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Abstract

Comma-free codes have been widely studied in the last sixty years, from
points of view as diverse as biology, information theory and combina-
torics. We develop new methods to study comma-free codes achieving
the maximum size, given the cardinality of the alphabet and the length
of the words. Specifically, we are interested in counting the number of
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such codes when all words have length 2, or 3. We first explain how
different properties combine to obtain a closed-formula. We next develop
an approach to tackle well-known sub-families of comma-free codes, such
as self-complementary and (generalisations of) non-overlapping codes, for
which the aforementioned properties do not hold anymore. We also study
codes that are not contained in strictly larger ones. For instance, we de-
termine the maximal size of self-complementary comma-free codes (over
an alphabet of arbitrary cardinality) and the number of codes reaching
the bound. We also provide a characterisation of non-overlapping trilet-
ter codes that are inclusion-wise maximal, which allows us to devise the
number of such codes. We point out other applications of the method,
notably to self-complementary codes, including the recently introduced
mixed codes. Our approaches mix combinatorial and graph-theoretical
arguments.

1 Introduction

A great number of DNA codes have been proposed in biology, for example the nucle-
osome positioning code [17], the histone code [37], the splicing code [5], the mRNA
degradation site code [10], or the protein folding code [18], to name but a few. These
genetic codes are primarily a mapping of a motif, or a set of motifs, with a high
occurrence frequency to a biological function. However, there is no underlying math-
ematical structure, mainly because it does not exist. Our previous work on the
genetic code (reviewed in [34, 25]) provides an interesting mathematical structure
that allows us to develop not only theoretical results but also probability and statis-
tical studies of genes in this framework, i.e. a return of the theory to the biological
reality.

In today’s genes, the coding of trinucleotides (3-letter words on the 4-letter al-
phabet B = {A,C,G, T}) into amino acids (1-letter words on a 20-letter alphabet)
relies on very complex molecular processes, involving in particular: (i) the messenger
RNA by a transcription of DNA leading to a protein coding region bounded by regu-
latory sequences; (ii) the transfer RNA associated with its protein aminoacyl-tRNA
synthetase; (iii) the ribosome with 3 ribosomal RNAs associated with over 50 ribo-
somal proteins; and (iv) the genetic code B3 = {A,C,G, T}3 of cardinality 64 coding
the amino acids constituting the proteins. In our coding context, the (universal)
genetic code has three important properties: 61 trinucleotides code 20 amino acids
(surjective map), one trinucleotide ATG among these 61 trinucleotides, called start
codon, codes the amino acid methionine and also initiates the reading frame, and
three trinucleotides {TAA, TAG, TGA}, called stop codons, terminate the reading
frame without amino acid coding. In other words, the current genetic code has the
property of amino acid coding and the property of starting and ending the reading
frame. However, this property of reading frame retrieval is very weak, as it is limited
to the boundaries of the genes, but it is fully functional because, as mentioned, sev-
eral classes of RNAs and a large number of proteins are involved. The genetic code
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has evolved over about 4 billion years as putative fossilized microorganisms that are
at least 3.8 billion and possibly 4.3 billion years old have been observed in ferruginous
sedimentary rocks [15]. Thus, this weak property of reading frame retrieval in current
genes may be the consequence of a very strong property of reading frame retrieval
in primitive genes that would have existed with only one class of RNA and in the
absence of proteins, or in the presence of only a few primitive proteins. Most likely,
such a primitive genetic code would had a stronger mechanism for frame retrieval
(called circularity). The trinucleotides in a such circular code allow both the retrieval
of the reading frame and the coding of some amino acids, analogous to the ATG start
codon in current genes. The stop codons would not have been necessary due to the
short length of the primitive genes. Figure 2 in Appendix summarizes this evolu-
tionary hypothesis of the genetic code based on a growing combinatorial hierarchy
of trinucleotide circular codes that starts with the (strong) comma-free codes that
have the highest ability to retrieve the reading frame and that will be in the focus
of this paper.

A code is comma-free if it does not require a distinct symbol to separate code
words. Comma-free codes were constructed by Crick, Griffiths and Orgel [13] in 1957
as a class of trinucleotide codes to explain how the reading of a sequence of trinu-
cleotides could code for amino acids. Combinatorial properties of comma-free codes
were also considered, starting one year later with the seminal works of Golomb, Gor-
don and Welch [26] and of Golomb, Welch and Delbrück [27], who addressed the
maximal size of a comma-free code with words of an arbitrarily fixed length over an
alphabet of arbitrary cardinality. This spawned a number of purely combinatorial
works on this topic [14, 16, 29, 30, 33, 38, 39], which led to a number of interesting
results and challenging open questions. Biological interest for comma-free codes was
increased by the discovery of a symmetry linked to codon frequencies by Arquès and
Michel [1]. Furthermore, a certain sub-family of comma-free codes, which are referred
to as “strong comma-free codes” in the sequel and were also coined “strongly regular
codes” or “non overlapping codes” or “cross-bifix-free codes”, has also been the focus
of several works [2, 9, 31, 32], dating back to 1964, in particular for their interest in
automata theory and for frame synchronisation applications [3, 7, 8, 12, 28]. It is no
surprise that such natural properties of codes were useful and studied in a variety of
contexts, under different names. More information is found in the treatise on codes
by Berstel, Perrin and Reutenauer [6, p. 281 and Proposition 7.2.14, p. 285].

While digraphs have been used to study diletter comma-free codes, either im-
plicitly through their adjacency matrix [14] or explicitly [4], appropriate digraphs
for comma-free codes with longer words seem less natural and harder to find. This
was recently done [20] not only for comma-free codes, but more generally for circular
codes, of which comma-free codes form a subfamily. Graph theoretical tools have
then been used to extend our understanding and knowledge of such codes [21, 22, 19,
20]. We pursue this line of study, providing answers to some open questions raised
earlier and a unified approach for studying the structure of various subfamilies of
comma-free codes.

One problem of particular interest is to compute the largest possible size S(n, `)
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of a comma-free code with words of length ` over an alphabet Σ of cardinality n.
Golomb, Welch and Delbrück [27] obtained a general upper bound on this size ex-
pressed using the Möbius function (see Theorem 3.1). Seven years later, this bound
was shown to be attained whenever the length ` of the words is odd by Eastman [16],
whose construction was subsequently simplified by Scholtz [38]. The situation when `
is even is less understood, and although it is known [26] that S(n, 2`) is equivalent,
as n goes to infinity, to α2`n

2` with α2` ∈ [1/(2e`), 1/(2`)], the leading coefficient is
still to be determined.

We are interested in the number of comma-free codes of size S(n, `), which we
call maximum. Golomb, Gordon and Welch [26] proved that S(n, 2) = b(n2/3)c
and provided a method to build all diletter codes of this size. Similarly, Golomb,
Welch and Delbrück [27] proved that S(n, 3) = 1

3n(n2 − 1) and provided, again, a
method to build all maximum comma-free triletter codes. They produced a lot of
insights into the structure of these codes. Yet, to the best of our knowledge their
work does not provide a direct way to count all such codes. Interestingly, Cartwright,
Cueto and Tobis [11] demonstrated an injection of the maximum independent sets
of the de Bruijn graph B(n, 3) in the maximum comma-free triletter codes over an
alphabet of cardinality n, yielding exponentially (in n) many such codes. However,
they noted that the injection is not always a bijection and gave an example showing
this when n = 2. As we shall see in Subsection 4.2, the injection is actually a bijection
as soon as n > 3, which yields a closed formula to count the number of maximum
comma-free triletter code. We then extend earlier results of Blackburn [9] regarding
strong comma-free `-letter codes over an alphabet of cardinality n for small values
of `. These results are motivated by Blackburn’s general conjecture [9, Conjecture 1]:
he provided a construction of strong comma-free `-letter codes and posited that for
every integer ` > 2, there exists an integer n0 such that the construction yields a
maximum strong comma-free code over an alphabet of cardinality n whenever n > n0.

The recent extension of the graph theoretical approach [20] unveils new relevant
ways to partition all circular `-letter codes over an alphabet of cardinality n. Specif-
ically, one can group those codes according to the maximal length of a path in the
digraph associated to the code: comma-free codes are precisely those for which the
length is 2, while strong comma-free codes (aka. non-overlapping codes) are those for
which the length is 1. In Subsection 4.1, we generalise results obtained by Ball and
Cummings [4] on S(n, `) and the number of comma-free diletter codes of size S(n, `)
to diletter p-comma-free codes: we provide closed formulas for the maximal size and
the number of p-comma-free diletter codes of maximal size for every p, which thus
include comma-free codes but also strong comma-free codes.

Finally, we include a computer-generated table containing the growth function
of all circular triletter codes (of which comma-free codes are a sub-family) over the
genetic alphabet B (of cardinality 4), presented in function of the number of arcs in
a longest directed path of the associated graph.

Several examples are provided to illustrate the notions and constructions used,
in an effort to increase readability since the topic raised interest in different fields.
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2 Definitions and Notions

Let Σ be an arbitrary finite alphabet with n := |Σ|. For an integer ` > 2, an `-letter
code is a set X ⊆ Σ`. We define Σ∗ to be the collection of all finite words with
letters in Σ, that is, ∪`>0Σ`, and we define Σ+ to be the collection of all finite and
non-empty words with letters in Σ, that is, ∪`>1Σ`.

Definition 2.1 Let X ⊆ Σ` be an `-letter code and let k ∈ N. We say that X is

• a strong comma-free code if no element of Σ+ appears both as a prefix and a
suffix inX: in other words, given any two non-necessarily distinct elements c1 =
x1 . . . x` and c2 = y1 . . . y` of X, for every k ∈ {1, . . . , `− 1} we have

x`+1−k . . . x` 6= y1 . . . yk;

• a comma-free code if for any two elements x1 . . . x` and y1 . . . y` in X, we have

∀i ∈ {2, . . . , `}, xi . . . x`y1 . . . y`−i /∈ X;

• a k-circular `-letter code if for every m 6 k, every concatenation c1 . . . cm of m
elements of X, read on circle, admits exactly one partition (called a circular
decomposition) into elements from X;

• a circular `-letter code if it is a k-circular `-letter code for all k ∈ N;

• an expandable (k-)circular `-letter code if it is contained in a larger (k-)circular
code;

• a maximum (k-)circular (comma-free, strong comma-free) `-letter code or,
equivalently, code of maximal size if |Y | 6 |X| whenever Y is an `-letter
(k-)circular (comma-free, strong comma-free) code over Σ.

A code that is not expandable is sometimes called maximal in the literature, as a
short-hand for “inclusion-wise maximal”. Before giving some examples, we also point
out that a comma-free code is automatically circular [35, 23].

Example 2.2 Let Σ := {0, 1, 2} be the ternary alphabet. The set X0 := {012, 220}
is a 3-letter code of size 2 over Σ. This code is not strong comma-free since 0 is
both prefix and suffix. One sees however that it is comma-free, since the comma-
freeness condition is exactly that X2 ∩ Σ+XΣ+ = ∅. And indeed, we have X2 =
{012012, 012220, 220012, 220220}, no element of which can be written as an element
in Σ+XΣ+. This implies that X0 is circular.

On the other hand, the 3-letter code X1 := {012, 110, 122, 211} is not 2-circular
as the concatenation 012211 of two words from X1, when read on a circle, admits a
second decomposition in words from X1, namely 122|110.
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Consider now the following 2-letter (or diletter) codes over Σ.

X2 := {01, 12, 20}, X3 := {01, 02, 12}, X4 := {01, 12}.

Both X2 and X3 have size 3, and the code X2 is not 3-circular as the concatena-
tion 012012 of the three words in X2 admits two different decompositions in words
from X2 when read on a circle, namely 01|20|12 and 12|01|20. The code X2 is how-
ever 2-circular. The code X3, on the other hand, is circular. Since X4 ⊂ X3,
the code X4 must also be circular, and is an expandable circular 3-letter code
(over Σ). The code X3 is a circular 3-letter code of maximal size (over Σ). In-
deed Σ2 \X3 = {00, 11, 22, 10, 20, 21}, and a circular diletter code cannot have any
constant word (which forbids 00, 11, 22), and the remaining three words all are shifts
of a word in X3, so adding any of them would immediately force the word to have
more than one decomposition in words from X, (when read on a circle): for exam-
ple, in X3 ∪ {10} the word 10, on a circle, can also be read as 01, which belongs
to X3 ∪ {10}. As we shall see very soon, this fact is general: an `-letter code con-
taining a word and one of its “cyclic permutations” cannot be 1-circular.

Remark 2.3 Strong comma-free codes have been previously defined in a number of
contexts and under different names: they were first introduced as non-overlapping
codes [31], then rediscovered and called cross-bifix-free codes [3] or strong circu-
lar codes [35], and recently redefined using graph theoretical models of the genetic
code [22].

We state and prove the following observation, which is now well known, to illus-
trate the notions just introduced.

Observation 2.4 If X is a strong comma-free `-letter code over a finite alphabet Σ,
then X is comma-free.

Indeed, if X is not comma-free, then it contains two elements c1 and c2 such
that c1c2 contains an element c ∈ X that starts after the first letter and ends before
the last one, and hence there is a suffix of c1 that is also a prefix of c2, which means
that X is not strong comma-free.

Observation 2.4 also explains why we keep the name “strong comma-free”, which
emphasises the relation to comma-free codes. In addition we shall introduce p-
comma-free codes, which correspond to strong comma-free codes when p = 1 and to
comma-free codes when p = 2.

Two symmetric groups play an important role in the context of circular codes [25].
The first one acts on the elements of the alphabet Σ and is defined as

SΣ := {π : Σ→ Σ : π is bijective}

endowed with the usual group operation given by the composition of functions. The
group SΣ has n! elements and for every ` ∈ N, any bijective mapping π : Σ → Σ
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can be applied component-wise to x ∈ Σ` and thus yields a bijective map Σ` → Σ`,
which is also called π. A bijection π of SΣ is an involutory function (or an involution)
if π◦π(x) = x for every x ∈ Σ. A fixed point of a bijection π ∈ SΣ is an element x ∈ Σ
such that π(x) = x. If |Σ| is even, then SΣ contains involutory bijections without
fixed points.

The second relevant symmetric group is S`, which acts on indices of each element
from Σ` and permutes components in each `-letter word from Σ` in a prescribed way.
Formally we define

S` := {α : {1, . . . , `} → {1, . . . , `} : α is bijective} .
For instance, if ` = 3 then (132) ∈ S3 is the permutation such that 1 7→ 3, 2 7→ 1
and 3 7→ 2. Any element of S` induces a mapping on Σ` by permuting the order
of the bases: for instance, if ` = 3 then (132) transforms the 3-letter word b1b2b3
into the 3-letter word b3b1b2. The subgroup A` of cyclical permutations of (S`, ◦) is
interesting for us. It is formally defined by
A` := {α0 =(1)(2) . . . (`), α1 =(23 . . . `1), α2 =(3 . . . `12), . . . , α`−1 =(`12 . . . `−1)}
⊆ S`.

Following several previous works, we point out that a circular code cannot contain two
cyclically equivalent words, i.e. two words w1, w2 ∈ Σ` for which there exists α ∈ A`
such that α(w1) = w2. For example, if x1x2x3 and x3x1x2 are in the same code X
then the word x1x2x3x1x2x3 admits two different cyclic decompositions into elements
of X, namely

x1x2x3|x1x2x3 and x1x2|x3x1x2|x3.

In particular, if Σ = {x1, . . . , xn}, then for every i ∈ {1, . . . , n} the trivial `-letter
word xixi . . . xi cannot be a part of a circular code over Σ`. The classes produced
by the cyclic equivalence relation are the cyclic equivalent classes. A cyclic equiva-
lence class is complete if it has order `, that is, if its representative is not a cyclic
permutation of itself.

We now introduce the so-called reversing permutation, which inverts the order of
letters in any `-letter word over Σ, as

←−−−−−−−−−−x1x2 . . . x`−1x` := x`x`−1 . . . x2x1 ∈ Σ`.

Definition 2.5 Let Σ be an alphabet and π an involutory bijection of Σ. A code X
over Σ is π-self-complementary if

←−−
π(x) ∈ X whenever x ∈ X. A fixed point of π is

an element x ∈ Σ such that π(x) = x.

Due to the biological origins of our motivations, and also to avoid unessential tech-
nicalities, we consider only involutory bijections without fixed points.

Definition 2.6 The Möbius function µ : N→ {−1, 0, 1} is defined as

µ(n) :=


1 if n = 1,
(−1)m if n = q1 · · · qm where q1, . . . , qm are distinct primes,
0 otherwise.
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Definition 2.7 For every positive integer ` and every integer i ∈ {1, . . . , `}, we
define the projection on the ith coordinate pi : Σ` → Σ by pi(x1 · · ·x`) = xi. The
projections on two coordinates pij : Σ` → Σ2 are defined in a similar way whenever
it makes sense.

3 `-letter Circular Codes

As reported earlier, in the seminal combinatorial work on comma-free codes [26]
it was observed that a comma-free code cannot contain more than one element in
each cyclic equivalence class (and none in non-complete classes). This property ac-
tually holds for the larger class of 1-circular codes, which yields an upper bound
on the size of such a code: the size cannot exceed the number of complete equiva-
lence classes. This number is straightforward to compute using Möbius’s inversion
formula [26, Theorem 1]: for an `-letter code over an alphabet of cardinality n, it
is 1

`

∑
d|` µ(`/d)nd. This upper bound is tight, and actually attained by a circular

code. Indeed, for any total order on the alphabet, the code composed of the lexico-
graphically smallest element of each complete cyclic equivalence class turns out to
be circular. These facts seem to be folklore: we group them in the next theorem and
provide a short proof that the bound is attained for completeness. To this end, we
introduce the following notation.

We define S1
max(n, `) to be the size of a maximum `-letter 1-circular code over an

alphabet of cardinality n. Similarly, we define Smax(n, `) to be the size of a maximum
circular `-letter code over an alphabet of cardinality n. The case where n = 1 is
trivial: there is no non-empty 1-circular `-letter code if ` > 2. Any ordering on a
finite alphabet Σ naturally yields an ordering on Σ` for any positive integer `, using
the lexicographical order. We use the same symbol for all these orders.

Theorem 3.1 (Folklore) Let Σ be an alphabet of cardinality n > 2. The cardi-
nality Smax(n, `) of a circular `-letter code of maximal size over Σ and the cardi-
nality S1

max(n, `) of a 1-circular `-letter code of maximal size over Σ are both equal
to

1
`

∑
d|`
µ

(
`

d

)
nd.

Proof: As explained earlier, we have

Smax(n, `) 6 S1
max(n, `) 6 1

`

∑
d|`
µ

(
`

d

)
nd.

To conclude the proof, it is thus enough to exhibit a circular code over Σ of size∑
d|` µ

(
`
d

)
nd.

To this end, let < be a total order on Σ, and consider the `-letter code X over Σ
constructed in the following way: X contains the minimum element, according to <,
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of each complete cyclic equivalence class induced by A`. By the definition, |X| =∑
d|` µ

(
`
d

)
nd, and it thus suffices to show that X is circular.

Suppose on the contrary that there exist two circular decompositions of some word
x1x2 . . . xr` ∈ Σr`, the second one obtained by shifting k nucleotides, with k ∈
{1, . . . , `− 1}, that is,

x1 · · ·x`|x`+1 · · ·x2`| . . . |x(r−1)`+1 · · ·xr` ∈ X+ and
xk+1 · · ·xk+`|xk+`+1 · · ·xk+2`| . . . |xk+(r−1)`+1 · · · xr`x1 · · · xk ∈ X+.

Note that, up to changing k by `− k, we may assume that k 6 `− k. For each i ∈
{1, . . . , r}, let us set

ai := x1+(i−1)` · · ·xk+(i−1)` and bi := xk+(i−1)`+1 · · · xi`,

so for every i ∈ {1, . . . , r},

|ai| = k and |bi| = `− k.

The two decompositions can thus be rewritten as

a1b1| . . . |arbr and b1a2| . . . |bra1,

and hence, setting ar+1 := a1 for convenience, one sees that aibi ∈ X and biai+1 ∈ X
for every i ∈ {1, . . . , r}. Therefore, the definition of X implies that bi /∈ {ai, ai+1},
since every word in X belongs to a cyclic equivalence class of size `. Furthermore,
the definition of X also implies that for every i ∈ {1, . . . , r},

(1) aibi < biai since aibi and biai are in the same equivalence class, aibi ∈ X
and ai 6= bi;

(2) biai+1 < ai+1bi since biai+1 and ai+1bi are in the same equivalence class, biai+1 ∈
X and ai+1 6= bi; and

(3) ai 6= ai+1 since {biai+1, aibi} ⊂ X and X contains only one element in each
cyclic equivalence class.

Because k 6 ` − k, we know that |ai| 6 |bi| for every i ∈ {1, . . . , k}. Let b′i be
composed of the first k letters of bi, that is, b′i := xk+1+(i−1)` · · · x2k+(i−1)`. We know
that ai 6 b′i by (1), and that b′i 6 ai+1 by (2). It follows that ai 6 ai+1, and
hence ai < ai+1 by (3). Since this is valid for every i ∈ {1, . . . , r + 1}, we conclude
that a1 < · · · < ar < ar+1 = a1, a contradiction. 2

Example 3.2

(1) Let us endow Σ = {0, 1} with the order 0 < 1. For ` = 3, we have the following
complete cyclic equivalence classes:

{100, 010, 001}, {110, 011, 101}.
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Theorem 3.1 implies that {001, 011} is a binary circular 3-letter code of maxi-
mal size.
For ` = 4 we have the following complete cyclic equivalence classes:

{1000, 0100, 0010, 0001}, {1100, 0110, 0011, 1001}, {1110, 0111, 1011, 1101}.

Theorem 3.1 implies that {0001, 0011, 0111} is a binary circular 4-letter code
of maximal size.

(2) The genetic alphabet is B = {A,C,G, T} where A stands for Adenine, C for
Cytosine, G for Guanine and T for Thymine. Let us endow B with the order
A < C < G < T . For ` = 2 we have the following complete cyclic equivalence
classes:

{AC,CA}, {AG,GA}, {AT, TA}, {CG,GC}, {CT, TC}, {GT, TG}.

Theorem 3.1 implies that {AC,AG,AT,CG,CT,GT} is a circular dinucleotide
code of maximal size.
For ` = 3 we have the following complete cyclic equivalence classes:

{AAC, ACA, CAA}, {AAG, AGA, GAA}, {AAT, ATA, TAA},{ACC, CCA, CAC},
{ACG, CGA, GAC}, {ACT, CTA, TAC}, {AGC, GCA, CAG},{AGG, GGA, GAG},
{AGT, GTA, TAG}, {ATC, TCA, CAT}, {ATG, TGA, GAT},{ATT, TTA, TAT},
{CCG, CGC, GCC}, {CCT, CTC, TCC}, {CGG, GGC, GCG},{CGT, GTC, TCG},
{CTG, TGC, GCT}, {CTT, TTC, TCT}, {GGT, GTG, TGG},{GTT, TTG, TGT}.

Theorem 3.1 implies that

{AAC,AAG,AAT,ACC,ACG,ACT,AGC,AGG,AGT,ATC,
ATG,ATT,CCG,CCT,CGG,CGT,CTG,CTT,GGT,GTT} (3.1)

is a circular trinucleotide code of maximal size.

Let us spell out some important special cases of 1-circular codes.

Special Cases 3.3 Let n be an integer greater than 1.

(1) We first consider the cases where ` is a prime number p. We have

S1
max(n, p) = 1

p
(np − n) .

For Σ = {0, 1} we obtain S1
max(2, p) = 1

p
(2p − 2), and hence the following

values.
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p 2 3 5 7
S1

max(2, p) 1 2 6 18

For B = {A,C,G, T} we obtain S1
max(4, p) = 1

p
(4p − 4). This means that

S1
max(4, 2) = 6 and S1

max(4, 3) = 20.

(2) More generally, suppose that ` is a power of a prime number, that is, ` = pa

where p is a prime number and a is a positive integer. Then

S1
max(n, pa) = 1

pa

(
np

a − npa−1)
.

In particular, we obtain S1
max(2, 4) = 3 and S1

max(4, 4) = 60.

(3) We now consider the case where ` is the product of two distinct prime numbers p
and q. Then

S1
max(n, p · q) = 1

p · q
(np·q − np − nq + n) .

In particular, S1
max(2, p · q) = 1

p·q (2p·q − 2p − 2q + 2), and hence S1
max(2, 6) = 9.

Theorem 3.1 readily yields an upper bound on the number of different circular
`-letter codes of a given size.

Proposition 3.4 Let Σ be an alphabet of cardinality n. For every k ∈ {1, . . . ,
Smax(n, `)}, the number of circular `-letter codes of size k over Σ cannot exceed

Nmax(n, `, k) :=
(
S1
max(n, `)
k

)
`k.

Proof: There are
(
S1

max(n,`)
k

)
possibilities to choose k classes from S1

max(n, `) different
cyclic equivalence classes. There are `k ways to choose an arbitrary element in each
of the k chosen classes. 2

The computer-calculated numbers in Table 1 are the number of circular `-letter
codes of size k over a two-letter alphabet, for ` ∈ {2, . . . , 6} and all the possible
corresponding values of k. As expected, none of these numbers exceeds the upper
bound provided by Proposition 3.4. Nevertheless, and not surprisingly, most of them
are strictly smaller.

We now point out some facts about Theorem 3.1
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k
` 2 3 4 5 6

1 2 (2) 6 (6) 12 (12) 30 (30) 54 (54)
2 8 (9) 48 (48) 374 (375) 1290 (1296)
3 60 (64) 2458 (2500) 17788 (18144)
4 8712 (9375) 154252 (163296)
5 14952 (18750) 857534 (979776)
6 9204 (15625) 2990084 (3919104)
7 6156160 (10077696)
8 6648638 (15116544)
9 2832746 (10077696)

Table 1: Growths of circular `-letter codes over an alphabet of cardinality 2 in
function of the code size k. In brackets are written the corresponding upper
bounds Nmax(2, `, k) given by Proposition 3.4.

Remark 3.5

• Theorem 3.1 means that among all maximum 1-circular `-letter code over a
given alphabet, at least one of them is circular. We note that not all of them are,
as is seen by considering for instance 3-letter words over the genetic alphabet:
since an `-letter code is 1-circular as soon as it contains only words that belong
to a complete cyclic equivalence class no two of which being in the same class,
there exists a 1-circular 3-letter code X of maximal size 20 containing the
words AAG, TAA, GGT and GTT . Therefore, the word TAAGGT admits two
circular decompositions into words in X, namely TAA|GGT and T |AAG|GT .

• The example given above also shows that the construction provided in the
proof of Theorem 3.1 does not cover all 1-circular `-letter codes of maximal
size: as one can see, there is no order on {A,G, T} such that each of the first 3
words above, namely AAG, TAA and GGT , is the smallest element in its own
cyclic equivalence class. Indeed, if AAG is the smallest in its cyclic equivalence
class, then A < G (because GAA belongs to this class) and similarly if GGT
is minimum in its class then G < T and hence A < T . This implies that TAA
is not the smallest element in its class.

• Furthermore, Theorem 3.1 does not describe all circular `-letter codes of max-
imal size either. That is, there exist maximum circular `-letter codes for which
no order on the alphabet can be found such that every word in the code is the
smallest element of its own cyclic equivalence class. For instance, endowing
the genetic alphabet with the order A < C < G < T and considering 3-letter
words, we have seen that the 20 trinucleotides given in (3.1) form a maximum
circular code. However, replacing AAC by ACA also yields a circular code,
and yet there is no order on the genetic alphabet such that ACA is the smallest
element in its cyclic equivalence class.
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4 Comma-Free Di- and Triletter Codes

We define N(n, `) to be the number of comma-free `-letter codes of maximal size
over an alphabet with n letters, and S(n, `) to be their size. We study in this section
the case where ` ∈ {2, 3}, starting with ` = 2.

4.1 Diletter Codes

Notice that S(2, 2) = 1 and N(2, 2) = 2. The case where n > 3 is more interesting.
Let Σ be a finite alphabet and X an `-letter code over Σ. One can associate to any
code X a digraph GX as follows [20]. The vertex set of GX is ∪`−1

i=1Σi, and there
is an arc from w to w′ if and only if the concatenation ww′ belongs to X. It was
proved [20, Theorem 2.6] that X is circular if and only if GX is acyclic. Moreover,
if p is the length of a longest (directed) path in GX , then X is comma-free if and
only if p 6 2. Further, X is strong comma-free (also known as strongly regular or
non-overlapping) if and only if p = 1. It thus seems natural to partition all the
circular `-letter codes over a given alphabet Σ according to the length of a longest
directed path in their associated digraph. A circular code X is p-comma-free if no
directed path in GX has length more than p.

For every positive integer p, let Sp(n, 2) be the size of a maximum p-comma-free
circular diletter code over an alphabet of cardinality n. Furthermore, let Np(n, 2)
be the number of different such maximum codes. (In particular, S2(n, 2) = S(n, 2)
and N2(n, 2) = N(n, 2).) Our next result, which generalises an earlier result of Ball
and Cummings [4], provides formulæ for the size and the number of maximum p-
comma-free diletter codes for every integer p. As is usual,

(
a
b

)
stands for the number

of ways of choosing b elements of a set of cardinality a; in particular,
(
a
0

)
= 1

and
(
a
b

)
= 0 if b > a.

Theorem 4.1 Let n be an integer greater than 2 and p ∈ {1, . . . , n−1}. We set m :=
b n
p+1c and r := n− (p+ 1)m ∈ {0, . . . , p}. Then

Sp(n, 2) = 1
2

(
1− 1

p+ 1

)
(n2 − r2) +

(
r

2

)
= pn2 + r(r − p− 1)

2(p+ 1)
and

Np(n, 2) =
(
p+ 1
r

)
n!

m!p+1(m+ 1)r
.

Remark 4.2 Applying Theorem 4.1 with p = 1 allows us to recover earlier re-
sults [22, Proposition 3.3(2) and Theorem 3.6(2)], using different arguments. Indeed,
in this case if n is even then m = n/2 and r = 0, while if n is odd then m = (n−1)/2
and r = 1. Therefore,

S1(n, 2) =


1
2

(
1− 1

2

)
× n2 = 1

4 · n
2 if n is even,

1
2

(
1− 1

2

)
× (n2 − 1) = 1

4 · (n− 1)(n+ 1) if n is odd,
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and moreover

N1(n, 2) =


(

2
0

)
n!

(n
2 !)2
×10

=
(
n
n/2

)
if n is even,(

2
1

)
n!

(n−1
2 !)2

×(n+1
2 )1 = 2

(
n

n+1
2

)
if n is odd.

We use two classical results from graph theory to establish Theorem 4.1, one
coming from the study of tournaments and the other from extremal graph theory.
To state and use them, we need to introduce some terminology. A graph is complete
if every two distinct vertices are adjacent: we let Kn be the complete graph with n
vertices. A tournament is an orientation of a complete graph, that is, a choice of a
direction for each edge of a complete graph. It turns out that every digraph that
contains a tournament also contains a directed path going once through each vertex of
the tournament. To be more precise, given any digraph D, a Hamiltonian path of D
is a directed path going once through each vertex of D. A straightforward induction
on the number of vertices shows that every tournament admits a Hamiltonian path.

The following immediate corollary is what will be useful to us.

Corollary 4.3 If the length of every directed path in a digraph D is at most p, then
(the underlying undirected graph of) D does not contain Kp+2 as a subgraph.

The second result we need provides an upper bound on the number of edges in
a graph that does not contain a complete subgraph of a certain order. If n and k
are two integers, the Turán graph Tk(n) is obtained by partitioning n (unlabelled)
vertices into k parts with sizes in {bn/kc, dn/ke} (there is a unique way to do so)
and then placing an edge between two vertices if and only if they belong to different
parts. The Turán graphs T3(11) and T4(16) are depicted in Figure 1. We define tk(n)
to be the number of edges of the Turán graph Tk(n). One can check that

tk(n) = 1
2

(
1− 1

k

) (
n2 − r2

)
+
(
r

2

)
,

where r is the remainder of n divided by k.
If an n-vertex graph G does not contain a complete subgraph on k + 1 vertices,

then how many edges at most can G have? Clearly, if k+ 1 > n then G can be itself
complete and it is the only way to maximise the number of edges in G; hence the
question is interesting when k + 1 6 n. In 1941, Turán established an upper bound
on the number of edges of an n-vertex graph without a complete subgraph on k + 1
vertices and characterised the graphs attaining this upper bound.

Theorem 4.4 (Turán [40]) Let n be a positive integer and let k ∈ {1, . . . , n− 1}.
Let G be a graph with n vertices that does not contain a complete subgraph on k + 1
vertices. Then the number of edges of G is at most tk(n), with equality if and only
if G = Tk(n).
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Figure 1: The Turán graph T3(11) on the left and the Turán graph T4(16) on the
right.

We are now in a position to establish Theorem 4.1.
Proof of Theorem 4.1: Let Σ be an alphabet of cardinality n. We start by
establishing that Sp(n, 2) = tp+1(n). Let X be a p-comma-free diletter code over Σ.
Because X is a diletter code, the size of X is precisely the number of arcs in GX .
Since X is p-comma-free, we know that the length of every directed path in GX is at
most p. It follows from Corollary 4.3 that (the underlying undirected graph of) GX

does not contain the complete graph on p + 2 vertices as a subgraph, and hence
Theorem 4.4 implies that the number of arcs in GX or, equivalently, the size of the
code X is at most tp+1(n), and hence Sp(n, 2) 6 tp+1(n).

To establish the equality, it remains to exhibit a p-comma-free diletter code of
size tp+1(n), which can be done as follows. We consider the Turán graph Tp+1(n),
with vertex partition (X1, . . . , Xp+1). We orient all edges between Xi and Xj from
the vertices in Xi to those in Xj whenever 1 6 i < j 6 p + 1. Now, arbitrarily
identifying the vertices of G with the elements of Σ yields a p-comma-free diletter
code of size tp+1(n), and hence tp+1(n) = Sp(n, 2).

We proceed to calculate the number of maximum p-comma-free diletter codes
over Σ. It follows from Theorem 4.4 and our previous considerations that X is
a p-comma-free diletter code of maximal size over Σ if and only if the underlying
undirected graph HX of GX is Tp+1(n). Starting from this graph, every such code is
thus created by two choices: first an ordering of the parts of the partition, and next a
bijection between the vertices and the alphabet. Note that some bijections yield the
same code: we just want to assign the letters to the parts of the partition. Therefore,
letting (X1, . . . , Xp+1) be the partition of the vertices of Tp+1(n), it is more convenient
to express this second choice as the choice of a function f : Σ→ (X1, . . . , Xp+1) such
that |f−1(Xi)| = |Xi| for every i ∈ {1, . . . , p+ 1}.

To compute the number of such functions f , recall that n = (p + 1)m + r
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n 3 4 5 6 7 8 9 10 11 12 13 14 15

S(n, 2) 3 5 8 12 16 21 27 33 40 48 56 65 75
N(n, 2) 6 36 90 90 630 1680 1680 12600 34650 34650 270270 756756 756756

Table 2: The sizes and numbers of maximum comma-free diletter codes over an alphabet of
cardinality n ∈ {3, . . . , 15}, as obtained using computers [21] and confirmed by the general
formulæ of Theorem 4.1.

where m = bn/(p + 1)c and r ∈ {0, . . . , p}. Set M := dn/(p + 1)e, so M = m
if r = 0 and M = m+ 1 otherwise. Using these notations, the number of functions f
as above is

r−1∏
i=0

(
n− iM
M

) p−r∏
i=0

(
n− rM − im

m

)
,

noting that if r = 0 then the first product is empty — and hence equal to 1.
The number of orderings of the parts is then

(
p+1
r

)
, since we only need to choose

the r places of the parts of size M . Note that this value is 1 if r = 0. We therefore
obtain the following formula,(

p+ 1
r

)
·
r−1∏
i=0

(
n− iM
M

) p−r∏
i=0

(
n− rM − im

m

)
,

which is equal to (
p+ 1
r

)
n!

m!p+1(m+ 1)r
.

This concludes the proof. �

Example 4.5 The genetic alphabet corresponds to the case where n = 4, which was
previously studied by other means [24, 20]; we have

S(4, 2) = S2(4, 2) = 1
3(42−12)+

(
1
2

)
= 5 and N(4, 2) = N2(4, 2) =

(
3
1

)
4!

(1!)321
= 36.

Remark 4.6 Using computers, all maximum comma-free diletter codes on alphabets
of cardinalities n ∈ {2, . . . , 15} have been generated [21]: Theorem 4.1 confirms that
the computer programs used were correct, and provides the sought value for every
integer n > 3. (See Table 2.)

4.2 Triletter Codes

We now turn our attention to comma-free 3-letter codes of maximal size. Let Σ be
an alphabet of cardinality n. The case where n = 2 is straightforward. One readily
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sees that the maximum size of a comma-free 3-letter code over Σ, that is, S(2, 3),
is 2 and there are exactly 8 of them: writing Σ = {0, 1}, these eight codes are

{001, 011}, {001, 101}, {001, 110}, {010, 011},
{010, 110}, {011, 100}, {100, 101}, {100, 110}.

Indeed, neither 000 nor 111 can be part of a comma-free code and a comma-free
code contains at most one element in each complete equivalence class (and none in
non-complete equivalence classes). It then only remains to notice that, among the
nine possible choices, exactly one is not comma-free: {010, 101}.

As reported earlier, Golomb, Gordon and Welch [26] obtained an upper bound
on the maximal size of a comma-free `-letter code over an alphabet of cardinality n,
which was shown to be attained for each odd value of ` by Eastman [16]. We focus on
3-letter codes: S(n, 3) = n(n2−1)

3 . Let Σ be an alphabet of cardinality n > 3. While
Golomb, Welch and Delbrück [27] described a method to construct all comma-free
3-letter codes of maximal size over Σ, no formula to count them is provided. They
showed (cf. note after their Theorem 7) that the product of two groups (that of
permutation of the alphabet and that of so-called “reversals”) generate all maximum
comma-free 3-letter codes, starting from a number of “basic” codes. However, build-
ing the basic codes requires enumerating all integer partitions of n(n2−1)

3 that satisfy
a certain property: these do not seem obvious to count. Furthermore, given the
number of “basic codes”, the cardinality of the group of “reversals” does not seem
obvious to find either.

The de Bruijn graph B(n, 3) has vertex set Σ3 and an arc fromN1N2N3 toN4N5N6
if and only if N2 = N4 and N3 = N5. (It thus contains |Σ| loops.) In 2011,
Cartwright, Cueto and Tobis [11] counted the number of maximum independent sets
in B(n, 3) by finding the generating function: solving the corresponding recurrence
shows this number to be [

(1 +
√

2)n
2

]
n!,

where [x], for an irrational number x, is the integer closest to x. They moreover
observed [11, Theorem 5.1] that maximum independent sets of B(n, 3) inject into the
collection of maximum comma-free 3-letter codes, thereby obtaining exponentially
(in n) many different such codes. They noted that, when n = 2, the injection is
not surjective. Indeed, there exist precisely two maximum comma-free 3-letter codes
over {0, 1} that do not correspond to independent sets in B(2, 3), namely {001, 011}
and {110, 100}.

However, using some of the properties first obtained by Golomb, Welch and Del-
brück [27], one realises that n = 2 is the only exceptional case: as soon as n > 3,
maximum comma-free 3-letter codes over Σ are in bijection with maximum indepen-
dent sets in the de Bruijn graph B(n, 3). We thus obtain the following statement.

Theorem 4.7 If n is an integer greater than 2, then

N(n, 3) =
[

(1 +
√

2)n
2

]
n!.
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Proof: Let n > 3 and suppose that X is a maximum comma-free code that is not a
maximum independent set in B(n, 3). Consequently, there exist two words w and w′
inX of the form w = N1N2N3 and w′ = N2N3N4 where {N1, . . . , N4} ⊆ Σ. As proved
by Golomb, Welch and Delbrück [27, Note after Theorem 3], as |X| is maximum every
letter in Σ, except possibly one, occurs both as the first letter of a word in X and
as the last letter of a word in X. It follows that we may assume, without loss of
generality in the sequel, that X contains a word w′′ = N5N6N1 where {N5, N6} ⊂ Σ.
Therefore, the concatenation w′′w′ contradicts that X is comma-free. The formula
follows. 2

Example 4.8 For the genetic alphabet B = {A,C,G, T}, we find back the well-
known [27, 26, 36] numbers S(4, 3) = 4(42−1)

3 = 20 for the size and N(4, 3) =
4!
[

(1+
√

2)4

2

]
= 24 · 17 = 408 for the number of comma-free 3-letter codes of max-

imal size over the genetic alphabet.

Example 4.9 When the alphabet has size 3, one can check that the formulæ indeed
give all the 42 different circular comma-free 3-letter codes of maximal size, which
is 8. Letting Σ be {0, 1, 2}, these 42 codes are listed below.

{001, 002, 101, 102, 112, 201, 202, 212}, {001, 002, 101, 102, 112, 201, 202, 221},
{001, 002, 101, 102, 120, 121, 220, 221}, {001, 002, 101, 102, 121, 122, 201, 202},
{001, 002, 101, 102, 121, 201, 202, 221}, {001, 002, 101, 102, 122, 201, 202, 211},
{001, 002, 101, 102, 201, 202, 211, 212}, {001, 002, 110, 112, 201, 202, 210, 212},
{001, 020, 021, 022, 101, 120, 121, 122}, {001, 020, 021, 022, 110, 120, 121, 122},
{001, 020, 021, 101, 120, 121, 220, 221}, {001, 020, 021, 110, 120, 121, 220, 221},
{002, 010, 011, 012, 202, 210, 211, 212}, {002, 010, 011, 012, 210, 211, 212, 220},
{002, 010, 012, 110, 112, 202, 210, 212}, {002, 010, 012, 110, 112, 210, 212, 220},
{010, 011, 012, 020, 022, 210, 211, 212}, {010, 011, 012, 020, 210, 211, 212, 220},
{010, 011, 012, 022, 200, 210, 211, 212}, {010, 011, 012, 200, 202, 210, 211, 212},
{010, 011, 020, 021, 022, 120, 121, 122}, {010, 011, 020, 021, 120, 121, 220, 221},
{010, 011, 020, 022, 120, 122, 210, 211}, {010, 012, 020, 021, 110, 112, 220, 221},
{010, 012, 020, 022, 110, 112, 210, 212}, {010, 012, 020, 110, 112, 210, 212, 220},
{010, 012, 022, 110, 112, 200, 210, 212}, {010, 012, 110, 112, 200, 202, 210, 212},
{010, 020, 021, 022, 110, 120, 121, 122}, {010, 020, 021, 110, 120, 121, 220, 221},
{011, 012, 100, 102, 200, 202, 211, 212}, {011, 020, 021, 022, 100, 120, 121, 122},
{011, 020, 021, 100, 120, 121, 220, 221}, {020, 021, 022, 100, 101, 120, 121, 122},
{020, 021, 100, 101, 120, 121, 220, 221}, {021, 022, 100, 101, 121, 122, 200, 201},
{100, 101, 102, 112, 200, 201, 202, 212}, {100, 101, 102, 112, 200, 201, 202, 221},
{100, 101, 102, 121, 122, 200, 201, 202}, {100, 101, 102, 121, 200, 201, 202, 221},
{100, 101, 102, 122, 200, 201, 202, 211}, {100, 101, 102, 200, 201, 202, 211, 212}.
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We now develop an approach to perform a similar study also for codes that
need not intersect every complete cyclic equivalence class, and hence for which the
properties unveiled by Golomb, Welch and Delbrück [27] do not hold anymore. We
consider different families of codes along these lines in the next subsections.

4.3 Self-Complementary Triletter Codes

We consider comma-free 3-letter codes that are π-self-complementary for an involu-
tory transformation π ∈ SΣ with no fixed point. (Involutory transformations with
fixed points could be dealt with, at the expense of more tedious notation and analy-
sis; however, given our original biological motivations and the fact that adding fixed
points does not change the essence of the argumentation, we omit this case entirely.)
If π ∈ SΣ is involutory with no fixed point, then we define Nπ

cf(n, `) to be the number
of comma-free π-self-complementary `-letter codes of maximal size over an alphabet
with n letters and Sπcf(n, `) to be their size — as we shall see, these numbers do not
depend on the choice of π.

Theorem 4.10 Let Σ be an alphabet of even cardinality n and let π ∈ SΣ be an
involutory transformation with no fixed point.

(1) Sπcf(2, 3) = 2, Sπcf(4, 3) = 16 and if n > 6 then

Sπcf(n, 3) = n(n2 − 1)
3 − n2

2 + 2 = n(2n+ 1)(n− 2)
6 + 2.

(2) Nπ
cf(2, 3) = 2, Nπ

cf(4, 3) = 4, Nπ
cf(6, 3) = 224 and if n > 8 then

Nπ
cf(n, 3) = 6n/2−1

(
n

2

)
!.

We first prove a characterisation of a slightly more constrained family of comma-
free codes: this family will be useful to be able to apply induction to establish
Theorem 4.10, and it also seems to be a legitimate family to study on its own. The
additional restrictions allow us to use a more direct approach than that used to
establish Theorem 4.7. In addition to the π-self-complementarity, the comma-free
3-letter codes X we consider are also required to satisfy that p12(X) ∩ p23(X) = ∅.
Notice that this last condition implies that the code is empty if the alphabet has
cardinality two.

Proposition 4.11 Let Σ be an alphabet of even cardinality n and let π ∈ SΣ be
an involutory transformation with no fixed point. If X is a π-self-complementary
comma-free 3-letter code such that p12(X) ∩ p23(X) = ∅, then

|X| 6 n(n2 − 1)
3 − n2

2 .
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Furthermore, there is equality if and only if, setting n′ := n/2− 1, one can write

X =
n′−1⋃

i=0
(Xi ∪ {αi})αiXi

 ∪
n′−1⋃

i=0
Xiπ(αi) (Xi ∪ {π(αi)})

 ,
with Xi := {αi+1, π(αi+1), . . . , αn′ , π(αn′)} and Σ = {α0, π(α0), . . . , αn′ , π(αn′)}. In
particular, the number of such codes X of maximal size is precisely(

n

2

)
! · 2n/2−1.

Proof: We proceed by induction on the even cardinality n of the alphabet Σ, the
statement being trivially true if n = 2, that is, if Σ = {a, π(a)}. (In this case,
only the empty code satisfies all requirements.) Now let n > 4 and let X be a
π-self-complementary comma-free 3-letter code of maximal size over an alphabet Σ
of cardinality n, such that p12(X) ∩ p23(X) = ∅. To make the notation lighter, we
assume without loss of generality that Σ = {0, . . . , n− 1} and π(a) = n− 1− a for
each a ∈ {0, . . . , n/2− 1}.
Similarly as in the proof of Theorem 4.7, we define for every a ∈ Σ the set La of
all letters x ∈ A such that X contains a word starting with xa, and the set Ra of
all letters y ∈ A such that X contains a word ending with ay. We set `a := |La|
and ra := |Ra| for each a ∈ Σ. It follows that X is contained in ∪n−1

a=0La · a · Ra.
Notice that La =

←−−−−−−−
π(Rn−1−a) and Ra =

←−−−−−−
π(Ln−1−a) for each a ∈ {0, . . . , n/2− 1} due

to the π-self-complementarity of X.
Up to permuting {0, . . . , n/2 − 1} and replacing X with π(X), we can suppose
without loss of generality that `0 > max{`a, ra} for each a ∈ {0, . . . , n− 1}. Notice
that n−1−a /∈ La∪Ra for every a ∈ {0, . . . , n−1} becauseX is π-self-complementary
and p12(X) ∩ p23(X) = ∅. Consequently, there exists a non-negative integer m
such that `0 = n − 1 − m. Moreover, because 0 /∈ L0 ∩ R0 and `0 > r0, we can
write r0 = n− 2− k for some non-negative integer k.
We want to count the number of words in X that contain the letter 0. Our strategy
is to consider the set W composed of all words in X that contain the letter 0, and
show that |W | 6 n2 − 3n + 2. It then follows by π-self-complementarity that the
number N of words in X that contain 0 or n − 1 is at most 2 |W | 6 2n2 − 6n + 4.
Now, deleting from X all such words yields a π-self-complementary comma-free 3-
letter code X ′ over the alphabet {1, . . . , n− 2} such that p12(X ′)∩p23(X ′) = ∅. We
know by induction that |X ′| 6 (n− 2)3/3− (n− 2)2/2− (n− 2)/3, and we know the
shape of X ′ if there is equality. We would therefore deduce that

|X| 6 2n2 − 6n+ 4 + (n− 2)3

3 − (n− 2)2

2 − n− 2
3

= n3

3 −
n2

2 −
n

3 .

Furthermore, there would be equality only if X ′ has maximal size and N = 2n2 −
6n+4 (in particular, note for (much) later on that then no word in X contains both 0
and n− 1, for otherwise N < 2 |W |).
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So let us bound from above the size of W , the set composed of all words in X
containing the letter 0. Because p12(X)∩ p23(X) = ∅, we know that for all letters a
and b, if a ∈ Lb then b /∈ Ra. In symbols, {a ∈ Σ : b ∈ Ra} ∩ Lb = ∅. Similarly,
if a ∈ Rb then b /∈ La. Let us writeW = W0∪W1 whereW0 := {w ∈ W : p2(w) = 0},
andW1 := W \W0. Using the notation previously introduced, we have |W0| 6 `0r0 6
(n− 1−m)(n− 2− k).
To evaluate the size ofW1, setM0 := {1, . . . , n−2}\L0, so m0 := |M0| ∈ {m−1,m}.
Further, if a ∈ {1, . . . , n − 2}, then 0 ∈ Ra only if a ∈ M0. So, for a ∈ {1, . . . , n −
1}, the number of words in W1 ending by a0 is 0 if a /∈ M0 or 0 /∈ Ra, and at
most `a otherwise. In particular, the number of words in W1 ending by 0 cannot
exceed ∑a∈M0 `a. Similarly, setting K0 := {1, . . . , n − 2} \ R0, we have k0 := |K0| ∈
{k, k + 1} and if a ∈ {1, . . . , n − 2}, then 0 ∈ La only if a ∈ K0. So, for a ∈
{1, . . . , n − 1}, the number of words in W1 starting by 0a is 0 if a /∈ K0 or 0 /∈ La,
and at most ra otherwise. In particular, the number of words in W1 starting by 0
cannot exceed ∑a∈K0 ra. Finally, since m0 = m if and only if 0 ∈ L0 and k0 = k + 1
if and only if 0 ∈ R0, the fact that 0 /∈ L0 ∩R0 implies that m0 + k0 6 m+ k.
We now bound the number of words in W1 by bounding, for each a ∈ {1, . . . , n− 2},
the number of words w inW1 with p2(w) = a. Fix a ∈ {1, . . . , n−2}. If 0 ∈ Ra, then
the number of words in X ending with a0 is at most `a, which is at most n− 1−m.
Similarly, if 0 ∈ La then the number of words in X starting with 0a is at most ra,
which is at most n− 1−m. Consequently,

|W1| 6
∑

a∈M0∪K0

(n− 1−m)

6 (m0 + k0)(n− 1−m)
6 (m+ k)(n− 1−m).

It follows that

|W | = |W0|+ |W1| 6 (n− 1−m)(n− 2− k) + (m+ k)(n− 1−m)
= (n− 1−m)(n− 2 +m)
= n2 − 3n+ 2−m(m− 1).

As a result, |W | 6 n2− 3n+ 2 with equality if and only if m ∈ {0, 1} and m0 + k0 =
m+ k. Therefore, the size of X is indeed at most n3/3− n2/2− n/3, with equality
only if all inequalities written so far are equalities: in particular, `a = n − 1 − m
if a ∈ M0 and ra = n− 1−m if a ∈ K0; m0 + k0 = m + k; m ∈ {0, 1} and X ′ is of
maximal size. It only remains to prove that if X is of maximal size then it has the
announced form. So assume that X has maximal size.
We prove that if X is maximum, then the number of words starting with 0a, for
each a ∈ {1, . . . , n − 2} is at most n − 3. Indeed, either this number is 0, or a ∈
K0 and 0 ∈ La. In this case, we know that 0 /∈ Ra. Recall also that Ra never
contains n− 1− a. So if in addition n− 1 /∈ Ra, then ra 6 n− 3, which implies our
statement. In addition, if n− 1 ∈ Ra, then the number of words in X starting by 0a
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is at most ra−1, as otherwise X would contain the word 0a(n−1), which prevents X
from being maximum, as reported (much) earlier. This proves our statement.
Now, if m = 0, then L0 = {0, . . . , n− 2} and hence 0 /∈ ⋃n−1

a=1 Ra. Notice that k0 = k
because m0 = m and k0 +m0 = k +m. Combining these with our statement above
yields that

n2 − 3n+ 2 = |W | 6 |W0|+
∑
a∈M0
0∈Ra

`a +
∑
a∈K0
0∈La

(n− 3)

6 (n− 1−m)(n− 2− k) +m(n− 2− k) + k0(n− 3)
6 (n− 1)(n− 2− k) + k(n− 3)
= n2 − 3n+ 2− k(n− 1) + k(n− 3),

which implies that k = 0, so k0 = 0 and K0 = ∅, and hence R0 = {1, . . . , n − 2},
which completes the proof in this case.
We end the proof by showing that if m = 1 then X is not of maximal size. Suppose
indeed that m = 1, that is, L0 = {0, . . . , n− 2} \ {i} with i ∈ {0, . . . , n− 2}. In this
case, |W0| 6 (n− 2)(n− 2− k).
If i = 0, then M0 = ∅, so no word in X ends by a0 with a ∈ {1, . . . , n−2} (and thus
also for a = n− 1). Recall also that the number of words in X starting with 0a, for
each a ∈ K0, is at most n− 3 (and 0 if a /∈ K0). It follows that

n2 − 3n+ 2 = |W | 6 |W0|+
∑
a∈M0
0∈Ra

`a + k0(n− 3)

6 (n− 2)(n− 2− k) + (k + 1)(n− 3)
6 (n− 2)2 + (n− 3)
= n2 − 3n+ 1,

a contradiction.
Therefore, L0 = {0, . . . , n − 2} \ {i} with i ∈ {1, . . . , n − 2}. In particular, if a ∈
{1, . . . , n− 2} and 0 ∈ Ra, then a = i. Since 0 /∈ Rn−1−i, the π-self-complementarity
of X implies that n − 1 /∈ Li. Moreover, 0 ∈ L0 and hence 0 /∈ R0, which implies
that m0 = m and k0 = k. So

n2 − 3n+ 2 = |W | 6 |W0|+
∑
a∈M0
0∈Ra

`a + k0(n− 3)

6 (n− 2)(n− 2− k) + `i + k(n− 3)
= (n− 2)2 + `0 − k
= n2 − 3n+ 2− k,

which implies that `i = n − 2 and k = 0. In particular, recalling that 0 /∈ R0, we
deduce that R0 = {1, . . . , n−2}. This implies that i ∈ R0 and therefore 0i ∈ p23(X).
Observe now that n− 1 /∈ Li, because n− 1− i ∈ {1, . . . , n− 2} ⊂ L0, and hence 0 /∈
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Rn−1−i (as p12(X)∩p23(X) = ∅), which implies that n− 1 /∈ Li because X is π-self-
complementary. Consequently, since `i = n−2 we have Li = {0, . . . , n−2}\{n−1−i},
and therefore 0i p12(X), which now contradicts that p12(X) ∩ p23(X) = ∅. This
concludes the proof. 2

We are now in a position to establish Theorem 4.10.

Proof of Theorem 4.10: Fix an alphabet Σ of even cardinality n. Let X be a
maximum π-self-complementary comma-free 3-letter code over Σ. Let (L,M,R) be
a partition of Σ such that

• M := p1(X) ∩ p3(X);

• p1(X) \M ⊆ L; and

• p3(X) \M ⊆ R.

Because X is π-self-complementary,
←−−
π(L) = R, and

←−−−
π(M) = M . Set X ′ := LM ∪

MR ∪ LR. We observe that p12(X) ∩ p23(X) ⊆ X ′ ∪MM . Indeed, if w1w2w3 ∈ X
then w1 ∈ p1(X) ⊆ L ∪M and w3 ∈ p3(X) ⊆M ∪R, and hence

p12(X) ⊆ LL ∪ LM ∪ LR ∪ML ∪MM ∪MR and
p23(X) ⊆ LM ∪MM ∪RM ∪ LR ∪MR ∪RR.

We define (L2,M2, R2) to be a partition of X ′ such that

• M2 := X ′ ∩ p12(X) ∩ p23(X);

• L2 := X ′ ∩ p12(X) \ p23(X); and

• R2 := X ′ ∩ p23(X) \ p12(X).

Again because X is self-complementary,
←−−−
π(L2) = R2 and

←−−−−
π(M2) = M2. In addition,

M2 contains all the π-self-complementary diletter words occurring in words in X ′.
We assert that

X ⊆MMM ∪ L(M2 ∪R2) ∪ (L2 ∪M2)R ∪ L2M ∪MR2. (4.1)

To establish (4.1), we shall make several cases so as to ease the checking. Let w =
w1w2w3 be an element of X. In particular, wi ∈ pi(X) and hence w1 ∈ L ∪ M
and w3 ∈ M ∪ R. Since w1w2 ∈ p12(X), we know that if w1w2 ∈ X ′, then w1w2 ∈
L2 ∪M2. Similarly, if w2w3 ∈ X ′, then w2w3 ∈ M2 ∪ R2. By the symmetry of the
roles played by L and R, we may assume that w2 ∈ L ∪M .

(1) If w2 ∈ L then w2w3 ∈ LM ∪ LR ⊆ X ′, and hence w2w3 ∈ M2 ∪ R2.
Consequently, if w1 ∈ L then w ∈ L(M2 ∪ R2). Otherwise, w1 ∈ M and
hence either w ∈ MR2 or w2w3 ∈ M2. In the latter case, however, there
would exist w4 ∈ Σ such that w2w3w4 ∈ X by the definition of M2 and,
as w1 ∈M , there would exist w5w6 ∈ Σ2 such that w5w6w1 ∈ X, which contra-
dicts that X is comma-free: the concatenation of w5w6w1 and w2w3w4 contains
the word w = w1w2w3.
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(2) If w2 ∈M , then either w ∈MMM or w1 ∈ L or w3 ∈ R. By symmetry, we may
assume that the former holds, i.e., w1 ∈ L. Consequently, w1w2 ∈ p12(X)\MM
and therefore w1w2 ∈ L2 ∪M2.

(a) If w1w2 ∈ L2 then w ∈ L2(M ∪R).
(b) If w1w2 ∈ M2, then we deduce similarly as in case (1) that w3 /∈ M . It

follows that w3 ∈ R and consequently w ∈ M2R, which concludes the
proof of (4.1).

We bound the size of X by bounding the size of the right side of (4.1) We start by
computing the maximal size of X[M ] := X ∩ MMM . Notice that X[M ] is a π-
self-complementary comma-free 3-letter code over M , with the additional property
that p12(X[M ]) ∩ p23(X[M ]) = ∅. Indeed, if there exist a word w1w2w3 in X[M ]
and a letter w4 ∈ M such that w4w1w2 ∈ X[M ], then X cannot be comma-free:
the definition of M ensures that there exist w5 and w6 in Σ such that w5w6w4 ∈ X,
and therefore the concatenation of the two words w5w6w4 and w1w2w3 (which are
both in X) contains the word w4w1w2, which also belongs to X. Consequently,
writing m = |M |, Proposition 4.11 ensures that the size of X[M ] is at most

m(m2 − 1)
3 − m2

2 .

Noticing that |L| = n−m
2 = |R| and |L2| = |X′|−|M2|

2 = |R2|, one sees using (4.1)
that the size of X is at most

|X[M ]|+ 2|L|(|M2|+ |R2|) + 2|L2| · |M |

= |X[M ]|+ (n−m) |X
′|+ |M2|

2 +m(|X ′| − |M2|),

which, since |X ′| = 1
4(n−m)(n+ 3m), is at most

m3

3 −
m2

2 −
m

3 + (n2 −m2)(n+ 3m)
8 + (n− 3m)

2 |M2|. (4.2)

Let us maximise (4.2). We consider two cases regarding whether (n − 3m) > 0,
i.e. m 6 n/3, or (n− 3m) < 0, i.e. m > n/3.

• If m 6 n/3, then the maximum is attained only if |M2| = |X ′|. In this case,
the function becomes

m3

3 −
m2

2 −
m

3 + (n−m)2(n+ 3m)
4 , (4.3)

which, given than m is an even integer, attains a maximum value that is at
most n3

3 −
n2

2 −
n
3 + 2. Indeed, (4.3) for m 6 n/3 attains its maximum value

when m = 5n
13 −

2
39

√
27n2 + 45n+ 48 + 2

13 , the maximum value being

n3
(113

507 + 4
507

√
27 + 45/n+ 48/n2

)
− n2

( 37
338 −

20
1521

√
27 + 45/n+ 48/n2

)
−n

( 95
507 −

64
4563

√
27 + 45/n+ 48/n2

)
− 10

169 .
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If n > 8, then
√

27 + 45/n+ 48/n2 6
√

27 + 45/8 + 3/4, and substituting one
readily checks that the obtained value is less than n3

3 −
n2

2 −
n
3 + 2. If n = 6,

then (4.3) becomes
13
12m

3 − 8m2 + 26
3 m+ 54,

which for m ∈ {0, 2} is maximised when m = 0, reaching the value 54 so
exactly 63

3 −
62

2 −
6
3 + 2. If n = 2 or n = 4, then since m is even and no more

than n/3, we have m = 0 and the obtained functions have respective values 2
and 16.

• Ifm > n/3, then the maximum is attained only ifM2 is minimised. This means
that M2 is equal to the set of the π-self-complementary dinucleotides in X ′. It
follows that M2 = {xπ(x) : x ∈ L} and thus |M2| = |L| = n−m

2 . In this case,
the function becomes

m3

3 −
m2

2 −
m

3 + (n2 −m2)(n+ 3m)
8 + (n− 3m)(n−m)

4 ,

which, given that m is an even integer in [0, n] and n is even, is maximised
only if m ∈ {n− 2, n}. When n = 2, since n− 2 < n/3 we deduce that m = 2,
which yields the value 0. When n 6= 2, calculations show the maximum to be
attained only when m = n − 2, and it is then n3

3 −
n2

2 −
n
3 + 2. We point out

that this value is less than 16 if n = 4, and equal to 54 if n = 6.

There remains to count the number of possible codes of maximal size.

• When m > n/3, we have shown that the size is maximal if and only if
|M | = n − 2, |L| = 1 = |R|, M2 = LR and LM ∪MR = L2 ∪ R2. There
are n possible choices for the partition (L,M,R) of Σ satisfying π(L) = R
and π(M) = M . The choice of the partition (L2, R2) of LM ∪ MR must
be such that

←−−−
π(L2) = R2 and LR2 ∩ L2R = ∅. So for each x ∈ M , ei-

ther Lx ∪ xR ⊆ L2, or Lx ∪ xR ⊆ R2, or Lx ⊆ R2, xR ⊆ L2. Note that this
determines the choice of Lπ(x) ∪ π(x)R, so there are 3 possible outcomes for
each pair of complementary elements in M . The number of choices for the
partition (L2, R2) is therefore 3m/2 = 3n/2−1. Finally, Proposition 4.11 ensures
that there are precisely 2m/2−1

(
m
2

)
! possibilities for X[M ], yielding a total of

6n/2−1
(
n

2

)
!

different maximum π-self-complementary comma-free codes. These count all
such codes for every n > 8, and some of the codes when n = 6.

• When m 6 n/3, a code of maximal size is produced only when m = 0 and n ∈
{2, 4, 6}. Because then M = ∅, the code is LLR∪LRR with |L| = n/2 = |R|.
There are 2n/2 choices for a partition (L,R) of Σ such that

←−−
π(L) = R, yielding 2

codes when n = 2, and 4 codes when n = 4, and 8 codes when n = 6.
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The total number of codes when n = 6 is thus

8 + 66/2−1
(6

2

)
! = 224.

�

Remark 4.12 Theorem 4.10 for n = 4 provides a theoretical explanation of the
well-known fact [36] that the maximal size of self-complementary comma-free genetic
codes is 16.

5 Strong Comma-Free Di- and Triletter Codes

We define Nscf(n, `) to be the number of strong comma-free `-letter codes of maximal
size over an alphabet Σ with n letters and we let Sscf(n, `) be their size. Similarly,
we define Nnescf(n, `) to be the number of non-expandable strong comma-free `-letter
codes over Σ. Our goal in this section is to study these parameters for ` ∈ {2, 3},
maybe laying the foundations leading to general formulæ for arbitrary values of `.
The approach also applies to self-complementary codes.

5.1 Diletter Codes

The situation of strong comma-free diletter codes, i.e. ` = 2, of maximal size, is
actually a particular case of Theorem 4.1. Indeed, by the definition a diletter code X
is comma-free if and only if p1(X) ∩ p2(X) = ∅. Therefore, a strong comma-free
diletter code over an alphabet Σ corresponds exactly to two choices: first that of an
ordered pair (P1, P2) of disjoint non-empty subsets of Σ, and next that of a subset
of P1P2, which could be the whole set. It is therefore of maximal size if and only
if (as expected because of Theorem 4.1 when p = 1) the two sets have size bn/2c
and dn/2e, and the code is the whole set P1P2.

We also readily deduce when a strong comma-free diletter codes is not expandable,
that is inclusion-wise maximal. Since P1P2 is a strong comma-free diletter code for
every pair of disjoint subsets P1 and P2 of Σ, we infer that non-expandable comma-
free diletter codes over Σ are exactly the codes P1P2 where (P1, P2) is a partition
of Σ into non-empty parts. Writing n = |Σ|, the number of ordered pairs (P1, P2)
partitioning Σ into non-empty parts is 2n − 2, and therefore the number of non-
expandable strong comma-free diletter codes over an alphabet of size n is 2n−2. We
thus have proved the following statement.

Theorem 5.1 For each integer n > 2, the set of non-expandable strong comma-free
diletter codes over an alphabet Σ of size n corresponds exactly to the set of partitions
of Σ into two non-empty parts, and

Nnescf(n, 2) = 2n − 2.
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For comparison, Table 3 shows the calculated numbers of strong comma-free
diletter codes of maximal size, and of non-expandable strong comma-free diletter
codes, over alphabets of cardinalities in {2, . . . , 15}, computed using Theorems 4.1
and 5.1. We note that, using the formula provided by Theorem 4.1 (with p = 1),
one easily sees that Nscf(2k, 2) = Nscf(2k − 1, 2) for every k ∈ N.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nscf(n, 2) 2 6 6 20 20 70 70 252 252 924 924 3432 3432 12870
Nnescf(n, 2) 2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382 32766

Table 3: The numbers of strong comma-free diletter codes of maximal size, and of
non-expandable strong comma-free diletter codes, over an alphabet of cardinality n
for n ∈ {2, . . . , 15}.

We end this section by noticing that all strong comma-free diletter codes are
π-self-complementary for a well-chosen bijection π ∈ SΣ, specifically any bijection
such that π(p1(X)) = p2(X).

5.2 Triletter Codes

We aim now to characterise non-expandable strong comma-free 3-letter codes. It will
in particular allow us to count them, and also to count strong comma-free 3-letter
codes of maximal size, which form a subset of these.

To this end, we introduce the following notation.

Definition 5.2 Fix an alphabet Σ. We let P3 be the set of all 3-letter codes X3 =
L1R2 ∪ L2R1, where

(1) (L1, R1) is a partition of Σ into two non-empty parts; and

(2) (L2, R2) is a partition of X2 := L1R1.

The sequences from Definition 5.2 allow us to capture the structure of all non-
expandable strong comma-free 3-letter code, and to count them. We start with the
following statement, recalling the projections defined in Definition 2.7.

Theorem 5.3 For every alphabet Σ, the set of all non-expandable strong comma-free
3-letter codes is exactly the set P3.

Proof: We prove that every element of P3 is itself a non-expandable strong comma-
free 3-letter code. Let X3 = L1R2 ∪ L2R1 ∈ P3. First, we show that X3 is strong
comma-free. Indeed, on the one hand, p1(X3) ∩ p3(X3) = L1 ∩ R1 = ∅ by the
definition of P3. On the other hand, p12(X3) ⊆ (L1L1) ∪ L2 whereas p23(X3) =
R2 ∪ (R1R1), which shows that p12(X3) ∩ p23(X3) = ∅ as Li ∩Ri = ∅ for i ∈ {1, 2}
and L2, R2 ⊆ L1R1 by definition.
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Now let w = w1w2w3 ∈ Σ3\X3. We want to show thatX3∪{w} is not strong comma-
free. Suppose that w1 ∈ R1. We prove that X3 contains a word ending by w1, which
thus prevents X3 ∪ {w} from being strong comma-free. Indeed, if L2 6= ∅, then X3
contains a word xyw1 with xy ∈ L2. We deduce that L2 = ∅ and hence R2 = X2 =
L1R1. Since L1 6= ∅ by definition, let z ∈ L1. Then zzw1 ∈ L1L1R1 = L1R2 = X3.
We thus conclude that w1 /∈ R1, and hence w1 ∈ L1.
By symmetry of the arguments used, we also infer that w3 ∈ R1. Consequently, w ∈
L1(L1 ∪ R1)R1. This implies that w2w3 /∈ R2 and w1w2 /∈ L2, because w /∈ X3 =
L1R2 ∪ L2R1. Now, if w2 ∈ L1 then w2w3 ∈ L1R1 \ R2 = L2. Since R1 6= ∅,
for x ∈ R1 we have w2w3x ∈ L2R1 ⊆ X3, and therefore a prefix of a word of X3 is
a suffix of w, so X3 ∪ {w} is not strong comma-free. Similarly, if w2 ∈ R1 then we
infer that w1w2 ∈ R2, and since L1 is not empty we know that X3 contains a word
ending by w1w2, which prevents W3 ∪ {w} from being strong comma-free. We thus
have proved that X3 is a strong comma-free 3-letter code that is not expandable.
Conversely, let X be a non-expandable strong comma-free 3-letter code over Σ. We
build a code X3 = L1R2 ∪ L2R1 ∈P3 and prove that X = X3.

• We let (L1, R1) be a partition of Σ such that p1(X) ⊆ L1 and p2(X) ⊆ R1. We
set X2 = L1R1.

• We let (L2, R2) be a partition of X2 such that L1 = X2 ∩ p12(X).

Observe that this construction is possible because the code X itself is strong comma-
free, and this also implies that R1 contains X2 ∩ p23(X). Furthermore, by the def-
inition, the code X3 = L1R2 ∪ L2R1 belongs to P3, and it follows from our previ-
ous considerations that X3 is in particular strong comma-free. Therefore, to prove
that X = X3, it suffices to prove that X ⊆ X3, since X is non-expandable.
Let w = w1w2w3 ∈ X. It follows from the definitions that w1 ∈ L1 and w3 ∈
R1. If w1w2 ∈ X2 = L1R1, then w1w2 ∈ X2 ∩ p12(X) and hence w1w2 ∈ L2.
Consequently, w1w2w3 ∈ L2R1 ⊆ X3. If w1w2 /∈ X2, then w2 ∈ Σ\R1 = L1. It follows
that w2w3 ∈ L1R1 ∩ p23(X) = X2 ∩ p23(X), so w2w3 ∈ R2. Therefore, w1w2w3 ∈
L1R2 ⊆ X3, which concludes the proof. 2

We now provide an example, and also illustrate the fact that Theorem 5.3 does not
readily generalise to non-expandable strong comma-free `-letter codes with ` > 4.

Example 5.4 Let us consider the ternary alphabet Σ = {0, 1, 2}, and the circular
strong comma-free code X = {001, 021, 201, 221}, which is indeed of maximal size.
Following the notation in the proof of Theorem 5.3, one has L1 = {0, 2} and R1 =
{1}. By the definition, X2 = L1R1 = {01, 21}. Since L2 is composed of all elements
in X2 that appear as a prefix in a word in X, we have L2 = ∅ and hence R2 =
{01, 21}. As expected, X3 = L1R2 ∪ L2R1 = X.

Example 5.5 A straightforward generalisation of Theorem 5.3 fails for all alphabet
cardinalities larger than 3. Let us consider for instance the binary alphabet Σ =
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{0, 1}, and set (L1, R1) = ({0}, {1}). We define the partition (L2, R2) of X2 =
L1R1 = {01} by L2 = ∅ and R2 = X2. Next, X3 = L1R2 ∪ L2R1 = {001} is
partitioned by L3 = ∅ and R3 = X3. So X4 = L1R3 ∪ L2R2 ∪ L3R1 = {0001}.
Choosing now L4 = X4 and R4 = ∅, we obtain X5 = L1R4 ∪L2R3 ∪L3R2 ∪L4R1 =
{00011}, which is an expandable strong comma-free code, because {00011, 01011} is
strong comma-free.

Regarding 4-letter codes, let us first note that the maximal size of a strong-comma
free 4-code over the binary alphabet being 1, any binary 4-letter code either is not
strong comma-free, or is maximum, and hence not expandable. The situation changes
already over the ternary alphabet Σ = {0, 1, 2}. Let L1 = {0, 1} and R1 = {2}.
For i > 2, let Li = Xi (and thus Ri = ∅) if i is even, whereas Ri = Xi (and
thus Li = ∅) if i is odd. Then L2 = X2 = {02, 12}, next R3 = X3 = {022, 122} and
then X4 = {0022, 0122, 1022, 1122}. However, X4 is expandable, since X4 ∪ {0212}
is strong comma-free.

From Theorem 5.3 it follows a closed formula for the number of different non-
expandable strong comma-free 3-letter codes over an alphabet of cardinality n.

Corollary 5.6 Let n be an integer greater than 1. The number of different non-
expandable strong comma-free 3-letter codes over an alphabet of cardinality n is

n−1∑
m=1

(
n

m

)
2m(n−m). (5.1)

Proof:Let Σ be an alphabet of cardinality n ∈ N. By Theorem 5.3, every non-
expandable 3-letter code over Σ corresponds to two choices: that of a partition
(L1, R1) of Σ into two non-empty parts, and next that of a partition (L2, R2) of L1R1
into two parts. To count this, fix an arbitrary choice for (L1, R1). Set m := |L1|,
hence |L1R1| = m(n − m). It follows that there are 2m(n−m) different choices
for (L2, R2). Now it remains to notice that there are

(
n
m

)
partitions (L1, R1) of Σ such

that |L1| = m. The announced formula follows since we impose that L1 6= ∅ 6= R1.
2

Example 5.7 We provide examples for the formula (5.1) given by Corollary 5.6
for alphabets of cardinality at most 4. We also illustrate the way to build all the
corresponding 3-letter codes offered by Theorem 5.3.

(1) Corollary 5.6 ensures that there are 4 different non-expandable strong comma-
free binary codes. Indeed, if Σ = {0, 1} then there are exactly two choices
for (L1, R1), each of which yields two different codes of size 1. These four codes
are

{001}, {011},
{110}, {100}.
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(2) If Σ = {0, 1, 2}, then the number of different non-expandable strong comma-
free 3-letter codes over an alphabet Σ of cardinality 3 is 24. There are indeed
six choices for (L1, R1). For each of them, one has four choices for (L2, R2),
yielding one non-expandable code of size 2, two of size 3 and one of size 4 for a
total of 6 · (1 + 2 + 1) = 24. The 24 non-expandable strong comma-free codes
over {0, 1, 2} are listed below.

{001, 002}, {002, 011, 012}, {001, 021, 022}, {011, 012, 021, 022},
{002, 012, 102, 112}, {012, 112, 022}, {002, 102, 122}, {022, 122},
{001, 201, 021, 221}, {021, 221, 011}, {001, 201, 211}, {011, 211},
{010, 112}, {112, 100, 102}, {110, 120, 122}, {010, 012, 120, 122},
{110, 120, 210, 220}, {120, 220, 100}, {110, 210, 200}, {100, 200},
{220, 221}, {221, 200, 201}, {220, 210, 211}, {200, 201, 210, 211}.

(3) Over the genetic alphabet B = {A,C,G, T}, there are 160 different non-
expandable strong comma-free 3-letter codes. Indeed, first there are 6 parti-
tions (L1, R1) of B such that |L1| = 2 = |R1|, each of which yielding a set L1R1
of size 4 and therefore 24 = 16 different non-expandable strong comma-free
codes over B. Second, there are 8 partitions (L1, R1) of B such that |L1| = 1
or |R1| = 1, each yielding a set L1R1 of size 3 and therefore 23 = 8 dif-
ferent non-expandable strong comma-free codes. For instance, if L1 = {A}
and R1 = {C,G, T}, then the 8 such codes are
{AAC, AAG, AAT}, {ACC, ACG, ACT, AGC, AGG, AGT, ATC, ATG, ATT},
{AAG, AAT, ACC, ACG, ACT}, {AAC, AGC, AGG, AGT, ATC, ATG, ATT},
{AAC, AAT, AGC, AGG, AGT}, {AAG, ACC, ACG, ACT, ATC, ATG, ATT},
{AAC, AAG, ATC, ATG, ATT}, {AAT, ACC, ACG, ACT, AGC, AGG, AGT}.

We continue by showing how to derive formulæ for Nscf(n, 3) and Sscf(n, 3) from
Theorem 5.3. Our next statement generalises Theorem 3.11 of a previous work [22],
giving the size, the number and the shape of strong comma-free 3-letter codes over
the genetic alphabet (n = 4).

Corollary 5.8 Let n be an integer greater than 1. The number of different strong
comma-free 3-letter codes over an alphabet of cardinality n is

Sscf(n, 3) =


4n3

27 if n ≡ 0 (mod 3),⌈
2n
3

⌉2
·
⌊
n
3

⌋
if n ≡ 1 (mod 3),⌊

2n
3

⌋2
·
⌈
n
3

⌉
if n ≡ 2 (mod 3).

(5.2)

Furthermore, every such code is of the form L1L1(Σ\L1) or (Σ\L1)L1L1, where L1 is
a subset of Σ of size 2n/3, or d2n/3e or b2n/3c (regarding the value of n modulo 3).
In particular,

Nscf(n, 3) =


2 ·
(

n
2n/3

)
if n ≡ 0 (mod 3),

2 ·
(

n
d2n/3e

)
if n ≡ 1 (mod 3),

2 ·
(

n
b2n/3c

)
if n ≡ 2 (mod 3).
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Proof: Let X be a strong comma-free 3-letter code of maximal size over an alpha-
bet Σ of cardinality n, so |X| = Sscf(n, 3). By Theorem 5.3, we know that X =
L1R2 ∪ L2R1 for some choice of a partition (L1, R1) of Σ into non-empty parts, and
a partition (L2, R2) of X2 = L1R1. Setting `i = |Li| ∈ {1, . . . , n − 1} for i ∈ {1, 2},
we have |R1| = n− `1 and |R2| = `1(n− `1)− `2. Consequently, as L1R2 and L2R1
are disjoint,

|X| = `1(`1(n− `1)− `2) + (n− `1)`2. (5.3)
Note also that `2 ∈ {0, . . . , `1(n − `1)}. Let f(`1, `2) be the right side of (5.3).
Optimising `2 7→ f(`1, `2) for every fixed value of `1 yields that the maximum is
attained when `2 = 0 if n < 2`1 and when `2 = `1(n − `1) otherwise. Note that,
up to reversing the code X, i.e. reading each of its words from right to left, we
may assume without loss of generality that `1 >

⌊
n
2

⌋
. In this case, the obtained

maximum is `2
1(n − `1), which is maximised when `1 ∈ {

⌊
2n
3

⌋
,
⌈

2n
3

⌉
}, which implies

to take `2 = 0. Therefore,

|X| ∈
{⌊2n

3

⌋ (⌊2n
3

⌋ ⌈
n

3

⌉)
,
⌈2n

3

⌉ (⌈2n
3

⌉ ⌊
n

3

⌋)}
,

and comparing the two possibilities yields (5.2).
It also follows that every strong comma free 3-letter code X of maximal size corre-
sponds uniquely to the choice of a subset L1 of Σ of cardinality either

⌊
2n
3

⌋
(if n is 0

or 1 modulo 3) or
⌈

2n
3

⌉
(if n is 2 modulo 3), and then to the choice of a “reading

direction”, i.e. X = L1(L1R1) or X = (L1R1)L1. (Note that there is no over counting
here as |L1| is never n

2 .) We thus infer that

Nscf(n, 3) =


2 ·
(

n
2n/3

)
if n ≡ 0 (mod 3),

2 ·
(

n
d2n/3e

)
if n ≡ 1 (mod 3),

2 ·
(

n
b2n/3c

)
if n ≡ 2 (mod 3),

which concludes the proof. 2

5.3 Self-Complementary Triletter Codes

The framework we developed also allows us to study non-expandable self-comple-
mentary strong comma-free 3-letter codes. We in particular prove that, in this case,
all non-expandable codes are actually of maximal size.

For every alphabet Σ of cardinality n > 2 and every π ∈ SΣ, we define Nπ
scf(n, `) to

be the number of strong comma-free `-letter codes of maximal size over Σ that are π-
self-complementary, and Sπscf(n, `) their size. Due to our original motivation arising
from biology, we restrict to involutory transformations without fixed points, although
the following result could be extended to any involutory transformation π ∈ SΣ with k
fixed points such that |Σ| − k is even.
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Proposition 5.9 Let n be a positive and even integer and Σ an alphabet of car-
dinality n. If π ∈ SΣ is an involutory transformation with no fixed points, then
all non-expandable different π-self-complementary strong comma-free 3-letter codes
over Σ have size n

(
n/2
2

)
and hence all of them are actually of maximal size, so

Sπscf(n, 3) = n

(
n/2
2

)
= n2(n− 2)

8 .

It follows that

Nπ
scf(n, 3) = 2

(n/2+1
2 )

= 2n(n+2)/8. (5.4)

Proof: The argument is similar to that establishing Theorem 5.3, with the addi-
tional requirement that both partitions must satisfy the π-self-complementary con-
ditions, which are

←−−−
π(L1) = R1 and

←−−−
π(L2) = R2. In particular, |L1| = |R1| = n/2.

The number of such ordered pairs (L1, R1) is 2n/2. Fix such a partition and let S
be the set of π-self-complementary dinucleotides in L1R1. The size of S is n

2 and
that of L1R1 is n2/4. Consequently, the number of partitions (L2, R2) of L1R1 \ S
with

←−−−
π(L2) = R2 is

2
(n/2

2 )
,

and we thus obtain (5.4). Moreover, because every non-expandable π-self-comple-
mentary strong comma-free 3-letter code X is of the form L1R2 + L2R1 for such
partitions (L1, R1) and (L2, R2), it follows that |X| = n

(
n/2
2

)
. 2

Example 5.10 We consider the genetic alphabet B = {A,C,G, T} along with the
involutory bijection c from Definition 2.5. Every strong comma-free 3-letter code of
maximal size that is self-complementary corresponds to one choice for (L1, R1) and
a subsequent choice for (L2, R2). There are four valid choices for L1, namely {A,C},
{A,G}, {T,C} and {T,G}. If we choose L1 = {A,C} (and hence R1 = {T,G})
then L1R1 = {AT,AG,CT,CG}. We now choose (L2, R2), which is a partition
of L1R1 deprived of all the self-complementary dinucleotides it may contain, that is
deprived of AT and CG in our case. Thus there are exactly two choices for (L2, R2),
i.e., ({AG}, {CT}) and ({CT}, {AG}). Each choice yields a code of size 4. In total
there are thus 4 · 2 = 8 different codes of size 4, listed below.

{ACT, CCT, AGG, AGT}, {AAG, CAG, CTG, CTT},
{AGT, GGT, ACC, ACT}, {AAC, GAC, GTC, GTT},
{TGA, GGA, TCA, TCC}, {TTC, GTC, GAA, GAC},
{CTG, TTG, CAA, CAG}, {CCA, TCA, TGA, TGG}.

We end this section by exhibiting another result that is obtained thanks to the
approach we used in this work. Recently, the notion of “mixed codes”, mixing dinu-
cleotides, trinucleotides and tetranucleotides over the genetic alphabet B, have been
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introduced [19]: circular mixed codes have been constructed and biologically-inspired
properties of such codes studied. In particular it was shown [19, Proposition 7] that
the maximal size of a self-complementary mixed comma-free code in B2 ∪ B3 is 20,
and there are precisely 4 such codes. The techniques developed here allow us to gen-
eralise this result to any alphabet Σ of even cardinality and any involution π : Σ→ Σ.
The proof of the following statement uses an approach similar to those presented,
and we omit it.

Theorem 5.11 Let Σ be an alphabet of even cardinality n and π : Σ → Σ an invo-
lution with no fixed point.

(1) If n > 8 then the maximum π-self-complementary comma-free mixed circular
codes in Σ2 ∪ Σ3 have size n(n2+5)

3 − n2

2 − 1 and there are exactly 6n/2−1
(
n
2

)
!

such codes.

(2) If n = 4 or n = 6, then the maximum π-self-complementary comma-free mixed
circular codes in Σ2 ∪ Σ3 are of sizes 20 or 63, and there are exactly 4 or 224
such codes, respectively.

6 Future Work

We conclude with some remarks about possibilities of future work on `-letter codes
(for ` > 4) raised by the approach used in Subsection 5.2.

Indeed, it appears to us that the set P`, the straightforward generalisation of the
definition of the set P3 to `-letter words, can be proved to be composed of strong
comma-free codes only, and to contain all the non-expandable ones. Characterising
the choices of partitions leading precisely to the non-expandable strong comma-
free codes seems a challenging and stimulating problem, which could lead to finding
better asymptotics, when n goes to infinity, for the number of non-expandable strong
comma-free `-letter codes.

In addition, since every maximum code is in particular not expandable, the afore-
mentioned injection and the fact that every code arisen from an element in P` is
strong comma-free could lead to a generalisation of Corollary 5.8 to arbitrary world
lengths `, by solving an optimisation problem in the variables |L1| , . . . , |L`−1|. Our
preliminary investigations lead, for instance, to a statement similar to that of Corol-
lary 5.8 for 4-letter codes, in particular implying that Sscf(n, 4) is essentially 3n4

16 .
The method is to adapat the proofs in Subsection 5.2, the analysis being only a little
more tedious. We hope it would be possible to generalise this to all values of `. This
seems an interesting topic for future work.
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Appendix. Growth Function of Genetic Trinucleotide Circu-
lar Codes

We present the growth function of circular 3-letter codes over the alphabet B (of
cardinality 4), presented in function of the number a of arcs in a longest directed
path of the associated graph. The codes were generated using a computer. It seems
exciting to obtain a mathematical explanation of the number of 3-letter circular
genetic code of maximal size, which is 12 964 440.

Circular codes X6

Cardinality: {4,…,20} trinucleotides
Number of X6 codes with 4 trinucl.: 1344

Number of X6 codes with 20 trinucl.: 4,566,696

Strong comma-free codes X1

Cardinality: {1,…,9} trinucleotides
Number of X1 codes with 1 trinucl.: 48
Number of X1 codes with 9 trinucl.: 8

Comma-free codes X2

Cardinality: {1,…,20} trinucleotides
Number of X2 codes with 1 trinucl.: 12

Number of X2 codes with 20 trinucl.: 408

Circular codes X3

Cardinality: {2,…,20} trinucleotides
Number of X3 codes with 2 trinucl.: 48

Number of X3 codes with 20 trinucl.: 2352

Circular codes X4

Cardinality: {3,…,20} trinucleotides
Number of X4 codes with 3 trinucl.: 1056

Number of X4 codes with 20 trinucl.: 294,312

Circular codes X5

Cardinality: {3,…,20} trinucleotides
Number of X5 codes with 3 trinucl.: 48

Number of X5 codes with 20 trinucl.: 252,960

Circular codes X8

Cardinality: {5,…,20} trinucleotides
Number of X8 codes with 5 trinucl.: 1296

Number of X8 codes with 20 trinucl.: 7,023,792

Circular codes X7

Cardinality: {4,…,20} trinucleotides
Number of X7 codes with 4 trinucl.: 48

Number of X7 codes with 20 trinucl.: 823,920

Genetic code
of 64 trinucleotides {AAA, …, TTT}

coding 20 amino acid with no circularity
(reduced to initiation and stop codons)

Maximal trinucleotide circular code X
of 20 trinucleotides observed in genes (in class X8 ):

{AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC,
GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC}

coding 12 amino acids

Figure 2: A combinatorial hierarchy of the trinucleotide circular codes leading to
the genetic code. The trinucleotide circular codes in Xp is given as a function of the
maximal path length p in the associated graph (numbers from Table 4 in Appendix).
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Table 4: Growth function of 3-letter circular codes X ⊆ B3 (cardinality between 1 and 20) as a function of the maximal path
length p (from 1 to 8) in their associated graph GX , defined in Subsection 4.1.

|X|
p 1 2 3 4 5 6 7 8 Total

1 48 12 0 0 0 0 0 0 60
2 564 1092 48 0 0 0 0 0 1704
3 2432 23176 3720 1056 48 0 0 0 30432
4 4968 239040 82488 50196 4080 1344 48 0 382164
5 5424 1524636 894912 958344 109248 70560 3792 1296 3568212
6 3288 6635052 5711520 10066008 1455408 1477332 93840 65064 25507512
7 1080 20707380 23608200 66358032 11578248 16920696 1184928 1281216 141639780
8 168 47742486 67286520 295339356 60415008 120991116 9070416 13723032 614568102
9 8 82816624 138365616 929260512 218650464 580183752 45957504 91507728 2086742208
10 0 109358220 212231640 2131173360 569191680 1949610312 162487776 408593256 5542646244
11 0 110895036 248599344 3635098536 1092252720 4724611056 414758832 1276845600 11503061124
12 0 87031844 225759720 4668405744 1569961080 8412344832 781162896 2871001008 18615667124
13 0 53227980 160087992 4539916512 1705224984 11124273000 1099164288 4721590800 23403485556
14 0 25473732 88569264 3341064744 1402203888 10963159272 1160318208 5719845816 22700634924
15 0 9519912 37872240 1846581744 867844824 8016801504 914981088 5093921760 16787523072
16 0 2743080 12273168 753781272 397991256 4288163160 531158208 3292912176 9279022320
17 0 591864 2914992 220449432 131222040 1630269696 220422672 1502846352 3708717048
18 0 90420 479256 43730412 29429376 417392700 61906128 459071448 1012099740
19 0 8760 48912 5281272 4022160 64576488 10548336 84240864 168726792
20 0 408 2352 294312 252960 4566696 823920 7023792 12964440
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[31] V. I. Levenštĕın, Decoding automata which are invariant with respect to the
initial state, Problemy Kibernet. No. 12 (1964), 125–136.
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