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G-BUNDLES, ISOMONODROMY AND

QUANTUM WEYL GROUPS

P. P. BOALCH

1. Introduction

It is now twenty years since Jimbo, Miwa and Ueno [23] generalised Schlesinger’s equa-

tions (governing isomonodromic deformations of logarithmic connections on vector bun-

dles over the Riemann sphere) to the case of connections with arbitrary order poles. An

interesting feature was that new deformation parameters arose: one may vary the ‘irreg-

ular type’ of the connections at each pole of order two or more (irregular pole), as well as

the pole positions. Indeed, for each irregular pole the fundamental group of the space of

deformation parameters was multiplied by a factor of

Pn = π1 (Cn \ diagonals) ,

where n is the rank of the vector bundles. (This factor arose because the connections

must be ‘generic’; the leading term at each irregular pole must have distinct eigenvalues.)

The motivation behind the first part of this paper is the question of how to generalise the

work of Jimbo, Miwa and Ueno (and also [8, 9]) to the case of meromorphic connections

on principal G-bundles for complex reductive groups G. For simple poles (Schlesinger’s

equations) this generalisation is immediate, but in general one needs to understand the

‘G-valued’ Stokes phenomenon in order to proceed (that is, one needs to understand the

local moduli of meromorphic connections on G-bundles). This will be done in Section 2.

Naturally enough a good theory is obtained provided the leading term at each irregular

pole is regular semisimple (that is, lies on the complement of the root hyperplanes in

some Cartan subalgebra). The main result of Section 2 is an irregular Riemann–Hilbert

correspondence describing the local moduli in terms of G-valued Stokes multipliers, and

is the natural generalisation of the result of Balser, Jurkat and Lutz [7] in the GLn(C)

case. The proof is necessarily quite different to that of [7] however.

In the rest of the paper we consider isomonodromic deformations of such connections

in the simplest case: that of connections with one order two pole over the unit disc. The

main things we will prove are: 1) That the classical actions of quantum Weyl groups found

by De Concini, Kac and Procesi [13] do arise from isomonodromy (and so have a purely

geometrical origin) and 2) That a certain flat connection appearing in work of DeConcini

and Toledano Laredo arises directly from the isomonodromy Hamiltonians, indicating that

the previous result is the classical analogue of their conjectural Kohno–Drinfeld theorem

for quantum Weyl groups.
1
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In more detail, in this ‘simplest case’ the fundamental group of the space of deformation

parameters is the generalised pure braid group associated to g = Lie(G):

Pg = π1(treg)

where treg is the regular subset of a Cartan subalgebra t ⊂ g. By considering isomon-

odromic deformations one obtains a nonlinear (Poisson) action of Pg as follows (this is

purely geometrical—as explained in [9] the author likes to think of isomonodromy as a

natural analogue of the Gauss–Manin connection in non-Abelian cohomology): There is a

moduli space M of generic (compatibly framed) meromorphic connections on G-bundles

over the unit disc and having order two poles over the origin (see Section 3 for full details).

Taking the leading coefficients (irregular types) at the pole gives a map M → treg which

in fact expresses M as a fibre bundle. Performing isomonodromic deformations of the

connections then amounts precisely to integrating a natural flat connection on this fibre

bundle (the isomonodromy connection). Thus, upon choosing a basepoint A0 ∈ treg, a

natural Pg action is obtained on the fibre M(A0), by taking the holonomy of the isomon-

odromy connection.

Now, in a previous paper [8], the author found that (for G = GLn(C)) the fibres

M(A0) are isomorphic to the Poisson Lie group G∗ dual to G (and that the natural

Poisson structures then coincide). The results of Section 2 enable this to be extended

easily to general G. Thus isomonodromy gives a natural (Poisson) Pg action on G∗.

On the other hand, in their work on representations of quantum groups at roots of unity,

DeConcini, Kac and Procesi [13] have written down explicitly a Poisson action of the full

braid group Bg = π1(treg/W ) on G∗. This was obtained by taking the classical limit of

the explicit Bg action—the ‘quantum Weyl group’ action—on the corresponding quantum

group, due to Lusztig [26] and independently Kirillov–Reshetikhin [24] and Soibelman [34].

In this paper it will be explained how to convert the fibre bundle M → treg into a bundle

M′ → treg/W with flat connection (and standard fibre G∗), by twisting by a finite group

(Tits’ extension of the Weyl group by an abelian group). Then the main result of Section

3 is:

Theorem. The holonomy action of the full braid group Bg = π1(treg/W ) on G∗ (obtained

by integrating the flat connection on M′) is the same as the Bg action on G∗ of De

Concini–Kac–Procesi [13].

Thus the geometrical origins of the quantum Weyl group actions are in the geometry of

meromorphic connections having order two poles.

In Section 4 a Hamiltonian description will be given of the equations governing the

isomonodromic deformations of Section 3. It will then be shown how this leads directly a

certain flat connection appearing in the recent paper [36] and featuring in the conjectural

‘Kohno–Drinfeld theorem for quantum Weyl groups’; see [36], where this conjecture is

explained—and proved for sln(C). The history of this given in [36] is a little complicated:

C. De Concini discovered the connection and conjecture in unpublished work around

1995. Next J. Millson and V. Toledano Laredo jointly rediscovered the connection. Then
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Toledano Laredo rediscovered the conjecture and found how to prove it for sln(C) by

translating it into the usual Kohno–Drinfeld theorem.

Our derivation of this connection of De Concini–Millson–Toledano Laredo (DMT) sug-

gests that the theorem of Section 3 here should be interpreted as the classical analogue

(for any g) of the aforementioned conjectural Kohno–Drinfeld theorem for quantum Weyl

groups. The background for this interpretation comes from the paper [29] of Reshetikhin

(and also [18, 4]). In [29] Reshetikhin explained how Knizhnik–Zamolodchikov type equa-

tions arise as deformations of the isomonodromy problem. Although poles of order two or

more are considered in [29], the extra deformation parameters are not considered and so

the braiding due to the irregular types did not appear. The derivation that will be given

here of the DMT connection amounts to the following statement. If the idea of [29] is

extended to deformations of the isomonodromy problem for connections on P1 with just

two poles (of orders one and two respectively) then the DMT connection arises, rather

than the Knizhnik–Zamolodchikov equations.

The organisation of this paper is as follows. Section 2 swiftly states all the required

results concerning the moduli of meromorphic connections on principal G-bundles, the

main proofs being deferred to an appendix. Section 3 then addresses isomonodromic

deformations and proves the main theorem stated above, relating quantum Weyl group

actions to meromorphic connections. Section 4 gives the Hamiltonian approach to the

isomonodromic deformations considered and shows how this leads directly to the DMT

connection. Appendix A gives the proofs for Section 2. Finally Appendix B explains how,

using the results of Section 2, one may extend to the current setting some closely related

theorems of a previous paper [8] showing that certain monodromy maps are Poisson.

Acknowledgements. I would like to thank B. Dubrovin and M.S. Narasimhan for many useful
conversations and B. Kostant for kindly supplying a proof of the fact that E8 has no nontriv-
ial multiplicity one representations. The work for this paper was supported by grants from
S.I.S.S.A., Trieste and the E.D.G.E. Research Training Network HPRN-CT-2000-00101.

2. G-valued Stokes Multipliers

Let G be a connected complex reductive Lie group. Fix a maximal torus T ⊂ G and let

t ⊂ g be the corresponding Lie algebras. Let R ⊂ t∗ be the roots of G relative to T , so

that as a vector space g = t ⊕
⊕

α∈R gα where gα ⊂ g is the one-dimensional subalgebra

of elements X ∈ g such that [H,X] = α(H)X for all H ∈ t.

Let A be a meromorphic connection on a principal G-bundle P → ∆ over the closed

unit disc ∆ ⊂ C, having a pole of order k ≥ 2 over the origin and no others. We

view A as a g-valued meromorphic one-form on P satisfying the usual conditions ([25]

p.64); in particular the vertical component of A is nonsingular. Upon choosing a global

section s : ∆ → P of P (which we may since every G-bundle over ∆ is trivial), A is

determined by the g-valued meromorphic one-form As := −s∗(A) on ∆. (The minus sign

is introduced here simply to agree with notation in the differential equations literature.)

In turn As = Ahdz/zk for a holomorphic map Ah : ∆ → g, where z is a fixed coordinate

on ∆ vanishing at 0.
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By a framing of P at 0 we mean a point s0 ∈ P0 of the fibre of P at 0. This determines

the leading coefficient A0 := Ah(0) ∈ g of A independently of the choice of a section

s through s0. The framed connection (P,A, s0) will be said to be compatibly framed if

A0 ∈ t. A compatibly framed connection is generic if A0 ∈ treg, i.e. if α(A0) 6= 0 for all

α ∈ R. Let G denote the group of holomorphic maps g : ∆ → G and let G[[z]] be the

completion at 0 of G.

Lemma 1. Let (P,A, s0) be a generic compatibly framed connection with leading co-

efficient A0. Choose a trivialisation s of P with s(0) = s0 and let As = −s∗(A) as

above. Then there is a unique formal transformation F̂ ∈ G[[z]] and unique elements

A0
0, . . . , A

0
k−2,Λ ∈ t such that F̂ (0) = 1, A0

0 = A0 and

F̂
[
A0

]
= As

where A0 := (A0
0/z

k + · · ·+A0
k−2/z

2 +Λ/z)dz and F̂ [A0] denotes the gauge action (which,

in any representation, is F̂A0F̂−1 + dF̂ F̂−1). Moreover changing the trivialisation does

not change A0, and changes F̂ to ĝ · F̂ where ĝ ∈ G[[z]] is the Taylor expansion of some

g ∈ G with g(0) = 1.

The proof will be given in the appendix. We will refer to A0 as the formal type of

(P,A, s0) and to Λ as the exponent of formal monodromy. The primary aim of this section

is to describe (in terms of Stokes multipliers) the set H(A0) of isomorphism classes of

generic compatibly framed connections on principal G-bundles over ∆ with a fixed formal

type A0:

H(A0) = {(P,A, s0)
∣∣ formal type A0 }/(isomorphism).

We remark that there are groups G for which this description cannot be reduced (for

any A0) to the GLn(C) case by choosing a representation G ⊂ GLn(C) (see Lemma 21).

Since each such principal bundle is trivial our task is equivalent to describing the quo-

tient {As
∣∣ F̂ [A0] = As for some F̂ ∈ G[[z]] with F̂ (0) = 1}/{g ∈ G

∣∣ g(0) = 1}. This will

involve ‘summing’ the (generally divergent) series F̂ on various sectors at 0, bounded by

‘anti-Stokes directions’ which are defined as follows.

Let the circle S1 parameterise rays (directed lines) emanating from 0 ∈ C. (Intrinsically

this can be thought of as the boundary circle of the real oriented blow-up of C at 0.) Note

that A0 = dQ+ Λdz/z where Q :=
∑k−1

j=1
zj−k

j−k
A0

j−1 and let q := 1
1−k

A0z
1−k be the leading

term of Q. Since A0 is regular, for each root α ∈ R, there is a non-zero complex number

cα such that α ◦ q = cαz
1−k.

Definition 2. The anti-Stokes directions A ⊂ S1 are the directions along which exp(α◦q)

decays most rapidly as z → 0, i.e. the directions along which α◦ q(z) is real and negative.

For k = 2 (which will be prominent in Section 3) A simply consists of the directions

from 0 to α(A0) for all α ∈ R. (In general A is just the inverse image under the k−1 fold

covering map z → zk−1 of the directions to the points of the set 〈A0,R〉 ⊂ C∗.) Clearly

A has π/(k− 1) rotational symmetry and so l := #A/(2k− 2) is an integer. We will refer

to an l-tuple d ⊂ A of consecutive anti-Stokes directions as a half-period.
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Definition 3. Let d ∈ A be an anti-Stokes direction.

• The roots R(d) of d are the roots α ∈ R ‘supporting’ d:

R(d) := {α ∈ R
∣∣ (α ◦ q)(z) ∈ R<0 for z along d}.

• The multiplicity of d is the number #R(d) of roots supporting d.

• The group of Stokes factors associated to d is the group

Stod(A
0) :=

∏

α∈R(d)

Uα ⊂ G

where Uα = exp(gα) ⊂ G is the one dimensional unipotent group associated to gα, and

the product is taken in any order.

• If d ⊂ A is a half-period then the group of Stokes multipliers associated to d is

Stod(A0) :=
∏

d∈d

Stod(A
0) ⊂ G.

To understand this we note the following facts (which are proved in the appendix):

Lemma 4. If d ⊂ A is a half-period then
⋃

d∈d
R(d) is a system of positive roots in some

(uniquely determined) root ordering.

• For any anti-Stokes direction d the corresponding group of Stokes factors is a unipotent

subgroup of G of dimension equal to the multiplicity of d.

• For any half-period d the corresponding group of Stokes multipliers is the unipotent

part of the Borel subgroup of G determined by the positive roots above.

• The groups of Stokes multipliers corresponding to consecutive half-periods are the

unipotent parts of opposite Borel subgroups.

Now choose a sector Sect0 ⊂ ∆ with vertex 0 bounded by two consecutive anti-

Stokes directions. Label the anti-Stokes directions d1, . . . , d#A in a positive sense start-

ing on the positive edge of Sect0. Let Secti := Sect(di, di+1) denote the ‘ith sector’

(where the indices are taken modulo #A) and define the ‘ith supersector’ to be Ŝecti :=

Sect
(
di −

π
2k−2

, di+1 + π
2k−2

)
. All of the sectors Secti, Ŝecti are taken to be open as subsets

of ∆.

Theorem 1. Suppose F̂ ∈ G[[z]] is a formal transformation as produced by Lemma 1.

Then there is a unique holomorphic map Σi(F̂ ) : Secti → G for each i such that

1) Σi(F̂ )[A0] = A, and 2) Σi(F̂ ) can be analytically continued to the supersector Ŝecti

and then Σi(F̂ ) is asymptotic to F̂ at 0 within Ŝecti.

Moreover, if t ∈ T and g ∈ G with g(0) = t then Σi(ĝ ◦ F̂ ◦ t−1) = g ◦Σi(F̂ ) ◦ t−1, where

ĝ is the Taylor expansion of g at 0.

This will be proved in the appendix. The point is that on a narrow sector there are

generally many holomorphic isomorphisms between A0 and A which are asymptotic to F̂

and one is being chosen in a canonical way.

It is now easy to construct canonical A-horizontal sections of P over the sectors, using

these holomorphic isomorphisms and the fact that zΛeQ is horizontal for A0 (which is

viewed as a meromorphic connection on the trivial G-bundle).



6 P. P. BOALCH

For this we need to choose a branch of log(z) along d1 which we then extend in a positive

sense across Sect1, d2, Sect2, d3, . . . , Sect0 in turn. It will be convenient later (when A0

varies) to encode the (discrete) choice of initial sector Sect0 and branch of log(z) in terms

of the choice of a single point p̃ ∈ ∆̃∗ of the universal cover of the punctured disc, lying

over Sect0.

Definition 5. Fix data (A0, z, p̃) as above and suppose (P,A, s0) is a compatibly framed

connection with formal type A0.

• The canonical fundamental solution of A on the ith sector is the holomorphic map

Φi := Σi(F̂ )zΛeQ : Secti −→ G

where zΛ uses the choice (determined by p̃) of log(z) on Secti.

• The Stokes factors Ki (i = 1, . . . ,#A) of A are defined as follows. If Φi is continued

across the anti-Stokes ray di+1 then on Secti+1 we have: Ki+1 := Φ−1
i+1 ◦ Φi for 1 ≤ i <

#A and K1 := Φ−1
1 ◦ Φ#A ◦M−1

0 , where M0 := e2π
√
−1·Λ ∈ T is the ‘formal monodromy’.

• The Stokes multipliers Si (i = 1, . . . , 2k − 2) of A are

(1) Si := Kil · · ·K(i−1)l+1,

where l = #A/(2k − 2). Equivalently if Φil is continued across dil+1, . . . , d(i+1)l and onto

Sect(i+1)l then: Φil = Φ(i+1)lSi+1 for i = 1, . . . , 2k − 3, and Φil = ΦlS1M0 for i = 2k − 2.

Note that the canonical solutions Φi are appropriately equivariant under change of

trivialisation, so are naturally identified with A-horizontal sections of P . It follows that

the Stokes factors and Stokes multipliers are constant (z-independent) elements of G.

Also, from the proof of Lemma 4, note that Si uniquely determines each Stokes factor

appearing in (1). In the appendix we will establish the basic lemma:

Lemma 6. Ki ∈ Stodi
(A0) and Sj ∈ Stod(A0) where d = (d(j−1)l+1, . . . , djl).

It is immediate from Definition 5 and the last part of Theorem 1 that the Stokes

multipliers are independent of the trivialisation choice in Lemma 1, and so are well defined

(group valued) functions on H(A0). The main result of this section is then:

Theorem 2. Fix the data (A0, z, p̃) as above. Let U+ = Stod(A0) where d = (d1, . . . , dl)

is the first half-period and let U− denote the opposite full unipotent subgroup of G. Then

the ‘irregular Riemann–Hilbert map’ taking the Stokes multipliers induces a bijection

H(A0)
∼=

−→(U+ × U−)k−1; [(P,A, s0)] 7−→ (S1, . . . , S2k−2).

In particular H(A0) is isomorphic to a complex vector space of dimension (k− 1) · (#R).

Proof. For injectivity, suppose we have two compatibly framed meromorphic connec-

tions with F̂1[A
0] = As

1 and F̂2[A
0] = As

2 and having the same Stokes multipliers. There-

fore the Stokes factors are also equal and it follows immediately that Σi(F̂2) ◦ Σi(F̂1)
−1

has no monodromy around 0 and does not depend on i, and thereby defines a holomor-

phic map g : ∆∗ → G. Thus on any sector g has asymptotic expansion F̂2 ◦ F̂
−1
1 and so

(by Riemann’s removable singularity theorem) we deduce the formal series F̂2 ◦ F̂
−1
1 is
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actually convergent with the function g as sum. This gives an isomorphism between the

connections we began with: they represent the same point in H(A0). Surjectivity follows

from the G-valued analogue of a theorem of Sibuya, which we will prove in the appendix.

�

To end this section we will show that the Stokes multipliers of a holomorphic family of

connections vary holomorphically with the parameters of the family. Suppose we have a

family of compatibly framed meromorphic connections on principal G-bundles over the

disc ∆, parameterised by some polydisc X. Upon choosing compatible trivialisations this

family may be written as

As = Ahdz

zk

for a holomorphic map Ah : ∆ × X → g with leading coefficient a holomorphic map

A0 = Ah
∣∣
z=0

: X → treg. The proof of Lemma 1 is completely algebraic and remains

unchanged upon replacing the coefficient ring C by the ring O(X) of holomorphic functions

on X; there is a unique formal transformation F̂ ∈ G
(
O(X)[[z]]

)
and unique holomorphic

maps A0
0, . . . , A

0
k−2,Λ : X → t such that F̂

∣∣
z=0

= 1, A0
0 = A0 and F̂ [A0] = As where

A0 := (A0
0/z

k + · · · + A0
k−2/z

2 + Λ/z)dz. Given a point x ∈ X let F̂x ∈ G[[z]] denote the

corresponding formal bundle automorphism.

Now choose any basepoint x0 ∈ X and let A0 ⊂ S1 denote the anti-Stokes directions

associated to A0(x0). Let Š ⊂ ∆ be any sector (with vertex 0) and whose closure contains

none of the directions in A0. By continuity there is a neighbourhood U ⊂ X of x0 such

that none of the anti-Stokes directions associated to A0(x) lie in Š, for any x ∈ U . We

will always label the sectors such that Š ⊂ Sect0.

Lemma 7. In the situation above the holomorphic maps Σ0(F̂x) : Š → G (defined for each

x in Theorem 1 and restricted to Š) vary holomorphically with x ∈ U and so constitute a

holomorphic map

Σ0(F̂ ) : Š × U → G.

This will be proved in the appendix.

Corollary 8. In the situation above, taking Stokes multipliers defines a holomorphic map

U → (U+ × U−)k−1 from the parameter space U to the space of Stokes multipliers. In

particular if A0 is any formal type then H(A0) is a coarse moduli space in the analytic

category.

Proof. Lemma 7 implies each of the sums Σil(F̂x) varies holomorphically with x ∈ U

(even though the integer l may jump; Σil(F̂x) is defined invariantly as the ‘sum’ of F̂x on

the sector Š · exp
(

iπ
√
−1

k−1

)
). Thus, once a branch of log(z) is chosen on Š, the canonical

solutions Φil also vary holomorphically with x. The Stokes multipliers are defined directly

in terms of these canonical solutions and so also vary holomorphically. That H(A0) is a

coarse moduli space is immediate from this and Theorem 2. �
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3. Isomonodromic Deformations

In this section we will define and study isomonodromic deformations of generic compat-

ibly framed meromorphic connections on principal G-bundles over the unit disc, having

an order two pole at the origin. Due to the results of the previous section the definition

is now a straightforward matter. (The GLn(C) case over P1, with arbitrary many poles

of arbitrary order was defined in [23] and studied further in [9].)

The main aim here is to describe a relationship between isomonodromic deformations

and certain braid group actions arising in the theory of quantum groups. In brief this

relationship is as follows. In [8] the author identified the Poisson Lie group G∗ dual to

G = GLn(C) with a certain moduli space M(A0) of meromorphic connections on vector

bundles (principal GLn(C) bundles) over the unit disc and having an order two pole at

the origin and ‘irregular type’ A0 ∈ treg. The previous section enables us to extend this

identification easily to arbitrary G.

By considering ‘isomonodromic deformations’ of such connections (where A0 plays the

role of deformation parameter) one obtains an action of the pure braid group Pg = π1(treg)

on M(A0) ∼= G∗. This is purely geometrical: there is a moduli space M of meromorphic

connections fibring over treg (with fibre M(A0) ∼= G∗ over A0) and having a natural

flat (Ehresmann) connection—the isomonodromy connection. The Pg action is just the

holonomy of this connection.

On the other hand De Concini–Kac–Procesi [13] have described explicitly an action of

the full braid group Bg = π1(treg/W ) on G∗ in their work on representations of quantum

groups at roots of unity. (This is for simple g, which is certainly the most interesting

case.) This action is the classical version of the ‘quantum Weyl group’ actions of Bg

on a quantum group (the quantisation of G∗) which were defined by Lusztig, Kirillov–

Reshetikhin, and Soibelman (see [14] for more details; in particular Section 12 gives the

definition of the quantum group having classical limit G∗).

In this section we will explain how to convert M into a fibre bundle M′ → treg/W with

flat connection, using Tits’ ‘extended Weyl group’ [35], and then prove that the holonomy

action of Bg on the fibres of M′ (which are still isomorphic to G∗) is precisely the action of

DeConcini–Kac–Procesi. Thus we have a geometrical description of their action; roughly

speaking the infinite part (related to Pg) of the Bg action comes from geometry whereas

the rest (related to the Weyl group) is put in by hand.

We have restricted to the order two pole case over a disc here since that is what is

required for the application we have in mind here. However the results of Section 2

do immediately facilitate the definition of isomonodromic deformations in much more

generality.

The fibration M → treg. Fix a connected complex simple Lie group G and a maximal

torus T ⊂ G. In terms of the definitions of Section 2 we have:

Definition 9. The moduli space M is the set of isomorphism classes of triples (P,A, s0)

of generic compatibly framed meromorphic connections A on principal G-bundles P → ∆

having an order two pole at the origin.
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Denote by π : M → treg the surjective map taking the leading coefficient of the con-

nections in M. Let M(A0) ⊂ M be the fibre of π over the point A0 ∈ treg. (A0 will

be called the ‘irregular type’; it determines the irregular part of the formal type A0 of a

connection in M.)

Proposition 10. M has the structure of complex analytic fibre bundle over treg with

standard fibre U+ × U− × t, where U± are the unipotent parts of a pair of opposite Borel

subgroups B± ⊂ G containing T .

Moreover there is a canonically defined flat (Ehresmann) connection on M → treg; the

isomonodromy connection.

Proof. Fix an irregular type A0 ∈ treg. This determines anti-Stokes directions at 0 as

in Section 2. Choose p̃ ∈ ∆̃∗ as in Definition 5, determining an initial sector Sect0 and

branch of log(z). Then if we define U± in terms of the first half-period as in Theorem 2,

this choice determines an isomorphism

(2) M(A0) ∼= U+ × U− × t

as follows. There is a surjective map M(A0) → t taking a connection to its exponent

of formal monodromy Λ (the residue of its formal type), as defined in Lemma 1. By

definition the fibre of this map over Λ ∈ t is H(A0) where A0 := (A0/z
2 + Λ/z) dz. Then

by Theorem 2 each such fibre is canonically isomorphic to U+ × U− (using the choice of

p̃ made above) and so (2) follows.

Now if we vary A0 slightly, since the anti-Stokes directions depend continuously on

A0 and Sect0 is open, we may use the same p̃ for all A0 in some neighbourhood of the

original one. The above procedure then gives a local trivialisation of M → treg over this

neighbourhood, implying it is indeed a fibre bundle.

If we repeat this for each A0 ∈ treg and each choice of p̃ we obtain an open cover of

treg with a preferred trivialisation of M over each open set. The clutching maps for this

open cover are clearly constant (involving just rearranging the Stokes factors into Stokes

multipliers in different ways and conjugating by various exponentials of Λ), and so we

have specified a flat connection on the fibre bundle M → treg, the local horizontal leaves

of which contain meromorphic connections with the same Stokes multipliers and exponent

of formal monodromy (for some—and thus any—choice of p̃). �

Remark 11. The isomonodromy connection may be viewed profitably as an analogue of the

Gauss–Manin connection in non-Abelian cohomology (which has been studied by Simp-

son [33]). Extending Simpson’s terminology we will call the above definition the ‘Betti’

approach to isomonodromy. There is also an equivalent ‘DeRham’ approach involving flat

meromorphic connections on G-bundles over products ∆ × U for open neighbourhoods

U ⊂ treg. (This is well-known to isomonodromy experts in the GLn(C) case.) This point

of view has been described by the author in [9] Section 7 for the GLn(C) case; this now

extends immediately to arbitrary G (see [9] Theorem 7.2 in particular for the De Rham

approach).
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The next step is to convert M into a fibre bundle M′ → treg/W with flat connection

(where W := N(T )/T is the Weyl group), so that one obtains a holonomy action of the

full braid group Bg := π1(treg/W ) on the fibres, rather than just an action of the pure

braid group Pg := π1(treg). (This step is closely related to a similar step taken by Toledano

Laredo in [36].) One would like simply to quotient M by an action of W covering the

standard free action on treg. Indeed if there was a homomorphic section W → N(T ) ⊂ G

of the canonical projection πN : N(T ) →W , then we could simply act on M by constant

gauge transformations. However there is no such section in general, even for SL2(C). (For

GLn(C) one may use the section given by ‘permutation matrices’ but here we require a

general approach.)

The standard way around this problem was found by Tits [35]; there is a finite abelian

extension

1 → Γ1 → Γ
πΓ−→W → 1

of W (where Γ is finite and Γ1 is abelian) and an inclusion ι : Γ →֒ N(T ) covering the

identity in W (i.e. so that πN ◦ ι = πΓ). The group Γ is Tits’ extended Weyl group.

Remark 12. A construction of Γ is as follows. Choose a positive Weyl chamber, label the

simple roots by i = 1, . . . , n and choose Chevalley generators {ei, fi, hi} of g as usual. Let

ti := exp(fi) exp(−ei) exp(fi) ∈ G.

One then knows (from [35]) that 1) these ti satisfy the braid relations for g and so

determine a homomorphism Bg → G, and 2) the image Γ of Bg in G has the properties

stated above. (We note for later use that replacing ti by t−1
i here determines another

homomorphism Bg → G with the same image.)

We could now act with Γ on M by gauge transformations, but then the quotient would

not be a fibre bundle over treg/W , since this action is not free (e.g. Γ1 acts trivially on

formal types, but non-trivially on other connections). To get around this we first pull

back M → treg to the Galois Γ1 cover t̂reg of treg. (In other words t̂reg := t̃reg/K, where

t̃reg is the universal cover of treg and K := ker(Bg → Γ) = ker(Pg → Γ1).) Then define

M̂ := pr∗(M) to be the pullback of the bundle M along the covering map pr : t̂reg → treg.

The connection on M pulls back to a flat connection on M̂ → t̂reg.

Finally we can now act with Γ on M̂ by gauge transformations, covering the canonical

free action of Γ on t̂reg, to obtain a fibre bundle M′ := M̂/Γ → treg/W . In summary we

have the commutative diagram:

(3)

M̂ −→ M M′y
y

y
t̂reg

pr
−→ treg −→ treg/W,

where the horizontal maps are finite covering maps and the vertical maps are fibrations.

Lemma 13. The connection on M̂ = pr∗(M) is Γ invariant and so descends to a flat

connection on M′ → treg/W .
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Proof. Choose g ∈ Γ ⊂ N(T ) and Â0 ∈ t̂reg. It is sufficient to show that, under the

action of g, local horizontal sections of M̂ over a neighbourhood of Â0 become horizontal

sections over a neighbourhood of g(Â0). To this end, choose open U ⊂ treg containing

A0 := pr(Â0) as in the proof of Proposition 10 and so small that pr−1(U) consists of #Γ1

connected components. Let Û be the component containing Â0.

Now choose p̃ ∈ ∆̃∗ as in Proposition 10 and thereby obtain a (horizontal) trivialisation

of M over U and also of M̂ over Û :

M̂
∣∣bU
∼= U+ × U− × t × Û ,

where U± are determined by A0 and p̃ as in Theorem 2. Let A′
0 := gA0g

−1 so that

pr(g(Â0)) = A′
0. Thus pr(g(Û)) is a neighbourhood of A′

0 over which we may trivialise M

using the same choice of p̃ as above (since A0 and A′
0 determine the same set of anti-Stokes

directions). Thus in turn M̂
∣∣
g(bU)

∼= U ′
+ × U ′

− × t × g(Û), where U ′
± are determined by A′

0

and p̃ as in Theorem 2.

Finally we claim that U ′
± = gU±g

−1 and that, in terms of the above trivialisations, the

action of g on M̂ is given by

(4) g(S+, S−,Λ) = (gS+g
−1, gS−g

−1, gΛg−1)

(together with the standard action on the base t̂reg), where (S+, S−,Λ) ∈ U+ × U− × t.

Since there is no dependence on the base, this clearly implies the proposition. The claim

is established by a straightforward unwinding of the definitions. �

In [8] (for G = GLn(C)) it was found to be natural to identify the space U+ ×U− × t of

monodromy data with the simply-connected Poisson Lie group G∗ dual to G, which we

will now do here in general (cf. also Appendix B for motivation). Given a choice B± of

opposite Borel subgroups of G with B+ ∩B− = T , the group G∗ is defined to be

(5) G∗ := {(b−, b+,Λ) ∈ B− × B+ × t
∣∣ δ−(b−)δ+(b+) = 1, δ+(b+) = exp(πiΛ)},

where δ± : B± → T is the natural projection (with kernel the unipotent part U± of

B±) and exp : t → T is the exponential map for T . This is a simply-connected (indeed

contractible) subgroup of B−×B+× t (where t is a group under +) of the same dimension

as G.

The group G∗ is then identified with U+ × U− × t as follows (cf. [8] Definition 20)

(6) U+ × U− × t ∼= G∗; (S+, S−,Λ) 7→ (b−, b+,Λ)

where b− = e−πiΛS−1
− and b+ = e−πiΛS+e

2πiΛ, so that b−1
− b+ = S−S+ exp(2πiΛ).

Thus the fibrations (3) can now be viewed as having standard fibre G∗ (although they

are not principal G∗-bundles).

The final (trivial) complication is that we have G∗ simply-connected, whereas [13, 14]

use the quotient group defined by omitting the Λ component in (5) (or equivalently one

only remembers eπiΛ rather than Λ). We will abuse notation and denote both groups G∗;

in terms of the braid groups actions this is reasonable since 1) It is immediate that the

connection on M′ is invariant under the corresponding action of the lattice ker(exp(πi·) :
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t → G) so descends to give a flat connection on the quotient bundle (still denoted M′),

and 2) The Bg action of [13] lifts to an action on our G∗ simply by acting on Λ via the

standard Weyl group action.

The main result is then:

Theorem 3. The holonomy action of the full braid group Bg = π1(treg/W ) on G∗ (ob-

tained by integrating the flat connection on M′) is the same as the Bg action on G∗ of

De Concini–Kac–Procesi [13].

Proof. Choose a real basepoint A∗
0 ∈ tR,reg ⊂ treg in the Weyl chamber chosen in

Remark 12 above (cf. also (14)). Then the corresponding set A of anti-Stokes directions

consists of just the two halves of the real axis. Let Sect0 be the lower half disc, choose a

point p on the negative imaginary axis and let p̃ ∈ ∆̃∗ be the point lying over p and on the

branch of logarithm having log(−i) = 3πi/2. Define the positive roots R+, the groups

B±, U± and in turn G∗ to be those determined by A∗
0 and p̃. These choices determine

an isomorphism M(A∗
0)

∼= G∗ via Theorem 2 and (6). (One may check R+ is the set of

positive roots corresponding to the chosen positive Weyl chamber.)

Now for each simple root α = αi ∈ R+ Brieskorn [11] defines the following path γi in

treg. Let si be the complex reflection acting on t corresponding to α (the reflection fixing

the hyperplane ker(α) and respecting the Killing form). Let Li be the complex line in t

containing A∗
0 and A′

0 := si(A
∗
0) and let Ii be the real line segment from A∗

0 to A′
0. Then

define the path γi : [0, 1] → Li from A∗
0 to A′

0 such that [0, 1
3
]∪ [2

3
, 1] maps to Ii and [1

3
, 2

3
]

maps to a small semi-circle turning in a positive sense and centred on the midpoint of Ii.

According to [11], if the semi-circles are sufficiently small, these paths γi are in treg and

descend to loops in treg/W representing generators of π1(treg/W ).

For our purposes here we choose the above semi-circles so small that, as A0 moves along

γi, precisely one anti-Stokes direction crosses over the point p—an anti-Stokes direction

supported just by −α and moving in a positive sense. (To see this is possible observe that

for any β ∈ R+ \ {α}, β(A∗
0) and β(A′

0) are real and positive, since α is the only positive

root made negative by si. Thus by linearity β(Ii) ⊂ R>0. Hence if γi’s semi-circle is

sufficiently small β(A0) does not cross the imaginary axis for any A0 on γi and therefore

no anti-Stokes direction supported by ±β crosses p. Finally observe that, as A0 moves

along γi, α(A0) starts in R+, moves towards 0, makes a positive semi-circle around 0 then

moves away from 0 along R−. Since q = −A0/z here this implies the anti-Stokes direction

supported by −α crosses p, and the one supported by α crosses the positive imaginary

axis.)

We now wish to calculate the holonomy isomorphism M(A∗
0)

∼= M(A′
0) obtained by

integrating the isomonodromy connection along the path γi. As in Proposition 10 we have

canonical descriptions of the fibre of M over both A∗
0 and A′

0:

M(A∗
0)

∼= U+ × U− × t M(A′
0)

∼= U ′
+ × U ′

− × t

using the chosen p̃ in both cases, where (as in Lemma 13) U ′
± = gU±g

−1 for any g ∈ Γ

with πΓ(g) = si ∈W . Thus we want to find the corresponding isomorphism U+ × U− × t
∼= U ′

+ × U ′
− × t. To describe it we will need the following maps. Let Ui = exp(gα) be the
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root group corresponding to the simple root α = αi. Then there is a homomorphism

ξi : U+−→Ui

with the property that if any S ∈ U+ is factorised (in any order) as a product of elements

uβ ∈ Uβ for β ∈ R+ (with each β appearing just once) then uα = ξi(S). (The existence of

ξi may be seen as follows: The set Ψ := R+\{α} is a closed set of roots so UΨ :=
∏

β∈Ψ Uβ

is a subgroup of U+. By [10] Proposition 14.5(3) UΨ is a normal subgroup. (It is sufficient

to prove Ui normalises UΨ.) Then ξi is taken to be the projection U+ → U+/UΨ where

Ui
∼= U+/UΨ via the inclusion Ui ⊂ U+.) Similarly we have maps ξ−i : U− → U−α.

Proposition 14. The holonomy isomorphism M(A∗
0)

∼= M(A′
0) induced by the isomon-

odromy connection is given by U+ × U− × t → U ′
+ × U ′

− × t; (S+, S−,Λ) 7→ (S ′
+, S

′
−,Λ)

where

(7) S ′
+ := ξi(S+)−1S+M0ξ−i(S−)M−1

0 , S ′
− := ξ−i(S−)−1S−ξi(S+),

and M0 := exp(2πiΛ).

Proof. We must find the transition maps between the local trivialisations just before

and after the anti-Stokes direction d−α supported by −α crosses p. By perturbing p̃ (and

therefore also p) slightly this is equivalent to finding the transition map relating the two

situations appearing in Figure 1, where p moves but A0—and thus all the anti-Stokes

directions—remain fixed. That is, we must find the composite map

(8) U+ × U− × t ∼= M(A0) ∼= U ′
+ × U ′

− × t

where the first (resp. second) isomorphism is determined by the p̃ choice in the left (resp.

right) diagram in Figure 1.

d−α

dα

Ψ2 Ψ1

Ψ3 Ψ0

−→

p

d−α

Φ3

Φ2 Φ1

Φ0

dα

p

Figure 1

Choose arbitrary (S+, S−,Λ) ∈ U+ ×U− × t and let A be a connection on the trivial G-

bundle over ∆ with isomorphism class in M(A0) corresponding to (S+, S−,Λ) under the

left-hand isomorphism in (8). Let Φ0, . . . ,Φ3 and Ψ0, . . .Ψ3 be the canonical fundamental

solutions of A on the sectors indicated in Figure 1. (Except for Φ0 the indexing of these

differs from Definition 5.) Since the log(z) choice on the sector containing p is extended to
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the other sectors in a negative sense, we immediately deduce Φ3 = Ψ3,Φ2 = Ψ2,Φ1 = Ψ1

and Φ0 = Ψ0M0.

Now let K± denote the Stokes factors of A across d±α in the left diagram in Figure 1

(and similarly K ′
± for the right diagram). Clearly K+ = K ′

+ since across dα we have

K+ := Φ−1
2 Φ1 = Ψ−1

2 Ψ1 =: K ′
+.

Across d−α, K− := Φ−1
0 Φ3 and K ′

− := Ψ−1
0 Ψ3 so that K ′

− = M0K−M
−1
0 .

In turn the Stokes multipliers are defined by the equations

Φ2 = Φ0S− Φ0 = Φ2S+

Ψ1 = Ψ3S
′
− Ψ3 = Φ1S

′
+

where in the left/right column the fundamental solutions are continued into the left/right

half-plane before being compared, respectively. (Here we prefer to index the Stokes mul-

tipliers by + and − rather than 1 and 2 as in Section 2.) Combining this with the above

expression for the Stokes factors we deduce

S ′
+ = K−1

+ S+M0K−M
−1
0 , S ′

− = K−1
− S−K+.

Finally, from the alternative definition of the Stokes multipliers in terms of Stokes factors

in Definition 5, we find ξ±i(S±) = K± thereby completing the proof of the proposition. �

To rewrite this holonomy isomorphism in terms of the Poisson Lie groups it is convenient

to introduce the following notation. If b± = v±t
±1 = t±1u± where t ∈ T and u±, v± ∈ U±

then
ib± := ξ±i(v±)−1, bi± := ξ±i(u±)−1.

(The inverted left and right ±α components of b± respectively.) Under the identification

(6), the isomorphism (7) then simplifies to

(9) (b−, b+,Λ) 7→ (ib+b−b
i
−,

ib+b+b
i
−, Λ).

Clearly we may quotient by the lattice ker(exp(πi·) : t → G) (i.e. forget the Λ com-

ponent above) since Λ only appears as e2πiΛ in the formulae and t := eπiΛ = δ+(b+) is

retained.

Now if we choose Â∗
0 ∈ pr−1(A∗

0) and lift γi canonically to a path γ̂i in t̂reg starting

at Â∗
0, then the holonomy of the connection on M̂ along γ̂i is also given by Proposition

14 (since the connection is pulled back from M). Then quotienting by Γ enables us to

identify the fibres M̂(Â∗
0) and M̂(γ̂i(1)) via the gauge action of ti. (This uses the fact

that the element of Bg determined by γi maps to ti under the surjection Bg → Γ.) The Γ

action on Stokes multipliers was given in (4), and so we deduce the following formula for

the holonomy isomorphism G∗ → G∗ for the connection on M′ around the loop γi/W :

(10) (b−, b+) 7→ (t−1
i

ib+b−b
i
−ti, t

−1
i

ib+b+b
i
−ti).

Finally we must compare (10) with the generators of the braid group action of De

Concini–Kac–Procesi [13]. In [13] the braid group Bg is defined abstractly by generators
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and relations, rather than as a fundamental group. Namely one has generators Ti (one

for each simple root αi) and relations

TiTjTi · · · = TjTiTj · · ·

for i 6= j, where the number of factors on each side equals the order of the element sisj

of the Weyl group. The action of Bg on G∗ is given in Section 7.5 of [13] by the following

formula:

Ti(t
−1u−1

− , tu+) =
(
tit

−1(u
(i)
− )−1(exp x̃iei)t

−1
i , tit

−1(exp ỹifi)t
2u

(i)
+ t

−1
i

)

where, in our notation, exp x̃iei = ξi(u+)−1, exp ỹifi = ξ−i(u−), u
(i)
+ = u+ exp x̃iei, and

u
(i)
− = u−(exp ỹifi)

−1. One may readily check this is the same as

(11) (b−, b+) 7→ (ti
ib−b−b

i
+t

−1
i , ti

ib−b+b
i
+t

−1
i )

where (b−, b+) = (t−1u−1
− , tu+) ∈ G∗. In turn it is straightforward to check this is

precisely the inverse map to (10). Thus, if we choose to identify the (abstractly pre-

sented) braid group with π1(treg/W ) by mapping Ti to the inverse of the Brieskorn loop

[γi/W ] ∈ π1(treg/W ), then we have established the theorem. �

Remark 15. In the later paper [14] a slightly different formula appears and here we wish

to clarify the (minor) discrepancy. The action on G∗ descends along the map π : G∗ →

G0; (b−, b+) 7→ b−1
− b+ to an action on the big cell G0 := U−TU+ ⊂ G. Corollary 14.4 on

p.97 of [14] gives the formula for this action on G0 to be:

a = u−t
2u+ 7→ t−1

i ξi(u+)aξi(u+)−1ti.

Since π is a covering map (corresponding to replacing t = eπiΛ by t2) and the action on t is

the standard Weyl group action, we deduce the corresponding action on G∗ is as in (11),

except with each ti replaced by t−1
i . This action would be obtained from isomonodromy

if we use the alternative construction of Tits’ extended Weyl group noted at the end of

Remark 12.

4. Deformation of the Isomonodromy Hamiltonians

In this section the Hamiltonian description of the isomonodromic deformations of the

previous section will be given. From this the connection of DeConcini–Millson–Toledano

Laredo will be derived directly.

Let M∗ := g∗ × treg be the product of the dual of the Lie algebra of G with the regular

subset of the chosen Cartan subalgebra. View M∗ as a trivial fibre bundle over treg with

fibre g∗. Given (B,A0) ∈ M∗, consider the meromorphic connection A on the trivial

G-bundle over P1 associated to the g-valued meromorphic one-form

(12) As :=

(
A0

z2
+
B

z

)
dz
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on P1. Restricting A to the unit disc ∆ (and using the compatible framing coming from

the given trivialisation) specifies a point of the moduli space M(A0). Thus there is a

bundle map,

ν : M∗ → M; (B,A0) 7→ A|∆.

This map is holomorphic (by Corollary 8) and it is easy to prove it is generically a

local analytic isomorphism. (It is studied fibrewise in Appendix B and in [8].) Thus the

isomonodromy problem for the connections (12) is essentially equivalent to that considered

in the previous section.

The proofs of the following two lemmas are not significantly different from the GLn(C)

case and so are omitted here (cf. [22, 17, 15, 19]).

Lemma 16. The pull-back along ν of the isomonodromy connection on M is given by

the following non-linear differential equation for sections B : treg → g∗ of M∗:

(13) dB =
[
B, ad−1

A0
([dA0, B])

]

where d is the exterior derivative on treg and g∗ is identified with g via the Killing form.

(Note that [dA0, B] takes values in god :=
⊕

α∈R gα and that adA0
is invertible on god.)

Clearly B flows in a fixed coadjoint orbit in g∗. Thus, putting the standard Poisson

structure on g∗, one would expect a symplectic interpretation. Indeed the equation (13)

has the following time-dependent Hamiltonian formulation. Consider the one-form

̟ := K
(
B, ad−1

A0
([dA0, B])

)

on M∗, where K is the Killing form. Given a vector field v on treg there is a corresponding

vector field ṽ on M∗ (zero in g∗ directions) and thus a function

Hv := 〈ṽ, ̟〉

on M∗.

Lemma 17. Hv is a time-dependent Hamiltonian for the flow of the equation (13) along

the vector field v

Remark 18. Usually one chooses a basis {vi} of t and writes ̟ =
∑
Hidti (where A0 =∑

tivi ∈ t). It is this one-form which is used to define the isomonodromy τ function.

Now observe that ̟ may equivalently be viewed as a one-form on treg whose coeffi-

cients are quadratic polynomials on g∗. Let us identify these quadratic polynomials with

S2g = Sym2g and consider the natural symmetrisation map φ : Sg → Ug from the sym-

metric algebra to the universal enveloping algebra. (This corresponds to deforming the

isomonodromy Hamiltonians under the standard deformation ‘PBW quantisation’ of Sg

into Ug.)

Proposition 19.

φ(̟) =
∑

α∈R+

K(α, α)

2
(eαfα + fαeα)

dα

α
∈ Ug ⊗ Ω1(treg)

where {eα, fα, hα} is the usual Chevalley basis for g, normalised so that [eα, fα] = hα.
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The proof is a straightforward calculation. This is precisely the Ug valued one-form

appearing in [36]; Given a representation V of g and thus an algebra homomorphism

ρ : Ug → End(V ), the flat connection of De Concini–Millson–Toledano Laredo (whose

holonomy is conjectured to give the quantum Weyl group actions) is

d− hρ(φ(̟))

on the trivial vector bundle over treg with fibre V , where h ∈ C is constant.

Appendix A. Proofs for Section 2

In the GLn(C) case these results appear in the paper [7] of Balser, Jurkat and Lutz,

which in turn uses a theorem of Sibuya (that the map taking the Stokes multipliers

is surjective) and the main asymptotic existence theorem of Wasow [37] (in order to

construct fundamental solutions). Here we will follow the scheme of [7] wherever possible,

but notable exceptions arise in the use of both the above theorems: 1) The reduction to

the asymptotic existence theorem is completely different (see proof of Lemma 7). Also

an independent construction of fundamental solutions is given using ‘multisummation’

rather than the asymptotic existence theorem. 2) For surjectivity, we instead follow the

approach of Malgrange [27] involving a ∂-problem which extends easily to general groups.

Note that we must adapt the proofs from the GLn(C) case (rather than simply choosing

a faithful representation g →֒ gln(C) and using existing results) because there are not

representations taking elements of treg into regular diagonal elements of gln(C) in general.

Example 20. The standard representation of g = so4(C) is equivalent to writing

g ∼= {X ∈ gl4(C)
∣∣ XTJ + JX = 0} ⊂ gl4(C)

where J = ( 0 I
I 0 ) and I is the 2× 2 identity matrix. This description is chosen so that we

may take t = {diag(a, b,−a,−b)
∣∣ a, b ∈ C}. Now the regular elements of t (as a Cartan

subalgebra of g) are precisely those with both a+ b and a− b nonzero. However they will

not be regular for gl4(C) unless we also impose a 6= 0 and b 6= 0 as well.

One still may feel that for sufficiently generic values of the parameters one may always

reduce to the GLn(C) case. Let us dispel this feeling:

Lemma 21. There are reductive groups G with the following property: If A0 ∈ treg is

any regular element of a Cartan subalgebra of g = Lie(G) and ρ : g → End(V ) is any

nontrivial representation of g then ρ(A0) does not have pairwise distinct eigenvalues.

Proof. If ρ(A0) has pairwise distinct eigenvalues clearly each weight space of V is one-

dimensional; V is a multiplicity one representation. However if for example G = E8 then

g has no nontrivial multiplicity one representations. �

Thus there are groups for which one may never reduce to the GLn(C) case via a repre-

sentation.

For the purposes of this appendix we will use the notion of ‘Stokes directions’ as well as

the anti-Stokes directions already defined: σ ∈ S1 is a Stokes direction iff σ−π/(2k−2) is
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an anti-Stokes direction. (These are the directions along which the asymptotic behaviour

of exp(α ◦ q) changes for some root α, and they arise as bounding directions of the

supersectors.) A crucial step enabling us to generalise [7] is the following lemma.

Lemma 22. Suppose θ ∈ S1 is not a Stokes direction. Then the following hold

• The element

λ := Re
(
A0 exp(−i(k − 1)θ)

)
∈ tR

is in the interior of a Weyl chamber, and so determines an ordering of the roots R.

• The positive roots R+(λ) (in this ordering) are precisely those roots supporting some

anti-Stokes direction within π/(2k − 2) of θ.

• Let U+ be the unipotent part of the Borel subgroup B+ ⊃ T determined by R+(λ).

The following conditions on an element C ∈ G are equivalent:

1) zΛeQCe−Qz−Λ tends to 1 ∈ G as z → 0 in the direction θ.

2) zΛeQCe−Qz−Λ is asymptotic to 1 as z → 0 in the direction θ.

3) C ∈ U+.

Proof. First we recall some group-theoretic facts (from e.g. [10]). LetX(T ) = Hom(T,C∗)

be the character lattice of T , so that R ⊂ X(T ) naturally (by thinking of the roots mul-

tiplicatively). In turn R is a subset of the real vector space t∗
R

:= X(T ) ⊗Z R; This has

(real) dual tR and naturally tR ⊗R C ∼= t. By definition the Weyl chambers of G relative

to T are the connected components of

(14) tR,reg := {λ ∈ tR
∣∣ α(λ) 6= 0 for all α ∈ R}.

Choosing a Weyl chamber is equivalent to choosing a system of positive roots; If λ ∈ tR,reg

then the system of positive roots corresponding to λ’s connected component is:

R+(λ) := {α ∈ R
∣∣ α(λ) > 0}.

Now suppose λ := Re
(
A0 exp(−i(k − 1)θ)

)
as above and α ∈ R. It is easy to check

α(λ) = 0 if and only if θ − π/(2k − 2) is an anti-Stokes direction, but by hypothesis this

is not the case, so λ is indeed regular.

Now consider the ‘sine-wave’ function fα(φ) := Re
(
α(A0) exp(−i(k − 1)φ)

)
as φ varies,

for any α ∈ R. It has period 2π/(k − 1) and is maximal at each anti-Stokes direction

supporting α. Thus fα(θ) > 0 iff there is an anti-Stokes direction supported by α within

π/(2k − 2) of θ. In turn this is equivalent to α ∈ R+(λ), yielding the second statement.

(Note that, if arg(z) = φ, then Re(α ◦ q(z)) = −cfα(φ) for some positive real c.)

For the third statement we will use the Bruhat decomposition of G (cf. e.g. [10] 14.12).

Choose arbitrarily a lift w̃ ∈ N(T ) of each element w ∈W := N(T )/T of the Weyl group.

The Bruhat decomposition says that G is the disjoint union of the double cosets B+w̃B+

as w ranges over W . The dense open ‘big cell’ is the largest such coset (corresponding

to the ‘longest element’ of W ) and is equal to B−B+, where B− is the Borel subgroup

opposite to B+. Moreover the product map

U− × T × U+ → G; (u−, t, u+) 7→ u− · t · u+

is a diffeomorphism onto the big cell, where U± is the unipotent part of B±.
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Now observe that each coset in the Bruhat decomposition is stable under conjugation

by T , and that U+ (and in particular the identity element of G) is in the big cell. Thus

we can reduce to the case where C is in the big cell; otherwise 3) is clearly not true and

also neither of 1) or 2) hold, since zΛeQCe−Qz−Λ will remain outside of the big cell.

Therefore if we label R+(λ) = {α1, . . . αn} and let α−i = −αi, then C has a unique

decomposition

C = u−1 · · ·u−ntu1 · · ·un

with ui ∈ Uαi
and t ∈ T ([10] 14.5). Each of these components is independent and

zΛeQCe−Qz−Λ = uz
−1 · · ·u

z
−ntu

z
1 · · ·u

z
n, where uz

i = zΛeQuie
−Qz−Λ ∈ Uαi

. Now, given a

root α and X ∈ gα, the key fact is that we know the behaviour of AdzΛeQ(X) as z → 0 in

the direction θ; it decays exponentially if α ∈ R+(λ) and otherwise (if X 6= 0) it explodes

exponentially. (The dominant term of zΛeQ is eq and this acts on X by multiplication by

eα◦q, which has the said properties.) Finally, in any representation ρ, ui is of the form

1 + ρ(Xi) with Xi ∈ gαi
, so that C ∈ U+ if and only if t = 1 and Xi = 0 for all i < 0, and

in turn (via the decomposition of zΛeQCe−Qz−Λ) this is equivalent to both 1) and 2). �

Now we will move onto the proofs of the results of Section 2.

Proof (of Lemma 1). (This is adapted from [23] Proposition 2.2, [30] Theorem B.1.3 and

[2] Lemma 1 p.42.) For the existence of F̂ and A0 we proceed as follows. Write

As = A0
dz

zk
+ · · ·+ Ak−1

dz

z
+ Akdz + · · ·

with Ai ∈ g. First each Ai will be moved into t and then the nonsingular part will be

removed. Let god =
⊕

α∈R gα (so that adA0
: god → god is an isomorphism), and let

pr : g → god be the projection along t. Suppose inductively that the first p coefficients

A0, A1, . . . , Ap−1 of As are in t (so the p = 1 case holds by assumption). By applying the

gauge transformation exp(zpHp) to As (where Hp ∈ g), we find

exp(zpHp)[A
s] = As + [Hp, A0]z

p−kdz +O(zp−k+1)dz.

Thus Ap + [Hp, A0] is the first coefficient which is not necessarily in t, and so by defining

Hp := (adA0
)−1

(
pr(Ap)

)
∈ god

we ensure that the first p+1 coefficients of exp(zpHp)[A
s] are in t, completing the inductive

step. Hence if we define a formal transformation Ĥ ∈ G[[z]] to be the infinite product

Ĥ := · · · exp(zpHp) exp(zp−1Hp−1) · · · exp(zH1)

then each coefficient of Ĥ [As] is in t. Now define A0 to be the principal part of Ĥ[As]

so that Ĥ [As] = A0 + D with D nonsingular. Then define F̃ := e(−
R z

0
D) ∈ T [[z]] (where∫ z

0
D ∈ t[[z]] is the series obtained fromD by replacing zpdz by zp+1/(p+1) for each p ≥ 0),

so that dF̃ (F̃ )−1 = d log F̃ = −D. Thus (F̃ Ĥ)[As] = A0 and so F̂ := (F̃ Ĥ)−1 ∈ G[[z]] is

the desired formal transformation.

For the uniqueness it is clearly sufficient to show that if F̂ [A0] = A1, where A0 and

A1 are formal types and F̂ (0) = 1, then F̂ = 1. Now if F̂ [A0] = A1, it follows that
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F̂ is actually convergent (since on using a faithful representation we see F̂ solves the

diagonal system dF̂ = A0F̂ − F̂A1). Let F : ∆ → G denote the sum of F̂ . Also,

if we write Ai = dQi + Λidz/z for i = 0, 1, then d(e−Q1

z−Λ1

FzΛ0

eQ0

) = 0, so that

F = zΛ1

eQ1

Ce−Q0

z−Λ0

for some constant C ∈ G. Now F → 1 on any sector and

so (since Q0 and Q1 have the same leading term) as in Lemma 22 we may deduce

C ∈ U− ∩ U+ = {1}, and therefore F = zΛ1−Λ0

eQ1−Q0

. The only way this can have

a Taylor expansion with constant term 1 at 0 is if Λ1 = Λ0, Q1 = Q0 and so F̂ = F = 1.

�

Proof (of Lemma 4). Given a half-period d ⊂ A, let θ(d) be the bisecting direction of

the sector spanned by d. By the symmetry of A, θ(d)−π/(2k−2) is half-way between two

consecutive anti-Stokes directions, so θ(d) is not a Stokes direction. Therefore we may

feed θ(d) into Lemma 22, the second part of which immediately yields the first statement

of Lemma 4.

The third statement of Lemma 4 is now immediate from Sections 14.5-14.8 of [10],

(using the notion of ‘direct spanning’ subgroups) and then the second statement follows

provided we check R(d) is a closed set of roots, in the sense that if α, β ∈ R(d) and

α + β ∈ R then α + β ∈ R(d). This however is immediate from the definition of R(d).

For the fourth statement simply observe λ is negated when θ(d) is rotated by π
k−1

. �

Proof (of Theorem 1).

Uniqueness: (cf. [7] Remark 1.4) Suppose F1, F2 : Secti → G both have properties 1)

and 2). Thus (F−1
1 F2)[A

0] = A0 and so

(15) F−1
1 F2 = zΛeQCe−Qz−Λ

for some constant C ∈ G. By 2), F−1
1 F2 extends to Ŝecti and is asymptotic to 1 at zero

there. But Ŝecti has opening greater than π/(k−1), so Lemma 22 implies C ∈ U+∩U− =

{1} (by taking two non-Stokes directions in Ŝecti differing by π/(k − 1)). Hence C = 1

and F1 = F2.

Existence: Here we will use multisummation (see proof of Lemma 7 for a more

conventional approach). Choose a faithful representation G →֒ GLn(C) such that T

maps to the diagonal subgroup. Let d ⊂ gln(C) be the diagonal subalgebra and let

αij : d → C;X 7→ Xii − Xjj be the roots of GLn(C). Everything now will be written

in this representation. Thus F̂ is a formal solution to the system of linear differential

equations:

(16) dF̂ = AF̂ − F̂A0.

This equation has levels k := {− deg(αij ◦Q)
∣∣ i, j = 1, . . . n} \ {0}. Note that the highest

level is k − 1. (If k = 2 or if G = GLn(C) then this is the only level—however generally

there may well be lower levels as well.) The singular directions Agl of (16) are the GLn(C)

anti-Stokes directions, defined as follows. For each i, j, αij ◦Q is a polynomial in 1/z of

degree at most k− 1. If αij ◦Q is not zero let A
ij
gl be the finite number of directions along
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which the leading term of αij ◦ Q is real and negative and let A
ij
gl be empty otherwise.

Then define Agl to be the union of all these sets A
ij
gl as i and j vary. (One may check that

A ⊂ Agl.) Then the main theorem in multisummation theory implies:

Theorem 4 (See [6] Theorem 4.1). If d ∈ S1 is not a singular direction then (each matrix

entry of) F̂ is k-summable in the direction d. The k-sum of F̂ along d is holomorphic

and asymptotic to F̂ at zero in the sector Sect(d− π
2k−2

− ǫ, d+ π
2k−2

+ ǫ) for some ǫ > 0.

Since they are unneeded here we omit discussion of the finer Gevrey asymptotic prop-

erties that such sums possess, although we do need the fact that multisummation is

a morphism of differential algebras ([28] Theorem 1 p.348). In more detail recall ([6]

Theorem 4.4) that the set C{z}k,d of formal power series which are k-summable in the

direction d is a differential subalgebra of C[[z]]. Then k-summation maps this injectively

onto some set Ok,d of germs at 0 of holomorphic functions on Sect(d − π
2k−2

, d + π
2k−2

).

Quite generally the map taking asymptotic expansions is easily seen to be a differential

algebra morphism, and so here it restrict to an isomorphism Ok,d

∼=
−→C{z}k,d of differential

algebras. By definition the multisummation operator is the inverse morphism.

Now to construct Σi(F̂ ) choose any direction d in Secti which is not in (the finite set)

Agl. Let Σi(F̂ ) be the multisum of F̂ along the direction d from Theorem 4 and let S be the

sector appearing there. Since multisummation is a morphism of differential algebras we

deduce first that Σi(F̂ ) satisfies equation (16) (as is standard in the theory) and secondly:

Lemma 23. Σi(F̂ ) takes values in G.

Proof. This is because G, being reductive, is an affine algebraic group and so the matrix

entries of Σi(F̂ ) satisfy the same polynomial equations as the entries of F̂ . In more detail

there are complex polynomials {pj} such that

(17) G ∼= {(g, x) ∈ C
n×n × C

∣∣ det(g) · x = 1, pj(g) = 0 ∀ j},

as a subgroup of GLn(C), for some n. For any commutative algebra R over C the alge-

braic group G(R) is defined simply by replacing the two occurrences of C in (17) by R.

Thus we wish to show Σi(F̂ ) ∈ G(O(S)) (the group of holomorphic maps S → G), given

that F̂ ∈ G[[z]] := G(C[[z]]). But it is immediate that pj(F̂ ) = 0 implies pj(Σi(F̂ )) = 0

since multisummation is an algebra morphism. �

Next we must check that Σi(F̂ ) has property 2) of Theorem 1. The key point is that

there are no Stokes directions in Ŝecti \S; indeed the Stokes directions in the supersector

Ŝecti closest to the boundary rays are di+1 −
π

2k−2
and di + π

2k−2
, both of which are in S.

Thus the following G-valued analogue of the extension lemma of [7] will yield 2):

Lemma 24 (cf. [7] Lemma 1 p.73). Suppose S, S̃ are two sectors with non-empty inter-

section and such that S̃ contains no Stokes directions. If F : S → G is a holomorphic

map asymptotic to F̂ at 0 in S and such that F [A0] = A, then the analytic continuation

of F to S ∪ S̃ is asymptotic to F̂ at 0 in S ∪ S̃.
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Proof. Choose any holomorphic map F̃ : S̃ → G asymptotic to F̂ at 0 and such that

F [A0] = A (using multisummation for example—the hypotheses imply S̃ has opening

< π/(k − 1)). Then (as in the uniqueness part above) there exists a constant C ∈ G

such that F = F̃ zΛeQCe−Qz−Λ in S ∩ S̃. Thus F̃ zΛeQCe−Qz−Λ is the analytic continu-

ation of F to S̃. Now since F̃−1F is asymptotic to 1 at 0 in S ∩ S̃, Lemma 22 implies

C ∈ U+, where the root ordering is determined by any θ in S ∩ S̃. But since S̃ contains

no Stokes directions, Lemma 22 implies zΛeQCe−Qz−Λ is asymptotic to 1 at 0 in all of

S̃. In turn it follows that the analytic continuation of F is asymptotic to F̂ on all S∪S̃. �

Finally the last statement of Theorem 1 is immediate either from the morphism prop-

erties of multisummation, or from uniqueness. �

Proof (of Lemma 6). To see Sj ∈ Stod(A0) recall from Lemma 4 that Stod(A0) = U+

where the root order is determined by the bisecting direction θ(d) of d. Now observe

Ŝect(j−1)l ∩ Ŝectjl contains θ(d) and so by Theorem 1 (if j 6= 1) zΛeQSje
−Qz−Λ =

Σjl(F̂ )−1Σ(j−1)l(F̂ ) is asymptotic to 1 along θ(d). Thus Lemma 22 implies Sj ∈ Stod(A0).

(For j = 1 the argument is the same once the change in branch of log(z) is accounted

for.) In turn to see Ki ∈ Stodi
(A0) simply observe Stodi

(A0) = Stod(A0) ∩ Stod′(A0)

(where d = (di, . . . , di+l−1) and d′ = (di−l+1, . . . , di) are the two half-periods ending on

di), and that the above argument implies Ki is in this intersection, since Σi(F̂ )−1Σi−1(F̂ )

is asymptotic to 1 along both θ(d) and θ(d′). �

Now we will establish the surjectivity of the irregular Riemann–Hilbert map in Theorem

2. Fix a formal type A0 and let A be the corresponding set of anti-Stokes directions. Also

fix a choice of initial sector and branch of log(z) as in Section 2. Now choose arbitrarily

a Stokes factor Kd ∈ Stod(A
0) for each d ∈ A.

Theorem 5. There exists a meromorphic connection A on the trivial principal G-bundle

over ∆ having formal type A0 and Stokes factors {Kd}.

Proof. (This is an adaptation of [5] Section 9.7, except we replace the key step with

a ∂-problem, as was suggested by Malgrange [27] and fleshed out in [3] Section 4.4.)

First we remark that it is sufficient to construct A only in a neighbourhood of the origin

because any such connection is gauge equivalent to a connection defined over the whole

disc. (One may prove this as follows: Given A over ∆ǫ := {z
∣∣ |z| ≤ ǫ}, choose any

holomorphic connection A1 on G × ∆∗ with the same monodromy as A around 0. The

ratio Φ1 · Φ−1 of corresponding fundamental solutions then defines a holomorphic map

from ∆∗
ǫ to G which we use as a clutching function to define a principal G-bundle P over

∆. The connections A,A1 define a single meromorphic connection on P . Moreover P is

trivial since all G-bundles over a disk are—cf. [16] p.370.)

Now choose j such that Kdj
6= 1. By induction on the number of non-trivial Stokes

factors we may assume there is a connection B having Stokes factor Kd for each d 6= dj

but having Stokes factor 1 ∈ Stodj
(A0) along dj. Write K = Kdj

for simplicity and let
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Bs = −s∗(B) as usual. (Here s is the identity section of the trivial G-bundle G×∆.) Let

χj(z) be the canonical fundamental solution of B on Sectj from Definition 5 and define

χ(z) := χjKχ
−1
j . Let d̃j be the lift of the direction dj to the universal cover ∆̃∗ of the

punctured disk determined by the chosen branch of log(z) and let S̃ectj be the lift of

Sectj. Let S∗ denote the sector in ∆̃∗ (of opening more than 2π) from d̃j −
π

2k−2
+ δ to

d̃j +2π+ π
2k−2

−δ, and let S = Sect(d̃j −
π

2k−2
+δ, d̃j + π

2k−2
−δ). Here δ > 0 is fixed so that

no Stokes directions lie in the interior of either component of Sect(d̃j −
π

2k−2
, d̃j + π

2k−2
)\S

(i.e. δ < min{|dj−dj±1|}). We now claim that there exists a holomorphic map τ : S∗ → G

having an asymptotic expansion with constant term 1 in S∗ and such that

(18) τ(ze2πi) = τ(z)χ(z)

for any z ∈ S̃ectj ∩ S, where χ is pulled up to S̃ectj in the obvious way.

Such τ may be constructed as follows. Let S ′ = Sect(d̃j −
π

2k−2
+ δ, d̃j +π) and (as in [3]

Lemma 4.3.2 and using the exponential map for G) extend χ to a C∞ map f : S ′ → G

such that f |S = χ, f(z) = 1 for arg(z) in some neighbourhood of d̃j + π and f ∼ 1 on

all S ′. (By construction χ ∼ 1 on Sect(d̃j −
π

2k−2
, d̃j + π

2k−2
).) Then define a C∞ g-valued

one-form α on ∆ by letting α = f−1∂f on S ′ and extending by zero. Now solve the

∂-problem g−1∂g = α for a smooth map g from some neighbourhood of 0 ∈ ∆ to G, with

g(0) = 1. (This is possible for the same reasons as in the GLn(C) case, for which cf. e.g.

[1] p.555.) Finally define τ : S∗ → G by τ = gf−1 for arg(z) ≤ d̃j + π and τ = g for

arg(z) ≥ d̃j + π; one easily checks this has the properties claimed.

To complete the proof define χ̃(z) := τ(z)χj(z) for z in S∗ (where χj is continued from

S̃ectj as a fundamental solution of B). Then (18) implies As := (dχ̃)χ̃−1 is invariant

under rotation by 2π and so defines a g-valued one-form on a neighbourhood of 0 in

∆∗. We will show that the corresponding connection A on the trivial principal G-bundle

has the desired properties. First observe that As = τ [Bs] by holomorphicity, since this

certainly holds near 0 in S̃ectj . Since τ admits an asymptotic expansion τ̂ ∈ G[[z]] in S∗

it follows that As admits Laurent expansion τ̂ [Bs]. Thus if Bs = F̂ [A0] (from Lemma 1)

then As = (τ̂ ◦ F̂ )[A0], and so A has formal type A0 as required. Now from the range

of validity of the asymptotic expansion of τ , and from the uniqueness of the sums in

Theorem 1, we deduce that for z ∈ Secti:

Σi(τ̂ ◦ F̂ )(z) = τ(z̃) · Σi(F̂ )(z)

where z̃ ∈ ∆̃∗ lies over z and between directions d̃j and d̃j + 2π. (On Sectj−1 and Sectj

one needs to use the extension lemma, Lemma 24, as well—which is applicable by the

choice of δ.) In turn we immediately find that A has the same Stokes factors as B except

in Stodj
(A0). Here (across dj) by definition A has Stokes factor

Φ−1
j Φj−1 = χ−1

j τ−1(z)τ(ze2πi)χj−1

if j 6= #A, where Φi, χi denote canonical solutions of A,B respectively. Since B has

trivial Stokes factor here χj−1 = χj and so by (18) and the definition of χ we find
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Φ−1
j Φj−1 = χ−1

j χχj = K as required. (Similarly if j = #A.) �

Proof (of Lemma 7). Here an alternative construction of the ‘sums’ of Theorem 1

will be given, closer to the usual approach in the GLn(C) case. This is more direct

than the multisummation approach above and enables us to prove that the sums vary

holomorphically with parameters.

The usual construction of Σ0(F̂ ) (cf. e.g. [37]) consists of two steps. Roughly speaking

one converts the equation satisfied by F̂ into two independent nonlinear equations for

‘parts’ of F̂ . Then an asymptotic existence theorem is used to find analytic solutions to

these two equations, that are asymptotic to the corresponding parts of F̂ . Usually for

G = GLn(C) (see [37] §12.1, [31]) the two equations involve the upper and lower triangular

parts of F̂ − 1. For general G this makes no sense: an alternative procedure will be used

here to reduce the problem to the same asymptotic existence theorem.

If a and b are the boundary directions of the sector Š (so Š = Sect(a, b)), let S :=

Sect
(
b− π

2k−2
, a+ π

2k−2

)
(a sector of opening less than π

k−1
centred on Š). For simplicity

write F = Σ0(F̂ ) for the G-valued map we are seeking. This should have asymptotic

expansion F̂ as z → 0 in S and should solve (for each x ∈ U) the equation

(19) (dF )F−1 = A− FA0F−1

on the sector S ⊂ ∆, where d is the exterior derivative on ∆. (Here (dF )F−1 is defined

in the usual way as the pullback of the right-invariant Maurer–Cartan form on G under

the map F and FA0F−1 := AdFA
0.) Note that such F is unique since (for each x)

the extension lemma (Lemma 24) says F extends to Ŝect0 maintaining the asymptotic

expansion F̂ , and so the uniqueness part of Theorem 1 fixes F .

Now, because the big cell G0 = U−TU+ ⊂ G is open and contains the identity, we find

Lemma 25. (1) F̂ admits a unique factorisation

F̂ = û− · t̂ · û+

with û± ∈ U±
(
O(X)[[z]]

)
and t̂ ∈ T

(
O(X)[[z]]

)
.

(2) For z ∈ S sufficiently close to 0, any solution F of (19) asymptotic to F̂ has a

unique factorisation

F = u− · t · u+

with u±, t taking values in U±, T respectively.

Substituting F = u− · t · u+ into (19) and rearranging yields:

(20) u−1
− du− + (dt)t−1 + t(du+)u−1

+ t−1 + tu+A
0u−1

+ t−1 − u−1
− Au− = 0.

Taking the u− component of this gives the independent equation

(21) u−1
− du− = π−(u−1

− Au−)

for u−, where π− : g = u− ⊕ t ⊕ u+ → u− is the projection. We wish to solve (21) using

the following asymptotic existence theorem with parameters, which is also used in the

GLn(C) case.
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Theorem 6. Let S be an open sector in the complex z plane with vertex 0 and opening

not exceeding π
k−1

. Let f(z, L, x) : ∆ × C
N × U → C

N be a holomorphic map such that

(i) The Jacobian matrix
(

∂fi

∂(L)j

) ∣∣∣
L=0,z=0

is invertible for all x ∈ U , and

(ii) The differential equation

(22)
dL

dz
=
f(z, L, x)

zk

admits a formal power series solution L̂ =
∑∞

1 Lr(x)z
r ∈ CN [[z]] ⊗O(U).

Then there exists, for sufficiently small z ∈ S, a holomorphic solution L(z, x) of (22)

having asymptotic expansion L̂ in S uniformly in some neighbourhood of x0 ∈ U .

Proof. Without parameters this is Theorem 14.1 of [37]. The method of successive

approximations used there extends immediately to the case with parameters since the

uniform convergence of successive approximations does not destroy holomorphicity with

respect to parameters (cf. [32] Remark 2 p.161). Alternatively Sibuya proves a very sim-

ilar result ([31] Lemma 2) for the case where the parameters become singular on a sector.

As remarked in [21] p.100 the case when the parameters are nonsingular and on a disc

(as required here) is proved in exactly the same manner. �

The trick to convert (21) into the form (22) is as follows. (We will have CN = u−.)

Since U− is unipotent the exponential map exp : u− → U− is an algebraic isomorphism,

and its derivative gives an isomorphism exp∗ : Tu− → TU− of the tangent bundles. If we

identify Tu− ∼= u− × u− using the vector space structure of u− and TU− ∼= U− × u− using

left multiplication in U− then we deduce:

Lemma 26. There is an algebraic isomorphism

ψ : u− × u−
∼=

−→U− × u−

which is linear in the second component and such that if L(z) : ∆ → u− is any holomorphic

map then

ψ

(
L,
dL

dz

)
=

(
eL, e−L d

dz
(eL)

)
.

Thus, setting u− = eL, equation (21) is equivalent to (22) with the map f defined by

(L, f(z, L, x)) = ψ−1(u−, h(z, u−, x)) ∈ u− × u−

for any z ∈ ∆, L ∈ u−, x ∈ U , where u− = eL and h(z, u−, x) := 〈zkπ−(u−1
− A(z, x)u−), ∂

∂z
〉

is from (21).

Clearly the formal solution û− of (21) induces a formal solution of (22) of the desired

form and so all that remains to solve (22) is to check the Jacobian condition in Theorem

6. Geometrically this condition says precisely that the graph Γ(f) ⊂ uh
− × uv

− of the map

f(0, ·, x) : uh
− → uv

− is transverse to the horizontal subspace uh
− at L = 0. (Here uh

−, u
v
− are

just copies of u− labeled ‘horizontal’ and ‘vertical’; f is viewed as a section of the tangent

bundle to uh
−.) Since ψ is a diffeomorphism it is sufficient to check this transversality

condition on U− × u−. By definition the graph of f corresponds to the graph of h under
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ψ. Clearly L = 0 iff u− = 1 and h(1) = π−(A0) = 0 since A0 ∈ t. (Here we omit the

arguments z = 0 and x of h for notational simplicity.) Thus ψ(0, f(0)) = (1, 0) and we

must check that the two vector spaces ψ∗(u−×{0}) and T(1,0)Γ(h) are transverse subspaces

of the tangent space T(1,0)(U− × u−) = u− × u−. The tangent space to the graph of h at

(1, 0) is

{(X, π−[X,A0])
∣∣ X ∈ u−}

and one may calculate that the derivative of ψ maps the horizontal subspace u− ×{0} to

{(X, 0)
∣∣ X ∈ u−}.

Since A0(x) ∈ treg it follows immediately that these two subspaces are indeed transverse.

Thus we may apply Theorem 6 to obtain a holomorphic solution L(z, x) of (22) and in

turn obtain a solution u− = eL of (21).

Given this solution u−, now consider the t component

(23) (dt)t−1 = δ(u−1
− Au−) − A0

of the full equation (20), where δ : g = u−⊕t⊕u+ → t is the projection. This equation has

formal solution t̂ and so the right-hand side of (23) has nonsingular asymptotic expansion

as z → 0 in S. Immediately this implies (23) has a unique holomorphic solution tending

to 1 ∈ T as z → 0, given by

t(z, x) = exp

(∫ z

0

(
δ(u−1

− Au−) − A0
))

(cf. [37] Theorem 8.7 p.38).

Thus we have obtained all except the u+ component of the desired solution F = u−tu+.

To obtain u+ we repeat all the above procedure with the opposite factorisation F =

w+sw− of F (with w± ∈ U± and s ∈ T ). This yields w+ and s. Then, for sufficiently

small z, the components u+ and w− are determined (holomorphically) from u−, w+, s, t

by the equation

w−1
+ u−t = sw−u

−1
+

since both Bruhat decompositions are unique and the left-hand side is known. The re-

sulting solution F = u−tu+ = w+sw− then has the desired properties. �

Appendix B

In this appendix we will explain how the results of Section 2 enable us to extend The-

orems 1 and 2 of [8] from GLn(C) to arbitrary connected complex reductive groups G.

The main modifications of the proofs in [8] are purely notational and so here we will

concentrate on giving a clear statement of the results. The set-up is as follows.

LetK be any compact connected Lie group. Choose a maximal torus TK ⊂ K and a non-

degenerate symmetric invariant bilinear form K on k = Lie(K). (Thus if K is semisimple

we may take K to be the Killing form, or if K = U(n) then K(A,B) = Tr(AB) will do.)

Let G be the complex algebraic group associated to K (as in [12]; G is the variety

associated to the complex representative ring ofK). Any complex connected reductive Lie
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group G arises in this way (see [20]). We have g = k⊗C with Cartan subalgebra t = tK⊗C

and G has maximal torus T = exp(t). Extend K C-bilinearly to K : g ⊗ g → C. The

group G comes equipped with an involution (with fixed point set canonically isomorphic

to K), which we will denote by g 7→ g−†. (It is denoted ι in [12].) This induces an

anti-holomorphic involution of g (to be denoted X 7→ −X†) fixing k pointwise.

Note that t comes with two real structures: one (A 7→ −A†) from the identification

t = tK ⊗ C and another (to be denoted A 7→ A) defined via the identification t = tR ⊗ C

where tR := X∗(T )⊗ZR. (Here X∗(T ) := Hom(C∗, T ) is embedded in t by differentiation.)

One may check tK = itR.

Apart from the choices K, tK ,K made so far we need to make three further choices in

order to define the monodromy map

(24) ν : g∗ −→ G∗.

These are:

1) A regular element A0 ∈ treg. This determines anti-Stokes directions etc. as in Section

2 (taking the pole order k = 2).

2) An initial sector Sect0 bounded by two consecutive anti-Stokes directions, and

3) A choice of branch of log(z) on Sect0.

The choice of initial sector determines a system of positive roots R(d1) ∪ · · · ∪ R(dl)

as in Lemma 4 (with l = #A/2) and thus a Borel subgroup B+ ⊂ G containing T . Let

B− be the opposite Borel subgroup and define the dual Poisson Lie group G∗ as in (5)

in terms of B±. G∗ is a contractible Lie group of the same dimension as G and has a

natural Poisson Lie group structure which may be defined directly and geometrically as

for GLn(C) in [8].

The monodromy map (24) is then defined as follows. Given B ∈ g∗, consider the

meromorphic connection on the trivial principal G-bundle over the unit disc ∆ determined

by the g-valued meromorphic one-form

As :=

(
A0

z2
+
B

z

)
dz,

where B is viewed as an element of g via K. This connection has Stokes multipliers

(S+, S−) = (S1, S2) ∈ U+ ×U− defined in Definition 5 above, using choices 2) and 3), and

so determines an element

(b−, b+,Λ) ∈ G∗

via the formulae:

b− = e−πiΛS−1
− , b+ = e−πiΛS+e

2πiΛ, Λ = δ(B)

so that b−1
− b+ = S−S+ exp(2πiΛ). (Here δ : g → t is the projection with kernel u+ ⊕ u−.)

A slightly more direct/elegant definition of ν may be given, without first going through

Stokes multipliers, exactly as before in Section 4 of [8].

The monodromy map ν is a holomorphic map by Corollary 8 and it is easy to prove (as

in [8]) it is generically a local analytic isomorphism and any generic symplectic leaf of g∗

maps into a symplectic leaf of G∗. The approach of [8] extends to yield:
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Theorem 7. The monodromy map ν is a Poisson map for each choice of A0, Sect0, log(z),

where g∗ has its standard complex Poisson structure and G∗ has its canonical complex

Poisson Lie group structure, but scaled by a factor of 2πi.

Proof. As in [8]; Just replace any expression of the form Tr(AB) by K(A,B) and any

reference to the difference of eigenvalues of any element A ∈ g (which now makes no

sense), by the eigenvalues of adA ∈ End(g). (The left and right-invariant Maurer–Cartan

forms on G make sense of expressions of the form H−1H ′ and H ′H−1 for maps H into G.)

The only minor subtlety is in the proof of [8] Lemma 27 where one needs the fact that

Ad(eQ)(n−) tends to zero as z → 0 along a certain direction (−θ) for any fixed n− ∈ u−.

However this follows directly from the third part of Lemma 22 of the present paper. �

Remark 27. Thus locally the monodromy maps give appropriate ‘canonical’ coordinate

changes to integrate the explicit non-linear isomonodromy equations (13). This indicates

just how complicated the monodromy maps are: for G = SL3(C) equation (13) is equiva-

lent to the full family of Painlevé VI equations—generic solutions of which are known to

involve ‘new’ transcendental functions.

Now suppose A0 is purely imaginary (A0 = −A0). Then there are only two anti-Stokes

directions; the two halves of the imaginary axis. Take Sect0 to be the sector containing

the positive real axis R+ and use the branch of log(z) which is real on R+. One may then

check (as in [8] Lemma 29) that if (b−, b+,Λ) = ν(B) then ν(−B†) = (b−†
+ , b−†

− ,−Λ†) so

that ν restricts to a (real analytic) map

ν|k∗ : k∗−→K∗,

where k∗ ∼= k via K and K∗ ⊂ G∗ is defined to be the fixed point subgroup of the involution

(b−, b+,Λ) 7→ (b−†
+ , b−†

− ,−Λ†).

The group K∗ has a natural (real) Poisson Lie group structure which may be defined as

in [8] for K = U(n). All of these restricted monodromy maps are Ginzburg–Weinstein

isomorphisms:

Theorem 8. If A0 is purely imaginary then the corresponding monodromy map restricts

to a (real) Poisson diffeomorphism k∗ ∼= K∗ from the dual of the Lie algebra of K to the

dual Poisson Lie group (with its standard Poisson structure, scaled by a factor of π).

Proof. The proof in [8] goes through once the notational changes given in the previous

proof are made. The fact that the ‘unique Hermitian logarithms’ appearing in the proof

of Lemma 31 [8] still exist (Hermitian now meaning −X† = −X ∈ g), follows easily from

the fact that G has a faithful representation ρ : G →֒ GLN (C) with ρ(K) = ρ(G)∩U(N)

(cf. [12] Lemma 2 p.201). �

Remark 28. 1) The permutation matrices used in [8] have now been banished; Conse-

quently the group G∗ now depends on the choice of initial sector (a priori we make no
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choice of positive roots). The pleasant effect is that ν is now always T -equivariant, with

T acting on g∗ via the coadjoint action and on G∗ via the left or right dressing action.

(The left and right dressing actions agree when restricted to T .) In turn the Ginzburg–

Weinstein isomorphisms constructed above are all TK-equivariant.

2) The new proof of the theorem of Duistermaat given in Section 6 of [8] for GLn(C)

also extends immediately to connected complex reductive G.
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