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Abstract. Comma-free codes have been widely studied in the last sixty years, from points of view
as diverse as biology, information theory and combinatorics. We develop new methods to study
comma-free codes achieving the maximum size, given the cardinality of the alphabet and the length
of the words. Specifically, we are interested in counting the number of such codes. We provide
(two different proofs for) a closed-formula. The approach introduced is further developed to tackle
well-known sub-families of comma-free codes, such as self-complementary and (generalisations of)
non-overlapping codes. We also study codes that are not contained in strictly larger ones. For
instance, we determine the maximal size of self-complementary comma-free codes and the number of
codes reaching the bound. We provide a characterisation of `-letter non-overlapping codes (over an
alphabet of cardinality n), which allows us to devise the number of such codes that are not contained
in any strictly larger one. Our approach mixes combinatorial and graph-theoretical arguments.

1. Introduction

A code is comma-free if it does not require a distinct symbol to separate code words. Comma-free codes
were constructed by Crick, Griffiths and Orgel [11] in 1957 as a class of trinucleotide codes to explain
how the reading of a sequence of trinucleotides could code for amino acids. Combinatorial properties
of comma-free codes were also considered, starting one year later with the seminal works of Golomb,
Gordon and Welch [20] and of Golomb, Welch and Delbrück [21], who addressed the maximal size of
a comma-free code with words of an arbitrarily fixed length over an alphabet of arbitrary cardinality.
This spawned a number of purely combinatorial works on this topic [10, 12, 25, 27, 28], which led
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2 COMMA-FREE CODES OVER FINITE ALPHABETS

to a number of interesting results and challenging open questions. Biological interest for comma-
free codes was increased by the discovery of a symmetry linked to codon frequencies by Arquès and
Michel [1]. Furthermore, a certain sub-family of comma-free codes, coined “strongly regular codes”
or “non overlapping codes”, has also been the focus of several works [7,23,24], dating back to 1964,
in particular for their interest in automata theory and for frame synchronisation applications [2,5,6,
9,22]. It is no surprise that such natural properties of codes were useful and studied in a variety of
contexts, under different names.
While digraphs have been used to study diletter comma-free codes, either implicitly through their
adjacency matrix [10] or explicitly [3], appropriate digraphs for comma-free codes with longer words
seem less natural and harder to find. This was recently done [14] not only for comma-free codes, but
more generally for circular codes, of which comma-free codes form a subfamily. Graph theoretical
tools have then been used to extend our understanding and knowledge of such codes [13–16]. We
purse this line of study, providing answers to some open questions raised earlier and a unified approach
for studying the structure of various subfamilies of comma-free codes.
One problem of particular interest is to compute the largest possible size S(n, `) of a comma-free
code with words of length ` over an alphabet Σ of cardinality n. Golomb, Welch and Delbrück [21]
obtained a general upper bound on this size expressed using the Möbius function (see Proposition 3.4).
Seven years later, this bound was shown to be attained whenever the length ` of the words is odd by
Eastman [12], whose construction was subsequently simplified by Scholtz [27]. The situation when `
is even is less understood, and although it is known [20] that S(n, 2`) is equivalent, as n goes to
infinity, to α2`n

2` with α2` ∈ [1/(2e`), 1/(2`)], the leading coefficient is still to be determined.
We are interested in the number of comma-free codes of size S(n, `), which we call maximum. Golomb,
Gordon and Welch [20] proved that S(n, 2) = b(n2/3)c and provided a method to build all diletter
codes of this size. Similarly, Golomb, Welch and Delbrück [21] proved that S(n, 3) = 1

3n(n2 − 1) and
provided, again, a method to build all maximum comma-free triletter codes. They produced a lot of
insights into the structure of these codes. Yet, to the best of our knowledge their work does not provide
a direct way to count all such codes. Interestingly, Cartwright, Cueto and Tobis [8] demonstrated an
injection of the maximum independent set in the de Bruijn graph B(n, 3) and the maximum comma-
free triletter codes over an alphabet of cardinality n, yielding exponentially (in n) many such codes.
However, they noted that the injection is not always a bijection and gave an example showing this
when n = 2. As we shall see in Subsection 4.2, the injection is actually a bijection as soon as n ≥ 3,
which yields a closed formula to count the number of maximum comma-free triletter code. In addition,
we provide a second proof of the formula, which is independent of de Bruijn graphs. The approach
allows us to obtain closed formula counting other extremal codes studied in theoretical biology or data
communication, specifically inclusion-wise maximal strongly regular triletter codes (Corollary 5.3)
and inclusion-wise maximal strongly regular self-complementary triletter codes (Proposition 5.5). In
particular, we extend earlier results of Blackburn [7] regarding strong comma-free `-letter codes over
an alphabet of cardinality n for small values of `. These results are motivated by Blackburn’s general
conjecture [7, Conjecture 1]: he provided a construction of strong comma-free `-letter codes and
posited that for every integer ` ≥ 2, there exists an integer n0 such that the construction yields a
maximum strong comma-free code over an alphabet of cardinality n whenever n ≥ n0.
The recent extension of the graph theoretical approach [14] allows new relevant ways to partition
all circular `-letter codes over an alphabet of cardinality n. Specifically, one can group those codes
according to the maximal length of a path in the digraph associated to the code: comma-free codes
are precisely those for which the length is two, while strongly regular codes (aka. non overlapping
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codes) are those for which the length is one. In Subsection 4.1, we generalise results obtained by Ball
and Cummings [3] on S(n, `) and the number of comma-free diletter codes of size S(n, `) to diletter
p-comma-free codes: we provide closed formulas for the maximal size and the number of p-comma-
free diletter codes of maximal size for every p, which thus include comma-free codes but also strongly
regular codes.
Finally, we include a computer-generated table containing the growth function of all circular triletter
codes (of which comma-free codes are a sub-family) over the genetic alphabet B (of cardinality 4),
presented in function of the number of arcs in a longest directed path of the associated graph.
Several examples are provided to illustrate the notions and constructions used, in an effort to increase
readability.

2. Definitions and Notions

Let Σ be an arbitrary finite alphabet with n := |Σ|. For an integer ` ≥ 2, an `-letter code is a
set X ⊆ Σ`. We define Σ∗ to be the collection of all finite words with letters in Σ, that is, ∪`≥0Σ`, and
we define Σ+ to be the collection of all finite and non-empty words with letters in Σ, that is, ∪`≥1Σ`.

Definition 2.1. Let X ⊆ Σ` be an `-letter code and let k ∈ N. We say that X is

• a strong comma-free code if no element of Σ+ appears both as a prefix and a suffix in X: in
other words, given any two non-necessarily distinct elements c1 = x1 . . . x` and c2 = y1 . . . y`

of X, for every k ∈ {1, . . . , `− 1} we have

x`+1−k . . . x` 6= y1 . . . yk;

• a comma-free code if for any two elements x1 . . . x` and y1 . . . y` in X, we have

∀i ∈ {2, . . . , `}, xi . . . x`y1 . . . y`−i /∈ X;

• a k-circular `-letter code if for everym ≤ k, every concatenation c1 . . . cm ofm elements of X,
read on circle, admits exactly one partition (called a circular decomposition) into elements
from X;

• a circular `-letter code if it is a k-circular `-letter code for all k ∈ N;
• a maximal (k-)circular `-letter code if it is not contained in a larger (k-)circular code;
• a maximum (k-)circular (comma-free, strong comma-free) `-letter code or, equivalently, code
of maximal size if |Y | ≤ |X| whenever Y is an `-letter (k-)circular (comma-free, strong
comma-free) code over Σ.

Remark 2.2. Strong comma-free codes have been previously defined in a number of contexts and
under different names: they were first introduced as non-overlapping codes [23], then rediscovered
and called cross-bifix-free codes [2], and recently redefined using graph theoretical models of the genetic
code [16]. It is immediately clear that a strong comma-free code is a comma-free one. Indeed, if X is
not comma-free, then it contains two elements c1 and c2 such that c1c2 contains an element c ∈ X that
starts after the first letter and ends before the last one, and hence there is a suffix of c1 that is also a
prefix of c2, which means that X is not strong comma-free. We keep the name “strong comma-free”
to emphasise this relation to comma-free codes, since we shall introduce p-comma-free codes, which
correspond to strong comma-free codes when p = 1 and to comma-free codes when p = 2. We also
point out that a comma-free code is automatically circular [17].
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Two symmetric groups play an important role in the context of circular codes [19]. The first one acts
on the elements of the alphabet Σ and is defined as

SΣ := {π : Σ→ Σ : π is bijective}

endowed with the usual group operation given by the composition of functions. The group SΣ has n!
elements and for every ` ∈ N, any bijective mapping π : Σ → Σ can be applied componentwise
to x ∈ Σ` and thus yields a bijective map Σ` → Σ`, which is also called π. A bijection π of SΣ

is an involutory function (or an involution) if π ◦ π(x) = x for every x ∈ Σ. A fixed point of a
bijection π ∈ SΣ is an element x ∈ Σ such that π(x) = x. If |Σ| is even, then SΣ contains involutory
bijections without fixed points.
The second relevant symmetric group is S`, which acts on indices of each element from Σ` and permutes
components in each `-letter word from Σ` in a prescribed way. Formally we define

S` := {α : {1, . . . , `} → {1, . . . , `} : α is bijective}

For instance, if ` = 3 then (132) ∈ S3 is the permutation such that 1 7→ 3, 2 7→ 1 and 3 7→ 2. Any
element of S` induces a mapping on Σ` by permuting the order of the bases: for instance, if ` = 3
then (132) transforms the triletter word b1b2b3 into the triletter word b3b1b2. The subgroup A` of
cyclical permutations of (S`, ◦) is interesting for us. It is formally defined by

A` := {α0 = (1)(2) . . . (`), α1 = (23 . . . `1), α2 = (3 . . . `12), . . . , α`−1 = (`12 . . . `− 1)} ⊆ S`.

Following several previous works, we point out that a circular code cannot contain two cyclically
equivalent words, i.e. two words w1, w2 ∈ Σ` for which there exists α ∈ A` such that α(w1) = w2.
For example, if x1x2x3 and x3x1x2 are in the same code X then the word x1x2x3x1x2x3 admits two
different cyclic decompositions into elements of X, namely

x1x2x3|x1x2x3 and x1x2|x3x1x2|x3.

In particular, if Σ = {x1, . . . , xn}, then for every i ∈ {1, . . . , n} the trivial `-letter word xixi . . . xi

cannot be a part of a circular code over Σ`. The classes produced by the cyclic equivalence relation
are the cyclic equivalent classes. A cyclic equivalence class is complete if it has order `, that is, if its
representative is not a cyclic permutation of itself.
We now introduce the so-called reversing permutation, which inverts the order of letters in any `-letter
word over Σ, as

←−−−−−−−−−−x1x2 . . . x`−1x` := x`x`−1 . . . x2x1 ∈ Σ`.

Definition 2.3. Let Σ be an alphabet and π an involutory bijection of Σ. A code X over Σ is
π-self-complementary if

←−−
π(x) ∈ X whenever x ∈ X. A fixed point of π is an element x ∈ Σ such

that π(x) = x.

Due to the biological origins of our motivations, and also to avoid unessential technicalities, we consider
only involutory bijections without fixed points.

Definition 2.4. The Möbius function µ : N→ {−1, 0, 1} is defined as

µ(n) :=

0 if there exists m ∈ N,m > 1 such that m2|n,

(−1)m if n is the product of m pairwise distinct prime numbers.

Definition 2.5. For every positive integer ` and every integer i ∈ {1, . . . , `}, we define the projection
on the ith coordinate πi : Σ` → Σ by πi(x1 · · ·x`) = xi. The projections on two coordinates πij : Σ` →
Σ2 are defined in a similar way whenever it makes sense.
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3. `-letter Circular Codes

As reported earlier, in the seminal combinatorial work on comma-free codes [20] it was observed that
a comma-free code cannot contain more than one element in each cyclic equivalence class (and none in
non-complete classes). This property actually holds for the larger class of 1-circular codes, which yields
an upper bound on the size of such a code: the size cannot exceed the number of complete equivalence
classes. This number is straightforward to compute using Möbius’s inversion formula [20, Theorem 1]:
for an `-letter code over an alphabet of cardinality n, it is 1

`

∑
d|` µ(`/d)nd. This upper bound is tight,

and actually attained by a circular code. Indeed, for any total order on the alphabet, the code
composed of the lexicographically smallest element of each complete cyclic equivalence class turns out
to be circular. These facts seem to be folklore: we group them in the next theorem and provide a short
proof that the bound is attained for completeness. To this end, we introduce the following notation.
We define S1

max(n, `) to be the size of a maximum `-letter 1-circular code over an alphabet of cardi-
nality n. Similarly, we define Smax(n, `) to be the size of a maximum circular `-letter code over an
alphabet of cardinality n. The case where n = 1 is trivial: there is no non-empty 1-circular `-letter
code if ` ≥ 2. Any ordering on a finite alphabet Σ naturally yields an ordering on Σ` for any positive
integer `, using the lexicographical order. We use the same symbol for all these orders.

Theorem 3.1 (folklore). Let Σ be an alphabet of cardinality n ≥ 2 and let < be a total order on Σ.
The cardinality Smax(n, `) of a circular `-letter code of maximal size over Σ is

1
`

∑
d|`

µ

(
`

d

)
nd,

and such a code X can be constructed in the following way: X contains the minimum element, ac-
cording to <, of each complete cyclic equivalence class induced by A`.

Proof. The upper bound having been explained above, we only show that the code X ⊂ Σ`

that contains the minimum element of each cyclic equivalence class that is complete (i.e., of size `) is
circular.
Suppose on the contrary that there exist two circular decompositions of some word x1x2 . . . xr` ∈ Σr`,
the second one obtained by shifting k nucleotides, with k ∈ {1, . . . , `− 1}, that is,

x1 · · ·x`|x`+1 · · ·x2`| . . . |x(r−1)`+1 · · ·xr` ∈ X+ and

xk+1 · · ·xk+`|xk+`+1 · · ·xk+2`| . . . |xk+(r−1)`+1 · · ·xr`x1 · · ·xk ∈ X+.

Note that, up to changing k by `− k, we may assume that k ≤ `− k. For each i ∈ {1, . . . , r}, let us
set

ai := x1+(i−1)` · · ·xk+(i−1)` and bi := xk+(i−1)`+1 · · ·xi`,

so for every i ∈ {1, . . . , r},
|ai| = k and |bi| = `− k.

The two decompositions can thus be rewritten as

a1b1| . . . |arbr and b1a2| . . . |bra1,

and hence, setting ar+1 := a1 for convenience, one sees that aibi ∈ X and biai+1 ∈ X for every i ∈
{1, . . . , r}. Therefore, the definition of X implies that bi /∈ {ai, ai+1}, since every word in X belongs
to a cyclic equivalence class of size `. Furthermore, the definition of X also implies that for every i ∈
{1, . . . , r},

(1) aibi < biai since aibi and biai are in the same equivalence class, aibi ∈ X and ai 6= bi;
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(2) biai+1 < ai+1bi since biai+1 and ai+1bi are in the same equivalence class, biai+1 ∈ X

and ai+1 6= bi; and
(3) ai 6= ai+1 since {biai+1, aibi} ⊂ X andX contains only one element in each cyclic equivalence

class.
Because k ≤ ` − k, we know that |ai| ≤ |bi| for every i ∈ {1, . . . , k}. Let b′i be composed of the
first k letters of bi, that is, b′i := xk+1+(i−1)` · · ·x2k+(i−1)`. We know that ai ≤ b′i by (1), and
that b′i ≤ ai+1 by (2). It follows that ai ≤ ai+1, and hence ai < ai+1 by (3). Since this is valid for
every i ∈ {1, . . . , r + 1}, we conclude that a1 < · · · < ar < ar+1 = a1, a contradiction. �

Example 3.2.
(1) Let us endow Σ = {0, 1} with the order 0 < 1. For ` = 3, we have the following complete

cyclic equivalence classes:

{100, 010, 001}, {110, 011, 101}.

Theorem 3.1 implies that {001, 011} is a binary circular 3-letter code of maximal size.
For ` = 4 we have the following complete cyclic equivalence classes:

{1000, 0100, 0010, 0001}, {1100, 0110, 0011, 1001}, {1110, 0111, 1011, 1101}.

Theorem 3.1 implies that {0001, 0011, 0111} is a binary circular 4-letter code of maximal
size.

(2) The genetic alphabet is B = {A,C,G, T} where A stands for Adenine, C for Cytosine, G for
Guanine and T for Thymine. Let us endow B with the order A < C < G < T . For ` = 2 we
have the following complete cyclic equivalence classes:

{AC,CA}, {AG,GA}, {AT, TA}, {CG,GC}, {CT, TC}, {GT, TG}.

Theorem 3.1 implies that {AC,AG,AT,CG,CT,GT} is a circular dinucleotide code of max-
imal size.

For ` = 3 we have the following complete cyclic equivalence classes:

{AAC,ACA,CAA}, {AAG,AGA,GAA}, {AAT,ATA, TAA}, {ACC,CCA,CAC},

{ACG,CGA,GAC}, {ACT,CTA, TAC}, {AGC,GCA,CAG}, {AGG,GGA,GAG},

{AGT,GTA, TAG}, {ATC, TCA,CAT}, {ATG, TGA,GAT}, {ATT, TTA, TAT},

{CCG,CGC,GCC}, {CCT,CTC, TCC}, {CGG,GGC,GCG}, {CGT,GTC, TCG},

{CTG, TGC,GCT}, {CTT, TTC, TCT}, {GGT,GTG, TGG}, {GTT, TTG, TGT}.

Theorem 3.1 implies that

{AAC,AAG,AAT,ACC,ACG,ACT,AGC,AGG,AGT,ATC,

ATG,ATT,CCG,CCT,CGG,CGT,CTG,CTT,GGT,GTT}(3.1)

is a circular trinucleotide code of maximal size.

Let us spell out some important special cases of 1-circular codes.

Special Cases 3.3. Let n be an integer greater than 1.
(1) We first consider the cases where ` is a prime number p. We have

S1
max(n, p) = 1

p
(np − n) .

For Σ = {0, 1} we obtain S1
max(2, p) = 1

p (2p − 2), and hence the following values.
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p 2 3 5 7

S1
max(2, p) 1 2 6 18

For B = {A,C,G, T} we obtain S1
max(4, p) = 1

p (4p − 4). It means that S1
max(4, 2) = 6

and S1
max(4, 3) = 20.

(2) More generally, suppose that ` is a power of a prime number, that is, ` = pa where p is a
prime number and a is a positive integer. Then

S1
max(n, pa) = 1

pa

(
np

a

− np
a−1
)
.

In particular, we obtain S1
max(2, 4) = 3 and S1

max(4, 4) = 60.
(3) We now consider the case where ` is the product of two distinct prime numbers p and q.

Then
S1

max(n, p · q) = 1
p · q

(np·q − np − nq + n) .

In particular, S1
max(2, p · q) = 1

p·q (2p·q − 2p − 2q + 2), and hence S1
max(2, 6) = 9.

Theorem 3.1 readily yields an upper bound on the number of different circular `-letter codes of a given
size.

Proposition 3.4. Let Σ be an alphabet of cardinality n. For every k ∈ {1, . . . , Smax(n, `)}, the number
of circular `-letter codes of size k over Σ cannot exceed

Nmax(n, `, k) :=
(
S1
max(n, `)

k

)
`k.

Proof. There are
(
S1

max(n,`)
k

)
possibilities to choose k classes from S1

max(n, `) different cyclic
equivalence classes. There are `k ways to choose an arbitrary element in each of the k chosen classes.

�

The computer-calculated numbers in Table 1 are the number of circular `-letter codes of size k over
a two-letter alphabet, for ` ∈ {2, . . . , 6} and all the possible corresponding values of k. As expected,
none of these numbers exceeds the upper bound provided by Proposition 3.4. Nevertheless, and not
surprisingly, most of them are strictly smaller.
We now point out some facts about Theorem 3.1

Remark 3.5. Theorem 3.1 means that among all maximum 1-circular `-letter code over a given
alphabet, at least one of them is circular. We note that not all of them are, as is seen by considering
for instance 3-letter words over the genetic alphabet: since an `-letter code is 1-circular as soon as
it contains only words that belong to a complete cyclic equivalence class no two of which being in
the same class, there exists a 1-circular 3-letter code X containing the words AAG, TAA, GGT
and GTT . Therefore, the word TAAGGT admits two circular decompositions into words in X,
namely TAA|GGT and T |AAG|GT . (As one can see, there is no order on {A,G, T} such that each of
the first three words above is the smallest element in its own cyclic equivalence class. Indeed, if AAG
is the smallest in its cyclic equivalence class, then A < G (because GAA belongs to this class) and
similarly if GGT is minimum in its class then G < T and hence A < T . This implies that TAA is not
the smallest element in its class.)
Furthermore, Theorem 3.1 does not describe all circular `-letter codes of maximal size. That is, there
exist maximum circular `-letter codes for which no order on the alphabet can be found such that every
word in the code is the smallest element of its own cyclic equivalence class. For instance, endowing
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k

`
2 3 4 5 6

1 2 (2) 6 (6) 12 (12) 30 (30) 54 (54)

2 8 (9) 48 (48) 374 (375) 1290 (1296)

3 60 (64) 2458 (2500) 17788 (18144)

4 8712 (9375) 154252 (163296)

5 14952 (18750) 857534 (979776)

6 9204 (15625) 2990084 (3919104)

7 6156160 (10077696)

8 6648638 (15116544)

9 2832746 (10077696)

Table 1. Growths of circular `-letter codes over an alphabet of cardinality 2 in
function of the code size k. In brackets are written the corresponding upper
bounds Nmax(2, `, k) given by Proposition 3.4.

the genetic alphabet with the order A < C < G < T and considering 3-letter words, we have seen that
the 20 trinucleotides given in (3.1) form a maximum circular code. However, replacing AAC by ACA
also yields a circular code, and yet there is no order on the genetic alphabet such that ACA is the
smallest element in its cyclic equivalence class.

4. Characterisation of Di- and Triletter Comma-Free Codes

We define N(n, `) to be the number of comma-free `-letter codes of maximal size over an alphabet
with n letters, and S(n, `) to be their size. We study in this section the case where ` ∈ {2, 3}, starting
with ` = 2.

4.1. Diletter Codes. Notice that S(2, 2) = 1 and N(2, 2) = 2. The case where n ≥ 3 is more
interesting. Let Σ be a finite alphabet and X an `-letter code over Σ. One can associate to any code X
a digraph GX as follows [14]. The vertex set of GX is ∪`−1

i=1Σi, and there is an arc from w to w′ if
and only if the concatenation ww′ belongs to X. It was proved [14, Theorem 2.6] that X is circular
if and only if GX is acyclic. Moreover, if p is the length of a longest (directed) path in GX , then X
is comma-free if and only if p ≤ 2. Further, X is strong comma-free (also known as strongly regular
or non-overlapping) if and only if p = 1. It thus seems natural to partition all the circular `-letter
codes over a given alphabet Σ according to the length of the longest directed path in their associated
digraph. A circular code X is p-comma-free if no directed path in GX has length more than p.
For every positive integer p, let Sp(n, 2) be the size of a maximum p-comma-free circular diletter
code over an alphabet of cardinality n. Furthermore, let Np(n, 2) be the number of different such
maximum codes. (In particular, S2(n, 2) = S(n, 2) and N2(n, 2) = N(n, 2).) Our next result1 provides
formulæ for the size and the number of maximum p-comma-free diletter codes for every integer p.
As is usual,

(
a
b

)
stands for the number of ways of choosing b elements of a set of cardinality a; in

particular,
(
a
0
)

= 1 and
(
a
b

)
= 0 if b > a.

1This seems to generalise an earlier result of Ball and Cummings [3], using a similar approach although we could
not access the article.
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Theorem 4.1. Let n be an integer greater than 2 and p ∈ {1, . . . , n − 1}. We set m := b n
p+1c

and r := n− (p+ 1)m ∈ {0, . . . , p}. Then

Sp(n, 2) = 1
2

(
1− 1

p+ 1

)
(n2 − r2) +

(
r

2

)
= pn2 + r(r − p− 1)

2(p+ 1)
and

Np(n, 2) =
(
p+ 1
r

)
n!

m!p+1(m+ 1)r
.

Remark 4.2. Applying Theorem 4.1 with p = 1 allows us to recover earlier results [16, Propo-
sition 3.3(2) and Theorem 3.6(2)], using different arguments. Indeed, in this case if n is even
then m = n/2 and r = 0, while if n is odd then m = (n− 1)/2 and r = 1. Therefore,

N1(n, 2) =

 1
2
(
1− 1

2
)
× n2 = 1

4 · n
2 if n is even,

1
2
(
1− 1

2
)
× (n2 − 1) = 1

4 · (n− 1)(n+ 1) if n is odd,

and moreover

S1(n, 2) =


(2

0
)

n!
( n

2 !)2×10
=
(
n
n/2
)

if n is even,(2
1
)

n!
( n−1

2 !)2×( n+1
2 )1 = 2

(
n

n+1
2

)
if n is odd.

We use two classical results from graph theory to establish Theorem 4.1, one coming from the study of
tournaments and the other from extremal graph theory. To state and use them, we need to introduce
some terminology. The order of a directed path in a digraph is the number of vertices on the path,
that is, its length plus one. A graph is complete if every two distinct vertices are adjacent: we let Kn

be the complete graph with n vertices. A tournament is an orientation of a complete graph, that is, a
choice of a direction for each edge of a complete graph. It turns out that every digraph that contains
a tournament also contains a directed path going once through each vertex of the tournament. To be
more precise, given any digraph D, a Hamiltonian path of D is a directed path going once through
each vertex of D. A straightforward induction on the number of vertices shows that every tournament
admits a Hamiltonian path.
The following immediate corollary is what will be useful to us.

Observation 4.3. If the length of a longest directed path in a digraph D is at most p, then (the
underlying undirected graph of) D does not contain Kp+1 as a subgraph.

The second result we need provides an upper bound on the number of edges in a graph that does not
contain a complete subgraph of a certain order. If n and k are two integers, the Turán graph Tk(n)
is obtained by partitioning n (unlabelled) vertices into k parts with sizes in {bn/kc, dn/ke} (there is
a unique way to do so) and then placing an edge between two vertices if and only if they belong to
different parts. The Turán graphs T3(11) and T4(16) are depicted in Figure 1. We define tk(n) to be
the number of edges of the Turán graph Tk(n). One can check that

tk(n) = 1
2

(
1− 1

k

)(
n2 − r2)+

(
r

2

)
,

where r is the remainder of n divided by k.
If an n-vertex graph G does not contain a complete subgraph on k+ 1 vertices, then how many edges
at most can G have? Clearly, if k + 1 > n then G can be itself complete and it is the only way to
maximise the number of edges in G; hence the question is interesting when k+ 1 ≤ n. In 1941, Turán
established an upper bound on the number of edges of an n-vertex graph without a complete subgraph
on k + 1 vertices and characterised the graphs attaining this upper bound.
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Figure 1. The Turán graph T3(11) on the left and the Turán graph T4(16) on the right.

Theorem 4.4 (Turán [29]). Let n be a positive integer and let k ∈ {1, . . . , n− 1}. Let G be a graph
with n vertices that does not contain a complete subgraph on k+ 1 vertices. Then the number of edges
of G is at most tk(n), with equality if and only if G = Tk(n).

We are now in a position to establish Theorem 4.1.

Proof of Theorem 4.1. Let Σ be an alphabet of cardinality n. We start by establishing
that Sp(n, 2) = tp(n). Let X be a p-comma-free diletter code over Σ. Because X is a diletter
code, the size of X is precisely the number of arcs in GX . Since X is p-comma-free, we know that the
length of every directed path in GX is at most p. It follows from Observation 4.3 that (the underlying
undirected graph of) GX does not contain the complete graph on p + 1 vertices as a subgraph, and
hence Theorem 4.4 implies that the number of arcs in GX or, equivalently, the size of the code X is
at most tp(n), and hence Sp(n, 2) ≤ tp(n).
To establish the equality, it remains to exhibit a p-comma-free diletter code of size tp(n), which can
be done as follows. We consider the Turán graph Tp+1(n), with vertex partition (X1, . . . , Xp+1). We
orient all edges between Xi and Xj from the vertices in Xi to those in Xj whenever 1 ≤ i < j ≤ p+ 1.
Now, arbitrarily identifying the vertices of G with the elements of Σ yields a p-comma-free diletter
code of size tp(n), and hence tp(n) = S2(n, 2).
We proceed to calculate the number of maximum p-comma-free diletter codes over Σ. It follows
from Theorem 4.4 and our previous considerations that X is a p-comma-free diletter code over Σ if
and only if the underlying undirected graph HX of GX is Tp+1(n). Starting from this graph, every
such code is thus created by two choices: first an ordering of the parts of the partition, and next a
bijection between the vertices and the alphabet. Note that some bijections yield the same code: we
just want to assign the letters to the parts of the partition. Therefore, letting (X1, . . . , Xp+1) be the
partition of the vertices of Tp+1(n), it is more convenient to express this second choice as the choice
of a function f : Σ→ (X1, . . . , Xp+1) such that

∣∣f−1(Xi)
∣∣ = |Xi| for every i ∈ {1, . . . , p+ 1}.

To compute the number of such functions f , recall that n = (p + 1)m + r where m = bn/(p + 1)c
and r ∈ {0, . . . , p}. Set M := dn/(p+ 1)e, so M = m if r = 0 and M = m+ 1 otherwise. Using these
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n 3 4 5 6 7 8 9 10 11 12 13 14 15

S(n, 2) 3 5 8 12 16 21 27 33 40 48 56 65 75

N(n, 2) 6 36 90 90 630 1680 1680 12600 34650 34650 270270 756756 756756

Table 2. The sizes and numbers of maximum comma-free diletter codes over an al-
phabet of cardinality n ∈ {3, . . . , 15}, as obtained using computers [15] and confirmed
by the general formulæ of Theorem 4.1.

notations, the number of functions f as above is
r−1∏
i=0

(
n− iM
M

) p−r∏
i=0

(
n− rM − im

m

)
,

noting that if r = 0 then the first product is empty — and hence equal to 1.
The number of orderings of the parts is then

(
p+1
r

)
, since we only need to choose the r places of the

parts of size M . Note that this value is 1 if r = 0. We therefore obtain the following formula,(
p+ 1
r

)
·
r−1∏
i=0

(
n− iM
M

) p−r∏
i=0

(
n− rM − im

m

)
,

which is equal to (
p+ 1
r

)
n!

m!p+1(m+ 1)r
.

This concludes the proof. �

Example 4.5. The genetic alphabet corresponds to the case where n = 4, which was previously
studied by other means [14,18]; we have

S(4, 2) = S2(4, 2) = 1
3(42 − 12) +

(
1
2

)
= 5 and N(4, 2) = N2(4, 2) =

(
3
1

)
4!

(1!)321
= 36.

Remark 4.6. Using computers, all maximum comma-free diletter codes on alphabets of cardinali-
ties n ∈ {2, . . . , 15} have been generated [15]: Theorem 4.11 confirms that the computer programs
used were correct, and provides the sought value for every integer n ≥ 3. (See Table 2.)

4.2. Triletter Codes. We now turn our attention to comma-free triletter codes of maximal size.
Let Σ be an alphabet of cardinality n. The case where n = 2 is straightforward. One readily sees that
the maximum size of a comma-free triletter code over Σ, that is, S(2, 3), is 2 and there are exactly 8
of them: writing Σ = {0, 1}, these eight codes are

{001, 011}, {001, 101}, {001, 110}, {010, 011}, {010, 110}, {011, 100}, {100, 101}, {100, 110}.

Indeed, neither 000 nor 111 can be part of a comma-free code and a comma-free code contains at
most one element in each complete equivalence class (and none in non-complete equivalence classes).
It then only remains to notice that, among the nine possible choices, exactly one is not comma-free:
{010, 101}.
As reported earlier, Golomb, Gordon and Welch [20] obtained an upper bound on the size of a
maximum comma-free `-letter code over an alphabet of cardinality n, which was shown to be attained
for each odd value of ` by Eastman [12]. We focus on triletter codes: S(n, 3) = n(n2−1)

3 . Let Σ
be an alphabet of cardinality n ≥ 3. While Golomb, Welch and Delbrück [21] described a method
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to construct all maximum comma-free triletter codes over Σ, no formula to count them is provided.
They showed (cf. note after their Theorem 7) that the product of two groups (that of permutation
of the alphabet and that of so-called “reversals”) generate all maximum comma-free triletter codes,
starting from a number of “basic” codes. However, building the basic codes requires enumerating
all integer partitions of n(n2−1)

3 that satisfy a certain property: these do not seem obvious to count.
Furthermore, given the number of “basic codes”, the cardinality of the group of “reversals” does not
seem obvious to find either.
The de Bruijn graph B(n, 3) has vertex set Σ3 and an arc from N1N2N3 to N4N5N6 if and only
if N2 = N4 and N3 = N5. (It thus contains |Σ| loops.) In 2011, Cartwright, Cueto and Tobis [8]
counted the number of maximum independent sets in B(n, 3) by finding the generating function:
solving the corresponding recurrence shows this number to be

[
(1 +

√
2)n

2

]
n!,

where [x], for an irrational number x, is the integer closest to x. They moreover observed [8, Theo-
rem 5.1] that maximum independent sets of B(n, 3) inject into the collection of maximum comma-free
triletter codes, thereby obtaining exponentially (in n) many different such codes. They noted that,
when n = 2, the injection is not surjective. Indeed, there exist precisely two maximum comma-free
triletter codes over {0, 1} that do not correspond to independent sets in B(2, 3), namely {001, 011}
and {110, 100}.
However, using some of the properties first obtained by Golomb, Welch and Delbrück [21], one realises
that n = 2 is the only exceptional case: as soon as n ≥ 3, maximum comma-free triletter codes over Σ
are in bijection with maximum independent sets in the de Bruijn graph B(n, 3). We thus obtain the
following statement, of which a second proof is given later in this subsection.

Theorem 4.7. If n is an integer greater than 2, then

N(n, 3) =
[

(1 +
√

2)n

2

]
n!.

First proof. Let n ≥ 3 and suppose that X is a maximum comma-free code that is not a
maximum independent set in B(n, 3). Consequently, there exist two words w and w′ in X of the
form w = N1N2N3 and w′ = N2N3N4 where {N1, . . . , N4} ⊆ Σ. As proved by Golomb, Welch
and Delbrück [21, Note after Theorem 3], as X is maximum every letter in Σ, except possibly one,
occurs both as the first letter of a word in X and as the last letter of a word in X. It follows that
we may assume, without loss of generality in the sequel, that X contains a word w′′ = N5N6N1

where {N5, N6} ⊂ Σ. Therefore, the concatenation w′′w′ contradicts that X is comma-free. The
formula follows. �

Example 4.8. For the genetic alphabet B = {A,C,G, T}, we find back the well-known [20,21,26]
numbers S(4, 3) = 4(42−1)

3 = 20 for the size and N(4, 3) = 4!
[

(1+
√

2)4

2

]
= 24 · 17 = 408 for the number

of comma-free triletter codes of maximal size over the genetic alphabet.

Example 4.9. When the alphabet has size 3, one can check that the formulæ indeed give all the 42
different circular comma-free triletter codes of maximal size, which is 8. Letting Σ be {0, 1, 2}, these 42
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codes are listed below.

{010, 020, 021, 022, 110, 120, 121, 122}, {001, 002, 101, 102, 112, 201, 202, 212},

{001, 020, 021, 022, 101, 120, 121, 122}, {001, 020, 021, 101, 120, 121, 220, 221},

{010, 012, 020, 110, 112, 210, 212, 220}, {100, 101, 102, 112, 200, 201, 202, 212},

{002, 010, 012, 110, 112, 202, 210, 212}, {001, 002, 101, 102, 121, 201, 202, 221},

{001, 002, 110, 112, 201, 202, 210, 212}, {011, 020, 021, 100, 120, 121, 220, 221},

{010, 012, 022, 110, 112, 200, 210, 212}, {010, 011, 020, 021, 022, 120, 121, 122},

{010, 011, 012, 022, 200, 210, 211, 212}, {010, 011, 020, 021, 120, 121, 220, 221},

{100, 101, 102, 112, 200, 201, 202, 221}, {001, 020, 021, 022, 110, 120, 121, 122},

{001, 002, 101, 102, 122, 201, 202, 211}, {010, 012, 110, 112, 200, 202, 210, 212},

{020, 021, 022, 100, 101, 120, 121, 122}, {011, 020, 021, 022, 100, 120, 121, 122},

{010, 020, 021, 110, 120, 121, 220, 221}, {020, 021, 100, 101, 120, 121, 220, 221},

{010, 011, 012, 020, 022, 210, 211, 212}, {010, 012, 020, 021, 110, 112, 220, 221},

{010, 012, 020, 022, 110, 112, 210, 212}, {100, 101, 102, 200, 201, 202, 211, 212},

{010, 011, 012, 200, 202, 210, 211, 212}, {011, 012, 100, 102, 200, 202, 211, 212},

{100, 101, 102, 122, 200, 201, 202, 211}, {002, 010, 011, 012, 202, 210, 211, 212},

{021, 022, 100, 101, 121, 122, 200, 201}, {100, 101, 102, 121, 122, 200, 201, 202},

{002, 010, 012, 110, 112, 210, 212, 220}, {001, 002, 101, 102, 112, 201, 202, 221},

{010, 011, 020, 022, 120, 122, 210, 211}, {001, 002, 101, 102, 120, 121, 220, 221},

{001, 002, 101, 102, 201, 202, 211, 212}, {002, 010, 011, 012, 210, 211, 212, 220},

{001, 002, 101, 102, 121, 122, 201, 202}, {001, 020, 021, 110, 120, 121, 220, 221},

{010, 011, 012, 020, 210, 211, 212, 220}, {100, 101, 102, 121, 200, 201, 202, 221}.

We now provide a proof of Theorem 4.7 that is independent of the result of Cartwright, Cueto and
Tobis [8]. It is based on a combinatorial lemma, which allows us to fully characterise the “basic”
types of maximum comma-free codes identified by Golomb, Welch and Delbrück [21]. This further
allows us to find a recursive formula to compute the cardinality of the group of “reversals”, thereby
recovering Theorem 4.7. Given an ordered family of sets F = (L1, R1, . . . , Lm, Rm), we define S(F)
to be

∑m
i=1 |Li| |Ri|.

Lemma 4.10. Let m be a positive integer. Let F = (L1, R1, . . . , Lm, Rm) be a family of subsets of a
set A = {a1, . . . , am} of cardinality m such that

(1) aj ∈ Li if and only if ai /∈ Rj for every (i, j) ∈ {1, . . . ,m}2.

Then S(F) ≤ m(m2−1)
3 . Moreover, if S(F) = m(m2−1)

3 , then there exists a sequence of the opera-
tions (A) and (B) below such that, up to permuting the indices in {1, . . . ,m}, one has for each i ∈
{1, . . . ,m}

Li = {a1, . . . , ai} and Ri = {a1, . . . , ai−1}.

Operation (A) consists in swapping ai between Li and Ri for some i ∈ {1, . . . ,m}, providing it does
not decrease S(F). Operation (B) is as follows: if 1 ≤ j < i ≤ m and |Li| = |Rj | and aj /∈ Ri then
add aj to Ri and remove ai from Lj; or similarly, if |Ri| = |Lj | and aj /∈ Li then add aj to Li and
remove ai from Rj.

Proof. Notice that (1) implies that ai ∈ Li ∪Ri for each i ∈ {1, . . . ,m}.
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We proceed by induction on the positive integer m, the statement being true if m = 1 as then L1 = ∅
or R1 = ∅. For the induction step, assume that the statement is true for m − 1 ≥ 1 and let
us establish it for m. Let F = (L1, R1, . . . , Lm, Rm) be a family of subsets that maximises S(F)
under the condition (1) stated above. For each i ∈ {1, . . . ,m}, we let {Mi, Si} = {Li, Ri} such
that |Mi| ≥ |Si|. Since we may apply a permutation of {1, . . . ,m} to the indices of the elements in F ,
we may assume that |Mm| ≥ |Mi| for every i ∈ {1, . . . ,m}. By symmetry of the roles played by Lm
and Rm via operation (A), we may assume further that Mm = Lm and hence Sm = Rm. Let us show
how to ensure that Rm = A. First, if there exists j ∈ {1, . . . ,m− 1} such that aj /∈ Rm, then we set

L′i :=

Li if i ∈ {1, . . . ,m} \ {j}

Lj \ {am} if i = j
and R′i :=

Ri if i ∈ {1, . . . ,m− 1}

Rm ∪ {aj} if i = m,

the family F ′ just defined satisfies (1). In addition, S(F ′) = S(F) + |Lm| − |Rj |. The definition
of F thus implies that |Lm| = |Rj |. It follows that (B) can be applied to Rm and Lj , yielding
that now aj ∈ Rm. We conclude that we can ensure that {a1, . . . , am−1} ⊆ Rm. If Lm 6= A
then max{|Li|, |Ri|} ≤ m − 1 for every i ∈ {1, . . . ,m − 1} and therefore we now have |Rm| ≥
max{|Li|, |Ri|} for each i ∈ {1, . . . ,m− 1}. This means that we can proceed similarly with Lm as we
just did with Rm and obtain A \ {am} ⊆ Lm. Consequently, up to applying (A), we have Lm = A
and Rm = A \ {am}.
As a result, the family F1 := (L1, R1, . . . , Lm−1, Rm−1) consists of subsets of A \ {am}, and satisfies
the condition (1). In addition, 1

3m(m2− 1) = S(F) = S(F1) +m(m− 1), which implies that S(F1) =
1
3 (m − 1)((m − 1)2 − 1). Therefore the induction hypothesis yields that up to applying (A) and (B)
and re-indexing the elements of F1, one has Li = {a1, . . . , ai} and Ri = {a1, . . . , ai−1} for each i ∈
{1, . . . ,m− 1}, which concludes the proof. �

We shall use Lemma 4.10 to count the number of maximum comma-free triletter codes, and thus
recover the statement of Theorem 4.7.

Second proof of Theorem 4.7. Let X be a maximum comma-free triletter code over an al-
phabet Σ of cardinality n ≥ 3. Therefore, |X| = 1

3 · n(n2 − 1). Let M be the set of letters
appearing at the beginning of a word and at the end of a word, that is, M := π1(X) ∩ π3(X).
Set X[M ] := {N1N2N3 ∈ X : N1, N2, N3 ∈M}. It follows from earlier work [21] that

(4.1) |X[M ]| ≤
m∑
i=2

i(i− 1) = m(m2 − 1)
3 .

Indeed we know [21] that |M | ∈ {n−1, n} and, in addition, if |M | = n−1 then there are precisely n(n−
1) words in X that contain the unique letter N in Σ \M .
We also know [21, Theorem 3] that π12(X) ∩ π23(X) = ∅ and every element in Σ2 occurs in a word
in X, unless M = Σ \ {N} in which case NN does not occur in a word in X. If follows that the
subset of Σ2 appearing in a word in X can be partitioned into the sets Lx, Rx for x ∈ Σ, where Lx
is the set of letters y such that there is a word in X starting with yx, and Rx is the set of letters y
such that there is a word in X ending with xy. (We point out that the sets Lx ∪ Rx for x ∈ Σ are
the sections defined by Golomb, Welch and Delbrück [21].) Recall operations (A) and (B) defined in
Lemma 4.10: it follows from the definitions that applying any sequence of these operations to X still
yield a maximum comma-free triletter code over Σ.
For every order σ : Σ→ {1, . . . , n} on Σ, set

Xσ :=
{
N1N2N3 ∈ Σ3 : σ(N1) ≤ σ(N2) and σ(N2) > σ(N3)

}
.
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Given an order σ : Σ→ {1, . . . , n} of Σ, a maximum comma-free code Y is σ-canonical if there exists
a sequence of operations (A) and (B), as defined in Lemma 4.10, that transform Y into Xσ.
By Lemma 4.10, if Y is a maximum comma-free code on Σ, and if σY : Σ→ {1, . . . ,m} is such that

|LσY
−1({i+1})| × |RσY

−1({i+1})| ≥ |LσY
−1({i})| × |RσY

−1({i})|

for each i ∈ {1, . . . ,m− 1}, then Y is σY -canonical. However, the order σY may not be unique: this
is why the following counting needs to be done in an amortized way.
We fix an order σ : Σ → {1, . . . , n} on Σ. For Xσ, setting x0 := σ−1({1}), we have Lx0 = ∅ = Rx0

and, for convenience, we redefine Lx0 to {x0x0}, which leaves
∑
x∈A |Lx| |Rx| unchanged. Observe

that now |Lx| = σ(x) and |Rx| = σ(x)− 1 for every x ∈ Σ. (This would not have been true for x0 had
we not changed the definition of Lx0 .) Let (B’) be the reverse of operation (B), that is, applying (B’)
to a code Y yields a code Y ′ if and only if one can obtain Y ′ by applying (B) to Y . By applying all
sequences of operations (A) and (B’) to Xσ that preserve that the order σY for the obtained maximum
code Y can still be chosen to be equal to σ, we obtain all σ-canonical maximum comma-free codes.
We observe that operation (B’) to x and y yields that |Lx| = |Rx| = |Ly| = |Ry| = σ(x), thereby
creating an ambiguity on the new order induced on Σ. Since there are two possibilities to order x
and y, we shall count such changes with an amortized factor of 1

2 .
We count the number xn of possibilities inductively, noticing that x0 = 1 = x1. We distinguish cases
regarding whether the operation (B’) is performed on the two largest elements according to σ. If
this is not the case, then we remove the maximum element x := σ−1({m}) of Σ: considering Xσ′

where σ′ := σ|(Σ \ {x}), one obtains by induction xn−1 different maximum codes on Σ \ {x}, each of
which can be extended into a maximum code on Σ in two ways, regarding whether the operation (A)
is applied to x. Next, if the operation (B) is performed on the two largest elements x and y, then
one obtains |Lx| = |Rx| = |Ly| = |Ry| = n − 1. Removing x and y from Σ, and considering Xσ′′

where σ′′ := σ|(Σ \ {x, y}), one obtains xn−2 different codes. There are two ways in which the
operation (B’) could have been performed on the two largest elements: either directly or after having
applied the operation (A) to both of them, which yields 2xn−2 different codes. However, as hinted at
earlier, each of these codes is σ′-canonical for two different orders, namely σ and the order obtained
from σ by inverting the two largest elements. Consequently, an amortizing factor of 1

2 is applied in
this case. It follows that, xn = 2xn−1 + xn−2 and we infer that

xn =
bn/2c∑
i=0

(
n

2i

)
2i = (1 +

√
2)n − (1−

√
2)n

2 =
[

(1 +
√

2)n

2

]
,

which concludes the proof. �

The approach developed to establish Theorem 4.7 allows us to perform a similar study also for codes
that need not intersect every complete cyclic equivalence class, and hence for which the properties
unveiled by Golomb, Welch and Delbrück [21] do not hold anymore. We consider different families of
codes along these lines in the next subsections.

4.3. Maximum Self-Complementary Comma-Free Triletter Codes. We consider comma-
free triletter codes that are π-self-complementary for an involutory transformation π ∈ SΣ with no
fixed point. (Involutory transformations with fixed points could be dealt with, at the expense of more
tedious notation and analysis; however, given our original biological motivations and the fact that
adding fixed points does not change the essence of the argumentation, we omit this case entirely.)
If π ∈ SΣ is involutory with no fixed point, then we define Sπcf(n, `) to be the number of comma-free
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π-self-complementary `-letter codes of maximal size over an alphabet with n letters and Sπcf(n, `) to
be their size — as we shall see, these numbers do not depend on the choice of π.

Theorem 4.11. Let Σ be an alphabet of even cardinality n ∈ 2N and let π ∈ SΣ be an involutory
transformation with no fixed point.

(1) Sπcf(2, 3) = 2, Sπcf(4, 3) = 16 and if n ≥ 6 then

Sπcf(n, 3) = n(n2 − 1)
3 − n2

2 + 2 = n(2n+ 1)(n− 2)
6 + 2.

(2) Nπ
cf(2, 3) = 2, Nπ

cf(4, 3) = 4, Nπ
cf(6, 3) = 54 and if n ≥ 8 then

Nπ
cf(n, 3) = 6n/2−1

(n
2

)
!.

We first prove a characterisation of a slightly more constrained family of comma-free codes: this
family will be useful to be able to apply induction to establish Theorem 4.11, and it also seems
to be a legitimate family to study on its own. The additional restrictions allow us to use a more
direct approach than that used to establish Theorem 4.7. In addition to the self-complementarity,
the comma-free triletter codes X we consider are also required to satisfy that π12(X) ∩ π23(X) = ∅.
Notice that this last condition implies that the code is empty if the alphabet has cardinality two.

Proposition 4.12. Let Σ be an alphabet of even cardinality n ∈ 2N and let π ∈ SΣ be an involutory
transformation with no fixed point. If X is a π-self-complementary comma-free triletter code such
that π12(X) ∩ π23(X) = ∅, then

|X| ≤ n(n2 − 1)
3 − n2

2 .

Furthermore, there is equality if and only if, setting n′ := n/2 − 1, there is an enumeration of the
alphabet Σ = {α0, π(α0), . . . , αn′ , π(αn′)} such that

X =
n′−1∑
i=0

(Xi ∪ {αi})αiXi +
n′−1∑
i=0

Xiπ(αi) (Xi ∪ {π(αi)}) ,

where Xi := {αi+1, π(αi+1), . . . , αn′ , π(αn′)}. It follows that the number of such codes X of maximal
size is precisely (n

2

)
! · 2n/2−1.

Proof. We proceed by induction on the even cardinality n of the alphabet Σ, the statement being
trivially true if n = 2, that is, if Σ = {a, π(a)}. Now let n ≥ 4 and let X be a π-self-complementary
comma-free triletter code of maximal size over an alphabet Σ of cardinality n. To make the notation
lighter, we assume without loss of generality that Σ = {0, . . . , n − 1} and π(a) = n − 1 − a for
each a ∈ {0, . . . , n/2− 1}.
Similarly as in the proof of Theorem 4.7, we define for every a ∈ Σ the set La of all letters x ∈ A such
that X contains a word starting with xa, and the set Ra of all letters y ∈ A such that X contains a
word ending with ay. We set `a := |La| and ra := |Ra| for each a ∈ Σ. It follows that X is contained
in
∑n−1
a=0 La · a ·Ra. Notice that La = Rn−1−a and Ra = Ln−1−a for each a ∈ {0, . . . , n/2− 1} due to

the π-self-complementarity of X.
Up to permuting {0, . . . , n/2−1} and replacingX with π(X), we can suppose without loss of generality
that `0 ≥ max{`a, ra} for each a ∈ {0, . . . , n − 1}. Notice that n − 1 − a /∈ La ∪ Ra for every a ∈
{0, . . . , n − 1} because X is π-self-complementary and π12(X) ∩ π23(X) = ∅. Consequently, there
exists a non-negative integer m such that `0 = n−1−m. Moreover, because 0 /∈ L0∩R0 and `0 ≥ r0,
we can write r0 = n− 2− k for some non-negative integer k.
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We want to count the number of words in X that contain 0. Our strategy is to remove from X the
set W composed of all words in X that contain the letter 0, and show that |W | ≤ n2 − 3n + 2. It
then follows by π-self-complementarity that the number x of words in X that contain 0 or n − 1 is
at most 2 |W | ≤ 2n2 − 6n + 4. Now, deleting from X all such words yields a π-self-complementary
comma-free triletter code X ′ over the alphabet {1, . . . , n− 2} such that π12(X ′) ∩ π23(X ′) = ∅. We
know by induction that |X ′| ≤ (n− 2)3/3− (n− 2)2/2− (n− 2)/3, and we know the shape of X ′ if
there is equality. We would therefore deduce that

|X| ≤ 2n2 − 6n+ 4 + (n− 2)3

3 − (n− 2)2

2 − n− 2
3

= n3

3 −
n2

2 −
n

3 .

Furthermore, there would be equality only if X ′ has maximal size and x = 2n2−6n+ 4 (in particular,
note for (much) later on that then no word in X contains both 0 and n− 1, for otherwise x < 2 |W |).
So let us bound the size of W = {w ∈ X : 0 ∈ w} from above. Because π12(X) ∩ π23(X) = ∅, we
know that for all letters a and b, if a ∈ Lb then b /∈ Ra. In symbols, {a ∈ Σ : b ∈ Ra} ∩ Lb = ∅.
Similarly, if a ∈ Rb then b /∈ La. Let us write W = W0 ∪W1 where W0 := {w ∈W : π2(w) = 0},
and W1 := W \W0. Using the notation previously introduced, we have |W0| ≤ (n− 1−m)(n− 2−k).
To evaluate the size of W1, set M0 := {1, . . . , n − 2} \ L0, so m0 := |M0| ∈ {m − 1,m}. Further,
if a ∈ {1, . . . , n − 2}, then 0 ∈ Ra only if a ∈ M0. Similarly, setting K0 := {1, . . . , n − 2} \ R0, we
have k0 := |K0| ∈ {k, k + 1} and if a ∈ {1, . . . , n − 2}, then 0 ∈ La only if a ∈ K0. Since m0 = m

if and only if 0 ∈ L0 and k0 = k + 1 if and only if 0 ∈ R0, the fact that 0 /∈ L0 ∩ R0 implies
that m0 +k0 ≤ m+k. We bound the number of words inW1 by bounding, for each a ∈ {1, . . . , n−2},
the number xa of words w in W1 with π2(w) = a.
Fix a ∈ {1, . . . , n − 2}. If 0 ∈ Ra, then the number of words in X ending with a0 is at most `a,
which is at most n− 1−m. Similarly, if 0 ∈ La then the number of words in X starting with 0a is at
most ra, which is at most n− 1−m. Consequently,

|W1| ≤
∑

a∈M0∪K0

(n− 1−m)

≤ (m0 + k0)(n− 1−m)

≤ (m+ k)(n− 1−m).

It follows that

|W | ≤ (n− 1−m)(n− 2− k) + (m+ k)(n− 1−m)

= (n− 1−m)(n− 2 +m)

= n2 − 3n+ 2−m(m− 1).

As a result, |W | ≤ n2−3n+2 with equality if and only if m ∈ {0, 1} and m0 +k0 = m+k. Therefore,
the size of X is indeed at most n3/3− n2/2− n/3, with equality only if all inequalities written so far
are equalities: in particular, `a = n− 1−m if a ∈M0 and ra = n− 1−m if a ∈ K0; m0 +k0 = m+k;
m ∈ {0, 1} and X ′ is of maximal size. It only remains to prove that if X is of maximal size then
it has the announced form. So assume that X has maximal size. Then X ′ is of maximal size over
the alphabet Σ \ {0, n − 1} = {1, . . . , n − 2}, and hence the induction hypothesis tells us that up to
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permuting {1, . . . , n/2− 2},

X ′ =
n/2−2∑
i=1
{i, i+ 1, . . . , n− 2− i}i{i+ 1, . . . , n− 2− i}

+
n/2−2∑
i=1
{i+ 1, . . . , n− 2− i}(n− 1− i){i+ 1, . . . , n− 1− i}.

If m = 0, then L0 = {0, . . . , n − 2} and hence 0 /∈
⋃n−1
a=1 Ra. This implies that |R′a| ≥ |Ra| − 1 for

each a ∈ {1, . . . , n− 2}. Further, notice that k0 = k because m0 = m and k0 +m0 = k +m. Since

n2 − 3n+ 2 = |W | ≤ (n− 1)(n− 2− k) +
∑
a∈K0

ra

≤ n2 − 3n+ 2− k(n− 1) + k(n− 1),

we deduce that either k = 0 or ra = n − 1 for each a ∈ K0 ⊆ {1, . . . , n − 2}. However, we know by
the shape of X ′ that |R′a| ≤ n − 3, and hence ra = |Ra| ≤ n − 2 for each a ∈ {1, . . . , n − 2}. It thus
follows that K0 = ∅, and hence R0 = {1, . . . , n− 2}, which completes the proof in this case.
We end the proof by showing that if m = 1 then X is not maximum. Suppose indeed that m = 1,
that is, L0 = {0, . . . , n− 2} \ {i} with i ∈ {0, . . . , n− 2}. If i = 0, then 0 /∈ ∪n−2

a=1Ra, and hence

|W | ≤ (n− 2)(n− 2− k) + k0(n− 2)

≤ (n− 2)2 + (n− 2)

= n2 − 3n+ 2,

with equality only if k0 = k + 1, so K0 6= ∅ and 0 ∈ R0. Further, 0 ∈ La and ra = n − 2 for
each a ∈ K0. Letting a ∈ K0, since 0 /∈ Ra we must have n−1 ∈ Ra. Therefore, a word in X contains
both 0 and n− 1, which, as reported (much) earlier in the proof is not possible.
Therefore, there exists a unique i ∈ {1, . . . , n − 2} such that 0 ∈ Ri, since `0 = n − 2. In particular,
0 ∈ L0 and hence 0 /∈ R0, which implies that m0 = m and k0 = k. Since 0 /∈ Rn−1−i, the π-self-
complementarity of X implies that n− 1 /∈ Li. As

|W | ≤ (n− 2)(n− 2− k) + k0(n− 2) + `i

= (n− 2)2 + `i

= n2 − 4n+ 4 + `i,

we deduce that `i = n− 2 and 0 ∈ Li, so i /∈ R0 and thus r0 ≤ n− 3 as none of 0, i and n− 1 belongs
to R0. Still since n− 1 /∈ Li, we know that |L′i| ≥ |Li| − 1 = `i − 1 = n− 3. It thus follows that i = 1
and hence L1 = {0, . . . , n− 3}. Since 0 ∈ L1 ∩R1, the number of words w in X with π2(w) = 2 that
contain 0 is at most `1 + r1 − 1 (as otherwise the word 010 would be counted twice). Consequently,

|W | ≤ (n− 2)(n− 2− k) + `1 + r1 − 1 + (k − 1)(n− 2)

≤ (n− 2)2 + `1 − 1

= n2 − 3n+ 1,

which concludes the proof. �

We are now in a position to establish Theorem 4.11.

Proof of Theorem 4.11. Fix an alphabet Σ of cardinality n ∈ 2N. Let X be a maximum
π-self-complementary comma-free triletter code over Σ. Let (L,M,R) be a partition of Σ such that

• M := π1(X) ∩ π3(X);
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• π1(X) \M ⊆ L; and
• π3(X) \M ⊆ R.

Because X is π-self-complementary,
←−−
π(L) = R, and

←−−−
π(M) = M . Set X ′ := LM + MR + LR. We

observe that π12(X) ∩ π23(X) ⊆ X ′ ∪MM . Indeed, if w1w2w3 ∈ X then w1 ∈ π1(X) ⊆ L ∪M
and w3 ∈ π3(X) ⊆M ∪R, and hence

π12(X) ⊆ LL+ LM + LR+ML+MM +MR and

π23(X) ⊆ LM +MM +RM + LR+MR+RR.

We define (L2,M2, R2) to be a partition of X ′ such that

• M2 := X ′ ∩ π12(X) ∩ π23(X);
• L2 := X ′ ∩ π12(X) \ π23(X); and
• R2 := X ′ ∩ π23(X) \ π12(X).

Again because X is self-complementary,
←−−−
π(L2) = R2 and

←−−−−
π(M2) = M2. In addition, M2 contains all

the π-self-complementary diletter words occurring in words in X ′. We assert that

(4.2) X ⊆MMM + L(M2 +R2) + (L2 +M2)R+ L2M +MR2.

To establish (4.2), we shall make several cases so as to ease the checking. Let w = w1w2w3 be an
element ofX. In particular, wi ∈ πi(X) and hence w1 ∈ L∪M and w3 ∈M∪R. Since w1w2 ∈ π12(X),
we know that if w1w2 ∈ X ′, then w1w2 ∈ L2 + M2. Similarly, if w2w3 ∈ X ′, then w2w3 ∈ M2 + R2.
By the symmetry of the roles played by L and R, we may assume that w2 ∈ L ∪M .

(1) If w2 ∈ L then w2w3 ∈ LM+LR ⊆ X ′, and hence w2w3 ∈M2 +R2. Consequently, if w1 ∈ L
then w ∈ L(M2 + R2). Otherwise, w1 ∈ M and hence either w ∈ MR2 or w2w3 ∈ M2. In
the latter case, however, there would exist w4 ∈ Σ such that w2w3w4 ∈ X by the definition
of M2 and, as w1 ∈ M , there would exist w5w6 ∈ Σ2 such that w5w6w1 ∈ X, which
contradicts that X is comma-free: the concatenation of w5w6w1 and w2w3w4 contains the
word w = w1w2w3.

(2) If w2 ∈M , then either w ∈MMM or w1 ∈ L or w3 ∈ R. By symmetry, we may assume that
the former holds, i.e., w1 ∈ L. Consequently, w1w2 ∈ π12(X) \MM and therefore w1w2 ∈
L2 +M2.
(a) If w1w2 ∈ L2 then w ∈ L2(M +R).
(b) If w1w2 ∈ M2, then we deduce similarly as in case (1) that w3 /∈ M . It follows

that w3 ∈ R and consequently w ∈M2R, which concludes the proof of (4.2).

We bound the size of X by bounding the size of the right side of (4.2) We start by computing
the maximal size of X[M ] := X ∩MMM . Notice that X[M ] is a π-self-complementary comma-free
triletter code overM , with the additional property that π12(X[M ])∩π23(X[M ]) = ∅. Indeed, if there
exist a word w1w2w3 in X[M ] and a letter w4 ∈ M such that w4w1w2 ∈ X[M ], then X cannot be
comma-free: the definition of M ensures that there exist w5 and w6 in Σ such that w5w6w4 ∈ X, and
therefore the concatenation of the two words w5w6w4 and w1w2w3 (which are both in X) contains the
word w4w1w2, which also belongs to X. Consequently, Proposition 4.12 ensures that the size of X[M ]
is at most

m(m2 − 1)
3 − m2

2 .
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Noticing that |L| = n−m
2 = |R| and |L2| = |X′|−|M2|

2 = |R2|, one sees that the size of X is at most

|X[M ]|+ 2|L|(|M2|+ |R2|) + 2|L2| · |M |

= |X[M ]|+ (n−m) |X
′|+ |M2|

2 +m(|X ′| − |M2|),

which, since |X ′| = 1
4 (n−m)(n+ 3m), is at most

(4.3) m3

3 −
m2

2 −
m

3 + (n2 −m2)(n+ 3m)
8 + (n− 3m)

2 |M2|.

Let us maximise (4.3). We consider two cases regarding whether m ≤ n/3.
• If m ≤ n/3, then the maximum is attained only if |M2| = |X ′|. In this case, the function

becomes

(4.4) m3

3 −
m2

2 −
m

3 + (n−m)2(n+ 3m)
4 ,

which, given than m is an even integer, attains a maximum value that is at most n3

3 −
n2

2 −
n
3 + 2. Indeed, (4.4) for m ≤ n/3 attains its maximum value when m = 5n

13 −
2
39
√

27n2 + 45n+ 48 + 2
13 , the maximum value being

n3
(

113
507 + 4

507
√

27 + 45/n+ 48/n2
)
− n2

(
37
338 −

20
1521

√
27 + 45/n+ 48/n2

)
−n
(

95
507 −

64
4563

√
27 + 45/n+ 48/n2

)
− 10

169 .

If n ≥ 8, then
√

27 + 45/n+ 48/n2 ≤
√

27 + 45/8 + 3/4, and substituting one readily checks
that the obtained value is less than n3

3 −
n2

2 −
n
3 + 2. If n = 6, then (4.4) becomes

13
12m

3 − 8m2 + 26
3 m+ 54,

which form ∈ {0, 2} is maximised whenm = 0, reaching the value 54 so exactly 63

3 −
62

2 −
6
3 +2.

If n = 2 or n = 4, then since m is even and no more than n/3, we have m = 0 and the
obtained functions have respective values 2 and 16.

• If m > n/3, then the maximum is attained only if M2 is minimised. This means that M2

is equal to the set of the π-self-complementary dinucleotides in X ′. It follows that M2 =
{xπ(x) : x ∈ L} and thus |M2| = |L| = n−m

2 . In this case, the function becomes

m3

3 −
m2

2 −
m

3 + (n2 −m2)(n+ 3m)
8 + (n− 3m)(n−m)

4 ,

which, given that m is an even integer in [0, n] and n is even, is maximised only if m ∈
{n− 2, n}. When n = 2, since n− 2 < n/3 we deduce that m = 2, which yields the value 0.
When n 6= 2, calculations show the maximum to be attained only when m = n− 2, and it is
then n3

3 −
n2

2 −
n
3 + 2. We point out that this value is less than 16 if n = 4, and equal to 54

if n = 6.
There remains to count the number of possible codes of maximal size.

• When m > n/3, we have shown that the size is maximal if and only if |M | = n − 2,
|L| = 1 = |R|, M2 = LR and LM + MR = L2 + R2. There are n possible choices for
the partition (L,M,R) of Σ satisfying π(L) = R and π(M) = M . The choice of the par-
tition (L2, R2) of LM + MR must be such that

←−−−
π(L2) = R2 and LR2 ∩ L2R = ∅. So for

each x ∈M , either Lx+ xR ⊆ L2, or Lx+ xR ⊆ R2, or Lx ⊆ R2, xR ⊆ L2. Note that this
determines the choice of Lπ(x) + π(x)R, so there are three possible outcomes for each pair
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of complementary elements in M . The number of choices for the partition (L2, R2) is there-
fore 3m/2 = 3n/2−1. Finally, Proposition 4.12 ensures that there are precisely 2m/2−1 (m

2
)
!

possibilities for X[M ], yielding a total of

6n/2−1
(n

2

)
!

different maximum π-self-complementary comma-free codes. These count all such codes for
every n ≥ 8, and some of the codes when n = 6.

• When m ≤ n/3, a code of maximal size is produced only when m = 0 and n ∈ {2, 4, 6}.
Because then M = ∅, the code is LLR+LRR with |L| = n/2 = |R|. There are 2n/2 choices
for a partition (L,R) of Σ such that

←−−
π(L) = R, yielding two codes when n = 2, four codes

when n = 4 and eight codes when n = 6.

The total number of codes when n = 6 is thus

8 + 66/2−1
(

6
2

)
! = 224.

�

Remark 4.13. Theorem 4.11 for n = 4 provides a theoretical explanation of the well-known fact [26]
that the maximal size of self-complementary comma-free genetic codes is 16.

5. Characterisation of `-letter Strong Comma-Free Codes

We define Nscf(n, `) to be the number of strong comma-free `-letter codes of maximal size over an
alphabet Σ with n letters and we let Sscf(n, `) be their size.
For comparison, Table 3 shows the calculated numbers of strong comma-free diletter codes of maximal
size over alphabets of cardinalities in {2, . . . , 15}, computed using Theorem 4.1. Using the formula
provided by Theorem 4.1 (with p = 1), one easily sees thatNscf(2k, 2) = Nscf(2k−1, 2) for every k ∈ N.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nscf(n, 2) 2 6 6 20 20 70 70 252 252 924 924 3432 3432 12870

Table 3. The number of strong comma-free diletter codes of maximal size over an
alphabet of cardinality n for n ∈ {2, . . . , 15}.

We aim now to characterise maximal strong comma-free `-letter codes for ` ≥ 3. To this end, we
introduce the following notation. Given an alphabet Σ and a positive integer `, let M` be the
collection of all maximal strong comma-free circular `-letter codes over Σ. (In particular, M1 = Σ.)
Further, let P` be the collection of all sequences ((Li, Ri))1≤i≤` where

(1) (L1, R1) is a partition of Σ into two non-empty parts; and
(2) (Li, Ri) is a partition of

∑i−1
j=1 LjRi−j for every i ∈ {2, . . . , `}.

We prove the following theorem and, actually, a stronger statement describing the structure of all
maximal strong comma-free `-letter codes in terms of the maximal strong comma-free (` − 1)-letter
codes — the stronger statement, being slightly technical, is given at the beginning of the proof.

Theorem 5.1. For every integer ` ≥ 3, there exists a bijection f` between M` and P`.
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Proof. Fix an integer ` ≥ 3. In addition to the statement of the theorem, we prove that for
every X ∈M` if f`(X) = ((Li, Ri))1≤i≤` then X =

∑`−1
i=1 LiR`−i. Further, for each j ∈ {1, . . . , `} the

j-letter code Xj :=
∑j−1
i=1 LiRj−i is a maximal strong comma-free code over Σ (and hence fj(Xj) =

((Li, Ri))1≤i≤j).
Let X be a maximal strong comma-free code over Σ`. First note that since X is strong comma-free,
no word can appear both as a prefix and as a suffix in X. (In particular, a letter that starts a word
in X cannot end a word in X.) What follows might be better digested by looking simultaneously at
Example 5.2.
Let us construct the sets (Li, Ri) corresponding to X, for i < `.

• We let (L1, R1) be a partition of Σ such that every letter beginning a word in X belongs
to L1 while every letter ending a word in X belongs to R1.

• Once (Lj , Rj) is constructed for every j < i, we set Xi :=
∑i−1
j=1 LjRi−j . We then let (Li, Ri)

be a partition of Xi such that Li consists of all the words in Xi that appear as a prefix of a
word in X, and hence Ri contains, in particular2, all words in Xi that appear as a suffix of
a word in X.

Now set X` :=
∑`−1
i=1 LiR`−i. We show that X ⊆ X`. Let w ∈ X. We set L :=

∑
i<` Li and R :=∑

i<`Ri. We build a sequence of decompositions of w in L(L+R)∗R of decreasing lengths with a last
term in LR, which ensures that w ∈ X`.
To this end, we encode each decomposition by a binary word over the alphabet {l, r}. First, we
define p0(w) as follows: p0(w) ∈ l(l + r)`−2r with p0(w)i = l if wi ∈ L1, and p0(w)i = r if wi ∈ R1.
Now, notice that there must be at least one occurrence of lr in every word in l(l + r)∗r and hence in
particular in p0(w). For every non-negative integer k, if pk(w) ∈ l(l + r)+r then we define pk+1(w) ∈
l(l+r)∗r as follows: every occurrence of lr in pk(w) corresponds to a subword w′ of w in LiRj ⊆ Xi+j

for some positive integers i and j; we obtain pk+1(w) by replacing each of these occurrences by l

if w′ ∈ Li+j and by r if w′ ∈ Ri+j . Thus pk+1(w) ∈ l(l + r)∗r (and hence lr occurs in pk+1(w)).
Notice also that the length of pk+1(w) is positive and less than that of pk(w). Therefore the procedure
stops at some step k0, and then pk0(w) = lr, which guarantees that w ∈ LR ⊆ X`.
We now show that X` ⊆ X. To this end, it is enough to show that X` is itself a strong comma-free
code. Let us assume for the sake of contradiction that there exist two words w ∈ Xi and w′ ∈ Xj such
that a suffix s of w is a prefix p′ of w′, and let us choose them in such a way that i+j is minimised. Let
w = w0w1 and w′ = w′0w

′
1 be the respective decompositions in LR of w and w′. Because L ∩R = ∅,

we know that w1 6= w′0 and hence either s 6= w1 or p′ 6= w′0. By symmetry of the following argument,
we may assume that the former is true. Consequently, either |s| > |w1| and then w0 has a suffix that is
a prefix of w1, or |s| < |w1| and then w1 has a suffix that is a prefix of w1. Either way, this contradicts
the minimality of i+ j. We conclude that X` is indeed a strong comma-free code, and hence X = X`.
The statement follows. �

Example 5.2. Let us consider the alphabet Σ = {0, 1, 2} of cardinality 3, and the circular strong
comma-free code X = {001, 021, 201, 221}, which is indeed of maximal size. Following the notation
in the proof, one has L1 = {0, 2} and R1 = {1}. By definition, X2 = L1R1 = {01, 21}. Since L2 is
composed of all elements in X2 that appear as a prefix in a word in X, we have L2 = ∅. Similarly, R2

is composed of all elements in X2 that appear as a suffix in a word in X, and hence R2 = {21, 01}.
As expected, X3 = L1R2 + L2R1 = X. Following the argument showing that X ⊆ X3, consider now

2As it will follow from the forthcoming arguments, Ri consists precisely of the words in Xi that appear as a suffix
of a word in X, that is, every word in Xi is either the prefix or the suffix of a word in X. This fact is, however, not
needed at this point.
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the word w := 021 ∈ X. The first decomposition is llr. The occurrence of lr corresponds to the
word 21, which belongs to L1R1 ⊆ X2 and, further, to R2. Consequently we replace this occurrence
by r, thereby obtaining lr and thus confirming that w ∈ X3.

Theorem 5.1 provides a way to construct maximal strong comma-free codes. For instance, for triletter
words (i.e. ` = 3) over an alphabet Σ of cardinality n ≥ 2, constructing a maximal strong comma-free
code amounts to choosing

(1) a partition (L1, R1) of Σ into two non-empty parts; and
(2) a partition (L2, R2) of L1R1 into two parts.

One then obtains the maximal strong comma-free code X defined by

X := {w1w2w3 : w1w2 ∈ L2 and w2w3 ∈ R2} .

From Theorem 5.1 follows a closed formula for the number of different maximal strong comma-free
`-letter codes over an alphabet of cardinality `.

Corollary 5.3. Let n be an integer greater than 1. The number of different maximal strong comma-
free triletter codes over an alphabet of cardinality n is

(5.1)
n−1∑
m=1

(
n

m

)
2m(n−m).

Proof. Let Σ be an alphabet of cardinality n ∈ N. As reported before Corollary 5.3, every
maximal triletter code over Σ corresponds to a choice of a partition (L1, R1) of Σ into two non-
empty parts and, for each such choice, to a choice of a partition (L2, R2) of L1R1 into two parts.
To count this, fix an arbitrary choice for (L1, R1). Set m := |L1|, hence |L1R1| = m(n − m). It
follows that there are 2m(n−m) different choices for (L2, R2). Now it remains to notice that there
are

(
n
m

)
partitions (L1, R1) of Σ such that |L1| = m. The announced formula follows since we impose

that L1 6= ∅ 6= R1. �

Example 5.4. We provide examples for the formula (5.1) given by Corollary 5.3 for alphabets of
cardinality at most 4. We also illustrate the way to build them all offered by Theorem 5.1.

(1) Corollary 5.3 ensures that there are 4 different maximal strong comma-free binary codes.
Indeed, if Σ = {0, 1} then there are exactly two choices for (L1, R1), each of which yields
two different codes of size 1. These four codes are

{001}, {011},

{110}, {100}.

(2) If Σ = {0, 1, 2}, then the number of different maximal strong comma-free triletter codes over
an alphabet Σ of cardinality 3 is 24. There are indeed six choices for (L1, R1). For each of
them, one has four choices for (L2, R2), yielding one maximal code of size 2, two of size 3
and one of size 4 for a total of 6 · (1 + 2 + 1) = 24. The 24 maximal strong comma-free codes
over {0, 1, 2} are listed below.

{001, 002}, {002, 011, 012}, {001, 021, 022}, {011, 012, 021, 022},

{002, 012, 102, 112}, {012, 112, 022}, {002, 102, 122}, {022, 122},

{001, 201, 021, 221}, {021, 221, 011}, {001, 201, 211}, {011, 211},

{010, 112}, {112, 100, 102}, {110, 120, 122}, {010, 012, 120, 122},

{110, 120, 210, 220}, {120, 220, 100}, {110, 210, 200}, {100, 200},

{220, 221}, {221, 200, 201}, {220, 210, 211}, {200, 201, 210, 211}.
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(3) Over the genetic alphabet B = {A,C,G, T}, there are 160 different maximal strong comma-
free triletter codes. Indeed, first there are 6 partitions (L1, R1) of B such that |L1| = 2 = |R1|,
each of which yielding a set L1R1 of size 4 and therefore 24 = 16 different maximal strong
comma-free codes over B. Second, there are 8 partitions (L1, R1) of B such that |L1| = 1
or |R1| = 1, each yielding a set L1R1 of size 3 and therefore 23 = 8 different maximal strong
comma-free codes. For instance, if L1 = {A} and R1 = {C,G, T}, then the 8 such codes are

{AAC, AAG, AAT }, {ACC, ACG, ACT, AGC, AGG, AGT, AT C, AT G, AT T },

{AAG, AAT, ACC, ACG, ACT }, {AAC, AGC, AGG, AGT, AT C, AT G, AT T },

{AAC, AAT, AGC, AGG, AGT }, {AAG, ACC, ACG, ACT, AT C, AT G, AT T },

{AAC, AAG, AT C, AT G, AT T }, {AAT, ACC, ACG, ACT, AGC, AGG, AGT }.

5.1. The Number of Strong Comma-Free Self-Complementary Triletter Codes. The
developed framework also allows us to study maximal self-complementary strong comma-free triletter
codes. For every alphabet Σ and every π ∈ SΣ, we define Nπ

scf(n, `) to be the number of strong
comma-free `-letter codes of maximal size that are π-self-complementary, and Sπscf(n, 3) their size.
Due to our original motivation arising from biology, we restrict to involutory transformations without
fixed points, although the following result could be extended to any involutory transformation π ∈ SΣ

with k fixed points such that |Σ| − k is even.

Proposition 5.5. Let n be a positive and even integer and Σ an alphabet of cardinality n. If π ∈ SΣ

is an involutory transformation with no fixed points, then all maximal different π-self-complementary
strong comma-free triletter codes over Σ have size n

(
n/2
2
)
and hence all of them are actually of maximal

size, so

Sπscf(n, 3) = n

(
n/2
2

)
= n2(n− 2)

8 .

It follows that

(5.2) Nπ
scf(n, 3) = 2

(n/2+1
2 )

= 2n(n+2)/8.

Proof. The argument is similar to that establishing Theorem 5.1, with the additional require-
ment that both partitions must satisfy the π-self-complementary conditions, which are

←−−−
c(L1) = R1

and
←−−−
c(L2) = R2. The number of such partitions (L1, R1) is 2n/2. Fix such a partition and let S be

the set of π-self-complementary dinucleotides in L1R1. The size of S is n
2 and that of L1R1 is n2/4

since L1 and R1 have the same size. Consequently, the number of partitions (L2, R2) of L1R1 \ S
with

←−−−
c(L2) = R2 is

2
(n/2

2 )
.

Again, X is L1R2 + L2R1, which shows that the size of X is n
(
n/2
2
)
. �

Example 5.6. We consider the genetic alphabet B = {A,C,G, T} along with the involutory bijection c
(Definition 2.3). Every strong comma-free triletter code of maximal size that is self-complementary
corresponds to one choice for (L1, R1) and a subsequent choice for (L2, R2). There are four valid choices
for L1, namely {A,C}, {A,G}, {T,C} and {T,G}. If we choose L1 = {A,C} (and hence R1 = {T,G})
then L1R1 = {AT,AG,CT,CG}. We now choose (L2, R2), which is a partition of L1R1 deprived of
all the self-complementary dinucleotides it may contain, that is deprived of AT and CG in our case.
Thus there are exactly two choices for (L2, R2), i.e., ({AG}, {CT}) and ({CT}, {AG}). Each choice



COMMA-FREE CODES OVER FINITE ALPHABETS 25

yields a code of size 4. In total there are thus 4 · 2 = 8 different codes of size 4, listed below.

{ACT, CCT, AGG, AGT }, {AAG, CAG, CT G, CT T }, {AGT, GGT, ACC, ACT }, {AAC, GAC, GT C, GT T },

{T GA, GGA, T CA, T CC}, {T T C, GT C, GAA, GAC}, {CT G, T T G, CAA, CAG}, {CCA, T CA, T GA, T GG}.

We end with two examples showing that the techniques we introduced in this work can be applied
to other settings. Recently, the notion of “mixed codes”, mixing dinucleotides, trinucleotides and
tetranucleotides over the genetic alphabet B, have been introduced [13]: circular mixed codes have
been constructed and biologically-inspired properties of such codes studied. In particular it was
shown [13, Proposition 7] that the maximal size of a self-complementary mixed comma-free code
in B2 ∪ B3 is 20, and there are precisely 4 such codes. The techniques developed here allow us to
generalise this result to any alphabet Σ of even cardinality and any involution π : Σ→ Σ. The proof
of the following statement uses an approach similar to those presented, and we omit it.

Theorem 5.7. Let Σ be an alphabet of even cardinality n and π : Σ→ Σ an involution with no fixed
point.

(1) If n ≥ 8 then the maximum π-self-complementary comma-free mixed circular codes in Σ2∪Σ3

have size n(n2+5)
3 − n2

2 − 1 and there are exactly 6n/2−1 (n
2
)
! such codes.

(2) If n = 4 or n = 6, then the maximum π-self-complementary comma-free mixed circular codes
in Σ2 ∪ Σ3 are of sizes 20 or 63, and there are exactly 4 or 224 such codes, respectively.

We end by pointing out that the approach used to study strong comma-free `-letter codes (Theo-
rem 5.1) can be extended to mixed codes: using analogous notations, one can obtain a maximal mixed
strong comma-free code by takingX =

⋃`
i=(`+1)/2Xi when ` is odd, and eitherX = L`/2∪

⋃`
i=`/2+1Xi

or X = R`/2 ∪
⋃`
i=`/2+1Xi when ` is even. In a stronger statement, any maximum mixed strong

comma-free code is of this form.
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Appendix A. Growth Function of Genetic Trinucleotide Circular Codes

We present the growth function of circular 3-letter codes over the alphabet B (of cardinality 4),
presented in function of the number a of arcs in a longest directed path of the associated graph. The
codes were generated using a computer. It seems exciting to obtain a mathematical explanation of
the number of 3-letter circular genetic code of maximal size, which is 12 964 440.
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Table 4. Growth function of 3-letter circular codes X ⊆ B3 (cardinality between 1 and 20) as a function of the maximal path length a
(from 1 to 8) in their associated graph GX , defined in Subsection 4.1.

|X|

a
1 2 3 4 5 6 7 8 Total

1 48 12 0 0 0 0 0 0 60

2 564 1092 48 0 0 0 0 0 1704

3 2432 23176 3720 1056 48 0 0 0 30432

4 4968 239040 82488 50196 4080 1344 48 0 382164

5 5424 1524636 894912 958344 109248 70560 3792 1296 3568212

6 3288 6635052 5711520 10066008 1455408 1477332 93840 65064 25507512

7 1080 20707380 23608200 66358032 11578248 16920696 1184928 1281216 141639780

8 168 47742486 67286520 295339356 60415008 120991116 9070416 13723032 614568102

9 8 82816624 138365616 929260512 218650464 580183752 45957504 91507728 2086742208

10 0 109358220 212231640 2131173360 569191680 1949610312 162487776 408593256 5542646244

11 0 110895036 248599344 3635098536 1092252720 4724611056 414758832 1276845600 11503061124

12 0 87031844 225759720 4668405744 1569961080 8412344832 781162896 2871001008 18615667124

13 0 53227980 160087992 4539916512 1705224984 11124273000 1099164288 4721590800 23403485556

14 0 25473732 88569264 3341064744 1402203888 10963159272 1160318208 5719845816 22700634924

15 0 9519912 37872240 1846581744 867844824 8016801504 914981088 5093921760 16787523072

16 0 2743080 12273168 753781272 397991256 4288163160 531158208 3292912176 9279022320

17 0 591864 2914992 220449432 131222040 1630269696 220422672 1502846352 3708717048

18 0 90420 479256 43730412 29429376 417392700 61906128 459071448 1012099740

19 0 8760 48912 5281272 4022160 64576488 10548336 84240864 168726792

20 0 408 2352 294312 252960 4566696 823920 7023792 12964440
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