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Abstract
Identifying influential nodes in a network is a fundamental issue due to its wide
applications, such as accelerating information diffusion or halting virus spreading.
Many measures based on the network topology have emerged over the years to
identify influential nodes such as Betweenness, Closeness, and Eigenvalue centrality.
However, although most real-world networks are made of groups of tightly
connected nodes which are sparsely connected with the rest of the network in a
so-called modular structure, few measures exploit this property. Recent works have
shown that it has a significant effect on the dynamics of networks. In a modular
network, a node has two types of influence: a local influence (on the nodes of its
community) through its intra-community links and a global influence (on the nodes
in other communities) through its inter-community links. Depending on the strength
of the community structure, these two components are more or less influential. Based
on this idea, we propose to extend all the standard centrality measures defined for
networks with no community structure to modular networks. The so-called “Modular
centrality” is a two-dimensional vector. Its first component quantifies the local
influence of a node in its community while the second component quantifies its
global influence on the other communities of the network. In order to illustrate the
effectiveness of the Modular centrality extensions, comparison with their scalar
counterparts is performed in an epidemic process setting. Simulation results using
the Susceptible-Infected-Recovered (SIR) model on synthetic networks with
controlled community structure allows getting a clear idea about the relation
between the strength of the community structure and the major type of influence
(global/local). Furthermore, experiments on real-world networks demonstrate the
merit of this approach.

Keywords: Influential nodes; Centrality measures; Community Structure; SIR model

1 Introduction
Identifying the most influential nodes in a network has gained much attention among re-
searchers in recent years due to its many applications. Indeed, these key nodes play a major
role in controlling the epidemic outbreak [1], increasing the publicity on a new product [2],
controlling the rumor spreading [3]. The most popular approach to uncover these central
nodes is to quantify their influence using centrality measures. Various centrality measures
have been proposed to quantify the influence of nodes based on their topological prop-
erties. Degree centrality, betweenness centrality, closeness centrality are among the most
basic and the most widely used centrality measures.

The majority of real-world networks exhibit the modular organization of nodes, the so-
called community structure [4–8]. Although there has been a tremendous effort regarding
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the definition of this property, there is no formal consensus on a definition that captures
the gist of a community. It is intuitively apprehended as densely connected groups of nodes
where individuals interact with each other more intensely than with those in the rest of
the network. Therefore, communities are groups of nodes sharing some common proper-
ties and play similar roles in the interacting phenomenon within networks. Besides their
various definitions, communities have been also found to show a number of interesting
features such as the overlapping configuration of modules [9]. Some of the nodes can then
be shared by multiple communities. Indeed, in some social networks, individuals can take
part simultaneously in different groups, such as work colleagues, friends or family. In this
work, we do not consider the overlaps between communities.

Previous works have shown that community structure has an important effect on the
spreading process in networks [10–13]. However, classical centrality measures [14] do
not take into account the influence of this major topological property on the spreading
dynamics. In a modular network, we can distinguish two types of links [15, 16] that sup-
port the diffusion process: the links that connect nodes belonging to the same community
(intra-community links or strong ties) and the links that bridge the communities (inter-
community links or weak ties). The former exercise a local influence on the diffusion pro-
cess (i.e., at the community level), while the latter have a global influence (at the network
level). Therefore, we believe that these two types of links should be treated differently. In-
deed, the intra-community links contribute to the diffusion in localized densely connected
areas of the networks, while the inter-community links allow the propagation to remote
areas of the network. Suppose that an epidemic starts in a community, as it is highly con-
nected, the intra-community links will tend to confine the epidemic inside the commu-
nity, while the inter-community links will tend to propagate it to the other communities.
As their role is quite different, we propose to represent the centrality of modular networks
by a two-dimensional vector where the first component quantifies the intra-community
(or local) influence and the second component quantifies the inter-community (or global)
influence of each individual node in the network. To compute these components, we need
to split the original network into a local and global network. The local network is obtained
by removing all the inter-community links from the original network. The global network
is obtained by removing all the intra-community links from the original network. Note
that if the original network is made of a single connected component the global and lo-
cal networks split into many connected components. Therefore, care must be taken to
adapt the centrality definition to networks with multiple components. In the following,
we restrict our attention to non-overlapping community structure (i.e. a node belongs to
a single community). Furthermore, we consider undirected and unweighted networks for
the sake of simplicity, but results can be easily extended to more general situations.

The proposed approach can be summarized as follows:
• Choose a standard centrality measure.
• Compute the local network by removing all the inter-community links from the

modular network.
• Compute the Local component of the Modular centrality using the standard centrality.
• Compute the global network by removing all the intra-community links from the

modular network.
• Compute the Global component of the Modular centrality using the standard

centrality.
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As nodes need to be ranked according to their centrality values, it is necessary to adopt a
strategy based on a combination of the two components of the Modular centrality. Various
strategies, that include different levels of information about the community structure, may
be used. As our main concern, in this paper, is to highlight the multidimensional nature of
centrality in modular networks rather than devising optimal ranking methods, elementary
strategies are evaluated. Two straightforward combination strategies (the modulus and the
tangent of the argument of the Modular centrality) and a weighted linear combination of
the components of the Modular centrality are investigated.

Experiments are conducted on modular synthetic networks in order to better under-
stand the relative influence of the Local and Global component of the Modular central-
ity in the propagation process. Extensive comparisons with the standard centrality mea-
sures show that Modular centrality measures provide more accurate rankings. Simulations
on real-world networks of diverse nature have also been performed. As their community
structure is unknown, a community detection algorithm has been used. Results confirm
that node rankings based on the Modular centrality are more accurate in terms of the epi-
demic size than those made by the standard centrality measures which have been designed
for networks with no community structure.

The rest of the paper is organized as follows. Related modular-based measures are dis-
cussed in the next section. In Sect. 3, a general definition of the Modular centrality is given.
In this framework, we present the extensions to modular networks of the most influential
centrality measures (closeness, betweenness and eigenvector centrality). The experimen-
tal setting is described in Sect. 4. We report and analyze the results of the experiments
performed on both synthetic and real-world networks in Sect. 5. Finally, the main conclu-
sions are presented in Sect. 6.

2 Related works
Ranking the nodes according to their centrality constitutes the standard deterministic ap-
proach to uncover the most influential nodes in a network. These measures rely usually on
various network topological properties. However, the community structure of the network
is rarely taken into consideration. Few researchers have paid attention to this property en-
countered in many real-world networks [10–13, 17–23]. In this section, we give a brief
overview of the main deterministic methods that motivates our proposition.

a. Community centrality Newman proposed a slightly different formulation of the mod-
uloarity. The Community centrality [24] is derived from the eigenvectors of the modularity
matrix. Where the modularity matrix is divided into two projections. The first dimension
represents the positive eigenvectors of the modularity matrix while the second dimension
represents the negative ones. Thus, the modularity can be written in terms of these vectors
as follows:

Q =
c∑

k=1

|Xk|2 –
c∑

k=1

|Yk|2, (1)

where c is the number of communities. X and Y are the community eigenvectors in both
dimensions. The ith node in the community k is represented by two vectors xi and yi (the
ith rows of Xk and Yk respectively).
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The magnitude of a node vector |xi| specifies how central the node i is in its community
in terms of the number of connections. Thus, the node i has a large positive contribution
to the modularity when this measure is large. On the other hand, a higher value of |yi|
means that the node i has many connections to other nodes from foreign communities.
Therefore, the Community centrality is defined to be equal to the vector magnitude |xi|. It
measures the strength with which a given node i is assigned to its community. This mea-
sure was tested in the network of co-authorships between scientists. Results show that it is
not very correlated with the degree centrality. Moreover, some nodes with high Commu-
nity centrality measure have a relatively low degree. However, they have more connections
with nodes of their communities. Thus, nodes with high Community centrality value play
a central role in the spreading process in their local neighborhood.

b. Comm centrality N. Gupta et al. [25] proposed a degree-based centrality measure for
networks with non-overlapping community structure. It is based on a non-linear combi-
nation of the number of intra-community links and inter-community links. The goal is
to select nodes that are both hubs in their community and bridges between the commu-
nities. This measure gives more importance to community bridges. Indeed, the number
of inter-community links is raised to the power of two. The comparison has been per-
formed with deterministic and random immunization strategies using the SIR epidemic
model and both synthetic and real-world networks. Nodes are immunized sequentially
from each community in the decreasing order of their centrality value in their respective
community. The number of nodes to be removed from a community are kept proportional
to the community size. Results show that the Comm strategy is more effective or at least
works as well as Degree and Betweenness centrality while using only information at the
community level.

c. Number of neighboring communities centrality In a previous work [26], we proposed
to rank the nodes according to the number of neighboring communities that they reach
in one hop. The reason for selecting these nodes is that they are more likely to have a
big influence on nodes belonging to various communities. Simulation results on different
synthetic and real-world networks show that it outperforms Degree, Betweenness and
Comm centrality in term of the epidemic size in networks with a community structure of
medium strength (i.e. when the average number of intra-community links is of the same
order than the number of inter-community links).

d. Community Hub-Bridge centrality We also proposed the Community Hub-Bridge
centrality measure in [26]. It is based on the combination of the number of intra-
community links weighted by the size of the community and the inter-community links
weighted by the number of neighboring communities. This measure tends to select pref-
erentially nodes that can be considered as hubs inside large communities and bridges
having many connections with various neighboring communities. According to exper-
imental results, on both synthetic and real-world networks, this centrality measure is
particularly suited to networks with strong community structure (i.e., when there are few
inter-community links as compared to the number intra-community links). In this sit-
uation, it can identify effectively the most influential spreaders as compared to Degree,
Betweenness, Comm and the Number of Neighboring Communities centrality measures.
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A variation of this centrality measure called the Weighted Community Hub-Bridge cen-
trality has also been introduced. It is weighted such that, in networks with well-defined
community structure, more importance is given to bridges (inter-community links), while
in networks with weak community structure the hubs in the communities dominate. The
goal is to target the bridges or the hubs according to the community structure strength.
This measure has proved its efficiency as compared to the alternatives particularly in net-
works with weak community structure.

e. K-shell with community centrality Luo et al. proposed a variation of the K-shell de-
composition for modular networks [27]. They suggest that the intra-community and the
inter-community links should be considered separately in the K-core decomposition pro-
cess. Their method works as follows:

(i) After the removal of nodes with intra-community links, the K-shell decomposition
of the remaining nodes is computed. It is associated with an index of kW

core.
(ii) After the removal of nodes with inter-community links, the K-shell of the

remaining nodes is computed. It is associated with an index of kS
core.

(iii) A new measure is then calculated and assigned to each node based on the linear
combination of both kW

core and kS
core in order to find nodes that are at the same time

bridges and hubs located in the core of the network.
Experiments have been performed using SIR simulations on Facebook friendship net-
works at US Universities. Results show that this strategy is more efficient in term of the
epidemic size than the classical K-shell decomposition, the Degree and the Betweenness
centrality measures.

f. Global centrality In [28], M. Kitromilidis et al. propose to redefine the standard cen-
trality measures in order to characterize the influence of Western artist. Based on the idea
that influential artists have connections beyond their artistic movement, they propose
to define the centrality of modular networks by considering only the inter-community
links. In other words, an influential artist must be related to multiple communities, rather
than being strongly embedded in its own community. Considering a painter collaboration
network where edges between nodes represent biographical connections between artists,
they compared Betweenness and Closeness centrality measures with their classical ver-
sion. Results show that the correlation values between the standard and modified central-
ity measures are quite high. However, the modified centrality measures allow to highlight
influential nodes who might have been missed as they do not necessarily rank high in the
standard measures.

All these works suggest that it is of prime interest to disentangle the local influence
from the global influence in order to characterize a node centrality in modular networks.
Indeed, these complementary types of influence may carry very different meanings and
be more or less important in different situations. This is the reason why we propose to
exploit the mesoscopic granularity level in order to extend the definition of the central-
ity measures that are agnostic about the community structure to modular networks. We
propose to represent the centrality measures in modular networks as a two-dimensional
vector made of its Local and Global component. If needed, these two components can be
merged in a scalar value, but the combination can be made in multiple ways according to
complementary available information about the network nature and topological proper-
ties.
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3 Modular centrality
Our main objective is to take into account the community structure in order to identify
influential nodes. Indeed, in modular networks, a node has two types of influence: a local
influence which is linked to its community features and a global influence related to its in-
teractions with the other communities. Under this assumption, we provide a general defi-
nition of centrality in modular networks. We design a generic algorithm for computing the
centrality of a node under this general definition. The Modular centrality extension can be
naturally inferred from the various existing definitions of centrality designed for networks
without community structure. To illustrate this process, we give the modular extensions
of the most influential centrality measures (Betweenness, Closeness, and Eigenvector).

3.1 Definitions
3.1.1 Local component of the Modular centrality
Let’s consider a network denoted as G(V , E), where V = {v1, v2, . . . , vn} and E = {(vi, vj) \
vi, vj ∈ V } denotes respectively the set of vertices and edges. Its non-overlapping commu-
nity structure C is a partition into a set of communities C = {C1, . . . , Ck , . . . , Cm} where Ck is
the kth community and m is the number of communities. The local network Gl is formed
by the union of all the disjoint modules of the network Gl =

⋃m
k=1 Ck . These components

are obtained by removing all the inter-community links between modules from the orig-
inal network G. Each module represents a community Ck denoted as Ck(Vk , Ek). Where
Vk = {vk

i \ vi ∈ V } and Ek = {(vk1
i , vk2

j ) \ vi, vj ∈ V and k1 = k2}, while vk
i refers to any node vi

belonging to the community Ck .
For a selected centrality measure β , we define βL(vk

i ) as the Local centrality of the node
vi ∈ Vk . It is computed separately in each module Ck of the local graph Gl .

3.1.2 Global component of the Modular centrality
Let’s consider the network G(V , E), the global network Gg is formed by the union
of all the connected components of the graph that are obtained after removing all
the intra-community links from the original network G(V , E). Let’s suppose that S =
{S1, . . . , Sq, . . . , Sp} is the set of the revealed connected components and p = |C ′| is the size
of the set S , the global network is defined by Gg =

⋃p
q=1 Sq. Each component Sq is denoted

as Sq(Vq, Eq). Where Vq = {vq
i \ vi ∈ V } and Eq = {(vq1

i , vq2
j ) \ vi, vj ∈ V and q1 = q2}, while vq

i

refers to any node vi belonging to the component Sq. In this network, there may be some
isolated nodes (i.e., nodes that are not linked directly to another community). These nodes
are removed from Gg in order to obtain a trimmed network formed only by nodes linked
to different communities by one hop. Consequently, the set of nodes of Gg is defined then
by Vg = {vi ∈ V \ |N 1

vi
| �= 0}. Where N n

vi
is the neighborhood set of nodes reachable in n

hops. It is defined by N n
vi

= {vj ∈ V \ vi �= vj and dG(vi, vj) ≤ n}, dG is the geodesic distance.
For a selected centrality measure β , we define βG(vq

i ) as the Global centrality of the node
vi ∈ Vq. It is computed over each connected component Sq included in the global graph
Gg . Remember that the Global centrality measure of the removed isolated nodes is set to 0.

3.1.3 Modular centrality
It is a vector with two components. The first component quantifies the local influence
of the nodes in their own community through the local graph Gl , while the second com-
ponent measures the global influence of the nodes on the other communities through the
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connected components of the global graph Gg . The Modular centrality of a node vi is given
by:

BM(vi) =
(
βL

(
vk

i
)
,βG

(
vq

i
))

k ∈ {1, . . . , m} and q ∈ {1, . . . , p}, (2)

where βL and βG represent respectively the Local and Global centrality of the node vi.

3.2 Algorithm
The Modular centrality is computed as follows:

Step 1. Choose a standard centrality measure β .
Step 2. Remove all the inter-community links from the original network G to obtain the

set of communities C forming the local network Gl .
Step 3. Compute the Local measure βL for each node in its own community.
Step 4. Remove all the intra-community links from the original network to reveal the

set of connected components S formed by the inter-community links.
Step 5. Form the global network Gg based on the union of all the connected

component. Isolated nodes are removed from this network and their Global
centrality value is set to 0.

Step 6. Compute the Global measure βG of the nodes linking the communities based on
each component of the global network.

Step 7. Add βL and βG to the Modular centrality vector BM .
The pseudo-code of the algorithm to compute the Modular centrality is given in Algo-
rithm 1.

3.3 Modular extensions of standard centrality measures
In order to illustrate the process allowing to extend a given centrality defined for a network
without community structure to a modular network, we give as examples the modular
definitions of the Betweenness, Closeness and Eigenvector centrality.

3.3.1 Modular Betweeness centrality
The modular Betweeness centrality takes into account separately paths that start and finish
in the same community and those which starts and finish in different communities. For a
given node vi, it is represented by the following vector:

BM(vi) =
(
βL

(
vk

i
)
,βG

(
vq

i
))

k ∈ {1, . . . , m} and q ∈ {1, . . . , p}, (3)

where:

βL
(
vk

i
)

=
∑

vs ,vt∈Ck

σ l
st(vi)
σ l

st
, (4)

βG
(
vq

i
)

=
∑

vs ,vt∈Sq

σ
g
st(vi)
σ

g
st

(5)

βL measures the Betweenness centrality of nodes in their own community and βG mea-
sures the Betweenness centrality of nodes linking the communities. σ l

st and σ
g
st count the

number of shortest paths connecting nodes vs and vt based on the local and the global
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Algorithm 1: Generic computation of the Modular centrality
Input : Graph G(V , E), Centrality measure β

Output: A map M(node : centrality vector)

1 Remove all the inter-community links from G to form the local network Gl

2 Remove all the intra-community links from G to form the global network Gg

3 Create and initialize an empty map M(node : BM)
4 BM(vi) = (βL(vk

i ),βG(vq
i )) represent the centrality vector, where each node vi of the

network should be associated with its Local and Global value according to the
selected centrality measure β

5 for each Ck ⊂ Gl, where k ∈ {1, . . . , m} do

6 for each vk
i ∈ Vk do

7 Calculate βL(vk
i )

8 BM(vi).add(βL(vk
i ))

9 end
10 end

11 for each Sq ⊂ Gg , where q ∈ {1, . . . , p} do

12 for each vq
i ∈ Vq do

13 Calculate βG(vq
i )

14 BM(vi).add(βG(vq
i ))

15 end
16 end

17 for each vi ∈ V do

18 M.add(vi, BM(vi))
19 end

20 Return the map M

network respectively, while σ l
st(vi) and σ

g
st(vi) represent the number of shortest paths con-

necting nodes vs and vt and passing through vi in the local and the global network respec-
tively.

3.3.2 Modular Closeness centrality
Modular Closeness centrality considers separately the shortest distances of nodes origi-
nating from the same or from another community than the starting node vi. It is defined
as follows:

BM(vi) =
(
βL

(
vk

i
)
,βG

(
vq

i
))

k ∈ {1, . . . , m} and q ∈ {1, . . . , p}, (6)

where:

βL
(
vk

i
)

=
1

∑
vj∈Ck

dl
ij

, (7)
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βG
(
vq

i
)

=
1

∑
vj∈Sq dg

ij
(8)

βL and βG measure respectively the Local and Global component of the Modular Close-
ness centrality. dl

ij and dg
ij indicate the length of the geodesic from node vi to node vj based

on the local and the global network respectively.

3.3.3 Modular Eigenvector centrality
Modular Eigenvector takes into account separately both the number and the importance
of the neighbors belonging to the same community and those belonging to different com-
munities to measure its centrality. The community based Eigenvector of a node vi is de-
fined by the following vector:

BM(vi) =
(
βL

(
vk

i
)
,βG

(
vq

i
))

k ∈ {1, . . . , m} and q ∈ {1, . . . , p}, (9)

where:

βL
(
vk

i
)

=
1
λ

∑

vj∈Ck

aijβL
(
vk

j
)
, (10)

βG
(
vq

i
)

=
1
λ

∑

vj∈Sq

aijβL
(
vq

j
)

(11)

βL and βG measure respectively the Local and Global component of the Modular Eigen-
vector centrality. A = (ai,j) is the network adjacency matrix, i.e. ai,j = 1 if vertex vi is linked
to vertex vj, 0 otherwise, and λ is a constant.

3.4 Toy example
The toy example reported in Fig. 1 allows to illustrate the two types of influence that can
occur in a modular network. For the sake of simplicity, we consider the Degree centrality
measure (refer to Table 1). In this case, v4 and v11 are the most influential nodes as they
have the highest degree value (β(v11) = β(v4) = 7). Even though they share the same degree
value the influence they have on the other nodes of the network is not comparable. Indeed,
their position in the network is quite different: v11 is embedded in its community, while
v4 is at the border of its community. Inspecting the local and global networks give us a
clear picture of their differences. As shown in the local network Gl , node v11 is the most
influential at the community level since it is linked to all the of nodes of its community
(βL(v2

11) = 7), while v4 is only linked to 3 nodes of its community (βL(v1
4) = 3). Actually,

Figure 1 A toy example representing the Local network (Gl ) and the Global network (Gg) associated to a
modular network (G) made of four non-overlapping communities
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Table 1 Standard Degree centrality, Global and Local Component of the Modular Degree Centrality
of the nodes in the toy example

Node ID 4 11 18 22 1 2 3 16 5 7 8

β 7 7 5 5 4 4 4 4 3 3 3
βL 3 7 3 3 4 2 4 2 3 2 3
βG 4 0 2 2 0 2 0 2 0 1 0

Node ID 9 10 14 15 17 19 21 6 12 20 13

β 3 3 3 3 3 3 3 2 2 2 1
βL 2 3 2 3 3 3 3 1 2 2 1
βG 1 0 1 0 0 0 0 1 0 0 0

both nodes v1 and v3 are more influential than node v4 in the community C1 with their
higher Local Degree values. Looking at the Global network Gg , it appears clearly than node
v4 is the most influential node at the network level since it is connected to 4 nodes inside its
component (βG(v1

4) = 4). These nodes belong to all the other communities of the network
(C1, C2 and C3). Therefore, v4 is more influential than node v11 in the global network Gg

because of its ability to reach the different modules of the network as compared to v11

which is influential only locally (in the community C2).
To sum up, it can be noticed from this example that when we consider the Degree cen-

trality, the community hubs are the most influential spreaders locally due to their ability
to reach a high number of nodes in their own communities. The bridges which are linked
to various communities are the most influential spreaders globally as they allow to reach
a high number of communities all over the network.

3.5 Modular centrality ranking strategies
In order to rank the nodes according to their centrality, it is necessary to derive a scalar
value from the Modular centrality vector. To do so, we can proceed in many different
ways. In order to highlight the essential features of centrality in modular networks, we
choose to consider three strategies. The first two are straightforward. Indeed, a simple
way to combine the components of the Modular centrality is to use the modulus and the
argument of this vector. The third strategy uses more information about the community
structure in order to see if this can be beneficial.

The modulus r of the modular vector BM of a node vi is defined by:

r(vi) =
∥∥BM(vi)

∥∥ =
√(

βL
(
vk

i
))2 +

(
βG

(
vq

i
))2 k ∈ {1, . . . , m} and q ∈ {1, . . . , p} (12)

The argument ϕ of the modular vector BM of a node vi is defined as follows:

ϕ(vi) = arctan

(
βG(vq

i )
βL(vk

i )

)
k ∈ {1, . . . , m} and q ∈ {1, . . . , p} (13)

We propose to use the tangent of the argument because it has a higher range than the
argument. It is defined by:

tan
(
ϕ(vi)

)
=

βG(vq
i )

βL(vk
i )

k ∈ {1, . . . , m} and q ∈ {1, . . . , p} (14)
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Note that in these ranking strategies the information used about the community struc-
ture is very limited. As we expect that integrating more knowledge about the community
structure in the combination strategy of the Modular centrality components may improve
the efficiency of the ranking method, we also investigate the so-called “Weighted Modular
measure”. It is based on a linear combination of the components of the Modular centrality
vector weighted by a measure of the strength of the communities.

The Weighted Modular measure αW of a node vi is given by:

αW (vi) = (1 – μCk ) ∗ βL
(
vk

i
)

+ μCk ∗ βG
(
vq

i
)
, (15)

where k ∈ {1, . . . , m}, q ∈ {1, . . . , p} and:

μCk =
∑

vi∈Ck
kinter(vk

i )
∑

vi∈Ck
k(vk

i )
, (16)

where μCk is the fraction of inter-community links of the community Ck .
kinter(vk

i ) is the number of inter-community links of node vk
i and k(vi) is the degree of

node vk
i .

The Weighted Modular measure works as follows:
• A community Ck , where the intra-community links predominate is densely connected

and therefore it has a very well-defined community structure. If an epidemic starts in
such a cohesive community, it has more chance to stay confined than to propagate
through the few links that allows to reach the other communities of the network. In
this case, priority must be given to local immunization. Consequently, more weight is
given to the Local component of the Modular centrality βL to target the most
influential nodes in the community since it is well separated from the other
communities of the network.

• A community Ck where the inter-community links predominate has a non-cohesive
community structure. It is more likely that an epidemic starting in this community
diffuses to the other communities through the many links that it shares with the other
communities. Consequently, more weight is given to the Global component of the
Modular centrality measure βG in order to target nodes that can propagate the
epidemic more easily all over the network due to the loose community structure of Ck .

4 Experimental setting
In this section, we give some information about the synthetic and real-world dataset used
in the empirical evaluation of the centrality measures. The SIR simulation process is re-
called, together with the measure of performance used in the experiments.

4.1 Dataset
4.1.1 Synthetic networks
In order to generate artificial modular networks with controlled topological properties,
the LFR benchmark is used [29]. It allows generating small-world networks with a power-
law distributed degree and community size. The input parameters of the model are the
number of nodes, the desired average and maximum degree, the exponents for the degree
and the community size distributions, and the mixing coefficient. The mixing coefficient
parameter μ value ranges from 0 to 1. It represents the average proportion of links be-
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Table 2 LFR network parameters

Number of nodes 4000
Average degree 7
Maximum degree 80
Exponent for the degree distribution 2.8
Exponent for the community size distribution 2
Mixing parameter 0.1, 0.4, 0.7
Community size range [15 200]

tween a node and the ones located outside of its community. This parameter allows for
controlling the strength of the community structure. If its value is low, there are few links
between the communities and they are well separated from each other. In the following,
we designate this situation as “well-defined community structure”. A high value of μ in-
dicates a very loose community structure. Indeed, in this case, a node shares more links
with nodes outside its community than with nodes inside its community. With μ values
ranging from 0.2 to 0.45, the community structure is referred as “community structure
with medium cohesiveness”. Experimental studies have shown that typical value of the de-
gree distribution exponent in real-world networks varies in the range 2 ≤ γ ≤ 3. Networks
can have different size going from tens to millions of nodes. In addition, it is also difficult
to characterize the average and the maximal degree since they are very variable. Conse-
quently, we choose for these parameters some consensual values while considering also
the computational aspect of the simulations. They are reported in Table 2.

4.1.2 Real-world networks
Although the LFR model produces pretty realistic networks, uncontrolled properties such
as transitivity and degree correlation can deviate significantly from those observed in real-
world networks [30]. Therefore, it is necessary to use real-world networks in the evaluation
process. In order to cover a wide range of situations, we selected networks from various
origin: online social networks, collaboration networks, technological networks, commu-
nication networks. All networks are undirected and unweighted. Experiments are per-
formed on their largest connected component. The Louvain Algorithm is used to unveil
the community structure of these networks. We choose this greedy optimization method
for its simplicity. Furthermore, this popular algorithm has proved to be a good compro-
mise between efficiency and complexity when used in many different types of networks
[31, 32].

– Social networks: Four Samples of the Facebook Network are used. The ego-Facebook
network collected from survey participants using the Facebook app. [33] and the
Facebook friendship network at 3 US universities (Caltech, Princeton, Georgetown)
collected by Traud et al. [34]. Nodes represent individuals (survey participant or
members of the University), and edges represent online friendship links between two
individuals. In the University network, in order to obtain data that are relevant for the
spread of epidemic infections, only the relationship of individuals who live in the
same dormitory or study the same major are considered.

– Communication network: The Email-Eu-corea network has been generated using
email data from a large European research institution. The dataset contains only
communication between institution members. Each node corresponds to an email
address and an edge is established between two nodes u and v, if at least one email
has been exchanged between address u and address v.
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Table 3 Description of the structural properties of the real-world networks. N is the total numbers of
nodes, E is the number of edges. 〈k〉, kmax are respectively the average and the max degree. C is the
average clustering coefficient. αth is the epidemic threshold of the network

Network N E 〈k〉 kmax C αth

ego-Facebook 4039 88,234 43.69 1045 0.605 0.009
Caltech 620 7255 43.31 248 0.443 0.012
Princeton 5112 28,684 88.93 628 0.298 0.006
Georgetown 7423 162,982 90.42 1235 0.268 0.006
Email-Eu-core 986 25,552 33.24 347 0.399 0.013
Power-grid 4941 6594 2.66 19 0.107 0.092
CR-QC 4158 13,428 5.53 81 0.529 0.059

– Technological network: Power-Gridb is a network containing information about the
topology of the Western States Power Grid of the United States. An edge represents a
power supply line. A node is either a generator, a transformer or a substation.

– Collaboration network: GR-QCa (General Relativity and Quantum Cosmology)
collaboration network has been collected from the e-print arXiv and covers scientific
collaborations between authors of papers submitted to the General Relativity and
Quantum Cosmology category. If an author i co-authored a paper with author j, the
graph contains an edge from i to j. If the paper is co-authored by k authors this
generates a completely connected (sub)graph on k nodes.

The basic topological properties of these networks are given in Table 3.

4.2 SIR simulations
To evaluate the efficiency of the centrality measures, we consider an epidemic spreading
scenario using the Susceptible-Infected-Recovered (SIR) model [35]. In this setting, nodes
can be classified into three classes: S (Susceptible), I (Infected) and R (Recovered). Initially,
all nodes are set as susceptible nodes. Then, a given fraction f0 of the top-ranked nodes
according to the centrality measure under test are set to the state infected. After this ini-
tial setup, at each iteration, each infected node affects one of its susceptible neighbors
with probability α. Besides, the infected nodes turn into recovered nodes with the recover
probability σ . To better characterize the spreading capability, the value of the transmission
rate α is chosen to be greater than the network epidemic threshold αth given by [36]:

αth =
〈k〉

〈k2〉 – 〈k〉 , (17)

where 〈k〉 and 〈k2〉 are respectively the first and second moments of the degree distribu-
tion. The epidemic threshold values αth for the networks used in this study are reported
in Table 3. In all the experiments, we use the same value of the transmission rate (α = 0.1).
Naturally, it is much larger than the values of the epidemic threshold αth of all the dataset.
The value of the recovery probability is also constant (σ = 0.1). We choose this small value
so that each infected node may have many chances to infect its neighbors with the proba-
bility of α before changing to the recovered status. The process continues until there is no
more infected node in the network. Finally, when the spreading process stops, the num-
ber of nodes in the state “Recovered” R is used to measure the spreading efficiency of the
fraction of the initially infected nodes. The larger the value of R, the more influential the
initially selected nodes. To ensure the effectiveness of the evaluation process, the results
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Algorithm 2: Decription of the SIR simulation process
Input : Graph G(V , E),

Centrality measure: β ,
Fraction of the initial spreaders: f0,
Transmission rate: α,
Recovery rate: σ ,
The number of simulations: n

Output: The average number of the recovered nodes after the SIR simulations: rav,
The standard deviation: rdev

1 Rank the nodes according to the centrality measure β

2 Set all nodes as susceptible nodes
3 Compute nI the number of initially infected nodes: nI ← card(V ) ∗ f0

4 Select nI of the top-ranked nodes and change their state to the infected state
5 Add the initially infected nodes to the infected list L_Infected
6 Initialize the list of the numbers of recovered nodes nR obtained after each

simulation: L_nbrR ← EmptyList()
7 for counter from 0 to n do
8 nR ← 0

9 while L_Infected �= Null do

10 Select one infected node v from the infected list L_Infected
11 for each node v′ neighbor of v do

12 if v′ is susceptible then

13 With a probability α set the node v′ as infected
14 L_Infected.add(v′)
15 end

16 else
17 With a probability σ set the node v′ as recovered
18 L_Infected.remove(v′)
19 nR ← nR + 1
20 end

21 end
22 end
23 nR ← nR – nI

24 L_nbrR.add(nR)
25 end

26 Compute the average number rav and the standard deviation rdev of the recovered
nodes over the n simulations based on the list L_nbrR

27 Return rav, rdev

of the SIR simulations are averaged over 200 independent realizations. A more detailed
description of the SIR simulation process is given in Algorithm 2.
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4.3 Evaluation criteria
In order to compare the ranking efficiency of a centrality measure with the one obtained
by a reference centrality measure, we compute the relative difference of the outbreak size.
It is given by:

�r =
Rm – Rs

Rs
, (18)

where Rm is the final number of recovered nodes of the ranking method under test, and
Rs is the final number of recovered nodes for the reference method. Thus, a positive value
of �r indicates a higher efficiency of the method under test as compared to the reference.

5 Experimental results
Extensive experiments have been performed in order to evaluate the effectiveness of the
most popular Modular centrality extensions (Degree, Betweenness, Closeness and Eigen-
vector centrality) as compared to their standard definition. First, the Local and Global
component of the various Modular centrality measures is compared to their standard
counterpart. Next, the three ranking methods based on the combination of the compo-
nents of the Modular centrality are also evaluated. These experiments are conducted on
both synthetic and real-world networks.

5.1 Synthetic networks
Networks with different mixing parameter values have been generated in order to better
understand the effect of the community structure strength on the performance of the var-
ious centrality measures. Figure 2 represents the relative difference of the outbreak size as
a function of the fraction of immunized nodes with the standard measure used as a refer-
ence. The mixing parameter values μ cover all the range of community structure strength.

5.1.1 Evaluation of the local and the global component of the Modular centrality
a. Well-defined community structure In networks with well-defined community struc-
ture, the Local component of the Modular centrality always outperforms the standard
measures for all the centrality measures as it is shown in the left panels of the Fig. 2 (when
μ = 0.1). The gain is around 20% as compared to the standard measure for Closeness, De-
gree and Eigenvector centrality. The smallest gain is for Betweenness centrality with an
average value of 10%. On the contrary, the Global component of the Modular centrality is
always less performing than the standard measures. These results clearly demonstrate that
it is more efficient to immunize the influential nodes inside the communities when there
are few inter-community links in the networks. Indeed, as there are few inter-community
edges, the infection may die out before reaching other communities. So, the local influ-
ence of nodes is more important than global influence in networks with strong community
structure.

b. Community structure with medium cohesiveness The middle panels of Fig. 2 show the
performance of the various ranking methods in networks with community structure of
medium strength (μ = 0.4). In this case, both the Global and Local components of the
Modular centrality are always more efficient than the standard centrality. The gain in per-
formances of the Global component of the Modular centrality is always greater than for the
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Figure 2 The relative difference of the outbreak size �r as a function of the fraction of the initial spreaders f0
for Synthetic networks. The Degree (a), Betweenness (b), Closeness (c) and Eigenvector (d) centrality
measures derived from the Modular centrality are compared to the standard counterpart designed for
networks with no community structure. Networks are generated using the LFR algorithm with various μ

values. For each μ value, five sample networks are generated. The final epidemic sizes are obtained by
averaging 200 SIR model simulations per network for each initial spreading coverage value. Positive �r value
means higher efficiency of the measure under test as compared to the standard centrality

Local component. Indeed, the Global component outperforms the standard measure with
a Gain around 12% for Betweenness, Closeness and Eigenvector centrality. The largest
gain is for the Degree centrality with an average value of 17%. The Local component of
the Modular centrality performs better than the standard measure with a gain around 5%
for Betweenness, Closeness and Eigenvector centrality and around 12% for Degree cen-
trality. These results send a clear message: In networks with medium community structure
strength, the global influence is more important than the local influence. Indeed, with a
greater number of inter-community links, there are more options to spread the epidemics
to the other communities of the network.

c. Loose community structure The right panel of Fig. 2 reports the comparison between
the Modular centrality and the traditional centrality measures in networks with non-
cohesive community structure (μ = 0.7). It appears that the relative difference of the out-
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break size between the Global component of the Modular centrality and the standard cen-
trality is always positive while it is always negative for the Local component of the Modular
centrality. And this is true for all the centrality measures under test. In fact, there is a gain
of around 5% using the Global component of the Modular centrality, while the Local com-
ponent performs worse than the traditional measure with an average of 5% for the Degree,
Betweenness, Closeness and Eigenvector centrality measures. Consequently, we can con-
clude that in networks with a loose community structure the global influence is dominant,
even if the difference with the standard measure is not as important than for networks with
a medium community structure. Indeed, in this situation (μ = 0.7), the inter-community
edges constitute the majority of edges in the network (around 70% of links lie between the
communities). In fact, as the community structure is not well defined, minor differences
are observed with a network that has no community structure.

5.1.2 Evaluation of the ranking methods of the Modular centrality
Figure 2 reports also the relative difference of the outbreak size �r as a function of the
fraction of the initial spreaders f0 for the three ranking methods (Modulus and Tangent of
the argument of the Modular centrality, Weighted Modular measure) and for the various
centrality measure and community structure strength under study. The first observation
that can be made from these results is that combining the components of the Modular cen-
trality is always more efficient than using either a single component or the conventional
centrality. This remark holds for all the centrality measures studied and whatever the com-
munity structure strength. Additionally, the ranking of the three combination methods in
terms of efficiency is always the same. The Weighted Modular measure ranks first. It is fol-
lowed by the Modulus and then the Tangent of the argument of the Modular centrality. We
believe that it is due to the fact that the Weighted Modular measure uses more information
about the topology of the community structure than its alternatives. Indeed, the weights
introduced in this measure allow tuning locally the relative importance of the Local and
Global component for each community in the network. Thus, the Weighted Modular mea-
sure can adapt to the structure of each community in the network. As a result, it is more
efficient than the other proposed ranking methods. One of the main benefits of this result
is to highlight the fact that significant gains can result from improving the way the Local
and Global component are combined and that there may be still room for improvement
in this direction. In other words, even more effective measures can be obtained if relevant
additional information about the community structure is used. Furthermore, it is noticed
that the ranking strategies show their best performance in networks with a well-defined
community structure. For instance, The Modulus of the Modular centrality outperforms
the standard measure with a gain, on average, of 40% in networks with strong community
structure, 25% in networks with community structure of medium strength and 20% in net-
works with unclear community structure for all the centrality measures. For the Weighted
Modular measure, the gain is around 42% in networks with strong community structure,
29% in networks with community structure of medium strength and 25% in networks with
unclear community structure for all the centrality measures. The gain, therefore, decreases
as the community structure becomes more and more loose. The reason behind that be-
havior is that the Local centrality is typical of networks with a community structure while
the Global centrality is also a feature of networks with no community structure. As the
mixing proportion increases, the differences with networks without community structure
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become less and less important. Indeed, the global network size increases until it tends
to represent the major part of the original network. In the limiting case, it is a network
with no community structure and the Modular centrality reduces to its Global compo-
nent which is identical to the classical centrality measures.

5.2 Real-world networks
In this section, we report the results of the set of experiments on real-world networks.
Experiments performed with synthetic networks have shown that the community struc-
ture strength plays a major role in determining the performance of the various centrality
measures. Therefore, we adopt the same presentation for real-world networks in order to
link the results of this set of experiments with those obtained using synthetic networks.
Once the community structure has been uncovered using the Louvain algorithm, the mix-
ing proportion parameter is computed for each network. Estimated values are reported in
Table 4. According to these results, we can classify the ego-Facebook network, Power Grid
and the ca-GrQc as networks with strong community structure. Princeton, Email-Eu-core
and Caltech have a community structure of medium strength while Princeton has a weak
community structure.

5.2.1 Evaluation of the local and global component of the Modular centrality
a. Well-defined community structure The relative difference of the outbreak size between
the community-based measures and the standard measure is reported in Fig. 3. To evaluate
their performances in networks with strong community structure, ego-Facebook, power
grid and the ca-GrQc networks are used. For these networks, the estimated mixing pa-
rameter value ranges from 0.03 to 0.095. In this figure, we notice that for all the central-
ity measures under test the standard measure outperforms the Global component of the
Modular centrality while it is less performing that its Local component. Let’s consider for
example the Betweenness centrality. With a fraction of the initial spreaders equal to 8%,
the gain in terms of the outbreak size for the Local component of the Modular centrality
as compared to the standard Betweenness is 19% for the ego-Facebook network, 14% for
Power-Grid and 9% for ca-QrGc. Conversely, in the same situation, the loss associated
with the use of the Global component of the Modular centrality instead of the standard
Betweenness ranges from 4% to 11%.

In these networks, communities are densely connected and there are few links lying
between the communities. Therefore, in most cases, contagious areas are found in the
core of the communities and the spread of the epidemic may stop before even reaching
the community perimeter. Thus, there is a low probability that a bridge (inter-community
link) propagates the epidemic to the other communities. This is the reason why the Local

Table 4 The estimated mixing parameter μ and modularity Q of the real-world networks

Network ego-Facebook Power-grid ca-GrQc Princeton

μ 0.03 0.034 0.095 0.354
Q 0.834 0.934 0.86 0.753

Network Email-Eu-core Caltech Georgetown

μ 0.42 0.448 0.522
Q 0.569 0.788 0.662
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Figure 3 The relative difference of the outbreak size �r as a function of the fraction of initial spreaders f0. The
Degree (a), Betweenness (b), Closeness (c) and Eigenvector (d) centrality measures derived from the Modular
centrality are compared to the standard counterpart designed for networks with no community structure.
Real-world networks with strong community structure (ego-Facebook, Power-Grid and ca-GrQc networks) are
used. The estimated values of their mixing coefficient is equal respectively to 0.03, 0.034 and 0.095

component of the Modular centrality performs always better than the Global component.
Furthermore, we can also notice on Fig. 3 that when the mixing parameter value increases
(i.e., the community structure gets weaker), the Local component of the Modular central-
ity gets less efficient while the Global component performs better. This is due to the fact
that the Global component increases with the number of inter-community links.

b. Community structure with medium cohesiveness Figure 4 shows the relative difference
of the epidemic outbreak size between the community-based measures and the standard
centrality measure for real-world networks with medium community structure strength.
For that purpose, Princeton, Email-Eu-core and Caltech networks are used since their esti-
mated mixing parameter values range from 0.354 to 0.448. Results are very clear. In all the
situations, both the Local and the Global component of the Modular centrality measures
outperform the standard centrality measure. In addition, there is still a slight advantage
for the Global component on the Local component. To set these ideas on a simple ex-
ample, let us consider the Betweenness centrality with an initial fraction of infected nodes
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Figure 4 The relative difference of the outbreak size �r as a function of the fraction of initial spreaders f0. The
Degree (a), Betweenness (b), Closeness (c) and Eigenvector (d) centrality measures derived from the Modular
centrality are compared to the standard counterpart designed for networks with no community structure.
Real-world networks with medium community structure (Princeton, Email-Eu-core and Caltech) are used. The
estimated values of their mixing coefficient is equal respectively to 0.354, 0.42 and 0.44

equal to 8%. The Global component of the modular Betweenness measure is more efficient
than the traditional Betweenness with a gain of 12% for the Princeton, 13% for Email-Eu-
core and 15% for the Caltech network. These figures need to be compared to a gain of
8% for Princeton, 7% for Email-Eu-core and 3% for Caltech using the Local component
of the Modular Betweenness instead of the classical Betweenness centrality. One can also
notice that the gap between their respective performance gets bigger as the value of the
mixing parameter increases. Indeed, as the community structure gets weaker, the relative
influence of the Global component of the Modular centrality becomes more and more im-
portant. In these networks, nodes have approximately as many internal links as there are
external links. Therefore, the epidemic can spreads easily to all the communities in the
network through the large number of inter-community links. This is the reason why the
Global component of the Modular centrality outperforms always the Local component.
In addition to that, the community structure of the network is still well preserved, which
explains that the Modular centrality is more efficient than the classical centrality.
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Figure 5 The relative difference of the outbreak size �r as a function of the fraction of initial spreaders f0. The
Degree (a), Betweenness (b), Closeness (c) and Eigenvector (d) centrality measures derived from the Modular
centrality are compared to the standard counterpart designed for networks with no community structure.
A real-world networks with weak community structure (Georgetown) is used. The estimated value of its
mixing coefficient is equal to 0.522

c. Loose community structure Figure 5 shows the relative difference of the epidemic out-
break size between the modular based centrality measures and the standard centrality for
the Georgetown network. With a mixing parameter value equal to 0.522, this network is
classified as a network with a weak community structure. In all circumstances, the stan-
dard measure performs better than the Local component of the Modular centrality and
it performs worse than its Global component. On average, there is a gain of around 10%
for the Global component compared to a loss of 5% for the Local component of the four
centrality measures under test. In this type of networks, the inter-community links pre-
dominate, which translates into a greater influence of the Global component of the Mod-
ular centrality. Indeed, the epidemic can spread more easily into the various communities
of the network through the big amount of external links. Additionally, we notice that the
relative difference of the outbreak size between the Global component of the Modular
centrality measure and the standard measure decreases as compared to networks with a
medium community structure. Indeed, there are less and less topological differences be-
tween networks with a weak community structure and networks that have no community
structure as the value of the mixing parameter increases.

5.2.2 Evaluation of the ranking methods of the Modular centrality
Figures 3 to 5 report also the relative difference of the epidemic outbreak size between the
Modular centrality ranking methods and the standard centrality measures. The results are
clear evidence of the efficiency of the Modular centrality. Whatever the ranking strategy of
the Modular centrality adopted, it outperforms in all the situations the Local and Global
component of the Modular centrality and the classical centrality. The improvements in
terms of performance compared to classical centrality are quite significant. For instance,
with a fraction of initial spreaders equal to 8%, the modulus of the Betweenness Modular
centrality allows a gain of 45% on the ego-Facebook network, 28% on Princeton and 24%
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on Georgetown. As the ranking strategies use both the local and the global information
of each node, they are more efficient than measures relying on either local or global infor-
mation taken separately. Furthermore, the Weighted Modular measure is usually the most
efficient measure in most cases. It uses the fraction of inter-community links as additional
information to target the most influential spreaders in each community. It can give more
or less weight to the Local and the Global component according to the individual com-
munity structure strength. This explains its superiority over the other ranking measures.
To summarize, these experiments reveal that combining the components of the Modular
centrality, allows designing efficient ranking methods. In addition, using more relevant in-
formation about the community structure at the community level allows designing even
more efficient ranking methods. Moreover, the ranking measures exhibit their best results
in networks with strong community structure.

5.2.3 Comparisons with the alternative measures
Figure 6 shows the average fraction of the epidemic size versus the proportion of the ini-
tial spreaders for the Modular centrality components and their standard counterparts.
The performance of the alternative Modular centrality measures presented in the related
work section is also reported in this figure (i.e., Comm centrality, Number of Neighboring
Communities NNC and Community Hub-Bridge centrality CHB). The figures report the
results for the Power-grid network in (a) and the Georgetown network in (b). The former
has a well-defined community structure while the latter one has a loose community struc-
ture. For both networks in Fig. 6(a) and (b) and for all the tested measures, one can see
that increasing the proportion of the initial spreaders, the epidemic size increases as well.
However, this evolution is slower in Power-grid as compared to Georgetown. Indeed, be-
cause of its well-separated modules, the epidemics cannot move easily from one module
to another in Power-grid.

Overall, the Betweenness-based centralities (Local, Global, Weighted Modular central-
ity, Standard Betweenness) outperforms all the other alternatives. Note that, even the stan-
dard Betweenness centrality is more efficient than the other alternatives. This result is
independent of the community structure strength. In networks with a well-defined com-
munity structure (i.e., Power-grid network), one can see on Fig. 6(a) that the Eigenvector-
based centralities are just below, followed by the Degree-based centralities. The lowest
performance is obtained by the Closeness-based centrality measures. The Comm and
Number of Neighboring Communities exhibit a lower efficiency as compared to the three
versions (Standard, Local and Weighted Modular measures) of the four previous central-
ities. Their performance is, however, as good as the Global measures with slightly higher
performance for the NNC measure. These two methods tend to target bridge nodes that
have a high global influence in the network. This is the reason why they perform at the
same level as global measures. Furthermore, the Community Hub-Bridge measure has
globally the same performance as the Weighted Modular Betweenness. As this central-
ity incorporates both local and global influence of nodes it performs better than most of
the other measures. This corroborates the fact that both dimensions must be taken into
account in order to design a centrality measure in modular networks.

In networks with a loose community structure (i.e., Georgetown network), one can no-
tice from Fig. 6(b) that the ranks of the centrality measures in terms of efficiency are differ-
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Figure 6 The epidemic size as a function of the fraction of initial spreaders f0. The standard and the modular
variations of Degree, Betweenness, Closeness and Eigenvector centrality measures as well as some alternative
measures (i.e., Comm, Number of Neighboring Communities and Community Hub-Bridge) are tested on two
real-world networks of different community structure strength

ent. The Betweenness-based measures still rank first, the Degree-based centralities are the
second best-performing measures followed by the Closeness and the Eigenvector-based
centrality measures. In this type of networks, the Comm and the Number of Neighbor-
ing Communities perform better than the Local and the standard centrality measures.
Their performance is as good as the Global measures since they highlight also nodes
with high global influence. These nodes can play a major role in the spreading process
in networks with non-cohesive community structure. This is due to the large amount
of inter-community links. Hence the higher performance of these two community-based
measures. Additionally, the curves of the Community Hub-Bridge centrality are usually
at the top of all the figures. Thus, it is as expected more efficient than the standard and
the Modular centrality components of all the tested centralities. It has an overall similar
performance that most Weighted Modular measures (Degree, Closeness, Eigenvector),
except the Weighted Modular Betweenness which performs better. Both of them targets
efficiently nodes with high local and global influence in the network.
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Table 5 The estimated mixing parameter μ and the modularity Q in Power-grid and Georgetown
networks

Network Metric Detection algorithm

Louvain Infomap

Power-grid μ 0.034 0.038
Q 0.92 0.93

Georgetown μ 0.522 0.491
Q 0.521 0.601

Figure 7 The relative difference of the outbreak size �r as a function of the fraction of initial spreaders f0. The
Degree and Betweenness centrality measures derived from the Modular centrality are compared to their
classical counterparts. The measures are performed on Power-grid network in (a) and Georgetown network
in (b) for the Infomap algorithm

5.2.4 Influence of the community detection algorithms
In this section, we report a set of experiments conducted on Power-grid and Georgetown
networks using the Infomap algorithm [37] instead of Louvain. These two real-world net-
works are chosen because of their different community structure strength. The Power-grid
network has a strong community structure while Georgetown network has a non-cohesive
community structure. The main purpose of these experiments is to get a clear picture of
the influence of the community detection algorithm on the performance of the Modular
centrality components. The estimated values of the proportion of inter-community links
and the modularity for both Infomap and Louvain algorithms are reported in Table 5.

Figure 7 illustrates the relative difference of the epidemic size between the Modular cen-
trality extensions (Degree and Betweenness centrality) with their classical counterparts. It
can be inferred from this figure, that the Local, Global and the combination-based meth-
ods exhibit overall the same behavior as in the case of the Louvain algorithm. In networks
with well-defined community structure (e.g., Power-grid network), the Local measure per-
forms always better than the classical one with an average gain of 23% and 20% for the
Degree and Betweenness centrality measures respectively. Whereas, the average gain is
around 20% and 19% in the case of Louvain algorithm for both centrality measures. The
standard measure, on the other hand, outperforms the Global measure for all the propor-
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tions of the initial seeds. Additionally, the overall gain of the Weighted Modular measure
is around 45% and 42% for Degree and Betweenness measures when using Infomap, while
it is around 40% for both centrality measures when Louvain algorithm is employed. Thus,
the Modular centrality extensions display a slightly better performance for the Infomap al-
gorithm. Indeed, Infomap and Louvain detection algorithms have nearly the same mixing
parameter and modularity measures. Therefore, in networks with a well-defined commu-
nity structure, both community detection algorithms uncover about the same community
structure. Consequently, the performance of the Modular centrality display roughly the
same behavior.

In networks with a loose community structure (e.g., Georgetown network), the stan-
dard measure is always better performing than the Local measure. The Global measure,
however, performs better than the Standard one with an average gain of 17% and 16%
for the Degree and Betweenness centrality measures respectively. Whereas the average
gain is around 11% in the case of Louvain algorithm for both centrality measures. On the
other hand, the overall gain of the Weighted Modular measure is around 29% and 25%
for Degree and Betweenness measures when using Infomap, while it is around 20% and
19% for both centrality measures respectively when Louvain algorithm is employed. In
this network, the Infomap algorithm has a relatively smaller mixing parameter and higher
modularity. Infomap is then more accurate as compared to Louvain algorithm. That ex-
plains why the performance of the Modular centrality components enhances in networks
with a non-cohesive community structure when the Infomap detection algorithm is used.

Globally, the results of this set of experiments show that variations of the uncovered
community structure impact the performance of the centrality measures. The efficiency
of the measures increases with the modularity of the community structure.

6 Conclusion
In this paper, we propose a general definition of centrality measures in networks with
non-overlapping community structure. It is based on the fact that the intra-community
and inter-community links should be considered differently. Indeed, the intra-community
edges contribute to the diffusion in localized densely connected areas of the network,
while the inter-community links allow the global propagation to the various communities
of the network. Therefore, we propose to represent the centrality of modular networks
by a two-dimensional vector, where the first component measures the local influence of
a node in its community and the second component quantifies its global influence on the
other communities. Based on this assumption, centrality measures defined for networks
with no-community structure can be easily extended to modular networks. Considering
the most influential centrality measures as typical examples, we defined their modular ex-
tension. Experiments based on an epidemic spreading scenario using both synthetic and
real-world networks have been conducted in order to better understand the influence of
the two components of the Modular centrality. First of all, results on synthetic and real-
world networks are quite consistent. It appears that the Local component is more effec-
tive in networks with a strong community structure while the Global component takes
the lead as the community structure gets weaker. Comparison with the classic centrality
always turns to the advantage of the Modular centrality. More precisely, in networks with
strong community structure, the Local component of the Modular centrality outperforms
the Global component and the standard centrality, while in networks with medium or
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weak community structure the Global component performs better than its alternatives.
Moreover, it is also observed that combining both components of the Modular centrality
in order to rank the nodes according to their influence is always more efficient than to use
a single component. Furthermore, a further gain can be obtained if the ranking strategy in-
corporates more information about community structure strength. We perform also a set
of experiments using the Infomap detection algorithm to uncover communities. Results
show that the performance of the Modular centrality variants exhibit the same behavior
in networks with a well-defined community structure. Their performance, however, is dif-
ferent in networks with a loose community structure. In this case, slightly better results
are obtained with the Infomap algorithm.
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