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ABSTRACT

An important task when processing dynamic PET images is to

identify the time-activity curves (TACs) of the pure tissues, along

with their corresponding spatial proportions. This step, often referred

to as unmixing or factor analysis, is based on a loss function which

measures the discrepancy between the observed data and the model.

This loss function should be chosen according to the statistical

properties of the noise, which is in this case hard to characterize.

Indeed, while dynamic PET images results from a decay process that

can be statistically described by a Poisson distribution, acquisition

and post-filtering reconstruction drastically change the nature of the

noise. In the literature dedicated to factor analysis of dynamic PET

images, a common and underlying assumption consists in assuming

that the dynamic PET images are corrupted by an additive Gaussian

or by a Poisson noise. These assumptions lead to the choice of

the squared Euclidian distance and the Kullback-Leibler divergence.

We propose here to consider the β-divergence, which is able to

encompass a wide family of divergence measures corresponding

to various noise distributions. This loss function is incorporated

into three different factor models and evaluated using four sets of

synthetic data.

Index Terms— Dynamic PET imaging, factor analysis,

β-divergence, nonnegative matrix factorization, blind source

separation.

1. INTRODUCTION

Dynamic positron emission tomography (PET) is a functional

imaging technique that is able to deliver relevant information on

dysfunctions hardly detectable by anatomical imagery. To provide

interpretable results, PET images have to be quantified, which often

requires a previous estimation of global time-activity curves (TACs)

(herein called factors) representing the concentration of tracer in a

reference tissue or blood over time. The estimation of those factors

along with their spatial repartitions is referred to as unmixing, factor

analysis or linear blind source separation.

Most of the factor analysis techniques in the PET literature [1, 2]

implicitly or explicitly assume that the residual noise corrupting

the images follows a Gaussian distribution [3]. Conversely,

concurrent methods exploit the intrinsic nature of the count-rates

Part of this work has been supported by Coordenação de Aperfeioamento
de Ensino Superior (CAPES), Brazil, and the European Research Council
(ERC FACTORY-CoG-681839).

to consider that the noise behavior can be described by a Poisson

distribution [4, 5]. However, depending on the acquisition setup,

the reconstruction algorithm and its parameter values (e.g., the

number of reconstruction iterations), the nature of the noise can be

significantly altered [6]. To allow for a more flexible modeling of

the noise, hybrid distributions, such as Poisson-Gaussian [7] and

Poisson-Gamma [8], have been also used to improve different steps

of the PET imaging pipeline. Teymurazyan et al. investigated the

statistics of images reconstructed with different algorithms [9]. The

Gamma distribution is identified as the one that better fits iterative

expectation maximization (EM)-reconstructed data. Similarly, Mou

et al. also discussed the Gamma behavior of PET data [10].

This work proposes to adapt dynamic PET unmixing to the

various noise distributions encountered in reconstructed data. To this

end, we resort to the β-divergence, a popular and extremely flexible

cost function that encompasses a family of standard loss functions,

including the Euclidean distance, the Kullback-Leibler (KL) and

the Itakura-Saito (IS) divergences, directly related to the Gaussian,

Poisson and Gamma noise distributions [11, 12].

To investigate the impact of various β values on the quality

of factor analysis of dynamic PET images, the β-divergence is

applied to three mixing models from the literature: nonnegative

matrix factorization (NMF) [4], linear mixing model (LMM) [13]

and specific binding linear mixing model (SLMM) [14]. While

NMF simply assumes nonnegative sources, LMM adds a sum-to-one

constraint on the mixing coefficients and SLMM provides more

flexibility by allowing one source to spatially vary. While β-NMF

has been deeply investigated in [12], β-LMM has been used to

analyze hyperspectral images in [15]. This paper introduces the

β-SLMM algorithm, which considers the mixing model presented

in [14]. The influence of the β parameter on the performance of the

dynamic PET image factor analysis is then evaluated for the three

mixing models presented above.

The sequel of this paper is organized as follows. Section 2

provides a general factor analysis formulation and briefly recalls

the models to be evaluated in this work. Section 3 presents the

β-divergence as a measure of dissimilarity. Section 4 provides the

β-SLMM algorithm that was developed for this study. Simulation

results obtained with synthetic data are reported in Section 5. Section

6 concludes the paper.



Table 1. Summary of NMF, LMM and SLMM under (2)

θ X(θ) C R(θ)

NMF {M,A} X = MA
A � 0K,N

-
M � 0L,K

LMM {M,A} X = MA

A � 0K,N

-M � 0L,K

A
T
1K = 1N

SLMM {M,A,B} X = MA+
[

E1A ·VB

]

A � 0K,N

‖B‖2,1=
∑N

n=1 ‖bn‖2
M � 0L,K

B � 0Nv,N

A
T
1K = 1N

2. FACTOR ANALYSIS

In this paper, we apply three factor analysis models from the dynamic

PET factor analysis literature. To this end, a general formulation of

inverse dynamic PET problems will be provided. Consider an L×N

dynamic PET image Y comprising N TACs over L time-frames. An

approximation model X(θ) of P physically interpretable variables

θ = {θ1, · · · ,θP } can be defined to describe matrix Y, yielding

Y ≈ X(θ), (1)

where the approximation symbol ≈ generalizes the relation between

the model and the measured data. Given this general setting,

recovering these explanatory variables θ can be formulated as the

optimization problem

θ̂ ∈ argmin
θ∈C

{

D(Y|X(θ)) + λ
T
R(θ),

}

(2)

where C is a set of constraints and R(θ) = [r1(θ), . . . , rT (θ)]
T

gathers T penalizations individually weighted by the parameters in

λ = [λ1, . . . , λT ]
T

. In (2), D(·|·) stands for the loss function that

measures the discrepancy between Y and X(θ). In this work, we

are particularly interested in the choice of this function, that will be

further discussed in Section 3.

Table 1 summarizes the three factor analysis techniques, namely

NMF, LMM and SLMM, considered in this paper under formulation

(2). For both NMF and LMM, M = [m1, ...,mK ] is a L×K matrix

of factors and A = [A1, . . . ,aN ] is a K × N matrix containing

the factor coefficients. To produce a low-rank approximation of

the matrix X, we choose K ≪ L,N . For SLMM, the factor

matrix is written M = [m̄1, . . . ,mK ] where m̄1 is the nominal

specific binding factor. Moreover, “·” is the Hadamard point-wise

product, E1 is the matrix [1L,10L,K−1], V = [v1, . . . ,vNv ] is the

L × Nv matrix composed of the basis elements used to describe

the variability of the specific binding factor (SBF) with Nv ≪ L,

and B = [b1, . . . ,bN ] is the Nv × N matrix composed of internal

variability proportions. Interested readers are invited to consult [14]

for a detailed motivation of this factor model.

Moreover, 0W,H denotes the W × H-matrix made of 0’s, 1W

is the W -dimensional vector made of ones and � stands for a

component-wise inequality. Therefore the constraints represented

by θi � 0W,H express nonnegativity and A
T
1K = 1N is the

sum-to-one constraint.

The only model for which a penalization R(θ) with

corresponding regularization parameter λ will be applied is SLMM.

As in [14], the internal variability B is penalized to be spatially

sparse with the ℓ2,1-group lasso regularizer defined as

R(θ) , ‖B‖2,1=

N
∑

n=1

‖bn‖2. (3)

3. THE β-DIVERGENCE

As previously discussed, most factor analysis techniques in the

dynamic PET literature use the Euclidean distance or the KL

divergence as measures of dissimilarity. These loss functions

underlie the assumptions of additive Gaussian and Poisson noises,

respectively [16]. The noise affecting dynamic PET images can be,

however, more complex to model. To introduce more flexibility with

respect to the noise distribution of the observed image, we propose

to use the β-divergence as the loss function D(·|·) in (2), yielding

Dβ(Y|X) =

L
∑

ℓ=1

N
∑

n=1

dβ(yℓ,n|xℓ,n). (4)

First introduced by Basu et al. [11] and successfully applied in

several domains [16, 17, 18], the β-divergence is defined for β ∈ R

as

dβ(y|x) =











1
β(β−1)

(yβ + (β − 1)xβ − βyxβ−1) β ∈ R\{0, 1}

y log y

x
− y + x β = 1,

y

x
− log y

x
− 1 β = 0.

(5)
The limit cases β = 1, 0 correspond to the KL and IS

divergences, respectively, while β = 2 coincides with the squared

Euclidean distance. As previously noted, the IS divergence is

intrinsically related to the multiplicative Gamma noise distribution

and conveniently complements the squared Euclidean distance and

KL divergence. Hence, the β-divergence stands out as a relevant tool

for dynamic PET factor analysis.

4. BLOCK-COORDINATE DESCENT ALGORITHM

A block-coordinate descent approach is used to solve the

optimization problem in (2). With this formulation, the variables θi

belonging to one factor analysis model of Table 1 are alternatively

updated. Regarding β-SLMM, the updating rules for A and B

are detailed in the following paragraphs while the update for M

can be computed as in [15]. Algo. 1 presents the resulting

β-SLMM unmixing algorithm, where all multiplications (identified

by the · symbol), divisions and exponentiations are point-wise

operations, 1K,L denotes a K × L-matrix of ones and ΓB ,

diag[‖b1‖1, · · · , ‖b1‖N ]−1. Regarding the two other factor models

in Table 1, the β-NMF updates and algorithm are provided in [12]

and the β-LMM unmixing algorithm is a depreciated version of

β-SLMM, where B = 0.

4.1. Update of the factor proportions A

The optimization problem for A writes



Algorithm 1: β-SLMM unmixing

Data: Y

Input: A, M, B, λ

1 X̃←MA+
[

E1A ·VB

]

2 while stopping criterion not satisfied do

3 % Update variability matrix

B← B ·

[

1
T

Nv
A1,:·(V

T(Y·X̃β−2))

1T

Nv
A1,:·(VTX̃β−1)+λBkΓB

]
1

3−β

4 X̃←MA+
[

E1A ·VB

]

5 % Update factor TACs

M2:K ←M2:K ·

[

(Y·X̃β−2)AT
2:K

X̃β−1AT
2:K

]

6 X̃←MA+
[

E1A ·VB

]

7 % Update SBF factor proportion

A1 ← A1 ·

[

1
T

L((M11
T

N+VB)·(Y·X̃β−2)+x̃
β)

1T

L
((M11

T

N
+VB)·X̃β−1+Y·X̃β−1)

]

8 % Update other factor proportions

A2:K ← A2:K ·

[

M
T
2:K(Y·X̃β−2)+1K−1,LX̃

β

MT

2:K
X̃β−1+1K−1,L(Y·X̃β−1)

]

9 X̃←MA+
[

E1A ·VB

]

Result: A, M, B

min
A

J (A) = D(Y|MA+
[

E1A ·W)
]

)

s.t. A � 0K,N , A
T
1K = 1N ,

(6)

with W = VB. The sum-to-one constraint is incorporated by

normalizing the factor proportions at each corresponding update with

the use of a change of variable [19, 15]. More precisely, an auxiliary

matrix U is updated and the factor proportions matrix A is then

defined as
akn =

ukn
∑

k ukn

. (7)

This formulation yields a new minimization problem

min
U

J (U) s.t. U � 0K,N , (8)

with

J (U) =
∑

ln

d

(

yln|
∑

k

mlk

[

ukn

‖un‖1

]

+

[

u1n

‖un‖1

]

wln

)

. (9)

The gradient of J (U) can be expressed as

∇ukn
J (U) = ∇+

ukn
J (U)−∇−

ukn
J (U) (10)

To solve this problem, we resort to the heuristic formulation of [16],

yielding the following nonnegativity-preserving update rule for the

auxiliary matrix U

ukn = ũkn

(

∇−
ukn
J (U)

∇+
ukn
J (U)

)

, (11)

where ũkn is the current state of ukn. By adopting x̃ln =
∑

k 6=1 mlkãkn + ã1nwln, it yields

ukn = ũknυ
γ(β)
kn

where γ(β) is 1
2−β

for β < 1, 1 for β ∈ [1, 2] and 1
β−1

for β > 2
and

υkn =











∑
l (x̃

β
ln

+(ml1+wln)x̃
β−2

ln
yln)

∑
l ((ml1+wln)x̃

β−1

ln
+ylnx̃

β−1

ln )
, if k = 1;

∑
l (x̃

β
ln

+mlkylnx̃
β−2

ln )
∑

l (mlkx̃
β−1

ln
+ylnx̃

β−1

ln )
, otherwise.

4.2. Update of the internal variability B

The optimization problem for B writes

min
B

J (B) = D(Y|MA+
[

E1A ·VB)
]

) + λ‖B‖2,1

s.t. B � 0Nv,N ,
(12)

where the parameter λ controls the trade-off between the data-fitting

term and the spatial sparsity-inducing group lasso regularizer.

Denoting by B̃ the current state of B, the model-based reconstructed

data using the current estimates is defined by x̃ln = sln +
∑

i a1nvlib̃in with sln =
∑

k mlkakn. Following [15, 20], the

update of B can be handled with majorization-minimization (MM).

The data-fitting term is majorized using Jensen’s inequality and

the penalty function ‖B‖2,1 is majorized by its tangent thanks to

concavity of the square-root function. The data-fitting term is further

majorized as in [20] to match the quadratic upper bound of the

regularization term. Minimizing the final auxiliary function gives

the following update

bin = b̃in

(

a1n

∑

l vliylnx̃
β−2
ln

a1n

∑

l vlix̃
β−1
ln + λ b̃in

‖b̃n‖2

) 1

3−β

. (13)

5. EXPERIMENTS WITH SYNTHETIC DATA

5.1. Synthetic data generation

To evaluate the impact of varying β, the three considered factor

analysis algorithms were applied to two sets of 128×128×64-voxel

synthetic PET images with L = 20 time-frames. The first set

is generated from a phantom derived of a clinical PET image that

was acquired using the 11C-PE2I radioligand, as in [21], herein

referred to as Phantom I. Phantom I is introduced on a chain of

generation from the SLMM model, detailed in [14], to produce

Phantom II, for which the ground-truth of the SLMM variables

are known. The generation process described in [21] is applied to

both phantoms to yield synthetic images with realistic count-rates

properties. In particular, the process in [21] includes a reconstruction

step that, in our case, is done with the standard ordered-subset

expectation-maximization (OSEM) algorithm. To account for

the impact of the reconstruction parameters on noise properties,

the OSEM algorithm is applied with 3 and 30 reconstruction

iterations for each image, yielding two datasets referred to as

3it and 30it, respectively. For each image and each value of

reconstruction iterations, 16 samples were generated to assess

statistical performance.

5.2. Compared methods

Phantom I is used to evaluate the factor modeling of 3it and 30it

images through the reconstruction error in terms of PSNR(X̂) =

10 log10
max(X∗)2

‖X̂−X∗‖2
F

, where max(X∗) is the maximum value of the

ground-truth image X
∗ and X̂ , X(θ̂) is the estimated image. In

this setting, β-LMM and β-NMF are compared with β in the range



Table 2. Variability penalization parameters

λ

β=0 β=1 β=2

3it 2.10−4 1.10−3 1.10−3

30it 1.10−4 1.10−3 1.10−3

(0, 2.4) with a stepsize of 0.2. Factors and factor proportions are

initialized by vertex component analysis (VCA) [22] and SUnSAL

[23], respectively.

Phantom II is used to compare the β-SLMM and β-LMM

algorithms for β ∈ {0, 1, 2}. Factors and factor proportions are

initialized with K-means and SUnSAL, respectively. The variability

matrix B is initialized randomly. Additionally to the PSNR,

for each variable we compute the normalized mean square error

NMSE(θ̂i) =
‖θ̂i−θ∗i ‖

2

F

‖θ∗
i
‖2
F

, where θ∗i and θ̂i are the actual and

estimated variables, respectively. The stopping criterion ε is set to

10−4 in both settings and the parameter λ is empirically tuned with

the values provided in Table 2.

5.3. Results on Phantom I

Fig. 1 shows the PSNR mean and standard deviation of the 3it

and 30it results estimated by β-NMF. For 3it, the higher PSNRs are

obtained around β ∈ [0.2, 0.8], which indicates a noise distribution

that is between Gamma and Poisson. For 30it, the best PSNRs are

obtained around β ∈ [1, 1.6], suggesting a more Poisson-Gaussian

noise distribution.
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Fig. 1. PSNR mean and standard deviation obtained on the 3it (left)

and 30it (right) images after factorization with β-NMF.

Fig. 2 shows the PSNR mean and standard deviation of the

3it and 30it results estimated by β-LMM. For the same quantity of

factors, LMM produces more constrained results than NMF due to

the sum-to-one constraints of the factor proportions. The resulting

PSNRs are therefore of smallest standard deviations. The optimal

values of β are around the same locations. For3it, the higher PSNRs

are obtained around β ∈ [0, 1], still corresponding to the same

noise distribution as before. For 30it, the best PSNRs are in the

range of β ∈ [0.8, 1.4]. The distribution can still be considered

more Poisson-Gaussian, though the differences between the PSNR

for β = 0.8 and the previous ones (β ∈ [0, 0.6]) are significant.

5.4. Results on Phantom II

Table 3 presents the mean NMSE for A1, A2:K and A1 ·B as well

as the PSNR for the 3it and 30it images estimated with β-SLMM and

β-LMM algorithms. As the partial volume effect may appear in A1

or in B, the performance of A1 ·B is evaluated. For 3it images, the
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Fig. 2. PSNR mean and standard deviation obtained on the 3it (left)

and 30it (right) images after factorization with β-LMM.

Table 3. Mean NMSE of A1, A2:K , M̃1, M2:K and A1 · B and

PSNR of estimated image estimated by β-LMM and β-SLMM for

different values of β.

β-LMM β-SLMM

β 0 1 2 0 1 2

3
it

A1 0.312 0.286 0.301 0.305 0.303 0.306

A2:K 0.522 0.513 0.509 0.531 0.527 0.518

M̃
1 0.096 0.187 0.273 0.007 0.007 0.008

M
2:K 0.388 0.367 0.311 0.385 0.373 0.321

A1 ·B - - - 0.487 0.476 0.532

PSNR 22.16 25.27 28.26 30.0 30.22 27.93

3
0

it

A1 0.583 0.629 0.558 0.680 0.717 0.698

A2:K 0.577 0.563 0.591 0.580 0.588 0.590

M̃
1 0.758 0.507 0.409 0.012 0.010 0.011

M
2:K 0.269 0.282 0.239 0.260 0.248 0.237

A1 ·B - - - 0.872 0.723 0.799

PSNR 20.36 25.51 26.09 25.82 27.38 27.02

highest PSNR is achieved by β-SLMM with β = 1, closely followed

by β = 0, once again suggesting a Gamma-Poisson distribution as a

good fit for the noise. Due to the strong non-convexity of β-SLMM,

the minimum NMSE for the variables do not follow the same line,

appearing either for all values of β. This may be not surprising,

given the undetermined nature of PET images noise. For 30it, the

best PSNR is again obtained by β-SLMM, this time with β = 1,

suggesting a Poisson behavior, that was also perceived in the previous

30it setting. Once again, the minimum NMSEs are obtained with

other values of β. This simulation was conducted only for illustration

purposes. The β-SLMM should not be used to choose the optimal

value of β, since results also depend on the parameter λ. Thus, β

should be adjusted based on the standard β-NMF or β-LMM and

then used into β-SLMM.

6. CONCLUSION

This paper introduced the β-divergence as a divergence measure

for the factor analysis of dynamic PET images. A new algorithm

for the SLMM model, using the β-divergence was also derived

with multiplicative updates. Simulations illustrated the interest of

considering different values of β to fit the noise distribution in

dynamic PET data. This work opens the discussion on applying the

β-divergence into different steps of the PET imaging pipeline, such

as denoising and reconstruction.
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