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ABSTRACT

An important task when processing dynamic PET images is to
identify the time-activity curves (TACs) of the pure tissues, along
with their corresponding spatial proportions. This step, often referred
to as unmixing or factor analysis, is based on a loss function which
measures the discrepancy between the observed data and the model.
This loss function should be chosen according to the statistical
properties of the noise, which is in this case hard to characterize.
Indeed, while dynamic PET images results from a decay process that
can be statistically described by a Poisson distribution, acquisition
and post-filtering reconstruction drastically change the nature of the
noise. In the literature dedicated to factor analysis of dynamic PET
images, a common and underlying assumption consists in assuming
that the dynamic PET images are corrupted by an additive Gaussian
or by a Poisson noise. These assumptions lead to the choice of
the squared Euclidian distance and the Kullback-Leibler divergence.
We propose here to consider the β-divergence, which is able to
encompass a wide family of divergence measures corresponding
to various noise distributions. This loss function is incorporated
into three different factor models and evaluated using four sets of
synthetic data.

Index Terms— Dynamic PET imaging, factor analysis,
β-divergence, nonnegative matrix factorization, blind source
separation.

1. INTRODUCTION

Dynamic positron emission tomography (PET) is a functional
imaging technique that is able to deliver relevant information on
dysfunctions hardly detectable by anatomical imagery. To provide
interpretable results, PET images have to be quantified, which often
requires a previous estimation of global time-activity curves (TACs)
(herein called factors) representing the concentration of tracer in a
reference tissue or blood over time. The estimation of those factors
along with their spatial repartitions is referred to as unmixing, factor
analysis or linear blind source separation.

Most of the factor analysis techniques in the PET literature [1, 2]
implicitly or explicitly assume that the residual noise corrupting
the images follows a Gaussian distribution [3]. Conversely,
concurrent methods exploit the intrinsic nature of the count-rates
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to consider that the noise behavior can be described by a Poisson
distribution [4, 5]. However, depending on the acquisition setup,
the reconstruction algorithm and its parameter values (e.g., the
number of reconstruction iterations), the nature of the noise can be
significantly altered [6]. To allow for a more flexible modeling of
the noise, hybrid distributions, such as Poisson-Gaussian [7] and
Poisson-Gamma [8], have been also used to improve different steps
of the PET imaging pipeline. Teymurazyan et al. investigated the
statistics of images reconstructed with different algorithms [9]. The
Gamma distribution is identified as the one that better fits iterative
expectation maximization (EM)-reconstructed data. Similarly, Mou
et al. also discussed the Gamma behavior of PET data [10].

This work proposes to adapt dynamic PET unmixing to the
various noise distributions encountered in reconstructed data. To this
end, we resort to the β-divergence, a popular and extremely flexible
cost function that encompasses a family of standard loss functions,
including the Euclidean distance, the Kullback-Leibler (KL) and
the Itakura-Saito (IS) divergences, directly related to the Gaussian,
Poisson and Gamma noise distributions [11, 12].

To investigate the impact of various β values on the quality
of factor analysis of dynamic PET images, the β-divergence is
applied to three mixing models from the literature: nonnegative
matrix factorization (NMF) [4], linear mixing model (LMM) [13]
and specific binding linear mixing model (SLMM) [14]. While
NMF simply assumes nonnegative sources, LMM adds a sum-to-one
constraint on the mixing coefficients and SLMM provides more
flexibility by allowing one source to spatially vary. While β-NMF
has been deeply investigated in [12], β-LMM has been used to
analyze hyperspectral images in [15]. This paper introduces the
β-SLMM algorithm, which considers the mixing model presented
in [14]. The influence of the β parameter on the performance of the
dynamic PET image factor analysis is then evaluated for the three
mixing models presented above.

The sequel of this paper is organized as follows. Section 2
provides a general factor analysis formulation and briefly recalls
the models to be evaluated in this work. Section 3 presents the
β-divergence as a measure of dissimilarity. Section 4 provides the
β-SLMM algorithm that was developed for this study. Simulation
results obtained with synthetic data are reported in Section 5. Section
6 concludes the paper.



Table 1. Summary of NMF, LMM and SLMM under (2)
θ X(θ) C R(θ)

NMF {M,A} X = MA
A � 0K,N -
M � 0L,K

LMM {M,A} X = MA
A � 0K,N

-M � 0L,K
AT1K = 1N

SLMM {M,A,B} X = MA +
[
E1A ·VB

] A � 0K,N

‖B‖2,1=
∑N
n=1 ‖bn‖2

M � 0L,K
B � 0Nv,N

AT1K = 1N

2. FACTOR ANALYSIS

In this paper, we apply three factor analysis models from the dynamic
PET factor analysis literature. To this end, a general formulation of
inverse dynamic PET problems will be provided. Consider an L×N
dynamic PET image Y comprisingN TACs over L time-frames. An
approximation model X(θ) of P physically interpretable variables
θ = {θ1, · · · ,θP } can be defined to describe matrix Y, yielding

Y ≈ X(θ), (1)

where the approximation symbol ≈ generalizes the relation between
the model and the measured data. Given this general setting,
recovering these explanatory variables θ can be formulated as the
optimization problem

θ̂ ∈ arg min
θ∈C

{
D(Y|X(θ)) + λTR(θ),

}
(2)

where C is a set of constraints and R(θ) = [r1(θ), . . . , rT (θ)]T

gathers T penalizations individually weighted by the parameters in
λ = [λ1, . . . , λT ]T. In (2), D(·|·) stands for the loss function that
measures the discrepancy between Y and X(θ). In this work, we
are particularly interested in the choice of this function, that will be
further discussed in Section 3.

Table 1 summarizes the three factor analysis techniques, namely
NMF, LMM and SLMM, considered in this paper under formulation
(2). For both NMF and LMM, M = [m1, ...,mK ] is aL×K matrix
of factors and A = [A1, . . . ,aN ] is a K × N matrix containing
the factor coefficients. To produce a low-rank approximation of
the matrix X, we choose K � L,N . For SLMM, the factor
matrix is written M = [m̄1, . . . ,mK ] where m̄1 is the nominal
specific binding factor. Moreover, “·” is the Hadamard point-wise
product, E1 is the matrix [1L,10L,K−1], V = [v1, . . . ,vNv ] is the
L × Nv matrix composed of the basis elements used to describe
the variability of the specific binding factor (SBF) with Nv � L,
and B = [b1, . . . ,bN ] is the Nv × N matrix composed of internal
variability proportions. Interested readers are invited to consult [14]
for a detailed motivation of this factor model.

Moreover, 0W,H denotes the W × H-matrix made of 0’s, 1W
is the W -dimensional vector made of ones and � stands for a
component-wise inequality. Therefore the constraints represented
by θi � 0W,H express nonnegativity and AT1K = 1N is the
sum-to-one constraint.

The only model for which a penalization R(θ) with
corresponding regularization parameter λ will be applied is SLMM.
As in [14], the internal variability B is penalized to be spatially
sparse with the `2,1-group lasso regularizer defined as

R(θ) , ‖B‖2,1=

N∑
n=1

‖bn‖2. (3)

3. THE β-DIVERGENCE

As previously discussed, most factor analysis techniques in the
dynamic PET literature use the Euclidean distance or the KL
divergence as measures of dissimilarity. These loss functions
underlie the assumptions of additive Gaussian and Poisson noises,
respectively [16]. The noise affecting dynamic PET images can be,
however, more complex to model. To introduce more flexibility with
respect to the noise distribution of the observed image, we propose
to use the β-divergence as the loss function D(·|·) in (2), yielding

Dβ(Y|X) =

L∑
`=1

N∑
n=1

dβ(y`,n|x`,n). (4)

First introduced by Basu et al. [11] and successfully applied in
several domains [16, 17, 18], the β-divergence is defined for β ∈ R
as

dβ(y|x) =


1

β(β−1)
(yβ + (β − 1)xβ − βyxβ−1) β ∈ R\{0, 1}

y log y
x
− y + x β = 1,

y
x
− log y

x
− 1 β = 0.

(5)
The limit cases β = 1, 0 correspond to the KL and IS
divergences, respectively, while β = 2 coincides with the squared
Euclidean distance. As previously noted, the IS divergence is
intrinsically related to the multiplicative Gamma noise distribution
and conveniently complements the squared Euclidean distance and
KL divergence. Hence, the β-divergence stands out as a relevant tool
for dynamic PET factor analysis.

4. BLOCK-COORDINATE DESCENT ALGORITHM

A block-coordinate descent approach is used to solve the
optimization problem in (2). With this formulation, the variables θi
belonging to one factor analysis model of Table 1 are alternatively
updated. Regarding β-SLMM, the updating rules for A and B
are detailed in the following paragraphs while the update for M
can be computed as in [15]. Algo. 1 presents the resulting
β-SLMM unmixing algorithm, where all multiplications (identified
by the · symbol), divisions and exponentiations are point-wise
operations, 1K,L denotes a K × L-matrix of ones and ΓB ,
diag[‖b1‖1, · · · , ‖b1‖N ]−1. Regarding the two other factor models
in Table 1, the β-NMF updates and algorithm are provided in [12]
and the β-LMM unmixing algorithm is a depreciated version of
β-SLMM, where B = 0.

4.1. Update of the factor proportions A

The optimization problem for A writes



Algorithm 1: β-SLMM unmixing
Data: Y
Input: A, M, B, λ

1 X̃←MA +
[
E1A ·VB

]
2 while stopping criterion not satisfied do
3 % Update variability matrix

B← B ·

[
1T
Nv

A1,:·(VT(Y·X̃β−2))

1T
Nv

A1,:·(VTX̃β−1)+λBkΓB

] 1
3−β

4 X̃←MA +
[
E1A ·VB

]
5 % Update factor TACs

M2:K ←M2:K ·

[
(Y·X̃β−2)AT2:K

X̃β−1AT
2:K

]
6 X̃←MA +

[
E1A ·VB

]
7 % Update SBF factor proportion

A1 ← A1 ·

[
1T
L((M11

T
N+VB)·(Y·X̃β−2)+x̃β)

1T
L
((M11

T
N

+VB)·X̃β−1+Y·X̃β−1)

]
8 % Update other factor proportions

A2:K ← A2:K ·

[
MT

2:K(Y·X̃β−2)+1K−1,LX̃β

MT
2:K

X̃β−1+1K−1,L(Y·X̃β−1)

]
9 X̃←MA +

[
E1A ·VB

]
Result: A, M, B

min
A
J (A) = D(Y|MA +

[
E1A ·W)

]
)

s.t. A � 0K,N , AT1K = 1N ,
(6)

with W = VB. The sum-to-one constraint is incorporated by
normalizing the factor proportions at each corresponding update with
the use of a change of variable [19, 15]. More precisely, an auxiliary
matrix U is updated and the factor proportions matrix A is then
defined as

akn =
ukn∑
k ukn

. (7)

This formulation yields a new minimization problem

min
U
J (U) s.t. U � 0K,N , (8)

with

J (U) =
∑
ln

d

(
yln|

∑
k

mlk

[
ukn
‖un‖1

]
+

[
u1n

‖un‖1

]
wln

)
. (9)

The gradient of J (U) can be expressed as

∇uknJ (U) = ∇+
uknJ (U)−∇−uknJ (U) (10)

To solve this problem, we resort to the heuristic formulation of [16],
yielding the following nonnegativity-preserving update rule for the
auxiliary matrix U

ukn = ũkn

(∇−uknJ (U)

∇+
uknJ (U)

)
, (11)

where ũkn is the current state of ukn. By adopting x̃ln =∑
k 6=1mlkãkn + ã1nwln, it yields

ukn = ũknυ
γ(β)
kn

where γ(β) is 1
2−β for β < 1, 1 for β ∈ [1, 2] and 1

β−1
for β > 2

and

υkn =


∑
l (x̃

β
ln

+(ml1+wln)x̃
β−2
ln

yln)∑
l ((ml1+wln)x̃

β−1
ln

+ylnx̃
β−1
ln )

, if k = 1;∑
l (x̃

β
ln

+mlkylnx̃
β−2
ln )∑

l (mlkx̃
β−1
ln

+ylnx̃
β−1
ln )

, otherwise.

4.2. Update of the internal variability B

The optimization problem for B writes

min
B
J (B) = D(Y|MA +

[
E1A ·VB)

]
) + λ‖B‖2,1

s.t. B � 0Nv,N ,
(12)

where the parameter λ controls the trade-off between the data-fitting
term and the spatial sparsity-inducing group lasso regularizer.
Denoting by B̃ the current state of B, the model-based reconstructed
data using the current estimates is defined by x̃ln = sln +∑
i a1nvlib̃in with sln =

∑
kmlkakn. Following [15, 20], the

update of B can be handled with majorization-minimization (MM).
The data-fitting term is majorized using Jensen’s inequality and
the penalty function ‖B‖2,1 is majorized by its tangent thanks to
concavity of the square-root function. The data-fitting term is further
majorized as in [20] to match the quadratic upper bound of the
regularization term. Minimizing the final auxiliary function gives
the following update

bin = b̃in

(
a1n

∑
l vliylnx̃

β−2
ln

a1n
∑
l vlix̃

β−1
ln + λ b̃in

‖b̃n‖2

) 1
3−β

. (13)

5. EXPERIMENTS WITH SYNTHETIC DATA

5.1. Synthetic data generation

To evaluate the impact of varying β, the three considered factor
analysis algorithms were applied to two sets of 128×128×64-voxel
synthetic PET images with L = 20 time-frames. The first set
is generated from a phantom derived of a clinical PET image that
was acquired using the 11C-PE2I radioligand, as in [21], herein
referred to as Phantom I. Phantom I is introduced on a chain of
generation from the SLMM model, detailed in [14], to produce
Phantom II, for which the ground-truth of the SLMM variables
are known. The generation process described in [21] is applied to
both phantoms to yield synthetic images with realistic count-rates
properties. In particular, the process in [21] includes a reconstruction
step that, in our case, is done with the standard ordered-subset
expectation-maximization (OSEM) algorithm. To account for
the impact of the reconstruction parameters on noise properties,
the OSEM algorithm is applied with 3 and 30 reconstruction
iterations for each image, yielding two datasets referred to as
3it and 30it, respectively. For each image and each value of
reconstruction iterations, 16 samples were generated to assess
statistical performance.

5.2. Compared methods

Phantom I is used to evaluate the factor modeling of 3it and 30it
images through the reconstruction error in terms of PSNR(X̂) =

10 log10
max(X∗)2

‖X̂−X∗‖2
F

, where max(X∗) is the maximum value of the

ground-truth image X∗ and X̂ , X(θ̂) is the estimated image. In
this setting, β-LMM and β-NMF are compared with β in the range



Table 2. Variability penalization parameters
λ

β=0 β=1 β=2
3it 2.10−4 1.10−3 1.10−3

30it 1.10−4 1.10−3 1.10−3

(0, 2.4) with a stepsize of 0.2. Factors and factor proportions are
initialized by vertex component analysis (VCA) [22] and SUnSAL
[23], respectively.

Phantom II is used to compare the β-SLMM and β-LMM
algorithms for β ∈ {0, 1, 2}. Factors and factor proportions are
initialized with K-means and SUnSAL, respectively. The variability
matrix B is initialized randomly. Additionally to the PSNR,
for each variable we compute the normalized mean square error

NMSE(θ̂i) =
‖θ̂i−θ∗i ‖

2
F

‖θ∗i ‖
2
F

, where θ∗i and θ̂i are the actual and
estimated variables, respectively. The stopping criterion ε is set to
10−4 in both settings and the parameter λ is empirically tuned with
the values provided in Table 2.

5.3. Results on Phantom I

Fig. 1 shows the PSNR mean and standard deviation of the 3it
and 30it results estimated by β-NMF. For 3it, the higher PSNRs are
obtained around β ∈ [0.2, 0.8], which indicates a noise distribution
that is between Gamma and Poisson. For 30it, the best PSNRs are
obtained around β ∈ [1, 1.6], suggesting a more Poisson-Gaussian
noise distribution.
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Fig. 1. PSNR mean and standard deviation obtained on the 3it (left)
and 30it (right) images after factorization with β-NMF.

Fig. 2 shows the PSNR mean and standard deviation of the
3it and 30it results estimated by β-LMM. For the same quantity of
factors, LMM produces more constrained results than NMF due to
the sum-to-one constraints of the factor proportions. The resulting
PSNRs are therefore of smallest standard deviations. The optimal
values of β are around the same locations. For3it, the higher PSNRs
are obtained around β ∈ [0, 1], still corresponding to the same
noise distribution as before. For 30it, the best PSNRs are in the
range of β ∈ [0.8, 1.4]. The distribution can still be considered
more Poisson-Gaussian, though the differences between the PSNR
for β = 0.8 and the previous ones (β ∈ [0, 0.6]) are significant.

5.4. Results on Phantom II

Table 3 presents the mean NMSE for A1, A2:K and A1 ·B as well
as the PSNR for the 3it and 30it images estimated with β-SLMM and
β-LMM algorithms. As the partial volume effect may appear in A1

or in B, the performance of A1 ·B is evaluated. For 3it images, the
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Fig. 2. PSNR mean and standard deviation obtained on the 3it (left)
and 30it (right) images after factorization with β-LMM.

Table 3. Mean NMSE of A1, A2:K , M̃1, M2:K and A1 · B and
PSNR of estimated image estimated by β-LMM and β-SLMM for
different values of β.

β-LMM β-SLMM
β 0 1 2 0 1 2

3i
t

A1 0.312 0.286 0.301 0.305 0.303 0.306
A2:K 0.522 0.513 0.509 0.531 0.527 0.518
M̃1 0.096 0.187 0.273 0.007 0.007 0.008

M2:K 0.388 0.367 0.311 0.385 0.373 0.321
A1 ·B - - - 0.487 0.476 0.532
PSNR 22.16 25.27 28.26 30.0 30.22 27.93

30
it

A1 0.583 0.629 0.558 0.680 0.717 0.698
A2:K 0.577 0.563 0.591 0.580 0.588 0.590
M̃1 0.758 0.507 0.409 0.012 0.010 0.011

M2:K 0.269 0.282 0.239 0.260 0.248 0.237
A1 ·B - - - 0.872 0.723 0.799
PSNR 20.36 25.51 26.09 25.82 27.38 27.02

highest PSNR is achieved by β-SLMM with β = 1, closely followed
by β = 0, once again suggesting a Gamma-Poisson distribution as a
good fit for the noise. Due to the strong non-convexity of β-SLMM,
the minimum NMSE for the variables do not follow the same line,
appearing either for all values of β. This may be not surprising,
given the undetermined nature of PET images noise. For 30it, the
best PSNR is again obtained by β-SLMM, this time with β = 1,
suggesting a Poisson behavior, that was also perceived in the previous
30it setting. Once again, the minimum NMSEs are obtained with
other values of β. This simulation was conducted only for illustration
purposes. The β-SLMM should not be used to choose the optimal
value of β, since results also depend on the parameter λ. Thus, β
should be adjusted based on the standard β-NMF or β-LMM and
then used into β-SLMM.

6. CONCLUSION

This paper introduced the β-divergence as a divergence measure
for the factor analysis of dynamic PET images. A new algorithm
for the SLMM model, using the β-divergence was also derived
with multiplicative updates. Simulations illustrated the interest of
considering different values of β to fit the noise distribution in
dynamic PET data. This work opens the discussion on applying the
β-divergence into different steps of the PET imaging pipeline, such
as denoising and reconstruction.
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