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Dynamic optimization of maintenance policies for

multistate system

Benôıte de Saporta∗, François Dufour†, Huilong Zhang‡

Abstract

This paper concerns the maintenance optimization of a multistate sys-

tem subject to random failure of its components occurring with different

distributions with or without aging. A dynamic maintenance policy is a

sequence of condition-based intervention dates and actions. A policy gen-

erates a cost that is composed of an unavailability cost when the equip-

ment is down or in the workshop as well as repair or replacement costs for

the components. The aim of this work is to compute an approximation of

the minimal mean cost over all admissible policies, and propose a policy

that performs as close as possible to this minimum.

1 Introduction

This paper concerns the maintenance optimization of a multi-component equip-
ment subject to random failure of its components occurring with different dis-
tributions with or without aging.

A dynamic maintenance policy is a sequence of (possibly time and state de-
pendent) intervention dates and actions, where the actions can be the replace-
ment of failed components or the repair of degraded ones and the intervention
dates correspond to the dates at which these actions are performed. Preven-
tive repair/change actions may also be taken for components in nominal state.
A policy generates a cost that is composed of an unavailability cost when the
equipment is down or in the workshop as well as repair or replacement costs
for the components. The objective of maintenance optimization is to reduce
as much as possible both the unavailability and maintenance costs in order to
obtain a high level of performance at the smaller cost.

The aim of the present paper is to compute an approximation of the minimal
mean cost over a wide class of non-parametric admissible policies, and propose
a policy that performs as close as possible to this minimum. To to so, we
model the dynamics of the equipment as Piecewise Deterministic Markov process
(PDMP) Davis (1993). PDMPs form a general class of non-diffusion processes
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with deterministic trajectories punctuated by random jumps. As illustrated e.

g. in Devooght (1997); Dufour and Dutuit (2002) or de Saporta et al. (2015)
PDMPs are especially suitable to model dynamic reliability problems.

Our problem of maintenance optimization is an impulse control problem for
PDMPs where the controller needs to choose intervention dates and actions
in order to minimize some expected cost. The theory of impulse control for
PDMPs is well understood and was first developed in Davis (1993). Numerical
schemes to approximate the optimal performance were presented in Costa and
Davis (1989) and de Saporta and Dufour (2012). In the present work, we follow
the latter approach that is more suitable for nonstationary processes. We also
present a completely new algorithm to approximate an optimal policy based on
the theoretical work in de Saporta et al. (2017).

The remainder of this paper is organized as follows. In section 2, we present
the generic model of multi-component equipment we focus on, explain how it
can be modeled by a PDMP and state the optimization problem as an impulse
control problem. In Section 3, we detail our discretization procedure and detail
the algorithms to approximate the optimal performance and policy. In Section
4, we explain how the procedure was implemented on a specific example, how
the various parameters were tuned and present our numerical results. Finally,
concluding remarks are presented in Section 5.

2 Maintenance optimization problem

In this section, we state the maintenance optimization problem we aim to solve
numerically. We first describe the physical system and explain how it can be
modeled by a piecewise deterministic Markov process (PDMP). The mainte-
nance optimization problem is then formalized as an impulse control problem
for PDMPs.

2.1 Dynamics of the equipment

The system under consideration in this paper is a generic model for a piece
of equipment with four components. Each component is subject to random
deterioration and/or failure independently from the other components.

• Component 1 and 2 can be either in stable or failed state,

• Components 3 and 4 can be either in stable, degraded or failed state.

The global state of the equipment is stable if all the components are in stable
state, failed if at least one component is in failed state and degraded otherwise.
In other words, one can encode the state of a component as 0 corresponding to
failed, 1 to degraded, and 2 to stable. Then if the state of component k is sk,
the global state of the equipment is s = min{s1, s2, s3, s4}.

The deterioration or failure dynamics of the four components are indepen-
dent and as follows, see Figure 1 for a visual summary:
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• Components 1 fails according to an exponential distribution with param-
eter λ1,

• Component 2 fails according to a Weibull distribution with parameters
(α2, β2),

• Components 3 and 4 reach the degraded state according to a Weibull
distribution with parameters (α3, β3) and (α4, β4) respectively, and go
from degraded to failed state according to an exponential distribution
with parameter λ3 and λ4 respectively.

Figure 1: The equipment and possible states of its components.

The components can degrade or fail only when the equipment is functioning.
The equipment can work with degraded components but is stopped at the first
failure. Hence, only 16 states can be reached among the 36 possible states.

If no maintenance actions are performed, the system will thus reach the
failure state and remain failed. An unavailability penalty cu must be paid for
each day the equipment spends in the failed state.

Two types of maintenance actions can be performed on the components:

• Components 1 and 2 can be changed with cost c1 and c2 respectively,

• Components 3 and 4 can be changed with cost c3 and c4 respectively or
repaired with cost r3 < c3 and r4 < c4 respectively. The repair action is
impossible in failed state.

Both change and repair actions are as good as new and reset the functioning
time of the equipment to 0.

To perform maintenance operations, the whole equipment has to go back to
the workshop and is therefore unavailable during the maintenance operations.
Thus each visit to the workshop yields a fixed cost cw in addition to the in-
dividual costs of the operations performed on each component. We will also
consider that each visit to the workshop has a fixed duration Tw. We consider
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that components 2 and 3 are part of a specific block: if either component needs
to be changed, the whole block is changed and therefore the other component
is changed too. Finally we restrict our study to the case where each visit to
the workshop sets the equipment back to the stable state, which means that at
least all failed components are changed and all degraded ones are repaired or
changed. Stable components may also be repaired or changed. The 17 feasible
combinations of interventions are listed in Table 1.

Table 1: Possible combinations of workshop operations for the equipment.
C 1 C 2 C 3 C 4

nothing nothing nothing repair
nothing nothing repair nothing
nothing nothing repair repair
nothing nothing nothing change
nothing nothing repair change
nothing change change nothing
nothing change change repair
nothing change change change
change nothing nothing nothing
change nothing nothing repair
change nothing repair nothing
change nothing repair repair
change nothing nothing change
change nothing repair change
change change change nothing
change change change repair
change change change change

Recall that a maintenance policy is a sequence of intervention dates where
the equipment is sent to the workshop, and repair or change actions on the
components. We will only consider policies where the equipment is back in stable
state after a visit to the workshop. Such a policy generates a cost corresponding
to the total unavailability and maintenance costs up to a finite time horizon H

corresponding to the service time of the equipment. The aim of this paper is
to compute an approximation of the optimal performance, that is the minimum
expected cost over all feasible maintenance policies, and to exhibit a policy that
performs as close as possible to this minimum.

2.2 PDMP framework

In order to solve the optimization problem formulated above, we use the frame-
work of impulse control for PDMPs. PDMPs form a vast class of hybrid non
diffusive stochastic processes, see Davis (1993). Let M be a finite set of modes
or regimes of the process. For each mode m ∈ M , denote Em a Borel subset of
Rd. The state space of the process is then E = ∪m∈M{m}×Em. The dynamics
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is described by three local characteristics, defined as follows for m ∈ M :

• a flow Φm : Em × R+ → Em with a semi-group property that describes
the deterministic dynamics between jumps,

• a jump intensity λm : Em → R+ that gives the frequency of the jumps,

• a Markov kernel Qm : Em×B(Em) → E that selects the post-jump modes
and locations.

The trajectories of the PDMP are then constructed recursively as follows. Start-
ing from X0 = (m0, x0) ∈ E, the first jump time T1 is drawn according to the
following distribution

P(m0,x0)(T > t)

= 1t∗m0
(x0)≥t) exp

(

−

∫ t

0

λm0
(Φm0

(x, s)ds
)

,

where
t∗m(x) = inf{s > 0; Φm(x, s) ∈ ∂Em}

is the deterministic time to reach the boundary of the state space starting from
position x in modem. On the time interval [0, T1) one hasXt = (m0,Φm0

(x0, t)).
At time T1, a new mode m1 and a new position x1 are drawn according to Q:
XT1

= (m1, x1). A new jump time is selected with intensity λ, and so on.
Denote Tn the n-th jump time of the process with T0 = 0, Sn = Tn − Tn−1

the inter-jump times and Zn = XTn the post-jump locations. Then (Zn, Sn) is
a finite-time Markov chain that contains all the randomness of the process.

The dynamics of the equipment can be modeled by a PDMP as follows. The
set M of regimes is the set of all 33 feasible combinations of the states of the
components, including the workshop states, as listed in Tables ?? and 1.

For each working state m, Em = [0, H)4 where H is the time horizon of the
optimization, i.e. the service time of the equipment. The first three coordinates
correspond to the service time of components 2 to 4 respectively, and the last
component is the global service time of the equipment. The flow is simply
incrementing the times: for x = (x1, x2, x3, x4) one has

Φm(x, t) = (x1 + t, x2 + t, x3 + t, x4 + t).

The time to reach the boundary is the time left until the horizon is reached

t∗m(x) = H − x4.

The jump intensity is given by the appropriate sum of exponential or Weibull
intensities depending on the mode, and the jump kernel determines which com-
ponent degrades or fails, the new regime and functioning times being updated
accordingly.

For each workshop statem, Em = [0, H)4×[0, Tw). The first four coordinates
are the same as above, the last one is the time spend in the workshop. As the
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equipment is not functioning in the workshop, only the last two time coordinates
are updated by the flow: for x = (xi, 1 ≤ i ≤ 5), one has

Φm(x, t) = (x1, x2, x3, x4 + t, x5 + t).

The time to reach the boundary is the time left until the horizon or the end of
workshop operations is reached, whichever occurs first

t∗m(x) = min{H − x4, Tw − x5}.

The jump intensity is 0 as no random jump can occur. The jump kernel resets
to 0 the functioning time of the components that have been repaired or changed.
As we only consider policies that send the equipment to the stable state after
a visit to the workshop, the new regime after exiting the workshop is always
stable for all components.

Finally, we add a cemetery state ∆ that the process enters when the horizon
H is reached. From this date on, the flow is fixed at ∆ and the jump intensity
is null so that no new event can occur.

2.3 Impulse control for PDMPs

Roughly speaking, an impulse control problem corresponds to choosing the best
intervention dates and new mode and location after the interventions in order to
minimize some cost. More precisely, a policy S is a sequence (τn, Rn)n≥1 where
τn are the controller-chosen intervention dates and Rn are the controller-chosen
new mode and position of the process after the intervention. In our maintenance
optimization context, the intervention dates are the dates when the controller
decides to send the equipment to the workshop and the new mode and position
correspond to the specific maintenance actions performed on each component.

The cost of policy S when the process starts from (m0, x0) is defined as

J S(m0, x0) =E
S
(m0,x0)

[

∫ ∞

0

e−αsf(Xs)ds

+
∞
∑

i=1

e−ατic(Xτi , Xτ+

i
)
]

,

where f is the running cost, c the cost of impulsions and α a discount factor
that will be set to 0 in the sequel. In our maintenance example, f equals 0 in
stable, degraded or workshop regimes, and f = cu the unavailability penalty in
failed regimes. The cost of impulsion depends on the nature of the operations
performed, it is the suitable combination of repair and/or change costs for the
components added to the fixed unavailability cost cw.

The value function of the impulse control problem is the minimum cost over
the set S of all admissible policies

V(x) = inf
S∈S

J S(x).
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The precise definition of S is rather technical and omitted here. Most impor-
tantly, the intervention times must be non-anticipative. The interested reader
may consult Costa and Davis (1989) for details. Our aim is to compute a numer-
ical approximation of V when interventions are only possible in the degraded or
failed states. Although it is relevant to evaluate the value function, as it is the
best possible performance, the most important for the controller is to find a fea-
sible strategy that performs as close as possible to this optimum. Constructing
such a strategy is the other aim of this paper.

3 Numerical approximation

As proved in Costa and Davis (1989), the value function is the fixed point of some
functional operator. Hence, a strategy to approximate V is to discretize this
operator. This is the approach developed in de Saporta and Dufour (2012) that
we will implement here. Its main strong point is that it is based on simulations
of the non-controlled process only.

3.1 Discretization of the control set

In order to apply the method developed in de Saporta and Dufour (2012),
we need a finite control set. The control set U is the set of all modes and
positions the process can restart from after an intervention. In our case study,
an intervention corresponds to sending the equipment to the workshop. The
number of workshop modes is finite, but the functioning times of the various
components and equipment are not. We choose to discretize possible times on
a finite cartesian grid of the space of feasible points

{x ∈ [0, H)4; max{x1, x2, x3} ≤ x4},

as no component can work longer than the whole equipment. The lag of the grid
is chosen empirically, see Section 4. We thus obtain a finite control set denoted
U , with cardinal u.

3.2 Discretizations of the Markov chain (Zn, Sn)

The main ingredient of our approximation is a time-dependent discretization of
the state space based on the optimal quantization of the post-jump location –
inter-jump times Markov chain (Zn, Sn). Optimal quantization is a simulation-
based method to approximate a continuous state space Markov chain by a finite
state space one, see Pagès et al. (2004). Using Algorithms 1 and 2, one obtains
a finite grid Γn at each date n as well as transition matrices Pn from grid Γn−1

to grid Γn.
Such grids strongly depend on the initial distribution of Z0 as our process is

far from stationary. We will use several sequences of grids. We denote Γn the
grids with starting point Z0 = (m0, x0) and S0 = 0 where m0 is the stable state
and x0 = (0, 0, 0, 0). We denote Γy

n the grids with starting point Z0 = y and
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Algorithm 1: CLVQ algorithm to quantize the Markov chain (Zn, Sn)

input : Time horizon N , Number of points K in each grid, Initial grids (Γ0
n) with

K points, Number of runs NR, simulator of target Markov chain (Zn, Sn)
output: Optimized grids (Γn), 0 ≤ n ≤ N

1 begin

2 for k ← 0 to NR − 1 do

3 draw trajectory (zn, sn)0≤n≤N of Markov chain (Zn, Sn)0≤n≤N

4 for n← 0 to N do

5 select ζ closest neighbor of (zn, sn) in Γk
n

6 ζ′ ← ζ − 4K1/2

4K1/2+π2k/K
‖ζ − (zn, sn)‖

7 Γk+1
n ← Γk

n ∪ {ζ
′}\{ζ}

8 end

9 end

return : (Γ
NR
n ), 0 ≤ n ≤ N

10 end

Algorithm 2: Computation of the transition matrices Pn

input : Time horizon N , Quantization grids (Γn) with K points, 0 ≤ n ≤ N ,
number NMC of Monte Carlo runs

output: Transition probabilities Pn(i, j), 1 ≤ n ≤ N , 1 ≤ i, j ≤ K
1 begin

2 count(n,i,j)←0, 1 ≤ n ≤ N , 1 ≤ i, j ≤ K
3 for k ← 1 to NMC do

4 draw trajectory (zn, sn)0≤n≤N of (Zn, Sn)0≤n≤N

5 for n← 0 to N − 1 do

6 select i ≤ K such that ζin be the closest neighbor of (zn, sn) in Γn

7 select j ≤ K such that ζjn+1 be the closest neighbor of (zn+1, sn+1) in Γn+1

8 count(n+1,i,j)← count(n+1,i,j)+1

9 end

10 end

11 Pn(i, j)←count(n,i,j)/NMC , 1 ≤ n ≤ N , 1 ≤ i, j ≤ K
return : Pn(i, j), 0 ≤ n ≤ N − 1, 1 ≤ i, j ≤ K

12 end
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S0 = 0 for each y in the finite control set U . We thus have u + 1 sequences of
quantization grids.

It is important to notice that although we use different starting points, we
always quantize the non-controlled process. Hence, starting from the stable
state and initial functioning times set at 0, there is a maximum of N = 4
jumps before reaching the cemetery state (two degradations, then failure and
cemetery). Starting from y in the control set U , the maximum is N = 5 jumps
(one jump to go from the workshop to the stable state, then two degradations,
failure and cemetery). We thus need to compute 5+6(u+1) quantization grids
and 4 + 5(u+ 1) transition matrices.

3.3 Approximation of the value function

We then proceed to construct the approximate value function following the
procedure described in de Saporta and Dufour (2012). For self-containedness,
we recall the two steps of the procedure in Algorithms 3 and 4. The approximate
value function at the starting point Z0 = (m0, x0) and S0 = 0 where m0 is the
stable state and x0 = (0, 0, 0, 0) is the output v̂0 of Algorithm 4. Note that both
algorithms have extra lines (28 to 30 in Algorithm 3, 15 to 17 in Algorithm
4) corresponding to the computations of the outputs win1, win2 and s∗ that
will be useful in the next section for the computation of a strategy close to
optimality.

These algorithms depend on a number of parameters. The number of itera-
tions Nit should be large as the theoretical value function is obtained with an
infinite number of iteration of the underlying operator. The bounding function
g must be greater than the average cost of the no-impulse strategy. In our case,
one has, for (m,x) ∈ E,

g(m,x) ≥ E(m,x)

[

∫ ∞

0

f(Xs)ds
]

= cuE(m,x)[Tf ],

where Tf is the time spent in the failed state. For instance, one can take the
constant function g(m,x) = cuH or g(m,x) = cu(H−x4) with a slightly refined
evaluation of the time left until the horizon. The discretization step δ should
be small, and can be state dependent instead of being uniform. Finally, the
function F is defined as follows

F (m,x, t) = E(m,x)

[

∫ T1∧t

0

f(Φ(x, s))ds
]

,

so that in our case F = 0 in the stable, degraded, cemetery and workshop
modes, and for the failure mode

F (m,x, t) = cu(t ∧ (H − x4)).

9



Algorithm 3: Approximation of the value functions on the control
grid U

input : Grids (Γy
n)0≤n≤5,y∈U , Transition matrices (P y

n )1≤n≤5,y∈U , bounding
function g, discretization step δ, number of iterations Nit ≥ 5

output : ṽn(y), win1(z, n, k, y), win2(z, n, k, y), s∗(z, n, k, y), y ∈ U , z ∈ Γy
k ,

1 ≤ k ≤ 5, 1 ≤ n ≤ Nit − 1
1 begin

2 for y ∈ U do

3 ṽNit
(y)← g(y)

4 end

5 for n← Nit − 1 to 1 by step: −1
6 do

7 for y ∈ U do

8 if Nit − n ≥ 6 then

9 v̂nNit
← 0

10 else

11 for (z, s) ∈ Γy
Nit−n do

12 v̂nNit
(z)← g(z)

13 end

14 end

15 for k ← Nit − n− 1 to 0 by step: −1
16 do

17 if k ≥ 6 then

18 v̂nn+k ← 0

19 else

20 for (z, s) ∈ Γy
k do

21 K̂(z)←
∑

(z′,s′)∈Γ
y
k+1

P y
k+1(z, (z

′, s′))
(
v̂nn+k+1(z

′) + F (z, t∗(z))
)

22 for t← 0 to t∗(z)− δ by step: δ
23 do

24 w(z, t) = min
y′∈U

{c(Φ(z, t), y′) + ṽn+1+k(y
′)}

25 Ĵ(z, t)←
∑

(z′,s′)∈Γ
y
k+1

P y
k+1(z, (z

′, s′))
(
F (z, t) + v̂nn+k+1(z

′)1{s′<t} +

w(z, t)1{s′≥t}

)

26 end

27 v̂nn+k(z)← min
t
{Ĵ(z, t)} ∧ K̂(z)}

28 win1(z, n, k, y)← (min
t
{Ĵ(z, t)} ≤ K̂(z)

29 win2(z, n, k, y)← arg min
y′∈U

{c(Φ(z, t), y′) + ṽn+1+k(y
′)}

30 s∗(z, n, k, y)← argmin
t
{Ĵ(z, t)}

31 end

32 end

33 ṽn(y)← v̂nn(y)
return : ṽn(y)

34 end

35 end

36 end

37 end
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Algorithm 4: Approximation of the value function at the point
(m0, x0) where m0 is the stable state and x0 = (0, 0, 0, 0).

input : Grids (Γn)0≤n≤4, Transition matrices (Pn)1≤n≤4, bounding function g,
time discretization step δ, (ṽn(y))1≤n≤Nit ,y∈U output of Algorithm 3

output : v̂0, win1(z, k), win2(z, k), s∗(z, k), y ∈ U , z ∈ Γk, 0 ≤ k ≤ 4
1 begin

2 for (z, s) ∈ Γ4 do

3 v̂5(z)← g(z)
4 end

5 for k ← 4 to 0 by step: −1
6 do

7 for (z, s) ∈ Γk do

8 K̂(z)←
∑

(z′,s′)∈Γk+1

Pk+1(z, (z
′, s′))

(
v̂k+1(z

′) + F (z, t∗(z))
)

9 for t← 0 to t∗(z)− δ by step: δ
10 do

11 w(z, t) = min
y∈U
{c(Φ(z, t), y) + ṽk+1(y)}

12 Ĵ(z, t)←
∑

(z′,s′)∈Γk+1

Pk+1(z, (z
′, s′))

(
F (z, t)+v̂k+1(z

′)1{s′<t}+w(z, t)1{s′≥t}

)

13 end

14 v̂k(z)← min
t
{Ĵ(z, t)} ∧ K̂(z)}

15 win1(z, k)← (min
t
{Ĵ(z, t)} ≤ K̂(z)

16 win2(z, k)← argmin
y∈U
{c(Φ(z, t), y) + ṽk+1(y)}

17 s∗(z, k)← argmin
t
{Ĵ(z, t)}

18 end

19 end

return : v̂0
20 end
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3.4 Construction of a feasible policy

We now present a completely new procedure to determine an explicit policy close
to optimality. Algorithm 5 explains how to simulate a trajectory according to
this policy.

4 Numerical results

The main technical difficulty consists in tuning the various discretization pa-
rameters in order to obtain an acceptable compromise between precision and
complexity. To do so, we selected some reference policies and computed their
exact and approximated costs to empirically evaluate the approximation error.
Note that a theoretical error bound is provided in de Saporta and Dufour (2012)
but it is too conservative to be used in practice for parameter tuning. All steps of
the implementation were validated through a sensitivity analysis with different
starting points for the process.

The numerical values of the equipment are set to arbitrary values so that the
cost of the no-impulse policy for the exact simulator over an horizon of H = 104

time units is 20000.

4.1 Reference policies

We used the two following reference policies.
Policy A is a corrective maintenance policy where the equipment is sent back to
the workshop after 1 unit of time spent in the failed state. All failed components
are changed, and all degraded components are repaired.
Policy B is a preventive maintenance policy where the equipment is sent back
to the workshop after 1 unit of time spent in the degraded state. All failed
components are changed, and all degraded components are repaired.
Both policies can be exactly simulated. Their cost was evaluated through 106

Monte Carlo simulations and are given in Table 2. As expected, Policy A
performs significantly better than the no-impulse policy and Policy B performs
better than policy A.

4.2 Discretization parameters

To tune the number of points in the discretized control set U , we compared the
average cost of Policy B with the continuous control set U and with projecting
the functioning times of the equipment on a discretized set at each impulsion.
We tried a high number of combinations summarized in Table 3. The errors
are expressed as relative errors with respect to the exact cost of Policy B. We
chose the grid with 2195 points yielding a relative error of 6% as an acceptable
compromise between precision and complexity.

Regarding the number of points K in the quantization grids, we compared
again the exact and approximate costs of the reference policies for K between 10
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Algorithm 5: Simulation of an optimally controlled trajectory

input : Grids (Γy
n)0≤n≤5,y∈U , Grids (Γn)0≤n≤4, outputs of Algorithms 3 and 4

output : Trajectory (Zj , Sj)j≥0

1 begin

2 j ← 0
3 z ← (stable, stable, stable, stable, 0, 0, 0, 0)
4 s← 0
5 (Zj , Sj)← (z, s)
6 jump← 0
7 impulse← 0
8 while j < 4 and impulse = 0 and (z, s) 6= ∆ do

9 (ẑ, ŝ)← projΓj
(z, s)

10 s′′ ← s∗(ẑ, j)
11 Draw the next post-jump location and inter-jump time (z′, s′) starting from z
12 if win1 = 0 or (win1 = 1 and s′′ ≥ s′) then

13 jump← jump+ 1
14 (z, s)← (z′, s′)

15 else

16 impulse← impulse+ 1
17 y ← win2(ẑ, j)
18 (z, s)← (y, s′′)
19 n← jump+ impulse
20 k ← 0

21 end

22 j ← j + 1
23 (Zj , Sj)← (z, s)

24 end

25 while impulse > 0 and jump+ impulse ≤ Nit and (z, s) 6= ∆ do

26 (ẑ, ŝ)← projΓy
k
(z, s)

27 s′′ ← win2(ẑ, k, n, y)
28 Draw the next post-jump location and inter-jump time (z′, s′) starting from z
29 if win1(ẑ, k, n, i) = 0 or (win1(ẑ, k, n, i) = 1 and s′′ ≥ s′) then

30 jump← jump+ 1
31 k ← k + 1
32 (z, s)← (z′, s′)

33 else

34 impulse← impulse+ 1
35 y ← win2(ẑ, k, n, y)
36 (z, s)← (y, s′′)
37 n← jump+ impulse
38 k ← 0

39 end

40 j ← j + 1
41 (Zj , Sj)← (z, s)

42 end

return : (Zj , Sj)j≥0

43 end

Table 2: Costs of the reference policies.
No-impulse Policy A Policy B

20000 11295 8495
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Table 3: Relative errors due to the discretization of the control set for Policy B.
Cardinality Number relative

of cartesian grid of feasible points error
3× 3× 3× 5 419 0.1458
4× 4× 4× 5 627 0.1331
5× 5× 5× 5 1055 0.1235
3× 3× 3× 11 788 0.0962
4× 4× 4× 11 1219 0.0819
5× 5× 5× 11 1855 0.0730
6× 6× 6× 11 2790 0.0672
7× 7× 7× 11 3570 0.0634
8× 8× 8× 11 4647 0.0604
3× 3× 3× 21 1403 0.0775
4× 4× 4× 21 2195 0.0626
5× 5× 5× 21 3423 0.0534
6× 6× 6× 21 4900 0.0436
7× 7× 7× 21 6489 0.0384
8× 8× 8× 21 8399 0.0350

and 1000. We choseK = 50 yielding a 0.3% relative error on the cost of Policy B.

4.3 Approximate value function

We can now turn to the approximation of the value function. It represents the
best possible performance when allowing all 17 maintenance actions at any time
in the degraded or failed states. Regarding the number of iterations Nit for Al-
gorithm 3, we tried all values between 6 and 19. The resulting approximated
value function are represented on Figure 2. Convergence seems to be reached
for Nit = 13. This yields a relative gain with respect to the no-impulse policy
of 65.9% and a relative gain of 19.6% with respect to Policy B. This gain is
significant compared to the empirical approximation error.

As there is a significant gain between the value function and the best ref-
erence policy, it is crucial to be able to compute a policy and corresponding
decision rules that yield this reduced cost. The implementation of Algorithm 5
is still on-going. Results will be presented at the conference.

5 Conclusion

We have studied a problem of maintenance optimization for a multi-component
equipment. The dynamics of the equipment has been modeled by a continuous-
time piecewise deterministic Markov process. The optimization problem has
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Figure 2: Approximated value function for several numbers of iterations

been translated into an impulse control problem for the PDMP. We have im-
plemented an algorithm to approximate the value function, that approximated
the best possible performance over a wide (non parametric) set of maintenance
policies. The main advantage of this algorithm is that it is based on simula-
tions of the non-controlled process only. The main drawback is the number of
parameters to be empirically tuned and the high computation time.

We obtained that the optimal performance is significantly better than the
best preventive reference policy. This is probably due to the fact that we allow
interventions even on the components in the stable state. This approach also
allows to obtain an explicit policy close to optimality. This part is still under
implementation, and it should be very interesting to understand how this policy
differs from the reference ones.
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