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We propose a novel ranking model that combines the Bradley-Terry-Luce probability model with a nonnegative matrix factorization framework to model and uncover the presence of latent variables that influence the performance of top tennis players. We derive an efficient, provably convergent, and numerically stable majorization-minimizationbased algorithm to maximize the likelihood of datasets under the proposed statistical model. The model is tested on datasets involving the outcomes of matches between 20 top male and female tennis players over 14 major tournaments for men (including the Grand Slams and the ATP Masters 1000) and 16 major tournaments for women over the past 10 years. Our model automatically infers that the surface of the court (e.g., clay or hard court) is a key determinant of the performances of male players, but less so for females. Top players on various surfaces over this longitudinal period are also identified in an objective manner.

Introduction

The international rankings for both male and female tennis players are based on a rolling 52-week, cumulative system, where ranking points are earned from players' performances at tournaments. However, due to the limited observation window, such a ranking system is not sufficient if one would like to compare dominant players over a long period (say 10 years) as players peak at different times. The ranking points that players accrue depend only on the stage of the tournaments reached by him or her. Unlike the well-studied Elo rating system for chess [START_REF] Elo | The Rating of Chess Players, Past and Present[END_REF], one opponent's ranking is not taken into account, i.e., one will not be awarded with bonus points by defeating a top player. Furthermore, the current ranking system does not take into account the players' performances under different conditions (e.g., surface type of courts). We propose a statistical model to ameliorate the above-mentioned shortcomings by (i) understanding the relative ranking of players over a longitudinal period and (ii) discovering the existence of any latent variables that influence players' performances.

The statistical model we propose is an amalgamation of two well-studied models in the ranking and dictionary learning literatures, namely, the Bradley-Terry-Luce (BTL) model [START_REF] Bradley | Rank analysis of incomplete block designs I: The method of paired comparisons[END_REF][START_REF] Luce | Individual choice behavior: A theoretical analysis[END_REF] for ranking a population of items (in this case, tennis players) based on pairwise comparisons and nonnegative matrix factorization (NMF) [START_REF] Lee | Learning the parts of objects with nonnegative matrix factorization[END_REF][START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation[END_REF]. The BTL model posits that given a pair of players (i, j) from a population of players {1, . . . , N }, the probability that the pairwise comparison "i beats j" is true is given by Pr(i beats j) = λi λi+λj . Thus, λ i ∈ R + := [0, ∞) can be interpreted as the skill level of player i and the row vector λ = (λ 1 , . . . , λ N ) parametrizes the BTL model. Other more general ranking models are discussed in [START_REF] Marden | Analyzing and modeling rank data[END_REF] but the BTL model suffices as the outcomes of tennis matches are binary.

NMF consists in the following problem. Given a nonnegative matrix Λ ∈ R M ×N + , one would like to find two matrices W ∈ R M ×K + and H ∈ R K×N + such that their product WH serves as a good low-rank approximation to Λ. NMF is a linear dimensionality reduction technique that has seen a surge in popularity since the seminal papers by Lee and Seung [START_REF] Lee | Learning the parts of objects with nonnegative matrix factorization[END_REF][START_REF] Lee | Algorithms for nonnegative matrix factorization[END_REF]. Due to the non-subtractive nature of the decomposition, constituent parts of objects can be extracted from complicated datasets. The matrix W, known as the dictionary matrix, contains in its columns the parts, and the matrix H, known as the coefficient matrix, contains in its rows activation coefficients that encode how much of each part is present in the columns of the data matrix Λ. NMF has also been used successfully to uncover latent variables with specific interpretations in various applications, including audio signal processing [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence with application to music analysis[END_REF], text mining analysis [START_REF] Berry | Email surveillance using non-negative matrix factorization[END_REF], and even analyzing soccer players' playing style [START_REF] Geerts | Characterizing soccer players' playing style from match event streams[END_REF]. We combine this framework with the BTL model to perform a sports analytics task on top tennis players.

Main Contributions

Model: In this paper, we amalgamate the aforementioned models to rank tennis players and uncover latent factors that influence their performances. We propose a hybrid BTL-NMF model (see Fig. 1) in which there are M different skill vectors λ m , m ∈ {1, . . . , M }, each representing players' relative skill levels in various tournaments indexed by m. These row vectors are stacked into an M × N matrix Λ which is the given input matrix in an NMF model. Algorithms and Theory: We develop computationally efficient and numerically stable majorization-minimization (MM)-based algorithms [START_REF] Hunter | A tutorial on MM algorithms[END_REF] to obtain a decomposition of Λ into W and H that maximizes the likelihood of the data. Furthermore, by using ideas from [START_REF] Zhao | A unified convergence analysis of the multiplicative update algorithm for regularized nonnegative matrix factorization[END_REF][START_REF] Razaviyayn | A unified convergence analysis of block successive minimization methods for nonsmooth optimization[END_REF], we prove that not only is the objective function monotonically non-decreasing along iterations, additionally, every limit point of the sequence of iterates of the dictionary and coefficient matrices is a stationary point of the objective function. Experiments: We collected rich datasets of pairwise outcomes of N = 20 top male and female players and M = 14 (or M = 16) top tournaments over 10 years. Our algorithm yielded matrices W and H that allowed us to draw interesting conclusions about the existence of latent variable(s) and relative rankings of dominant players over the past 10 years. In particular, we conclude that male players' performances are influenced, to a large extent, by the surface of the court. In other words, the surface turns out to be the pertinent latent variable for male players. This effect is, however, less pronounced for female players. Interestingly, we are also able to validate via our model, datasets, and algorithm that Nadal is undoubtedly the "King of Clay"; Federer, a precise and accurate server, is dominant on grass (a non-clay surface other than hard court) as evidenced by his winning of Wimbledon on multiple occasions; and Djokovic is a more "balanced" top player regardless of surface. Conditioned on playing on a clay court, the probability that Nadal beats Djokovic is larger than 1/2. Even though the results for the women are less pronounced, our model and longitudinal dataset confirms objectively that S. Williams, Sharapova, and Azarenka (in this order) are consistently the top three players over the past 10 years. Such results (e.g., that Sharapova is so consistent that she is second best) are not directly deducible from official rankings because these rankings are essentially instantaneous as they are based on a 52-week cumulative system.

Related Work

Most of the works that incorporate latent factors in statistical ranking models (e.g., the BTL model) make use of mixture models. See, for example, [START_REF] Oh | Learning mixed multinomial logit model from ordinal data[END_REF][START_REF] Shah | Simple, robust and optimal ranking from pairwise comparisons[END_REF][START_REF] Suh | Adversarial top-K ranking[END_REF]. While such models are able to take into account the fact that subpopulations within a large population possess different skill sets, it is difficult to make sense of what the underlying latent variable is. In contrast, by merging the BTL model with the NMF framework-the latter encouraging the extraction of parts of complex objects-we are able to observe latent features in the learned dictionary matrix W (see Table 1) and hence to extract the semantic meaning of latent variables. In our particular application, it is the surface type of the court for male tennis players. See Sec. 4.5 where we also show that our solution is more stable and robust (to be made precise) than that of the mixture-BTL model.

The paper most closely related to the present one is [START_REF] Ding | A topic modeling approach to ranking[END_REF] in which a topic modelling approach was used for ranking. However, unlike our work in which continuous-valued skill levels in Λ are inferred, permutations (i.e., discrete ob-jects) and their corresponding mixture weights were learned. We opine that our model and results provide a more nuanced and quantitative view of the relative skill levels between players under different latent conditions.

2 Problem Setup, Statistical Model, Likelihood is the number of times that player i has beaten player j in tournament m over the fixed number of years.

To model skill levels of each player, we consider a nonnegative matrix Λ of dimensions M × N . The (m, i) th element [Λ] mi represents the skill level of player i in tournament m. We design an algorithm to find a factorization of Λ into two nonnegative matrices W ∈ R M ×K + and H ∈ R K×N + such that the likelihood of D is maximized. Here K ≤ min{M, N } is a small integer so the factorization is low-rank. In Sec. 3.3, we discuss different strategies to normalize W and H so that they are easily interpretable, e.g., as probabilities. Each column of W encodes the "likelihood" that a certain tournament m belongs to a certain latent class (e.g., type of surface). Each row of H encodes the player's skill level in a tournament of a certain latent class.

Likelihood of the BTL-NMF Model

According to the BTL model and the notations above, the probability that player i beats player j in tournament m is Pr(i beats j in tournament m) = [Λ] mi /([Λ] mi + [Λ] mj ). We expect that Λ is close to a low-rank matrix as the number of latent factors governing players' skill levels is small. We would like to exploit the "mutual information" or "correlation" between tournaments of similar characteristics to find a factorization of Λ. If Λ were unstructured, we could solve M independent, tournament-specific problems to learn (λ 1 , . . . , λ M ). We replace Λ by WH and the likelihood over all games in all tournaments (i.e., of D), assuming conditional independence across tournaments and games, is

p(D|W, H) = M m=1 (i,j)∈Pm [WH] mi [WH] mi + [WH] mj b (m) ij .
It is often more tractable to minimize the negative log-likelihood. In the sequel, we regard this as our objective function which can be expressed as

f (W, H) := -log p(D|W, H) = M m=1 (i,j)∈Pm b (m) ij -log [WH] mi + log [WH] mi + [WH] mj .
(1)

Algorithms and Theoretical Guarantees

In this section, we describe the algorithm to optimize (1), together with accompanying theoretical guarantees. We also discuss how we ameliorate numerical problems while maintaining the desirable guarantees of the algorithm.

Majorization-Minimization (MM) Algorithm

The MM framework [START_REF] Hunter | A tutorial on MM algorithms[END_REF] iteratively solves the problem of minimizing a function f (x) and its utility is most evident when the direct of optimization of f (x) is difficult. One proposes an auxiliary function or majorizer u(x, x ) that satisfies the following two properties:

(i) f (x) = u(x, x), ∀ x and (ii) f (x) ≤ u(x, x ), ∀ x, x .
In addition for a fixed value of x , the minimization of u(•, x ) is assumed to be tractable (e.g., there exists a closed-form solution for x * = arg min x u(x, x )).

Then we would like to use an iterative approach to find {x

(l) } ∞ l=1 . It is easy to show that if x (l+1) = arg min x u(x, x (l) ) then f (x (l+1) ) ≤ f (x (l)
) so the sequence of iterates results in a sequence of non-increasing objective values.

Applying MM to our model is more involved as we are trying to find two nonnegative matrices W and H. Borrowing ideas from using MM in NMFs problems (see [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF][START_REF] Tan | Automatic relevance determination in nonnegative matrix factorization with the β-divergence[END_REF]), the procedure first updates W by keeping H fixed, then updates H by keeping W fixed to its previously updated value. We will describe, in the following, how to optimize the original objective in (1) with respect to W with fixed H as the other optimization proceeds in an almost4 symmetric fashion since Λ T = H T W T . As mentioned above, the MM algorithm requires us to construct an auxiliary function u 1 (W, W|H) that majorizes -log p(D|W, H).

The difficulty in optimizing ( 1) is twofold. The first concerns the coupling of the two terms [WH] mi and [WH] mj inside the logarithm. We resolve this using a technique introduced by Hunter in [START_REF] Hunter | MM algorithms for generalized Bradley-Terry models[END_REF]. It is known that for any concave function f , f (y) ≤ f (x)+∇f (x) T (y-x). Since the logarithm function is concave, we log y ≤ log x + 1

x (y -x) with equality when x = y. These two properties mean that the following is a majorizer of the term log(

[WH] mi + [WH] mj ) in (1): log [W (l) H] mi + [W (l) H] mj + [WH] mi + [WH] mj [W (l) H] mi + [W (l) H] mj -1.
The second difficulty in optimizing (1) concerns log([WH] mi ) = log( k w mk h ki ). By introducing the terms γ

(l) mki := w (l) mk h ki /[W (l) H] mi for k ∈ {1, ..., K} (which have the property that k γ (l) mki = 1
) to the sum in log( k w mk h ki ) as was done by Févotte and Idier in [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF], and using the convexity of -log x and Jensen's inequality, we obtain the following majorizer of the term -log([WH] mi ) in (1):

- k w (l) mk h ki [W (l) H] mi log w mk w (l) mk [W (l) H] mi .
The same procedure can be applied to find an auxiliary function u 2 (H, H|W) for the optimization for H. Minimization of the two auxiliary functions with respect to W and H leads to the following MM updates:

w(l+1) mk ← (i,j)∈Pm b (m) ij w (l) mk h (l) ki [W (l) H (l) ] mi (i,j)∈Pm b (m) ij h (l) ki + h (l) kj [W (l) H (l) ] mi + [W (l) H (l) ] mj , (2a) 
h(l+1) ki ← m j =i:(i,j)∈Pm b (m) ij w (l+1) mk h (l) ki [W (l+1) H (l) ] mi m j =i:(i,j)∈Pm b (m) ij + b (m) ji w (l+1) mk [W (l+1) H (l) ] mi + [W (l+1) H (l) ] mj . (2b)

Resolution of Numerical Problems

While the updates in (2) guarantee that the objective function does not decrease, numerical problems may arise in the implementation. Indeed, it is possible that [WH] mi becomes extremely close to zero for some (m, i). To ameliorate this, our strategy is to add a small number > 0 to every element of H in [START_REF] Elo | The Rating of Chess Players, Past and Present[END_REF]. The intuitive explanation that justifies this is that we believe that each player has some default skill level in every type of tournament. By modifying H to H + 1, where 1 is the K × N all-ones matrix, we obtain the objective function:

f (W, H) := M m=1 (i,j)∈Pm b (m) ij -log [W(H + 1)] mi + log [W(H + 1)] mi + [W(H + 1)] mj . (3) 
Note that f 0 (W, H) = f (W, H), defined in [START_REF] Elo | The Rating of Chess Players, Past and Present[END_REF]. Using the same ideas involving MM to optimize f (W, H) as in Sec. 3.1, we can find new auxiliary functions, denoted similarly as u 1 (W, W|H) and u 2 (H, H|W), leading to following updates

w(l+1) mk ← (i,j)∈Pm b (m) ij w (l) mk (h (l) ki + ) [W (l) (H (l) + 1)] mi (i,j)∈Pm b (m) ij h (l) ki + h (l) kj + 2 [W (l) (H (l) + 1)] mi + [W (l) (H (l) + 1)] mj , (4a) h(l+1) ki ← m j =i:(i,j)∈Pm b (m) ij w (l+1) mk (h (l) ki + ) [W (l+1) (H (l) + 1)] mi m j =i:(i,j)∈Pm (b (m) ij + b (m) ji )w (l+1) mk [W (l+1) (H (l) + 1)] mi + [W (l+1) (H (l) + 1)] mj -. (4b)
Notice that although this solution successfully prevents division by zero during the iterative process, for the new update of H, it is possible h (l+1) ki becomes negative because of the subtraction by in (4b). To ensure h ki is nonnegative as required by the nonnegativity of NMF, we set h(l+1) ki ←max h(l+1) ki , 0 . After this truncation operation, it is, however, unclear whether the likelihood function is non-decreasing, as we have altered the vanilla MM procedure.

We now prove that f in ( 3) is non-increasing as the iteration count increases. Suppose for the (l + 1) st iteration for H(l+1) , truncation to zero only occurs for the (k, i) th element and and all other elements stay unchanged, meaning h(l+1) ki = 0 and h(l+1)

k ,i = h(l) k ,i for all (k , i ) = (k, i). We would like to show that f (W, H(l+1) ) ≤ f (W, H(l) ). It suffices to show u 2 ( H(l+1) , H(l) |W) ≤ f (W, H(l) ), because if this is true, we have the following inequality f (W, H(l+1) ) ≤ u 2 ( H(l+1) , H(l) |W) ≤ f (W, H(l) ), (5) 
where the first inequality holds as u 2 is an auxiliary function for H. The truncation is invoked only when the update in (4b) becomes negative, i.e., when

m j =i:(i,j)∈Pm b (m) ij w (l+1) mk (h (l) ki + ) [W (l+1) (H (l) + 1)]mi m j =i:(i,j)∈Pm (b (m) ij +b (m) ji )w (l+1) mk [W (l+1) (H (l) + 1)]mi+[W (l+1) (H (l) + 1)]mj ≤ .
Using this inequality and performing some algebra as shown in Sec. S-1 in the supplementary material [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF], we can justify the second inequality in (5) as follows

f (W, H(l) ) -u 2 ( H(l+1) , H(l) |W) ≥ m j =i:(i,j)∈Pm (b (m) ij + b (m) ji )w mk [W(H (l) + 1)] mi +[W(H (l) + 1)] mj h (l) ki -log h (l) ki + ≥ 0.
The last inequality follows because b (m) ij , W and H (l) are nonnegative, and h

(l) ki - log( h (l)
ki + ) ≥ 0 since x ≥ log(x + 1) for all x ≥ 0 with equality at x = 0. Hence, the likelihood is non-decreasing during the MM update even though we included an additional operation that truncates h(l+1) ki < 0 to zero.

Normalization

It is well-known that NMF is not unique in the general case, and it is characterized by a scale and permutation indeterminacies [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation[END_REF]. For the problem at hand, for the learned W and H matrices to be interpretable as "skill levels" with respect to different latent variables, it is imperative we consider normalizing them appropriately after every MM iteration in (4). However, there are different ways to normalize the entries in the matrices and one has to ensure that after normalization, the likelihood of the model stays unchanged. This is tantamount to keeping the ratio

[W(H+ 1)]mi
[W(H+ 1)]mi+[W(H+ 1)]mj unchanged for all (m, i, j). The key observations here are twofold: First, concerning H, since terms indexed by (m, i) and (m, j) appear in the denominator but only (m, i) appears in the numerator, we can normalize over all elements of H to keep this fraction unchanged. Second, concerning W, since only terms indexed by m appear both in numerator and denominator, we can normalize either rows or columns.

Row Normalization of W and Global Normalization of H

Define the row sums of W as r m := k wmk and let α := k,i hki +KN 1+KN . Now consider the following operations: w mk ← wmk rm , and

h ki ← hki +(1-α) α
. The above update to obtain h ki may result in it being negative; however, the truncation operation ensures that h ki is eventually nonnegative. 5 See also the update to obtain h(l+1) 

k wmk ( hki + ) + k wmk ( hkj + ) = k wmk c k ( hki + )c k k wmk c k ( hki + )c k + k wmk c k ( hkj + )c k = k w mk ( ĥki + ) β k w mk ( ĥki + ) β + k w mk ( ĥki + ) β = k w mk (h ki + ) k w mk (h ki + ) + k w mk (h kj + ) .
Using this normalization strategy, it is easy to verify that all entries of Λ=WH sum to one. This allows us to interpret the entries as "conditional probabilities". 5 One might be tempted to normalize H+ 1 ∈ R K×N + . This, however, does not resolve numerical issues as some entries of H + 1 may be zero.

Algorithm 1 MM Alg. for BTL-NMF model with column normalization of W Input: M tournaments; N players; number of times player i beats player j in tournament

m in dataset D = b (m) ij : i, j ∈ {1, ..., N }, m ∈ {1, ..., M } Init: Fix K ∈ N, > 0, τ > 0 and initialize W (0) ∈ R M ×K ++ , H (0) ∈ R K×N ++ . while diff ≥ τ > 0 do (1)
Update ∀m ∈ {1, ..., M }, ∀k ∈ {1, ..., K}, ∀i ∈ {1, ..., N } w(l+1)

mk = i,j b (m) ij w (l) mk (h (l) ki + ) [W (l) (H (l) + 1)] mi i,j b (m) ij h (l) ki +h (l) kj +2 [W (l) (H (l) + 1)] mi +[W (l) (H (l) + 1)] mj h(l+1) ki = max m j =i b (m) ij w (l+1) mk (h (l) ki + ) [W (l+1) (H (l) + 1)] mi m j =i (b (m) ij +b (m) ji )w (l+1) mk [W (l+1) (H (l) + 1)] mi +[W (l+1) (H (l) + 1)] mj -, 0 (2) Normalize ∀ m ∈ {1, ..., M }, ∀ k ∈ {1, ..., K}, ∀ i ∈ {1, ..., N } w (l+1) mk ← w(l+1) mk m w(l+1) mk ; ĥ(l+1) ki ← h(l+1) ki m w(l+1) mk + m w(l+1) mk -1 Calculate β = k,i ĥ(l+1) ki +KN 1+KN , h (l+1) ki ← ĥ(l+1) ki +(1-β) β (3) diff ← max max m,k w (l+1) mk -w (l) mk , max k,i h (l+1) ki -h (l) ki
end while return (W, H) that forms a local maximizer of the likelihood p(D|W, H)

Algorithm 1 presents pseudo-code for optimizing (3) with columns of W normalized. The algorithm when the rows of W are normalized is similar; we replace the normalization step with the procedure outlined above.

Convergence {(W

(l) , H (l) )} ∞ l=1 to Stationary Points
While we have proved that the sequence of objectives {f (W (l) , H (l) )} ∞ l=1 is nonincreasing (and hence it converges because it is bounded), it is not clear as to whether the sequence of iterates generated by the algorithm {(W (l) , H (l) )} ∞ l=1 converges and if so to what. We define the marginal functions f 1, (W|H) := f (W, H) and f 2, (H|W) := f (W, H). For any function g : D → R, we let g (x; d) := lim inf λ↓0 (g(x + λd) -g(x))/λ be the directional derivative of g at point x in direction d. We say that (W, H) is a stationary point of the problem min

W∈R M ×K + ,H∈R K×N + f (W, H) (6) 
if the following two conditions hold:

(i) f 1, (W; W -W|H) ≥ 0, ∀ W ∈ R M ×K + , (ii) f 2, (H; H -H|W) ≥ 0, ∀ H ∈ R K×N +
. This definition generalizes the usual notion of a stationary point when the function is differentiable and the domain is unconstrained. However, in our NMF setting, the matrices are constrained to be nonnegative, hence the need for this generalized definition.

Theorem 1. If W and H are initialized to have positive entries (i.e., W (0) ∈ R M ×K ++ = (0, ∞) M ×K and H (0) ∈ R K×N ++ ) and > 0, then every limit point of {(W (l) , H (l) )} ∞ l=1 generated by Algorithm 1 is a stationary point of [START_REF] Marden | Analyzing and modeling rank data[END_REF].

The proof of this theorem, provided in Sec. S-2 of [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF], follows along the lines of the main result in Zhao and Tan [START_REF] Zhao | A unified convergence analysis of the multiplicative update algorithm for regularized nonnegative matrix factorization[END_REF], which itself hinges on the convergence analysis of block successive minimization methods provided by Razaviyayn, Hong, and Luo [START_REF] Razaviyayn | A unified convergence analysis of block successive minimization methods for nonsmooth optimization[END_REF]. We need to verify that f 1, and f 2, together with u 1 and u 2 satisfy the five regularity conditions in Definition 3 of [START_REF] Zhao | A unified convergence analysis of the multiplicative update algorithm for regularized nonnegative matrix factorization[END_REF]. However, there are some important differences vis-à-vis [START_REF] Zhao | A unified convergence analysis of the multiplicative update algorithm for regularized nonnegative matrix factorization[END_REF] (e.g., analysis of the normalization step in Algorithm 1) which we describe in detail in Remark 1 of [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF].

Numerical Experiments and Discussion

In this section, we describe how the datasets are collected and provide interesting and insightful interpretations of the numerical results. All datasets and code can be found at the following GitHub repository [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF].

Details on the Datasets Collected

The Association of Tennis Professionals (ATP) is the main governing body for male tennis players. The official ATP website contains records of all matches played. The tournaments of the ATP tour belong to different categories; these include the four Grand Slams, the ATP Masters 1000, etc. The points obtained by the players that determine their ATP rankings and qualification for entry and seeding in following tournaments depend on the categories of tournaments that they participate or win in. We selected the most important M = 14 tournaments for men's dataset; these are listed in the first column of Table 1. After determining the tournaments, we selected N = 20 players. We wish to have as many matches as possible between each pair of players, so that {b (m) ij }, m ∈ {1, . . . , M } would not be too sparse. We chose players who both have the highest amount of participation in the M = 14 tournaments from 2008 to 2017 and also played the most number of matches played in the same period. These players are listed in the first column of Table 2. For each tournament m, we collected an

N × N matrix {b (m) ij }, where b (m) ij
denotes the number of times player i beat player j in tournament m. A submatrix consisting of the statistics of matches played at the French Open is shown in Table S-1 in [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF]. We see that over the 10 years, Nadal beat Djokovic three times and Djokovic beat Nadal once at the French Open.

The governing body for women's tennis is the Women's Tennis Association (WTA) instead of the ATP. As such, we collected data from WTA website. The selection of tournaments and players is similar to that for the men. The tournaments selected include the four Grand Slams, WTA Finals, four WTA Premier Mandatory tournaments, and five Premier 5 tournaments. However, for the first "Premier 5" tournament of the season, the event is either held in Dubai or Doha, and the last tournament was held in Tokyo between 2009 and 2013; this has since been replaced by Wuhan. We decide to treat these two events as four distinct tournaments held in Dubai, Doha, Tokyo and Wuhan. Hence, the number of tournaments chosen for the women is M = 16.

After collecting the data, we checked the sparsity level of the dataset D = {b The distributions of the three types of zeros and non-zero entries for male and female players are presented in Table S-2 in [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF]. We see that there is more missing data for the women. This is because there has been a small set of dominant male players over the past 10 years but the same is not true for women players.

For the women, this means that the matches in the past ten years are played by a more diverse set of players, resulting in the number of matches between the top N = 20 players being smaller compared to the top N = 20 men.

Running of the Algorithm

The number of latent variables is expected to be small. We only present results for K = 2 in the main paper; the results for K = 3 are displayed in Tables S-3

to S-6 in [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF]. We also set = 10 -300 which is close to the smallest positive value in Python. The algorithm terminates when the difference of every element of W and H between successive iterations is less than τ = 10 -6 . We checked that the We observe that the optimal value of the log-likelihood for K = 3 is higher than that of K = 2 since the former model is richer. We also observe that the W's and H's produced over the 150 runs are roughly the same up to permutation of rows and columns, i.e., our solution is stable and robust (cf. Theorem 1).

Results for Men Players

The learned dictionary matrix W is shown in Table 1. In the "Tournaments" column, those tournaments whose surface types are known to be clay are highlighted in gray. For ease of visualization, higher values are shaded darker. If the rows of W are normalized, we observe that for clay tournaments, the value in the second column is always larger than that in the first, and vice versa. The only exception is the Paris Masters. 6 Since the row sums are equal to 1, we can interpret the values in the first and second columns of a fixed row as the probabilities that a particular tournament is being played on non-clay or clay surface respectively. If the columns of W are normalized, it is observed that the tournaments with highest value of the second column are exactly the four tournaments played on clay. From W, we learn that surface type-in particular, whether or not a tournament is played on clay-is a germane latent variable that influences the performances of men players.

Table 2 displays the transpose of H whose elements sum to one. Thus, if the column k ∈ {1, 2} represents the surface type, we can treat h ki as the skill of player i conditioned on him playing on surface type k. We may regard the first and second columns of H T as the skill levels of players on non-clay and clay respectively. We observe that Nadal, nicknamed the "King of Clay", is the best player on clay among the N = 20 players, and as an individual, he is also much more skilful on clay compared to non-clay. Djokovic, the first man in the "Open era" to hold all four Grand Slams on three different surfaces (hard court, clay and grass) at the same time (between Wimbledon 2015 to the French Open 2016, also known as the Nole Slam), is more of a balanced top player as his skill levels are high in both columns of H T . Federer won the most titles on tournaments played on grass and, as expected, his skill level in the first column is indeed much higher than the second. As for Murray, the H T matrix also reflects his weakness on clay. Wawrinka, a player who is known to favor clay has skill level in the second column being much higher than that in the first. The last column of Table 2 lists the total number of matches that each player participated in (within our dataset). We verified that the skill levels in H T for each player are not strongly correlated to how many matches are being considered in the dataset. Although Berdych has data of more matches compared to Ferrer, his scores are not higher than that of Ferrer. Thus our algorithm and conclusions are not skewed towards the availability of data.

The learned skill matrix Λ = WH with column normalization of W is presented in Tables S-7 and S-8 in the supplementary material [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF]. As mentioned in Sec. 2.1, [Λ] mi denotes the skill level of player i in tournament m. We observe that Nadal's skill levels are higher than Djokovic's only for the French Open, Madrid Open, Monte-Carlo Masters, Paris Masters and Italian Open, which are tournaments played on clay except for the Paris Masters. As for Federer, his skill level is highest for Wimbledon, which happens to be the only tournament on grass; here, it is known that he is the player with the best record in the "Open era". Furthermore, if we consider Wawrinka, the five tournaments in which his skill levels are the highest include the four clay tournaments. These observations again show that our model has learned interesting latent variables from W. It has also learned players' skills on different types of surfaces and tournaments from H and Λ respectively. skip this tournament to prepare for the more prestigious ATP World Tour Finals. This has led to some surprising results, e.g., Ferrer, a strong clay player, won the Paris Masters in 2012 (even though the Paris Masters is a hard court tournament).

Results for Women Players

We performed the same experiment for the women players except that we now consider M = 16 tournaments. The factor matrices W and H (in its transpose form) are presented in Tables S-9 in [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF] and Table 3 respectively.

It can be seen from W that, unlike for the men players, the surface type is not a latent variable since there is no correlation between the values in the columns and the surface type. We suspect that the skill levels of women players are not as heavily influenced by the surface type compared to the men. However, the tournaments in Table S-9 are ordered chronologically and we notice that there is a slight correlation between the values in the column and the time of the tournament (first or second half of the year). Any latent variable would naturally be less pronounced, due to the sparser dataset for women players (cf. Table S -2).

By computing the sums of the skill levels for each female player (i.e., row sums of H T ), we see that S. Williams is the most skilful among the 20 players over the past 10 years. She is followed by Sharapova and Azarenka. As a matter of fact, S. Williams and Azarenka have been year-end number one 4 times and once, respectively, over the period 2008 to 2017. Even though Sharapova was never at the top at the end of any season (she was, however, ranked number one several times, most recently in 2012), she had been consistent over this period such that the model and the longitudinal dataset allow us to conclude that she is ranked second. She is known for her unusual longevity being at the top of the women's game. She started her tennis career very young and won her first Grand Slam at the age of 17. Finally, the model groups S. Williams, Sharapova, Stosur together, while Azarenka, Navarro, and Vinci are in another group. There may be some similarities between players who are clustered in the same group. The Λ matrix for women players can be found in Tables S-10 and S-11 in [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF].

Comparison to BTL and mixture-BTL

Finally, we compared our approach to the BTL and mixture-BTL [START_REF] Oh | Learning mixed multinomial logit model from ordinal data[END_REF][START_REF] Shah | Simple, robust and optimal ranking from pairwise comparisons[END_REF] approaches for the male players. To learn these models, we aggregated our dataset {b ij }. For the BTL model, we maximized the likelihood to find the optimal parameters. For the mixture-BTL model with K = 2 components, we ran an Expectation-Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] to find approximately-optimal values of the parameters and the mixture weights. Note that the BTL model corresponds to a mixture-BTL model with K = 1.

The learned skill vectors are shown in Table S-12 in the supplementary material [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF]. Since EM is susceptible to being trapped in local optima and is sensitive to initialization, we ran it 100 times and reported the solution with likelihood that is close to the highest one. 7 The solution for mixture-BTL is not stable; other solutions with likelihoods that are close to the maximum one have significantly different parameter values. Two other solutions with similar likelihoods are shown in Table S-13 in [START_REF] Xia | Supplementary material for "A ranking model motivated by nonnegative matrix factorization with applications to tennis tournaments[END_REF]. As can be seen, some of the solutions are far from representative of the true skill levels of the players (e.g., in Trial 2 of Table S-13, Tsonga has a very high score in the first column and the skills of other players are all very small in comparison) and they are vastly different from one another. This is in stark contrast to our BTL-NMF model and algorithm in which Theorem 1 states that the limit of {(W (l) , H (l) )} ∞ l=1 is a stationary point of [START_REF] Marden | Analyzing and modeling rank data[END_REF]. We numerically verified that the BTL-NMF solution is stable, i.e., different runs yield (W, H) pairs that are approximately equal up to permutation of rows and columns. 8 As seen from Table S-12, for mixture-BTL, neither tournament-specific information nor semantic meanings of latent variables can be gleaned from the parameter vectors. The results of BTL are reasonable and expected but also lack tournament-specific information.

Future Work

In the future, we plan to run our algorithm on a larger longitudinal dataset consisting of pairwise comparison data from more years (e.g., the past 50 years) to learn, for example, who is the "best-of-all-time" male or female player. In addition, it would be desirable to understand if there is a natural Bayesian interpretation [START_REF] Tan | Automatic relevance determination in nonnegative matrix factorization with the β-divergence[END_REF][START_REF] Caron | Efficient Bayesian inference for generalized Bradley-Terry models[END_REF] of the -modified objective function in [START_REF] Luce | Individual choice behavior: A theoretical analysis[END_REF].
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 1 Fig. 1. The BTL-NMF Model
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 1 Problem Definition and Model Given N players and M tournaments over a fixed number of years (in our case, this is 10), we consider a dataset D := b (m) ij ∈ {0, 1, 2, . . .} : (i, j) ∈ P m M m=1 , where P m denotes the set of games between pairs of players that have played at least once in tournament m, and b (m) ij

ki in Algorithm 1 .

 1 The operations above keep the likelihood unchanged and achieve the desired row normalization of W since k wmk ( hki + )k wmk ( hki + ) + k wmk ( hkj + ) mk (h ki + ) k w mk (h ki + ) + k w mk (h kj + ).Column Normalization of W and Global Normalization of HDefine the column sums of W as c k := m wmk and let β := k,i ĥki +KN 1+KN . Now consider the following operations:w mk ← wmk c k , ĥki ← hki c k + (c k -1), and h ki ← ĥki +(1-β) β . This would keep the likelihood unchanged and achieve the desired column normalization of W since k wmk ( hki + )

  The zeros in D can be categorized into three different classes. 1. (Zeros on the diagonal) By convention, b (m) ii = 0 for all (i, m); 2. (Missing data) By convention, if player i and j have never played with each other in tournament m, then b True zeros) If player i has played with player j in tournament m but lost every such match, then b (m) ij = 0 and b (m) ji > 0.

  ij } into a single matrix {b ij = m b (m)

Table 1 .

 1 Learned dictionary matrix W for the men's dataset

	Tournaments	Row Normalization Column Normalization
	Australian Open	5.77E-01 4.23E-01	1.15E-01	7.66E-02
	Indian Wells Masters 6.52E-01 3.48E-01	1.34E-01	6.50E-02
	Miami Open	5.27E-01 4.73E-01	4.95E-02	4.02E-02
	Monte-Carlo Masters 1.68E-01 8.32E-01	2.24E-02	1.01E-01
	Madrid Open	3.02E-01 6.98E-01	6.43E-02	1.34E-01
	Italian Open	0.00E-00 1.00E-00 1.82E-104 1.36E-01
	French Open	3.44E-01 6.56E-01	8.66E-02	1.50E-01
	Wimbledon	6.43E-01 3.57E-01	6.73E-02	3.38E-02
	Canadian Open	1.00E-00 0.00E-00	1.28E-01 1.78E-152
	Cincinnati Masters	5.23E-01 4.77E-01	1.13E-01	9.36E-02
	US Open	5.07E-01 4.93E-01	4.62E-02	4.06E-02
	Shanghai Masters	7.16E-01 2.84E-01	1.13E-01	4.07E-02
	Paris Masters	1.68E-01 8.32E-01	1.29E-02	5.76E-02
	ATP World Tour Finals 5.72E-01 4.28E-01	4.59E-02	3.11E-02

Table 2 .

 2 Learned transpose H T of the coefficient matrix for the men's dataset

	Players	matrix H T	Total Matches
	Novak Djokovic	1.20E-01 9.98E-02	283
	Rafael Nadal	2.48E-02 1.55E-01	241
	Roger Federer	1.15E-01 2.34E-02	229
	Andy Murray	7.57E-02 8.43E-03	209
	Tomas Berdych	0.00E-00 3.02E-02	154
	David Ferrer	6.26E-40 3.27E-02	147
	Stan Wawrinka	2.93E-55 4.08E-02	141
	Jo-Wilfried Tsonga 3.36E-02 2.71E-03	121
	Richard Gasquet	5.49E-03 1.41E-02	102
	Juan Martin del Potro 2.90E-02 1.43E-02	101
	Marin Cilic	2.12E-02 0.00E-00	100
	Fernando Verdasco 1.36E-02 8.79E-03	96
	Kei Nishikori	7.07E-03 2.54E-02	94
	Gilles Simon	1.32E-02 4.59E-03	83
	Milos Raonic	1.45E-02 7.25E-03	78
	Philipp Kohlschreiber 2.18E-06 5.35E-03	76
	John Isner	2.70E-03 1.43E-02	78
	Feliciano Lopez	1.43E-02 3.31E-03	75
	Gael Monfils	3.86E-21 1.33E-02	70
	Nicolas Almagro	6.48E-03 6.33E-06	60
	-modified algorithm in Sec. 3.2 results in non-decreasing likelihoods. See Fig. S-
	1 in [21]. Since (3) is non-convex, the MM algorithm can be trapped in local
	minima. Hence, we considered 150 different random initializations for W (0) and
	H (0) and analyzed the result that gave the maximum likelihood among the 150
	trials. Histograms of the negative log-likelihoods are shown in Fig. S-2 in [21].

The updates for W and H are not symmetric because the data is in the form of a 3-way tensor {b (m) ij }; this is also apparent in (1) and the updates in (2).

This may be attributed to its position in the seasonal calendar. The Paris Masters is the last tournament before ATP World Tour Finals. Top players often choose to

The solution with the highest likelihood is shown in Trial 2 of Table S-13 but it appears that the solution there is degenerate.

Stationary points are not necessarily equivalent up to permutation or rescaling.
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