2015) to iteratively update the parameters. EM is a commonly used
approach to estimate the unknown parameters in the presence of latent variables,
where a lower bound on QMAP is maximized by iterating between an expectation (E)
step and a maximization (M) step until convergence (Dempster et al., 1977). It is a
particular form of MM algorithm where the construction of the upper bound relies
on the posterior of the latent variables and the complete likelihood. In our setting
these are the variables z(n) that index the basis vectors. In the E step, the posterior
probabilities of these variables are obtained as:

P
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, (1.47)

where ˜✓ denotes the estimated parameters from the previous iteration of the EM
algorithm. In the M step, the expected log-likelihood of the complete data:
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0
)) (1.48)
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is maximized w.r.t. ✓ to obtain a new set of estimates. Like previously, we assume
by convention ˜

h

k

(n�N

0
) = 1 for n  N

0. Q
⇣
✓, ˜✓

⌘
can be equivalently (up to a

constant) written as:
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where ⌘(n) =
P

N
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n

0=1 D(n

0
)h(n� n

0
). As mentioned in Section 1.4.2, b(k) and

h(n) are probability vectors, and hence, to make sure that they sum to one, we need to
impose two constraints

P
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(n) = 1 and
P

f
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(f) = 1. To solve the constrained
optimization problem, we form the Lagrangian function L and maximize it:
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where {↵
k

}
k

and {�
n

}
n

are Lagrange multipliers. In the following, the maximiza-
tion w.r.t. B, H, and D are successively presented.

Eq. (1.50) can be easily maximized w.r.t. B to obtain:
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where the Lagrange multiplier ↵
k

=

P
fn

v̂
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⇣
z(n) = k | f, ˜✓

⌘
ensure that

b
k

sums to one. Maximization w.r.t. H leads to a recursive algorithm, where
h(1),h(2), . . . are estimated sequentially, like in Section 1.3.2. The derivative of
L w.r.t. h

k

(n) is set to zero to obtain
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where ⌘(n) is defined after (1.49). The Lagrange multiplier �
n

has to be com-
puted such that h(n) sums to one. This can be done using an iterative New-
ton’s method Mohammadiha et al. (2013). Finally, we attend to the estimation
of the N-VAR parameters D. Note that there are many approaches to estimate
the VAR model parameters in the literature, such as (Hamilton, 1994; Lütkepohl,
2005). However, since most of these approaches are based on least-squares esti-
mation, they are not suitable for a nonnegative framework. Moreover, they tend
to be very time-consuming for high-dimensional data. First, note that D which
is defined as D = [D(1) D(2) . . .D(N

0
)] is a K ⇥ KN

0-dimensional ma-
trix. Let KN

0-dimensional vector w(n) represent the stacked state variables as:
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w(n)
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⇥
h(n� 1)

T h(n� 2)
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. . .h(n�N)

0T ⇤. The parts of (1.50) that de-
pend on D are equivalently written as:
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where W = [w(0) . . .w(N � 1)], [·]
k

denotes the k-th entry of its argument,
and DIS (·|·) is the IS divergence. The second term in (1.53) is constant and can be
ignored for the purpose of optimization w.r.t. D. Hence, the ML estimate of D can
be obtained by performing IS-NMF in which the NMF coe�cient matrix W is held
fixed and only the basis matrix D is optimized. This is done by executing

D = D �

⇣
(DW)

��2 �H
⌘
WT

(DW)

��1
WT

, (1.54)

iteratively until convergence, with initial valuesD =

˜D, where � represents element-
wise multiplication. Alternatively, (1.54) can be repeated only once resulting in a
generalized EM algorithm.

In the supervised source separation or speech enhancement, the presented dynamic
NMF approach can be used to estimate all the model parameters simultaneously using
the training data from individual sources. As convergence criterion, the stationarity
of QMAP or EM lower bound can be checked, or a fixed (su�cient) number of iter-
ations can be simply used. In the testing step, B and D are held fixed and only the
the state variables H are estimated from the mixture input.

1.5
Discrete dynamical models

1.5.1

Generalities

Time series data often has hidden structure in which each time frame corresponds
to a discrete hidden state q(n). Moreover, there is typically a relationship between
the hidden states at di�erent time frames, in the form of temporal dynamics. For
example, each time frame of a speech signal corresponds to a subunit of speech such
as a phoneme, which can be modeled as a distinct state. The subunits evolve over
time as governed by temporal dynamics. Hidden Markov Models (HMMs) (Rabiner,
1989) have been used extensively to model such data. They model temporal dynamics
with a transition matrix defined by the distribution P (q(n) | q(n � 1)). There is a
thread of literature (Ozerov et al., 2009; Mysore et al., 2010; Mysore and Smaragdis,
2011; Nakano et al., 2010; Mohammadiha and Leijon, 2013) that combines these
ideas with NMF to model non-negative data with such structure.
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Figure 1.6 Dictionaries were learned from speech data of a given speaker. Shown are the

dictionaries learned for 18 of the 40 states. Each dictionary is comprised of 10 elements

that are stacked next to each other. Each of these dictionaries roughly corresponds to a

subunit of speech, either a voiced or unvoiced phoneme.

The notion of a state is incorporated in the NMF framework by associating distinct
dictionary elements with each state. This is done by allowing each state to deter-
mine a di�erent support of the activations, which we express with the distribution
p(h(n) | q(n)). This is to say that given a state, the model allows only certain dic-
tionary elements to be active. Some techniques (Ozerov et al., 2009; Nakano et al.,
2010) define the support of each state to be a single dictionary element, while other
techniques (Mysore et al., 2010; Mysore and Smaragdis, 2011; Mohammadiha and
Leijon, 2013), called non-negative HMMs (N-HMMs), allow the support of each
state to be a number of dictionary elements. Since only a subset of the dictionary el-
ements are active at each time frame (as determined by the state at that time frame),
we can interpret these models as imposing block sparsity on the dictionary elements
(Mysore, 2012).

As in (1.19), there is a dependency between h(n) and h(n� 1). However, unlike
the continuous models, this dependency is only through the hidden states, which
are in turn related through the temporal dynamics. Therefore h(n) is conditionally
independent of h(n� 1) given q(n) or q(n� 1). In the case of discrete models, we
can therefore replace Eq. (1.19) with

q(n) ⇠ P (q(n) | q(n� 1)) , (1.55)
h(n) ⇠ p (h(n) | q(n)) . (1.56)

Since these models incorporate an HMM structure into an NMF framework, one can
make use of the vast theory of Markov chains to extend these models in various ways.
For example, one can incorporate high level knowledge of a particular class of signals
into the model, use higher order Markov chains, or use various natural language pro-
cessing techniques. Language models were incorporated in this framework (Mysore
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and Smaragdis, 2012) as typically done in the speech recognition literature (Rabiner,
1989). Similarly, one can incorporate other types of temporal structure like music
theory rules when modeling music signals.

The above techniques discuss how to model a single source using an HMM struc-
ture. However, in order to perform source separation, we need to model mixtures.
This is typically done by combining the individual source models into a non-negative
factorial HMM (N-FHMM). (Ozerov et al., 2009; Mysore et al., 2010; Mysore and
Smaragdis, 2011; Nakano et al., 2011; Mohammadiha and Leijon, 2013), which al-
lows each source to be governed by a distinct pattern of temporal dynamics. One
issue with this strategy is that the computational complexity of inference is exponen-
tial in the number of sources. This can be circumvented using approximate inference
techniques such as variational inference (Mysore and Sahani, 2012), which makes
the complexity linear in the number of sources.

1.5.2

A special case

We describe the specific N-HMM and N-FHMM models in (Mysore et al., 2010).
A detailed derivation can be found in (Mysore, 2010). In the N-HMM, each state
q corresponds to a distinct dictionary, which is to say that a di�erent subset of the
dictionary elements in the model are associated with each state and we in turn call
these subsets, dictionaries. There is therefore a one to one correspondence between
states and dictionaries.

An example of the dictionaries learned from a sample of speech is shown in
Fig. 1.6. Each dictionary in the figure is comprised of dictionary elements that are
stacked next to each other. Notice the visual similarity of these dictionaries with the
dictionary elements learned from convolutive NMF shown in Fig. 1.4. However, con-
volutive NMF dictionaries are defined over multiple time frames, so they can only
well model data that is of the same fixed length as the dictionaries. For example,
they can model a drum hit quite well, but have less flexibility to model data such as
phonemes of speech with varying lengths. On the other hand, N-HMMs model each
time frame (with temporal dependencies between time frames) and therefore have
more flexibility. They can model phonemes of speech of varying lengths quite well,
but the increased flexibility comes with potential decreased accuracy for fixed length
events such as a drum hit.

Similar to the dynamic NMF model in Section 1.4.2, the N-HMM is a dynamic
extension of PLCA. We now briefly describe the model and parameter estimation
for the N-HMM. The dictionary element k from dictionary (state) q is defined by a
discrete distributionP (f |k, q), which shows the relative magnitude of the frequency
bins for that dictionary element. It is by definition, time-invariant. At time n, the ac-
tivations of dictionary element k from dictionary q is given by a discrete distribution
P (k(n)|q(n)).

The complete set of distributions that form the N-HMM are defined below, and
include the two distributions mentioned above. Each of these distributions except
for the energy distributions are discrete distributions. The energy distributions are
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Gaussian distributions.

1) Dictionary elements – P (f |k, q) defines the dictionary element k of dictionary
q. Unlike the previous models that were discussed in this chapter, in the N-HMM,
there is a grouping of the dictionary elements (columns of B). The B matrix is es-
sentially a concatenation of the individual dictionaries of the N-HMM. Therefore,
the dictionary q and dictionary element k together define a column of B.

2) Activations – P (k(n)|q(n)) defines the activations that correspond to dictionary
q at time n. The concatenation of these activations for all dictionaries weighted by
the relative weighting of the individual dictionaries corresponds to h(n) given by
P (h(n)|q(n)). This relative weighting at a given time frame is governed by the
temporal dynamics mentioned below.

3) Transition matrix – P (q(n)|q(n� 1)) defines a standard HMM transition matrix
(Rabiner, 1989).

4) Prior probabilities – P (q(1)) defines a distribution over states at the first time
frame.

5) Energy distributions – p(g(n)|q(n)) defines a distribution of the energies of state
q, which intuitively corresponds to the range of observed loudness of each state.

Given the spectrogram bV, of a sound source, we use the EM algorithm to learn
the model parameters of the N-HMM. The E-step is computed as follows:

P (k(n), q(n)|f(n), bV,�) =
↵(q(n))�(q(n))P

q(n) ↵(q(n))�(q(n))
P (k(n)|f(n), q(n)) ,

(1.57)

where

P (k(n)|f(n), q(n)) = P (k(n)|q(n))P (f(n)|k(n), q(n))P
k(n) P (k(n)|q(n))P (f(n)|k(n), q(n)) . (1.58)

P (k(n), q(n)|f(n),V,�) is the posterior distribution that is used to estimate the
dictionary elements and activations. � denotes the number of draws over each of
the time frames in the spectrogram (�(1)...�(N)). The number of draws in a given
time frame intuitively corresponds to how loud the signal is at that time frame. The
number of draws over all time frames is simply this information for the entire signal.
Note that in spite of the dictionary elements P (f |k, q) being time invariant, they are
given a time indexn in the above equation. This is simply done in order to correspond
to the values of f , k, and q referenced at time n in the LHS of the equation, and is
constant for all values of n.

The forward/backward variables ↵(q(n)) and �(q(n)) are computed using the
likelihoods of the data, P (

bv(n), g(n)|q(n)), for each state (as in classical HMMs
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(Rabiner, 1989)). The likelihoods are computed as follows:

p(

bv(n), g(n)|q(n)) =

p(g(n)|q(n))
Y

f(n)

0

@
X

k(n)

P (f(n)|k(n), q(n))P (k(n)|q(n))

1

A
�vfn

, (1.59)

where � is scaling factor.
The dictionary elements and their weights are estimated in the M-step as follows:

P (f |k, q) =
P

n

v̂

fn

P (k(n), q(n)|f(n), bV,�)
P

f(n)

P
n

v̂

fn

P (k(n), q(n)|f(n), bV,�)
, (1.60)

P (k(n)|q(n)) =
P

f(n) v̂fnP (k(n), q(n)|f(n), bV,�)
P

k(n)

P
f(n) v̂fnP (k(n), q(n)|f(n), bV,�)

. (1.61)

The transition matrix, P (q(n)|q(n � 1)) and prior probability, P (q(1)), are com-
puted exactly as in classical HMMs (Rabiner, 1989). The mean and variance of
p(g|q) are also learned from the data.

N-HMMs are learned from isolated training data of sounds sources. Once these
models are learned, they can be combined into an N-FHMM and used for source
separation. If trained N-HMMs are available for all sources (e.g. separation of
speech from multiple speakers), then supervised source separation can be performed
(Mysore et al., 2010). This can be done e�ciently using variational inference
(Mysore and Sahani, 2012). If N-HMMs are available for all sources except for one
(e.g. separation of speech and noise), then source separation can be performed using
semi-supervised separation (Mysore and Smaragdis, 2011).

1.6
The use of dynamic models in source separation

In order to demonstrate the utility of dynamic models in context, we use a real-world
source separation example. This time it will be an acoustic mixture of speech mixed
with background noise from a factory (using the TIMIT and NOISEX-92 databases).
The mixture is shown using a magnitude STFT representation in Fig. 1.7. This partic-
ular case is interesting because of the statistics of speech. We note that human speech
tends to have a smooth acoustic trajectory which means that there is a strong tempo-
ral correlation between adjacent time frames. On the other hand, we also know that
speech has a strong discrete hidden structure which is associated with the sequence of
spoken phonemes. These properties make this example a good candidate for demon-
strating the di�erences between the methods discussed so far and their e�ects on
source separation.
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We performed source separation using the three main approaches that we covered
in this chapter. These include a static PLCA model (Smaragdis et al., 2007), a dy-
namic PLCA model (Mohammadiha et al., 2013) and an N-HMM (Mysore et al.,
2010). In all three cases, we trained a model for speech and a model for background
noise form training data. The dictionary size for the noise was fixed to 30 elements,
whereas the speech model had 60 dictionary elements for PLCA and dynamic PLCA,
and 40 states with 10 dictionary elements each for the N-HMM. For the dynamic
models, we learned the temporal statistics as well. In order to separate a mixture of
test data of the sources, we fixed the learnedBmatrices for both the speech and noise
models and estimated their respective activations H using the context of each model.
In figure 1.7, we show the reconstruction of speech using each model. We also show
objective metrics using SDR, SIR, and SAR (defined in Chapter 1) to evaluate the
quality of separation in each case. These results are averaged over 20 di�erent speak-
ers to reduce biasing and initialization e�ects.

For the static PLCA model, we see that there is a detectable amount of visible
suppression of the background noise, which amounts to a modest SIR of about 5dB.
The dynamic PLCA model on the other hand, by taking advantage of the temporal
statistics of speech, does a much better job resulting in more than double the SIR.
Note however that in the process of adhering to the expected statistics, it introduces
artifacts, which result in a lower SAR as compared to the static model. The N-HMM
results in an even higher SIR and a better SAR than the dynamic PLCA model. This
is because the specific signal we are modeling has a temporal structure that is well de-
scribed by a discrete dynamic model as we transition from phoneme to phoneme. By
constraining our model to only use a small dictionary at each discrete state, we obtain
a cleaner estimate of the source. An example of that can be seen when comparing
the separation results in Fig. 1.7, where unwanted artifacts between the harmonics of
speech in the dynamic PLCA example are not present in the N-HMM example since
the dictionary elements within a state cannot produce such complex spectra.

1.7
Which model to use?

Now in addition to pondering on which cost function is the most appropriate to em-
ploy, we also have a decision to make on which model is best for a source separation
approach. As always the answer depends on the nature of the sources in the mixture.
In general the static model has found success in a variety of areas, but does not take
advantage of temporal correlations. In domains where we do not expect a high de-
gree of correlations across time (e.g. short burst-like sources) this model works well,
but in cases where we expect a strong sense of continuity (e.g. a smooth source like
a whale song), then a continuous dynamic model would work better. Furthermore,
if we know that a source exhibits a behavior of switching through di�erent states,
each with its own unique character (e.g. speech), then a model like the N-HMM is
more appropriate since it will eliminate the concurrent use of elements that belong
at di�erent states and produce a more plausible reconstruction. Of course by using
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Figure 1.7 Example of dynamic models for source separation. The four spectrograms

show the mixture, and the extracted speech for three di�erent approaches. The bar plots

shows a quantitative evaluation of the separation performance of each approach.

Reproduced from (Smaragdis et al., 2014).

the generalized formulation we use in this article, there is nothing that limits us from
employing di�erent models concurrently. It is entirely plausible to design a source
separation system where one source is modeled by a static model and other by a dy-
namic one, or even have both being described by di�erent kinds of dynamic models.
Doing so usually requires a relatively straightforward application of the estimation
process that we outlined earlier. Similarly, convolutive NMF can readily be employed
together with any of the proposed models for H as the updates of these two variables
are independent in the considered setting of alternate updates. This may e�ciently
combine the two sources of temporality in sound and further improve the precision
of modeling.

1.8
Summary

In this chapter, we discussed several extensions of NMF where temporal dependen-
cies are utilized to better separate individual speech sources from a given mixture
signal. The main focus of this chapter has been on probabilistic formulations where
temporal dependencies can be utilized to build informative prior distributions to be
combined with appropriate probabilistic NMF formulations. The presented dynamic
extensions are classified into continuous and discrete models, where both models are
explained using a unified framework. The continuous models include smooth NMF
and more recently proposed continuous state-space models. For the discrete mod-
els, we discussed the discrete state-space models based on HMM, where the output
distributions are modeled using static NMF. Short simulation results and qualitative
comparisons are also provided to provide an insight into di�erent models and their
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performance.

1.9
Standard distributions

Gamma distribution
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Exponential distribution
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inverse-Gamma distribution
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Multinomial

M(x|N,p) =
N !

x1! . . . xK

!

p

x1
1 . . . p

xK
K

, x

k

2 {0, . . . , N},
X

k

x

k

= N

(1.68)

Bibliography

Brown, J.C. (1991) Calculation of a constant q
spectral transform. Journal of the Acoustical
Society of America, 89 (1), 425–434.

Cemgil, A.T. and Dikmen, O. (2007) Conjugate
gamma Markov random fields for modelling
nonstationary sources, in Proceedings of
International Conference on Independent
Component Analysis and Signal Separation.

Chen, Z., Cichocki, A., and Rutkowski, T.M.
(2006) Constrained non-negative matrix

factorization method for EEG analysis in
early detection of Alzheimer’s disease, in
Proceedings of IEEE International
Conference on Audio, Speech and Signal
Processing.

Dempster, A.P., Laird, N.M., and Rubin., D.B.
(1977) Maximum likelihood from
incomplete data via the EM algorithm.
Journal of the Royal Statistical Society:
Series B, 39, 1–38.



32

Dikmen, O. and Cemgil, A.T. (2010) Gamma
Markov random fields for audio source
modeling. IEEE Transactions on Audio,
Speech, and Language Processing, 18 (3),
589–601.

Essid, S. and Févotte (2013) Smooth
nonnegative matrix factorization for
unsupervised audiovisual document
structuring. IEEE Transactions on
Multimedia, 15 (2), 415–425.

Févotte, C. (2011) Majorization-minimization
algorithm for smooth Itakura-Saito
nonnegative matrix factorization, in
Proceedings of IEEE International
Conference on Audio, Speech and Signal
Processing.

Févotte, C., Bertin, N., and Durrieu, J.L. (2009)
Nonnegative matrix factorization with the
Itakura-Saito divergence. With application
to music analysis. Neural Computation,
21 (3), 793–830.

Févotte, C. and Idier, J. (2011) Algorithms for
nonnegative matrix factorization with the
beta-divergence. Neural Computation,
23 (9), 2421–2456.

Févotte, C., Le Roux, J., and Hershey, J.R.
(2013) Non-negative dynamical system with
application to speech and audio, in
Proceedings of IEEE International
Conference on Audio, Speech and Signal
Processing.

Hamilton, J.D. (1994) Time Series Analysis,
Princeton University Press, New Jersey.

Lütkepohl, H. (2005) New Introduction to
Multiple Time Series Analysis, Springer.

Mohammadiha, N. and Leijon, A. (2013)
Nonnegative HMM for babble noise derived
from speech HMM: Application to speech
enhancement. IEEE Transactions on Audio,
Speech, and Language Processing, 21 (5),
998–1011.

Mohammadiha, N., Smaragdis, P., and Leijon,
A. (2013) Prediction based filtering and
smoothing to exploit temporal dependencies
in NMF, in Proceedings of IEEE
International Conference on Audio, Speech
and Signal Processing.

Mohammadiha, N., Smaragdis, P., Panahandeh,
G., and Doclo, S. (2015) A state-space
approach to dynamic nonnegative matrix
factorization. IEEE Transactions on Signal
Processing, 63 (4), 949–959.

Mysore, G.J. (2010) A Non-negative

Framework for Joint Modeling of Spectral
Structure and Temporal Dynamics in Sound
Mixtures, Ph.D. thesis, Stanford University.

Mysore, G.J. (2012) A block sparsity approach
to multiple dictionary learning for audio
modeling, in Proceedings of International
Conference on Machine Learning Workshop
on Sparsity, Dictionaries, and Projections in
Machine Learning and Signal Processing.

Mysore, G.J. and Sahani, M. (2012) Variational
inference in non-negative factorial hidden
Markov models for e�cient audio source
separation, in Proceedings of International
Conference on Machine Learning.

Mysore, G.J. and Smaragdis, P. (2011) A
non-negative approach to semi-supervised
separation of speech from noise with the use
of temporal dynamics, in Proceedings of
IEEE International Conference on Audio,
Speech and Signal Processing.

Mysore, G.J. and Smaragdis, P. (2012) A
non-negative approach to language informed
speech separation, in Proceedings of
International Conference on Latent Variable
Analysis and Signal Separation.

Mysore, G.J., Smaragdis, P., and Raj, B. (2010)
Non-negative hidden Markov modeling of
audio with application to source separation,
in Proceedings of International Conference
on Latent Variable Analysis and Signal
Separation.

Nakano, M., Le Roux, J., Kameoka, H.,
Nakamura, T., Ono, N., and Sagayama, S.
(2011) Bayesian nonparametric spectrogram
modeling based on infinite factorial infinite
hidden Markov model, in Proceedings of
IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics.

Nakano, M., Roux, J.L., Kameoka, H., Kitano,
Y., Ono, N., and Sagayama, S. (2010)
Nonnegative matrix factorization with
Markov-chained bases for modeling
time-varying patterns in music
spectrograms, in Proceedings of
International Conference on Latent Variable
Analysis and Signal Separation.

Nam, J., Mysore, G.J., and Smaragdis, P.
(2012) Sound recognition in mixtures, in
Proceedings of International Conference on
Latent Variable Analysis and Signal
Separation.

O’Grady, P.D. and Pearlmutter, B.A. (2008)
Discovering speech phones using



33

convolutive non-negative matrix
factorisation with a sparseness constraint.
Neurocomputing, 72, 88–101.

Ozerov, A., Févotte, C., and Charbit, M. (2009)
Factorial scaled hidden Markov model for
polyphonic audio representation and source
separation, in Proceedings of IEEE
Workshop on Applications of Signal
Processing to Audio and Acoustics.

Rabiner, L.R. (1989) A tutorial on hidden
Markov models and selected applications in
speech recognition. Proceedings of the
IEEE, 77 (2), 257–286.

Smaragdis, P. (2007) Convolutive speech bases
and their application to supervised speech
separation. IEEE Transactions on Audio,
Speech, and Language Processing, 15 (1),
1–12.

Smaragdis, P., Févotte, C., Mysore, G.,
Mohammadiha, N., and Ho�man, M. (2014)
Static and dynamic source separation using
nonnegative factorizations: A unified view.
IEEE Signal Processing Magazine, 31 (3),
66–75.

Smaragdis, P. and Raj, B. (2007) Shift-invariant
probabilistic latent component analysis,
Tech. Rep. TR2007-009, Mitsubishi Electric
Research Labs.

Smaragdis, P., Raj, B., and Shashanka, M.V.
(2006) A probabilistic latent variable model
for acoustic modeling, in Proceedings of
Neural Information Processing Systems

Workshop on Advances in Models for
Acoustic Processing.

Smaragdis, P., Raj, B., and Shashanka, M.V.
(2007) Supervised and semi-supervised
separation of sounds from single-channel
mixtures, in Proceedings of International
Conference on Independent Component
Analysis and Signal Separation.

Virtanen, T. (2007) Monaural sound source
separation by non-negative matrix
factorization with temporal continuity and
sparseness criteria. IEEE Transactions on
Audio, Speech, and Language Processing,
15 (3), 1066–1074.

Virtanen, T., Cemgil, A.T., and Godsill, S.
(2008) Bayesian extensions to non-negative
matrix factorisation for audio signal
modelling, in Proceedings of IEEE
International Conference on Audio, Speech
and Signal Processing.

Wang, W., Cichocki, A., and Chambers, J.A.
(2009) A multiplicative algorithm for
convolutive non-negative matrix
factorization based on squared Euclidean
distance. IEEE Transactions on Signal
Processing, 57 (7), 2858–2864.

Yoshii, K. and Goto, M. (2012) Infinite
composite autoregressive models for music
signal analysis, in Proceedings of
International Society for Music Information
Retrieval Conference.


	Preface
	Notations
	Part I Prerequisites
	Part II Single-channel enhancement and separation
	Temporal extensions of nonnegative matrix factorization
	Cédric Févotte, Paris Smaragdis, Nasser Mohammadiha and Gautham J. Mysore
	Convolutive NMF
	1-D Convolutive NMF
	Convolutive NMF as a meta-model
	N-D model
	Illustrative examples

	Overview of dynamical models
	Smooth NMF
	Generalities
	A special case 
	Illustrative exemple

	Non-negative state-space models
	Generalities
	A special case

	Discrete dynamical models
	Generalities
	A special case

	The use of dynamic models in source separation
	Which model to use?
	Summary
	Standard distributions


	Part III Multichannel enhancement and separation
	Part IV Application scenarios and perspectives

