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G-BUNDLES, ISOMONODROMY AND QUANTUM WEYL GROUPS

Introduction

It is now twenty years since Jimbo, Miwa and Ueno [START_REF] Jimbo | Monodromy preserving deformations of linear differential equations with rational coefficients I[END_REF] generalised Schlesinger's equations (governing isomonodromic deformations of logarithmic connections on vector bundles over the Riemann sphere) to the case of connections with arbitrary order poles. An interesting feature was that new deformation parameters arose: one may vary the 'irregular type' of the connections at each pole of order two or more (irregular pole), as well as the pole positions. Indeed, for each irregular pole the fundamental group of the space of deformation parameters was multiplied by a factor of

P n = π 1 (C n \ diagonals) ,
where n is the rank of the vector bundles. (This factor arose because the connections must be 'generic'; the leading term at each irregular pole must have distinct eigenvalues.)

The motivation behind the first part of this paper is the question of how to generalise the work of Jimbo, Miwa and Ueno (and also [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF][START_REF]Symplectic manifolds and isomonodromic deformations[END_REF]) to the case of meromorphic connections on principal G-bundles for complex reductive groups G. For simple poles (Schlesinger's equations) this generalisation is immediate, but in general one needs to understand the 'G-valued' Stokes phenomenon in order to proceed (that is, one needs to understand the local moduli of meromorphic connections on G-bundles). This will be done in Section 2. Naturally enough a good theory is obtained provided the leading term at each irregular pole is regular semisimple (that is, lies on the complement of the root hyperplanes in some Cartan subalgebra). The main result of Section 2 is an irregular Riemann-Hilbert correspondence describing the local moduli in terms of G-valued Stokes multipliers, and is the natural generalisation of the result of Balser, Jurkat and Lutz [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF] in the GL n (C) case. The proof is necessarily quite different to that of [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF] however.

In the rest of the paper we consider isomonodromic deformations of such connections in the simplest case: that of connections with one order two pole over the unit disc. The main things we will prove are: 1) That the classical actions of quantum Weyl groups found by De Concini, Kac and Procesi [START_REF] Concini | Quantum coadjoint action[END_REF] do arise from isomonodromy (and so have a purely geometrical origin) and 2) That a certain flat connection appearing in work of De Concini and Toledano Laredo arises directly from the isomonodromy Hamiltonians, indicating that the previous result is the classical analogue of their conjectural Kohno-Drinfeld theorem for quantum Weyl groups.

In more detail, in this 'simplest case' the fundamental group of the space of deformation parameters is the generalised pure braid group associated to g = Lie(G):

P g = π 1 (t reg )
where t reg is the regular subset of a Cartan subalgebra t ⊂ g. By considering isomonodromic deformations one obtains a nonlinear (Poisson) action of P g as follows (this is purely geometrical-as explained in [START_REF]Symplectic manifolds and isomonodromic deformations[END_REF] the author likes to think of isomonodromy as a natural analogue of the Gauss-Manin connection in non-Abelian cohomology): There is a moduli space M of generic (compatibly framed) meromorphic connections on G-bundles over the unit disc and having order two poles over the origin (see Section 3 for full details). Taking the leading coefficients (irregular types) at the pole gives a map M → t reg which in fact expresses M as a fibre bundle. Performing isomonodromic deformations of the connections then amounts precisely to integrating a natural flat connection on this fibre bundle (the isomonodromy connection). Thus, upon choosing a basepoint A 0 ∈ t reg , a natural P g action is obtained on the fibre M(A 0 ), by taking the holonomy of the isomonodromy connection. Now, in a previous paper [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF], the author found that (for G = GL n (C)) the fibres M(A 0 ) are isomorphic to the Poisson Lie group G * dual to G (and that the natural Poisson structures then coincide). The results of Section 2 enable this to be extended easily to general G. Thus isomonodromy gives a natural (Poisson) P g action on G * .

On the other hand, in their work on representations of quantum groups at roots of unity, De Concini, Kac and Procesi [START_REF] Concini | Quantum coadjoint action[END_REF] have written down explicitly a Poisson action of the full braid group B g = π 1 (t reg /W ) on G * . This was obtained by taking the classical limit of the explicit B g action-the 'quantum Weyl group' action-on the corresponding quantum group, due to Lusztig [START_REF] Lusztig | Quantum groups at roots of 1[END_REF] and independently Kirillov-Reshetikhin [START_REF] Kirillov | q-Weyl group and a multiplicative formula for universal R-matrices[END_REF] and Soibelman [START_REF] Soibelman | The algebra of functions on a compact quantum group, and its representations[END_REF]. In this paper it will be explained how to convert the fibre bundle M → t reg into a bundle M ′ → t reg /W with flat connection (and standard fibre G * ), by twisting by a finite group (Tits' extension of the Weyl group by an abelian group). Then the main result of Section 3 is:

Theorem. The holonomy action of the full braid group B g = π 1 (t reg /W ) on G * (obtained by integrating the flat connection on M ′ ) is the same as the B g action on G * of De Concini-Kac-Procesi [START_REF] Concini | Quantum coadjoint action[END_REF].

Thus the geometrical origins of the quantum Weyl group actions are in the geometry of meromorphic connections having order two poles.

In Section 4 a Hamiltonian description will be given of the equations governing the isomonodromic deformations of Section 3. It will then be shown how this leads directly a certain flat connection appearing in the recent paper [START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF] and featuring in the conjectural 'Kohno-Drinfeld theorem for quantum Weyl groups'; see [START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF], where this conjecture is explained-and proved for sl n (C). The history of this given in [START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF] is a little complicated: C. De Concini discovered the connection and conjecture in unpublished work around 1995. Next J. Millson and V. Toledano Laredo jointly rediscovered the connection. Then Toledano Laredo rediscovered the conjecture and found how to prove it for sl n (C) by translating it into the usual Kohno-Drinfeld theorem.

Our derivation of this connection of De Concini-Millson-Toledano Laredo (DMT) suggests that the theorem of Section 3 here should be interpreted as the classical analogue (for any g) of the aforementioned conjectural Kohno-Drinfeld theorem for quantum Weyl groups. The background for this interpretation comes from the paper [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF] of Reshetikhin (and also [START_REF]Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations, Symmetries and integrability of difference equations[END_REF][START_REF] Babujian | Generalized Knizhnik-Zamolodchikov equations and isomonodromy quantization of the equations integrable via the inverse scattering transform: Maxwell-Bloch system with pumping[END_REF]). In [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF] Reshetikhin explained how Knizhnik-Zamolodchikov type equations arise as deformations of the isomonodromy problem. Although poles of order two or more are considered in [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF], the extra deformation parameters are not considered and so the braiding due to the irregular types did not appear. The derivation that will be given here of the DMT connection amounts to the following statement. If the idea of [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF] is extended to deformations of the isomonodromy problem for connections on P 1 with just two poles (of orders one and two respectively) then the DMT connection arises, rather than the Knizhnik-Zamolodchikov equations.

The organisation of this paper is as follows. Section 2 swiftly states all the required results concerning the moduli of meromorphic connections on principal G-bundles, the main proofs being deferred to an appendix. Section 3 then addresses isomonodromic deformations and proves the main theorem stated above, relating quantum Weyl group actions to meromorphic connections. Section 4 gives the Hamiltonian approach to the isomonodromic deformations considered and shows how this leads directly to the DMT connection. Appendix A gives the proofs for Section 2. Finally Appendix B explains how, using the results of Section 2, one may extend to the current setting some closely related theorems of a previous paper [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] showing that certain monodromy maps are Poisson. 

G-valued Stokes Multipliers

Let G be a connected complex reductive Lie group. Fix a maximal torus T ⊂ G and let t ⊂ g be the corresponding Lie algebras. Let R ⊂ t * be the roots of G relative to T , so that as a vector space g = t ⊕ α∈R g α where g α ⊂ g is the one-dimensional subalgebra of elements X ∈ g such that [H, X] = α(H)X for all H ∈ t.

Let A be a meromorphic connection on a principal G-bundle P → ∆ over the closed unit disc ∆ ⊂ C, having a pole of order k ≥ 2 over the origin and no others. We view A as a g-valued meromorphic one-form on P satisfying the usual conditions ( [START_REF] Kobayashi | Foundations of differential geometry[END_REF] p.64); in particular the vertical component of A is nonsingular. Upon choosing a global section s : ∆ → P of P (which we may since every G-bundle over ∆ is trivial), A is determined by the g-valued meromorphic one-form A s := -s * (A) on ∆. (The minus sign is introduced here simply to agree with notation in the differential equations literature.) In turn A s = A h dz/z k for a holomorphic map A h : ∆ → g, where z is a fixed coordinate on ∆ vanishing at 0. By a framing of P at 0 we mean a point s 0 ∈ P 0 of the fibre of P at 0. This determines the leading coefficient A 0 := A h (0) ∈ g of A independently of the choice of a section s through s 0 . The framed connection (P, A, s 0 ) will be said to be compatibly framed if A 0 ∈ t. A compatibly framed connection is generic if A 0 ∈ t reg , i.e. if α(A 0 ) = 0 for all α ∈ R. Let G denote the group of holomorphic maps g : ∆ → G and let G[[z]] be the completion at 0 of G. Lemma 1. Let (P, A, s 0 ) be a generic compatibly framed connection with leading coefficient A 0 . Choose a trivialisation s of P with s(0) = s 0 and let A s = -s * (A) as above. Then there is a unique formal transformation

F ∈ G[[z]] and unique elements A 0 0 , . . . , A 0 k-2 , Λ ∈ t such that F (0) = 1, A 0 0 = A 0 and F A 0 = A s where A 0 := (A 0 0 /z k + • • • + A 0 k-2 /z 2 + Λ/z)dz and F [A 0 ] denotes the gauge action (which, in any representation, is F A 0 F -1 + d F F -1
). Moreover changing the trivialisation does not change A 0 , and changes

F to g • F where g ∈ G[[z]] is the Taylor expansion of some g ∈ G with g(0) = 1.
The proof will be given in the appendix. We will refer to A 0 as the formal type of (P, A, s 0 ) and to Λ as the exponent of formal monodromy. The primary aim of this section is to describe (in terms of Stokes multipliers) the set H(A 0 ) of isomorphism classes of generic compatibly framed connections on principal G-bundles over ∆ with a fixed formal type A 0 :

H(A 0 ) = {(P, A, s 0 ) formal type A 0 }/(isomorphism).
We remark that there are groups G for which this description cannot be reduced (for any A 0 ) to the GL n (C) case by choosing a representation G ⊂ GL n (C) (see Lemma 21).

Since each such principal bundle is trivial our task is equivalent to describing the quotient {A s F [A 0 ] = A s for some F ∈ G[[z]] with F (0) = 1}/{g ∈ G g(0) = 1}. This will involve 'summing' the (generally divergent) series F on various sectors at 0, bounded by 'anti-Stokes directions' which are defined as follows.

Let the circle S 1 parameterise rays (directed lines) emanating from 0 ∈ C. (Intrinsically this can be thought of as the boundary circle of the real oriented blow-up of C at 0.) Note that A 0 = dQ + Λdz/z where

Q := k-1 j=1 z j-k j-k A 0 j-1 and let q := 1 1-k A 0 z 1-k be the leading term of Q. Since A 0 is regular, for each root α ∈ R, there is a non-zero complex number c α such that α • q = c α z 1-k .
Definition 2. The anti-Stokes directions A ⊂ S 1 are the directions along which exp(α•q) decays most rapidly as z → 0, i.e. the directions along which α • q(z) is real and negative.

For k = 2 (which will be prominent in Section 3) A simply consists of the directions from 0 to α(A 0 ) for all α ∈ R. (In general A is just the inverse image under the k -1 fold covering map z → z k-1 of the directions to the points of the set A 0 , R ⊂ C * .) Clearly A has π/(k -1) rotational symmetry and so l := #A/(2k -2) is an integer. We will refer to an l-tuple d ⊂ A of consecutive anti-Stokes directions as a half-period. Definition 3. Let d ∈ A be an anti-Stokes direction.

• The roots R(d) of d are the roots α ∈ R 'supporting' d:

R(d) := {α ∈ R (α • q)(z) ∈ R <0 for z along d}.
• The multiplicity of d is the number #R(d) of roots supporting d.

• The group of Stokes factors associated to d is the group

Sto d (A 0 ) := α∈R(d) U α ⊂ G
where U α = exp(g α ) ⊂ G is the one dimensional unipotent group associated to g α , and the product is taken in any order.

• If d ⊂ A is a half-period then the group of Stokes multipliers associated to d is

Sto d (A 0 ) := d∈d Sto d (A 0 ) ⊂ G.
To understand this we note the following facts (which are proved in the appendix):

Lemma 4. If d ⊂ A is a half-period then d∈d R(d)
is a system of positive roots in some (uniquely determined) root ordering.

• For any anti-Stokes direction d the corresponding group of Stokes factors is a unipotent subgroup of G of dimension equal to the multiplicity of d.

• For any half-period d the corresponding group of Stokes multipliers is the unipotent part of the Borel subgroup of G determined by the positive roots above.

• The groups of Stokes multipliers corresponding to consecutive half-periods are the unipotent parts of opposite Borel subgroups. Now choose a sector Sect 0 ⊂ ∆ with vertex 0 bounded by two consecutive anti-Stokes directions. Label the anti-Stokes directions d 1 , . . . , d #A in a positive sense starting on the positive edge of Sect 0 . Let Sect i := Sect(d i , d i+1 ) denote the 'ith sector' (where the indices are taken modulo #A) and define the 'ith supersector' to be Sect

i := Sect d i -π 2k-2 , d i+1 + π 2k-2 .
All of the sectors Sect i , Sect i are taken to be open as subsets of ∆.

Theorem 1. Suppose F ∈ G[[z]
] is a formal transformation as produced by Lemma 1. Then there is a unique holomorphic map Σ i ( F ) : Sect i → G for each i such that 1) Σ i ( F )[A 0 ] = A, and 2) Σ i ( F ) can be analytically continued to the supersector Sect i and then Σ i ( F ) is asymptotic to F at 0 within Sect i .

Moreover, if t ∈ T and g ∈ G with g(0

) = t then Σ i ( g • F • t -1 ) = g • Σ i ( F ) • t -1
, where g is the Taylor expansion of g at 0.

This will be proved in the appendix. The point is that on a narrow sector there are generally many holomorphic isomorphisms between A 0 and A which are asymptotic to F and one is being chosen in a canonical way.

It is now easy to construct canonical A-horizontal sections of P over the sectors, using these holomorphic isomorphisms and the fact that z Λ e Q is horizontal for A 0 (which is viewed as a meromorphic connection on the trivial G-bundle).

For this we need to choose a branch of log(z) along d 1 which we then extend in a positive sense across Sect 1 , d 2 , Sect 2 , d 3 , . . . , Sect 0 in turn. It will be convenient later (when A 0 varies) to encode the (discrete) choice of initial sector Sect 0 and branch of log(z) in terms of the choice of a single point p ∈ ∆ * of the universal cover of the punctured disc, lying over Sect 0 . Definition 5. Fix data (A 0 , z, p) as above and suppose (P, A, s 0 ) is a compatibly framed connection with formal type A 0 .

• The canonical fundamental solution of A on the ith sector is the holomorphic map

Φ i := Σ i ( F )z Λ e Q : Sect i -→ G
where z Λ uses the choice (determined by p) of log(z) on Sect i .

• The Stokes factors K i (i = 1, . . . , #A) of A are defined as follows. If Φ i is continued across the anti-Stokes ray d i+1 then on Sect i+1 we have:

K i+1 := Φ -1 i+1 • Φ i for 1 ≤ i < #A and K 1 := Φ -1 1 • Φ #A • M -1 0 , where M 0 := e 2π √ -1•Λ ∈ T is the 'formal monodromy'. • The Stokes multipliers S i (i = 1, . . . , 2k -2) of A are (1) S i := K il • • • K (i-1)l+1 ,
where l = #A/(2k -2). Equivalently if Φ il is continued across d il+1 , . . . , d (i+1)l and onto Sect (i+1)l then: Φ il = Φ (i+1)l S i+1 for i = 1, . . . , 2k -3, and

Φ il = Φ l S 1 M 0 for i = 2k -2.
Note that the canonical solutions Φ i are appropriately equivariant under change of trivialisation, so are naturally identified with A-horizontal sections of P . It follows that the Stokes factors and Stokes multipliers are constant (z-independent) elements of G. Also, from the proof of Lemma 4, note that S i uniquely determines each Stokes factor appearing in [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF]. In the appendix we will establish the basic lemma: Lemma 6. K i ∈ Sto d i (A 0 ) and S j ∈ Sto d (A 0 ) where d = (d (j-1)l+1 , . . . , d jl ).

It is immediate from Definition 5 and the last part of Theorem 1 that the Stokes multipliers are independent of the trivialisation choice in Lemma 1, and so are well defined (group valued) functions on H(A 0 ). The main result of this section is then: Theorem 2. Fix the data (A 0 , z, p) as above. Let U + = Sto d (A 0 ) where d = (d 1 , . . . , d l ) is the first half-period and let U -denote the opposite full unipotent subgroup of G. Then the 'irregular Riemann-Hilbert map' taking the Stokes multipliers induces a bijection

H(A 0 ) ∼ = -→(U + × U -) k-1 ; [(P, A, s 0 )] -→ (S 1 , . . . , S 2k-2 ).
In particular H(A 0 ) is isomorphic to a complex vector space of dimension (k -1) • (#R).

Proof. For injectivity, suppose we have two compatibly framed meromorphic connections with F 1 [A 0 ] = A s 1 and F 2 [A 0 ] = A s 2 and having the same Stokes multipliers. Therefore the Stokes factors are also equal and it follows immediately that Σ i ( F 2 ) • Σ i ( F 1 ) -1 has no monodromy around 0 and does not depend on i, and thereby defines a holomorphic map g : ∆ * → G. Thus on any sector g has asymptotic expansion F 2 • F -1 1 and so (by Riemann's removable singularity theorem) we deduce the formal series F 2 • F -1 1 is actually convergent with the function g as sum. This gives an isomorphism between the connections we began with: they represent the same point in H(A 0 ). Surjectivity follows from the G-valued analogue of a theorem of Sibuya, which we will prove in the appendix.

To end this section we will show that the Stokes multipliers of a holomorphic family of connections vary holomorphically with the parameters of the family. Suppose we have a family of compatibly framed meromorphic connections on principal G-bundles over the disc ∆, parameterised by some polydisc X. Upon choosing compatible trivialisations this family may be written as

A s = A h dz z k for a holomorphic map A h : ∆ × X → g with leading coefficient a holomorphic map A 0 = A h z=0 : X → t reg .
The proof of Lemma 1 is completely algebraic and remains unchanged upon replacing the coefficient ring C by the ring O(X) of holomorphic functions on X; there is a unique formal transformation F ∈ G O(X) [[z]] and unique holomorphic maps A 0 0 , . . . , A 0 k-2 , Λ :

X → t such that F z=0 = 1, A 0 0 = A 0 and F [A 0 ] = A s where A 0 := (A 0 0 /z k + • • • + A 0 k-2 /z 2 + Λ/z)dz. Given a point x ∈ X let F x ∈ G[[z]
] denote the corresponding formal bundle automorphism. Now choose any basepoint x 0 ∈ X and let A 0 ⊂ S 1 denote the anti-Stokes directions associated to A 0 (x 0 ). Let Š ⊂ ∆ be any sector (with vertex 0) and whose closure contains none of the directions in A 0 . By continuity there is a neighbourhood U ⊂ X of x 0 such that none of the anti-Stokes directions associated to A 0 (x) lie in Š, for any x ∈ U. We will always label the sectors such that Š ⊂ Sect 0 . Lemma 7. In the situation above the holomorphic maps Σ 0 ( F x ) : Š → G (defined for each x in Theorem 1 and restricted to Š) vary holomorphically with x ∈ U and so constitute a holomorphic map

Σ 0 ( F ) : Š × U → G.
This will be proved in the appendix.

Corollary 8. In the situation above, taking Stokes multipliers defines a holomorphic map U → (U + × U -) k-1 from the parameter space U to the space of Stokes multipliers. In particular if A 0 is any formal type then H(A 0 ) is a coarse moduli space in the analytic category.

Proof. Lemma 7 implies each of the sums Σ il ( F x ) varies holomorphically with x ∈ U (even though the integer l may jump; Σ il ( F x ) is defined invariantly as the 'sum' of

F x on the sector Š • exp iπ √ -1 k-1
). Thus, once a branch of log(z) is chosen on Š, the canonical solutions Φ il also vary holomorphically with x. The Stokes multipliers are defined directly in terms of these canonical solutions and so also vary holomorphically. That H(A 0 ) is a coarse moduli space is immediate from this and Theorem 2.

Isomonodromic Deformations

In this section we will define and study isomonodromic deformations of generic compatibly framed meromorphic connections on principal G-bundles over the unit disc, having an order two pole at the origin. Due to the results of the previous section the definition is now a straightforward matter. (The GL n (C) case over P 1 , with arbitrary many poles of arbitrary order was defined in [START_REF] Jimbo | Monodromy preserving deformations of linear differential equations with rational coefficients I[END_REF] and studied further in [START_REF]Symplectic manifolds and isomonodromic deformations[END_REF].)

The main aim here is to describe a relationship between isomonodromic deformations and certain braid group actions arising in the theory of quantum groups. In brief this relationship is as follows. In [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] the author identified the Poisson Lie group G * dual to G = GL n (C) with a certain moduli space M(A 0 ) of meromorphic connections on vector bundles (principal GL n (C) bundles) over the unit disc and having an order two pole at the origin and 'irregular type' A 0 ∈ t reg . The previous section enables us to extend this identification easily to arbitrary G.

By considering 'isomonodromic deformations' of such connections (where A 0 plays the role of deformation parameter) one obtains an action of the pure braid group P g = π 1 (t reg ) on M(A 0 ) ∼ = G * . This is purely geometrical: there is a moduli space M of meromorphic connections fibring over t reg (with fibre M(A 0 ) ∼ = G * over A 0 ) and having a natural flat (Ehresmann) connection-the isomonodromy connection. The P g action is just the holonomy of this connection.

On the other hand De Concini-Kac-Procesi [START_REF] Concini | Quantum coadjoint action[END_REF] have described explicitly an action of the full braid group B g = π 1 (t reg /W ) on G * in their work on representations of quantum groups at roots of unity. (This is for simple g, which is certainly the most interesting case.) This action is the classical version of the 'quantum Weyl group' actions of B g on a quantum group (the quantisation of G * ) which were defined by Lusztig, Kirillov-Reshetikhin, and Soibelman (see [START_REF] Concini | Quantum groups, in: D-modules, representation theory, and quantum groups[END_REF] for more details; in particular Section 12 gives the definition of the quantum group having classical limit G * ).

In this section we will explain how to convert M into a fibre bundle M ′ → t reg /W with flat connection, using Tits' 'extended Weyl group' [START_REF] Tits | Normalisateurs de tores. I. Groupes de Coxeter étendus[END_REF], and then prove that the holonomy action of B g on the fibres of M ′ (which are still isomorphic to G * ) is precisely the action of De Concini-Kac-Procesi. Thus we have a geometrical description of their action; roughly speaking the infinite part (related to P g ) of the B g action comes from geometry whereas the rest (related to the Weyl group) is put in by hand.

We have restricted to the order two pole case over a disc here since that is what is required for the application we have in mind here. However the results of Section 2 do immediately facilitate the definition of isomonodromic deformations in much more generality.

The fibration M → t reg . Fix a connected complex simple Lie group G and a maximal torus T ⊂ G. In terms of the definitions of Section 2 we have:

Definition 9.
The moduli space M is the set of isomorphism classes of triples (P, A, s 0 ) of generic compatibly framed meromorphic connections A on principal G-bundles P → ∆ having an order two pole at the origin.

Denote by π : M → t reg the surjective map taking the leading coefficient of the connections in M. Let M(A 0 ) ⊂ M be the fibre of π over the point A 0 ∈ t reg . (A 0 will be called the 'irregular type'; it determines the irregular part of the formal type A 0 of a connection in M.) Proposition 10. M has the structure of complex analytic fibre bundle over t reg with standard fibre U + × U -× t, where U ± are the unipotent parts of a pair of opposite Borel subgroups B ± ⊂ G containing T .

Moreover there is a canonically defined flat (Ehresmann) connection on M → t reg ; the isomonodromy connection.

Proof. Fix an irregular type A 0 ∈ t reg . This determines anti-Stokes directions at 0 as in Section 2. Choose p ∈ ∆ * as in Definition 5, determining an initial sector Sect 0 and branch of log(z). Then if we define U ± in terms of the first half-period as in Theorem 2, this choice determines an isomorphism ( 2)

M(A 0 ) ∼ = U + × U -× t
as follows. There is a surjective map M(A 0 ) → t taking a connection to its exponent of formal monodromy Λ (the residue of its formal type), as defined in Lemma 1. By definition the fibre of this map over Λ ∈ t is H(A 0 ) where A 0 := (A 0 /z 2 + Λ/z) dz. Then by Theorem 2 each such fibre is canonically isomorphic to U + × U -(using the choice of p made above) and so (2) follows. Now if we vary A 0 slightly, since the anti-Stokes directions depend continuously on A 0 and Sect 0 is open, we may use the same p for all A 0 in some neighbourhood of the original one. The above procedure then gives a local trivialisation of M → t reg over this neighbourhood, implying it is indeed a fibre bundle.

If we repeat this for each A 0 ∈ t reg and each choice of p we obtain an open cover of t reg with a preferred trivialisation of M over each open set. The clutching maps for this open cover are clearly constant (involving just rearranging the Stokes factors into Stokes multipliers in different ways and conjugating by various exponentials of Λ), and so we have specified a flat connection on the fibre bundle M → t reg , the local horizontal leaves of which contain meromorphic connections with the same Stokes multipliers and exponent of formal monodromy (for some-and thus any-choice of p).

Remark 11. The isomonodromy connection may be viewed profitably as an analogue of the Gauss-Manin connection in non-Abelian cohomology (which has been studied by Simpson [START_REF] Simpson | Moduli of representations of the fundamental group of a smooth projective variety, I, II[END_REF]). Extending Simpson's terminology we will call the above definition the 'Betti' approach to isomonodromy. There is also an equivalent 'DeRham' approach involving flat meromorphic connections on G-bundles over products ∆ × U for open neighbourhoods U ⊂ t reg . (This is well-known to isomonodromy experts in the GL n (C) case.) This point of view has been described by the author in [START_REF]Symplectic manifolds and isomonodromic deformations[END_REF] Section 7 for the GL n (C) case; this now extends immediately to arbitrary G (see [START_REF]Symplectic manifolds and isomonodromic deformations[END_REF] Theorem 7.2 in particular for the De Rham approach). The next step is to convert M into a fibre bundle M ′ → t reg /W with flat connection (where W := N(T )/T is the Weyl group), so that one obtains a holonomy action of the full braid group B g := π 1 (t reg /W ) on the fibres, rather than just an action of the pure braid group P g := π 1 (t reg ). (This step is closely related to a similar step taken by Toledano Laredo in [START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF].) One would like simply to quotient M by an action of W covering the standard free action on t reg . Indeed if there was a homomorphic section W → N(T ) ⊂ G of the canonical projection π N : N(T ) → W , then we could simply act on M by constant gauge transformations. However there is no such section in general, even for SL 2 (C). (For GL n (C) one may use the section given by 'permutation matrices' but here we require a general approach.)

The standard way around this problem was found by Tits [START_REF] Tits | Normalisateurs de tores. I. Groupes de Coxeter étendus[END_REF]; there is a finite abelian extension

1 → Γ 1 → Γ π Γ -→W → 1
of W (where Γ is finite and Γ 1 is abelian) and an inclusion ι : Γ ֒→ N(T ) covering the identity in W (i.e. so that π N • ι = π Γ ). The group Γ is Tits' extended Weyl group.

Remark 12. A construction of Γ is as follows. Choose a positive Weyl chamber, label the simple roots by i = 1, . . . , n and choose Chevalley generators {e i , f i , h i } of g as usual. Let

t i := exp(f i ) exp(-e i ) exp(f i ) ∈ G.
One then knows (from [START_REF] Tits | Normalisateurs de tores. I. Groupes de Coxeter étendus[END_REF]) that 1) these t i satisfy the braid relations for g and so determine a homomorphism B g → G, and 2) the image Γ of B g in G has the properties stated above. (We note for later use that replacing t i by t -1 i here determines another homomorphism B g → G with the same image.)

We could now act with Γ on M by gauge transformations, but then the quotient would not be a fibre bundle over t reg /W , since this action is not free (e.g. Γ 1 acts trivially on formal types, but non-trivially on other connections). To get around this we first pull back M → t reg to the Galois Γ 1 cover t reg of t reg . (In other words t reg := t reg /K, where t reg is the universal cover of t reg and K := ker(B g → Γ) = ker(P g → Γ 1 ).) Then define M := pr * (M) to be the pullback of the bundle M along the covering map pr : t reg → t reg . The connection on M pulls back to a flat connection on M → t reg .

Finally we can now act with Γ on M by gauge transformations, covering the canonical free action of Γ on t reg , to obtain a fibre bundle M ′ := M/Γ → t reg /W . In summary we have the commutative diagram:

(3)

M -→ M M ′       t reg pr -→ t reg -→ t reg /W,
where the horizontal maps are finite covering maps and the vertical maps are fibrations.

Lemma 13. The connection on M = pr * (M) is Γ invariant and so descends to a flat connection on M ′ → t reg /W .

Proof. Choose g ∈ Γ ⊂ N(T ) and A 0 ∈ t reg . It is sufficient to show that, under the action of g, local horizontal sections of M over a neighbourhood of A 0 become horizontal sections over a neighbourhood of g( A 0 ). To this end, choose open U ⊂ t reg containing A 0 := pr( A 0 ) as in the proof of Proposition 10 and so small that pr -1 (U) consists of #Γ 1 connected components. Let U be the component containing A 0 . Now choose p ∈ ∆ * as in Proposition 10 and thereby obtain a (horizontal) trivialisation of M over U and also of M over U :

M b U ∼ = U + × U -× t × U ,
where U ± are determined by A 0 and p as in Theorem 2. Let A ′ 0 := gA 0 g -1 so that pr(g

( A 0 )) = A ′ 0 . Thus pr(g( U)
) is a neighbourhood of A ′ 0 over which we may trivialise M using the same choice of p as above (since A 0 and A ′ 0 determine the same set of anti-Stokes directions). Thus in turn M g( b

U ) ∼ = U ′ + × U ′ -× t × g( U)
, where U ′ ± are determined by A ′ 0 and p as in Theorem 2.

Finally we claim that U ′ ± = gU ± g -1 and that, in terms of the above trivialisations, the action of g on M is given by ( 4)

g(S + , S -, Λ) = (gS + g -1 , gS -g -1 , gΛg -1 )
(together with the standard action on the base t reg ), where (S + , S -, Λ)

∈ U + × U -× t.
Since there is no dependence on the base, this clearly implies the proposition. The claim is established by a straightforward unwinding of the definitions.

In [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] (for G = GL n (C)) it was found to be natural to identify the space U + × U -× t of monodromy data with the simply-connected Poisson Lie group G * dual to G, which we will now do here in general (cf. also Appendix B for motivation). Given a choice B ± of opposite Borel subgroups of G with B + ∩ B -= T , the group G * is defined to be (5)

G * := {(b -, b + , Λ) ∈ B -× B + × t δ -(b -)δ + (b + ) = 1, δ + (b + ) = exp(πiΛ)},
where δ ± : B ± → T is the natural projection (with kernel the unipotent part U ± of B ± ) and exp : t → T is the exponential map for T . This is a simply-connected (indeed contractible) subgroup of B -× B + × t (where t is a group under +) of the same dimension as G.

The group G * is then identified with

U + × U -× t as follows (cf. [8] Definition 20) (6) U + × U -× t ∼ = G * ; (S + , S -, Λ) → (b -, b + , Λ)
where b -= e -πiΛ S -1 -and b + = e -πiΛ S + e 2πiΛ , so that b -1 -b + = S -S + exp(2πiΛ). Thus the fibrations (3) can now be viewed as having standard fibre G * (although they are not principal G * -bundles).

The final (trivial) complication is that we have G * simply-connected, whereas [START_REF] Concini | Quantum coadjoint action[END_REF][START_REF] Concini | Quantum groups, in: D-modules, representation theory, and quantum groups[END_REF] use the quotient group defined by omitting the Λ component in (5) (or equivalently one only remembers e πiΛ rather than Λ). We will abuse notation and denote both groups G * ; in terms of the braid groups actions this is reasonable since 1) It is immediate that the connection on M ′ is invariant under the corresponding action of the lattice ker(exp(πi•) : t → G) so descends to give a flat connection on the quotient bundle (still denoted M ′ ), and 2) The B g action of [START_REF] Concini | Quantum coadjoint action[END_REF] lifts to an action on our G * simply by acting on Λ via the standard Weyl group action.

The main result is then:

Theorem 3. The holonomy action of the full braid group B g = π 1 (t reg /W ) on G * (obtained by integrating the flat connection on M ′ ) is the same as the B g action on G * of De Concini-Kac-Procesi [START_REF] Concini | Quantum coadjoint action[END_REF].

Proof. Choose a real basepoint A * 0 ∈ t R,reg ⊂ t reg in the Weyl chamber chosen in Remark 12 above (cf. also [START_REF] Concini | Quantum groups, in: D-modules, representation theory, and quantum groups[END_REF]). Then the corresponding set A of anti-Stokes directions consists of just the two halves of the real axis. Let Sect 0 be the lower half disc, choose a point p on the negative imaginary axis and let p ∈ ∆ * be the point lying over p and on the branch of logarithm having log(-i) = 3πi/2. Define the positive roots R + , the groups B ± , U ± and in turn G * to be those determined by A * 0 and p. These choices determine an isomorphism M(A * 0 ) ∼ = G * via Theorem 2 and ( 6). (One may check R + is the set of positive roots corresponding to the chosen positive Weyl chamber.)

Now for each simple root α = α i ∈ R + Brieskorn [START_REF] Brieskorn | Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe[END_REF] defines the following path γ i in t reg . Let s i be the complex reflection acting on t corresponding to α (the reflection fixing the hyperplane ker(α) and respecting the Killing form). Let L i be the complex line in t containing A * 0 and A ′ 0 := s i (A * 0 ) and let I i be the real line segment from A * 0 to A ′ 0 . Then define the path

γ i : [0, 1] → L i from A * 0 to A ′ 0 such that [0, 1 3 ] ∪ [ 2 3 , 1] maps to I i and [ 1 3 , 2 3 
] maps to a small semi-circle turning in a positive sense and centred on the midpoint of I i . According to [START_REF] Brieskorn | Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe[END_REF], if the semi-circles are sufficiently small, these paths γ i are in t reg and descend to loops in t reg /W representing generators of π 1 (t reg /W ).

For our purposes here we choose the above semi-circles so small that, as A 0 moves along γ i , precisely one anti-Stokes direction crosses over the point p-an anti-Stokes direction supported just by -α and moving in a positive sense. (To see this is possible observe that for any β ∈ R + \ {α}, β(A * 0 ) and β(A ′ 0 ) are real and positive, since α is the only positive root made negative by s i . Thus by linearity β(I i ) ⊂ R >0 . Hence if γ i 's semi-circle is sufficiently small β(A 0 ) does not cross the imaginary axis for any A 0 on γ i and therefore no anti-Stokes direction supported by ±β crosses p. Finally observe that, as A 0 moves along γ i , α(A 0 ) starts in R + , moves towards 0, makes a positive semi-circle around 0 then moves away from 0 along R -. Since q = -A 0 /z here this implies the anti-Stokes direction supported by -α crosses p, and the one supported by α crosses the positive imaginary axis.)

We now wish to calculate the holonomy isomorphism M(A * 0 ) ∼ = M(A ′ 0 ) obtained by integrating the isomonodromy connection along the path γ i . As in Proposition 10 we have canonical descriptions of the fibre of M over both A * 0 and A ′ 0 :

M(A * 0 ) ∼ = U + × U -× t M(A ′ 0 ) ∼ = U ′ + × U ′
-× t using the chosen p in both cases, where (as in Lemma 13) U ′ ± = gU ± g -1 for any g ∈ Γ with π Γ (g) = s i ∈ W . Thus we want to find the corresponding isomorphism

U + × U -× t ∼ = U ′ + × U ′ -× t.
To describe it we will need the following maps. Let U i = exp(g α ) be the root group corresponding to the simple root α = α i . Then there is a homomorphism

ξ i : U + -→U i
with the property that if any S ∈ U + is factorised (in any order) as a product of elements u β ∈ U β for β ∈ R + (with each β appearing just once) then u α = ξ i (S). (The existence of ξ i may be seen as follows: The set Ψ := R + \{α} is a closed set of roots so U Ψ := β∈Ψ U β is a subgroup of U + . By [START_REF] Borel | Linear algebraic groups[END_REF] Proposition 14.5(3) U Ψ is a normal subgroup. (It is sufficient to prove U i normalises U Ψ .) Then ξ i is taken to be the projection

U + → U + /U Ψ where U i ∼ = U + /U Ψ via the inclusion U i ⊂ U + .) Similarly we have maps ξ -i : U -→ U -α .
Proposition 14. The holonomy isomorphism M(A * 0 ) ∼ = M(A ′ 0 ) induced by the isomonodromy connection is given by

U + × U -× t → U ′ + × U ′ -× t; (S + , S -, Λ) → (S ′ + , S ′ -, Λ) where (7) S ′ + := ξ i (S + ) -1 S + M 0 ξ -i (S -)M -1 0 , S ′ -:= ξ -i (S -) -1 S -ξ i (S +
), and M 0 := exp(2πiΛ).

Proof. We must find the transition maps between the local trivialisations just before and after the anti-Stokes direction d -α supported by -α crosses p. By perturbing p (and therefore also p) slightly this is equivalent to finding the transition map relating the two situations appearing in Figure 1, where p moves but A 0 -and thus all the anti-Stokes directions-remain fixed. That is, we must find the composite map ( 8)

U + × U -× t ∼ = M(A 0 ) ∼ = U ′ + × U ′ -× t
where the first (resp. second) isomorphism is determined by the p choice in the left (resp. right) diagram in Figure 1.

d -α d α Ψ 2 Ψ 1 Ψ 3 Ψ 0 -→ p d -α Φ 3 Φ 2 Φ 1 Φ 0 d α p Figure 1
Choose arbitrary (S + , S -, Λ) ∈ U + × U -× t and let A be a connection on the trivial Gbundle over ∆ with isomorphism class in M(A 0 ) corresponding to (S + , S -, Λ) under the left-hand isomorphism in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF]. Let Φ 0 , . . . , Φ 3 and Ψ 0 , . . . Ψ 3 be the canonical fundamental solutions of A on the sectors indicated in Figure 1. (Except for Φ 0 the indexing of these differs from Definition 5.) Since the log(z) choice on the sector containing p is extended to the other sectors in a negative sense, we immediately deduce Φ 

3 = Ψ 3 , Φ 2 = Ψ 2 , Φ 1 = Ψ 1 and Φ 0 = Ψ 0 M 0 . Now let K ± denote
+ := Φ -1 2 Φ 1 = Ψ -1 2 Ψ 1 =: K ′ + . Across d -α , K -:= Φ -1 0 Φ 3 and K ′ -:= Ψ -1 0 Ψ 3 so that K ′ -= M 0 K -M -1 0 .
In turn the Stokes multipliers are defined by the equations

Φ 2 = Φ 0 S - Φ 0 = Φ 2 S + Ψ 1 = Ψ 3 S ′ - Ψ 3 = Φ 1 S ′ +
where in the left/right column the fundamental solutions are continued into the left/right half-plane before being compared, respectively. (Here we prefer to index the Stokes multipliers by + and -rather than 1 and 2 as in Section 2.) Combining this with the above expression for the Stokes factors we deduce

S ′ + = K -1 + S + M 0 K -M -1 0 , S ′ -= K -1 -S -K + .
Finally, from the alternative definition of the Stokes multipliers in terms of Stokes factors in Definition 5, we find ξ ±i (S ± ) = K ± thereby completing the proof of the proposition.

To rewrite this holonomy isomorphism in terms of the Poisson Lie groups it is convenient to introduce the following notation.

If b ± = v ± t ±1 = t ±1 u ± where t ∈ T and u ± , v ± ∈ U ± then i b ± := ξ ±i (v ± ) -1 , b i ± := ξ ±i (u ± ) -1 .
(The inverted left and right ±α components of b ± respectively.) Under the identification (6), the isomorphism (7) then simplifies to

(9) (b -, b + , Λ) → ( i b + b -b i -, i b + b + b i -, Λ).
Clearly we may quotient by the lattice ker(exp(πi•) : t → G) (i.e. forget the Λ component above) since Λ only appears as e 2πiΛ in the formulae and t := e πiΛ = δ + (b + ) is retained. Now if we choose A * 0 ∈ pr -1 (A * 0 ) and lift γ i canonically to a path γ i in t reg starting at A * 0 , then the holonomy of the connection on M along γ i is also given by Proposition 14 (since the connection is pulled back from M). Then quotienting by Γ enables us to identify the fibres M( A * 0 ) and M( γ i (1)) via the gauge action of t i . (This uses the fact that the element of B g determined by γ i maps to t i under the surjection B g → Γ.) The Γ action on Stokes multipliers was given in (4), and so we deduce the following formula for the holonomy isomorphism G * → G * for the connection on M ′ around the loop γ i /W :

(10) (b -, b + ) → (t -1 i i b + b -b i -t i , t -1 i i b + b + b i -t i ).
Finally we must compare [START_REF] Borel | Linear algebraic groups[END_REF] with the generators of the braid group action of De Concini-Kac-Procesi [START_REF] Concini | Quantum coadjoint action[END_REF]. In [START_REF] Concini | Quantum coadjoint action[END_REF] the braid group B g is defined abstractly by generators and relations, rather than as a fundamental group. Namely one has generators T i (one for each simple root α i ) and relations

T i T j T i • • • = T j T i T j • • • for i = j
, where the number of factors on each side equals the order of the element s i s j of the Weyl group. The action of B g on G * is given in Section 7.5 of [START_REF] Concini | Quantum coadjoint action[END_REF] by the following formula:

T i (t -1 u -1 -, tu + ) = t i t -1 (u (i) -) -1 (exp xi e i )t -1 i , t i t -1 (exp ỹi f i )t 2 u (i) + t -1 i
where, in our notation, exp xi e i = ξ i (u + ) -1 , exp ỹi

f i = ξ -i (u -), u (i) 
+ = u + exp xi e i , and u

(i) -= u -(exp ỹi f i ) -1 .
One may readily check this is the same as

(11) (b -, b + ) → (t i i b -b -b i + t -1 i , t i i b -b + b i + t -1 i ) where (b -, b + ) = (t -1 u -1 -, tu + ) ∈ G * .
In turn it is straightforward to check this is precisely the inverse map to [START_REF] Borel | Linear algebraic groups[END_REF]. Thus, if we choose to identify the (abstractly presented) braid group with π 1 (t reg /W ) by mapping T i to the inverse of the Brieskorn loop [γ i /W ] ∈ π 1 (t reg /W ), then we have established the theorem.

Remark 15. In the later paper [START_REF] Concini | Quantum groups, in: D-modules, representation theory, and quantum groups[END_REF] a slightly different formula appears and here we wish to clarify the (minor) discrepancy. The action on G * descends along the map π :

G * → G 0 ; (b -, b + ) → b -1
-b + to an action on the big cell G 0 := U -T U + ⊂ G. Corollary 14.4 on p.97 of [START_REF] Concini | Quantum groups, in: D-modules, representation theory, and quantum groups[END_REF] gives the formula for this action on G 0 to be:

a = u -t 2 u + → t -1 i ξ i (u + )aξ i (u + ) -1 t i .
Since π is a covering map (corresponding to replacing t = e πiΛ by t 2 ) and the action on t is the standard Weyl group action, we deduce the corresponding action on G * is as in [START_REF] Brieskorn | Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe[END_REF], except with each t i replaced by t -1 i . This action would be obtained from isomonodromy if we use the alternative construction of Tits' extended Weyl group noted at the end of Remark 12.

Deformation of the Isomonodromy Hamiltonians

In this section the Hamiltonian description of the isomonodromic deformations of the previous section will be given. From this the connection of De Concini-Millson-Toledano Laredo will be derived directly.

Let M * := g * × t reg be the product of the dual of the Lie algebra of G with the regular subset of the chosen Cartan subalgebra. View M * as a trivial fibre bundle over t reg with fibre g * . Given (B, A 0 ) ∈ M * , consider the meromorphic connection A on the trivial G-bundle over P 1 associated to the g-valued meromorphic one-form (12)

A s := A 0 z 2 + B z dz on P 1 . Restricting A to the unit disc ∆ (and using the compatible framing coming from the given trivialisation) specifies a point of the moduli space M(A 0 ). Thus there is a bundle map, ν :

M * → M; (B, A 0 ) → A| ∆ .
This map is holomorphic (by Corollary 8) and it is easy to prove it is generically a local analytic isomorphism. (It is studied fibrewise in Appendix B and in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF].) Thus the isomonodromy problem for the connections ( 12) is essentially equivalent to that considered in the previous section. The proofs of the following two lemmas are not significantly different from the GL n (C) case and so are omitted here (cf. [START_REF] Jimbo | Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendant[END_REF][START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF][START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF][START_REF] Hitchin | Frobenius manifolds[END_REF]).

Lemma 16. The pull-back along ν of the isomonodromy connection on M is given by the following non-linear differential equation for sections B : t reg → g * of M * :

(13) dB = B, ad -1 A 0 ([dA 0 , B]
) where d is the exterior derivative on t reg and g * is identified with g via the Killing form. (Note that [dA 0 , B] takes values in g od := α∈R g α and that ad A 0 is invertible on g od .)

Clearly B flows in a fixed coadjoint orbit in g * . Thus, putting the standard Poisson structure on g * , one would expect a symplectic interpretation. Indeed the equation ( 13) has the following time-dependent Hamiltonian formulation. Consider the one-form

̟ := K B, ad -1 A 0 ([dA 0 , B]) on M * ,
where K is the Killing form. Given a vector field v on t reg there is a corresponding vector field v on M * (zero in g * directions) and thus a function

H v := v, ̟ on M * .
Lemma 17. H v is a time-dependent Hamiltonian for the flow of the equation (13) along the vector field v Remark 18. Usually one chooses a basis {v i } of t and writes ̟ = H i dt i (where A 0 = t i v i ∈ t). It is this one-form which is used to define the isomonodromy τ function. Now observe that ̟ may equivalently be viewed as a one-form on t reg whose coefficients are quadratic polynomials on g * . Let us identify these quadratic polynomials with S 2 g = Sym 2 g and consider the natural symmetrisation map φ : Sg → Ug from the symmetric algebra to the universal enveloping algebra. (This corresponds to deforming the isomonodromy Hamiltonians under the standard deformation 'PBW quantisation' of Sg into Ug.)

Proposition 19. φ(̟) = α∈R + K(α, α) 2 (e α f α + f α e α ) dα α ∈ Ug ⊗ Ω 1 (t reg )
where {e α , f α , h α } is the usual Chevalley basis for g, normalised so that [e α , f α ] = h α .

The proof is a straightforward calculation. This is precisely the Ug valued one-form appearing in [START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF]; Given a representation V of g and thus an algebra homomorphism ρ : Ug → End(V ), the flat connection of De Concini-Millson-Toledano Laredo (whose holonomy is conjectured to give the quantum Weyl group actions) is

d -hρ(φ(̟))
on the trivial vector bundle over t reg with fibre V , where h ∈ C is constant.

Appendix A. Proofs for Section 2

In the GL n (C) case these results appear in the paper [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF] of Balser, Jurkat and Lutz, which in turn uses a theorem of Sibuya (that the map taking the Stokes multipliers is surjective) and the main asymptotic existence theorem of Wasow [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF] (in order to construct fundamental solutions). Here we will follow the scheme of [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF] wherever possible, but notable exceptions arise in the use of both the above theorems: 1) The reduction to the asymptotic existence theorem is completely different (see proof of Lemma 7). Also an independent construction of fundamental solutions is given using 'multisummation' rather than the asymptotic existence theorem. 2) For surjectivity, we instead follow the approach of Malgrange [START_REF] Malgrange | Remarques sur les équations différentielles à points singuliers irréguliers[END_REF] involving a ∂-problem which extends easily to general groups.

Note that we must adapt the proofs from the GL n (C) case (rather than simply choosing a faithful representation g ֒→ gl n (C) and using existing results) because there are not representations taking elements of t reg into regular diagonal elements of gl n (C) in general.

Example 20. The standard representation of g = so 4 (C) is equivalent to writing

g ∼ = {X ∈ gl 4 (C) X T J + JX = 0} ⊂ gl 4 (C)
where J = ( 0 I I 0 ) and I is the 2 × 2 identity matrix. This description is chosen so that we may take t = {diag(a, b, -a, -b) a, b ∈ C}. Now the regular elements of t (as a Cartan subalgebra of g) are precisely those with both a + b and a -b nonzero. However they will not be regular for gl 4 (C) unless we also impose a = 0 and b = 0 as well.

One still may feel that for sufficiently generic values of the parameters one may always reduce to the GL n (C) case. Let us dispel this feeling: Lemma 21. There are reductive groups G with the following property: If A 0 ∈ t reg is any regular element of a Cartan subalgebra of g = Lie(G) and ρ : g → End(V ) is any nontrivial representation of g then ρ(A 0 ) does not have pairwise distinct eigenvalues.

Proof. If ρ(A 0 ) has pairwise distinct eigenvalues clearly each weight space of V is onedimensional; V is a multiplicity one representation. However if for example G = E 8 then g has no nontrivial multiplicity one representations. Thus there are groups for which one may never reduce to the GL n (C) case via a representation.

For the purposes of this appendix we will use the notion of 'Stokes directions' as well as the anti-Stokes directions already defined: σ ∈ S 1 is a Stokes direction iff σ -π/(2k -2) is an anti-Stokes direction. (These are the directions along which the asymptotic behaviour of exp(α • q) changes for some root α, and they arise as bounding directions of the supersectors.) A crucial step enabling us to generalise [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF] is the following lemma.

Lemma 22. Suppose θ ∈ S 1 is not a Stokes direction. Then the following hold

• The element

λ := Re A 0 exp(-i(k -1)θ) ∈ t R
is in the interior of a Weyl chamber, and so determines an ordering of the roots R.

• The positive roots R + (λ) (in this ordering) are precisely those roots supporting some anti-Stokes direction within π/(2k -2) of θ.

• Let U + be the unipotent part of the Borel subgroup B + ⊃ T determined by R + (λ). The following conditions on an element C ∈ G are equivalent:

1) z Λ e Q Ce -Q z -Λ tends to 1 ∈ G as z → 0 in the direction θ. 2) z Λ e Q Ce -Q z -Λ is asymptotic to 1 as z → 0 in the direction θ. 3) C ∈ U + .
Proof. First we recall some group-theoretic facts (from e.g. [START_REF] Borel | Linear algebraic groups[END_REF]). Let X(T ) = Hom(T, C * ) be the character lattice of T , so that R ⊂ X(T ) naturally (by thinking of the roots multiplicatively). In turn R is a subset of the real vector space t * R := X(T ) ⊗ Z R; This has (real) dual t R and naturally t R ⊗ R C ∼ = t. By definition the Weyl chambers of G relative to T are the connected components of [START_REF] Concini | Quantum groups, in: D-modules, representation theory, and quantum groups[END_REF] t R,reg := {λ ∈ t R α(λ) = 0 for all α ∈ R}.

Choosing a Weyl chamber is equivalent to choosing a system of positive roots; If λ ∈ t R,reg then the system of positive roots corresponding to λ's connected component is:

R + (λ) := {α ∈ R α(λ) > 0}.
Now suppose λ := Re A 0 exp(-i(k -1)θ) as above and α ∈ R. It is easy to check α(λ) = 0 if and only if θ -π/(2k -2) is an anti-Stokes direction, but by hypothesis this is not the case, so λ is indeed regular. Now consider the 'sine-wave' function f α (φ) := Re α(A 0 ) exp(-i(k -1)φ) as φ varies, for any α ∈ R. It has period 2π/(k -1) and is maximal at each anti-Stokes direction supporting α. Thus f α (θ) > 0 iff there is an anti-Stokes direction supported by α within π/(2k -2) of θ. In turn this is equivalent to α ∈ R + (λ), yielding the second statement. (Note that, if arg(z) = φ, then Re(α • q(z)) = -cf α (φ) for some positive real c.)

For the third statement we will use the Bruhat decomposition of G (cf. e.g. [START_REF] Borel | Linear algebraic groups[END_REF] 14.12). Choose arbitrarily a lift w ∈ N(T ) of each element w ∈ W := N(T )/T of the Weyl group. The Bruhat decomposition says that G is the disjoint union of the double cosets B + wB + as w ranges over W . The dense open 'big cell' is the largest such coset (corresponding to the 'longest element' of W ) and is equal to B -B + , where B -is the Borel subgroup opposite to B + . Moreover the product map

U -× T × U + → G; (u -, t, u + ) → u -• t • u +
is a diffeomorphism onto the big cell, where U ± is the unipotent part of B ± . Now observe that each coset in the Bruhat decomposition is stable under conjugation by T , and that U + (and in particular the identity element of G) is in the big cell. Thus we can reduce to the case where C is in the big cell; otherwise 3) is clearly not true and also neither of 1) or 2) hold, since z Λ e Q Ce -Q z -Λ will remain outside of the big cell.

Therefore if we label R + (λ) = {α 1 , . . . α n } and let α -i = -α i , then C has a unique decomposition

C = u -1 • • • u -n tu 1 • • • u n
with u i ∈ U α i and t ∈ T ([10] 14.5). Each of these components is independent and

z Λ e Q Ce -Q z -Λ = u z -1 • • • u z -n tu z 1 • • • u z n , where u z i = z Λ e Q u i e -Q z -Λ ∈ U α i . Now
, given a root α and X ∈ g α , the key fact is that we know the behaviour of Ad z Λ e Q (X) as z → 0 in the direction θ; it decays exponentially if α ∈ R + (λ) and otherwise (if X = 0) it explodes exponentially. (The dominant term of z Λ e Q is e q and this acts on X by multiplication by e α•q , which has the said properties.) Finally, in any representation ρ, u i is of the form 1 + ρ(X i ) with X i ∈ g α i , so that C ∈ U + if and only if t = 1 and X i = 0 for all i < 0, and in turn (via the decomposition of z Λ e Q Ce -Q z -Λ ) this is equivalent to both 1) and 2). Now we will move onto the proofs of the results of Section 2. Proof (of Lemma 1). (This is adapted from [START_REF] Jimbo | Monodromy preserving deformations of linear differential equations with rational coefficients I[END_REF] Proposition 2.2, [START_REF] Sabbah | Frobenius manifolds: isomonodromic deformations and infinitesimal period mappings[END_REF] Theorem B.1.3 and [2] Lemma 1 p.42.) For the existence of F and A 0 we proceed as follows. Write

A s = A 0 dz z k + • • • + A k-1 dz z + A k dz + • • • with A i ∈ g.
First each A i will be moved into t and then the nonsingular part will be removed. Let g od = α∈R g α (so that ad A 0 : g od → g od is an isomorphism), and let pr : g → g od be the projection along t. Suppose inductively that the first p coefficients A 0 , A 1 , . . . , A p-1 of A s are in t (so the p = 1 case holds by assumption). By applying the gauge transformation exp(z p H p ) to A s (where H p ∈ g), we find

exp(z p H p )[A s ] = A s + [H p , A 0 ]z p-k dz + O(z p-k+1 )dz.
Thus A p + [H p , A 0 ] is the first coefficient which is not necessarily in t, and so by defining

H p := (ad A 0 ) -1 pr(A p ) ∈ g od
we ensure that the first p+1 coefficients of exp(z p H p )[A s ] are in t, completing the inductive step. Hence if we define a formal transformation H ∈ G[[z]] to be the infinite product

H := • • • exp(z p H p ) exp(z p-1 H p-1 ) • • • exp(zH 1 ) then each coefficient of H[A s ] is in t. Now define A 0 to be the principal part of H[A s ] so that H[A s ] = A 0 + D with D nonsingular. Then define F := e (- R z 0 D) ∈ T [[z]] (where z 0 D ∈ t[[z]] is the series obtained from D by replacing z p dz by z p+1 /(p+1) for each p ≥ 0), so that d F ( F ) -1 = d log F = -D. Thus ( F H)[A s ] = A 0 and so F := ( F H) -1 ∈ G[[z]] is the desired formal transformation.
For the uniqueness it is clearly sufficient to show that if F [A 0 ] = A 1 , where A 0 and A 1 are formal types and

F (0) = 1, then F = 1. Now if F [A 0 ] = A 1 , it follows that
F is actually convergent (since on using a faithful representation we see F solves the diagonal system d F = A 0 F -F A 1 ). Let F : ∆ → G denote the sum of F . Also, if we write

A i = dQ i + Λ i dz/z for i = 0, 1, then d(e -Q 1 z -Λ 1 F z Λ 0 e Q 0 ) = 0, so that F = z Λ 1 e Q 1 Ce -Q 0 z -Λ 0 for some constant C ∈ G. Now F → 1 on
any sector and so (since Q 0 and Q 1 have the same leading term) as in Lemma 22 we may deduce C ∈ U -∩ U + = {1}, and therefore F = z Λ 1 -Λ 0 e Q 1 -Q 0 . The only way this can have a Taylor expansion with constant term 1 at 0 is if

Λ 1 = Λ 0 , Q 1 = Q 0 and so F = F = 1.
Proof (of Lemma 4). Given a half-period d ⊂ A, let θ(d) be the bisecting direction of the sector spanned by d. By the symmetry of A, θ(d)-π/(2k -2) is half-way between two consecutive anti-Stokes directions, so θ(d) is not a Stokes direction. Therefore we may feed θ(d) into Lemma 22, the second part of which immediately yields the first statement of Lemma 4.

The third statement of Lemma 4 is now immediate from Sections 14.5-14.8 of [START_REF] Borel | Linear algebraic groups[END_REF], (using the notion of 'direct spanning' subgroups) and then the second statement follows provided we check R(d) is a closed set of roots, in the sense that if α, β ∈ R(d) and α + β ∈ R then α + β ∈ R(d). This however is immediate from the definition of R(d).

For the fourth statement simply observe λ is negated when θ(d) is rotated by π k-1 .

Proof (of Theorem 1). Uniqueness:

(cf. [7] Remark 1.4) Suppose F 1 , F 2 : Sect i → G both have properties 1) and 2). Thus (F -1 1 F 2 )[A 0 ] = A 0 and so (15) F -1 1 F 2 = z Λ e Q Ce -Q z -Λ
for some constant C ∈ G. By 2), F -1 1 F 2 extends to Sect i and is asymptotic to 1 at zero there. But Sect i has opening greater than π/(k -1), so Lemma 22 implies C ∈ U + ∩ U -= {1} (by taking two non-Stokes directions in Sect i differing by π/(k -1)). Hence C = 1 and F 1 = F 2 .

Existence: Here we will use multisummation (see proof of Lemma 7 for a more conventional approach). Choose a faithful representation G ֒→ GL n (C) such that T maps to the diagonal subgroup. Let d ⊂ gl n (C) be the diagonal subalgebra and let α ij : d → C; X → X ii -X jj be the roots of GL n (C). Everything now will be written in this representation. Thus F is a formal solution to the system of linear differential equations:

(16) d F = A F -F A 0 .

This equation has levels

k := {-deg(α ij • Q) i, j = 1, . . . n} \ {0}. Note that the highest level is k -1. (If k = 2 or if G = GL n (C)
then this is the only level-however generally there may well be lower levels as well.) The singular directions A gl of ( 16) are the GL n (C) anti-Stokes directions, defined as follows. For each i, j,

α ij • Q is a polynomial in 1/z of degree at most k -1. If α ij • Q is not zero let A ij
gl be the finite number of directions along which the leading term of α ij • Q is real and negative and let A ij gl be empty otherwise. Then define A gl to be the union of all these sets A ij gl as i and j vary. (One may check that A ⊂ A gl .) Then the main theorem in multisummation theory implies: Theorem 4 (See [START_REF] Balser | Multisummability of formal power series solutions of linear ordinary differential equations[END_REF] Theorem 4.1). If d ∈ S 1 is not a singular direction then (each matrix entry of ) F is k-summable in the direction d. The k-sum of F along d is holomorphic and asymptotic to F at zero in the sector Sect(d -π 2k-2 -ǫ, d + π 2k-2 + ǫ) for some ǫ > 0.

Since they are unneeded here we omit discussion of the finer Gevrey asymptotic properties that such sums possess, although we do need the fact that multisummation is a morphism of differential algebras ( Now to construct Σ i ( F ) choose any direction d in Sect i which is not in (the finite set) A gl . Let Σ i ( F ) be the multisum of F along the direction d from Theorem 4 and let S be the sector appearing there. Since multisummation is a morphism of differential algebras we deduce first that Σ i ( F ) satisfies equation ( 16) (as is standard in the theory) and secondly:

Lemma 23. Σ i ( F ) takes values in G.
Proof. This is because G, being reductive, is an affine algebraic group and so the matrix entries of Σ i ( F ) satisfy the same polynomial equations as the entries of F . In more detail there are complex polynomials {p j } such that [START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF] G ∼ = {(g, x) ∈ C n×n × C det(g) • x = 1, p j (g) = 0 ∀ j}, as a subgroup of GL n (C), for some n. For any commutative algebra R over C the algebraic group G(R) is defined simply by replacing the two occurrences of C in (17) by R.

Thus we wish to show Σ i ( F ) ∈ G(O(S)) (the group of holomorphic maps S → G), given that

F ∈ G[[z]] := G(C[[z]]
). But it is immediate that p j ( F ) = 0 implies p j (Σ i ( F )) = 0 since multisummation is an algebra morphism.

Next we must check that Σ i ( F ) has property 2) of Theorem 1. The key point is that there are no Stokes directions in Sect i \ S; indeed the Stokes directions in the supersector Sect i closest to the boundary rays are d i+1 -π 2k-2 and d i + π 2k-2 , both of which are in S. Thus the following G-valued analogue of the extension lemma of [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF] will yield 2):

Lemma 24 (cf. [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF] Lemma 1 p.73). Suppose S, S are two sectors with non-empty intersection and such that S contains no Stokes directions. If F : S → G is a holomorphic map asymptotic to F at 0 in S and such that F [A 0 ] = A, then the analytic continuation of F to S ∪ S is asymptotic to F at 0 in S ∪ S.

Proof. Choose any holomorphic map F : S → G asymptotic to F at 0 and such that F [A 0 ] = A (using multisummation for example-the hypotheses imply S has opening < π/(k -1)). Then (as in the uniqueness part above) there exists a constant C ∈ G such that F = F z Λ e Q Ce -Q z -Λ in S ∩ S. Thus F z Λ e Q Ce -Q z -Λ is the analytic continuation of F to S. Now since F -1 F is asymptotic to 1 at 0 in S ∩ S, Lemma 22 implies C ∈ U + , where the root ordering is determined by any θ in S ∩ S. But since S contains no Stokes directions, Lemma 22 implies z Λ e Q Ce -Q z -Λ is asymptotic to 1 at 0 in all of S. In turn it follows that the analytic continuation of F is asymptotic to F on all S ∪ S.

Finally the last statement of Theorem 1 is immediate either from the morphism properties of multisummation, or from uniqueness.

Proof (of Lemma 6). To see S j ∈ Sto d (A 0 ) recall from Lemma 4 that Sto d (A 0 ) = U + where the root order is determined by the bisecting direction θ(d) of d. Now observe Sect (j-1)l ∩ Sect jl contains θ(d) and so by Theorem 1 (if j = 1) z Λ e Q S j e -Q z -Λ = Σ jl ( F ) -1 Σ (j-1)l ( F ) is asymptotic to 1 along θ(d). Thus Lemma 22 implies S j ∈ Sto d (A 0 ). (For j = 1 the argument is the same once the change in branch of log(z) is accounted for.) In turn to see

K i ∈ Sto d i (A 0 ) simply observe Sto d i (A 0 ) = Sto d (A 0 ) ∩ Sto d ′ (A 0 ) (where d = (d i , . . . , d i+l-1
) and d ′ = (d i-l+1 , . . . , d i ) are the two half-periods ending on d i ), and that the above argument implies K i is in this intersection, since Σ i ( F ) -1 Σ i-1 ( F ) is asymptotic to 1 along both θ(d) and θ(d ′ ). Now we will establish the surjectivity of the irregular Riemann-Hilbert map in Theorem 2. Fix a formal type A 0 and let A be the corresponding set of anti-Stokes directions. Also fix a choice of initial sector and branch of log(z) as in Section 2. Now choose arbitrarily a Stokes factor K d ∈ Sto d (A 0 ) for each d ∈ A. Proof. (This is an adaptation of [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF] Section 9.7, except we replace the key step with a ∂-problem, as was suggested by Malgrange [START_REF] Malgrange | Remarques sur les équations différentielles à points singuliers irréguliers[END_REF] and fleshed out in [START_REF]Local moduli for meromorphic differential equations[END_REF] Section 4.4.) First we remark that it is sufficient to construct A only in a neighbourhood of the origin because any such connection is gauge equivalent to a connection defined over the whole disc. (One may prove this as follows: Given A over ∆ ǫ := {z |z| ≤ ǫ}, choose any holomorphic connection A 1 on G × ∆ * with the same monodromy as A around 0. The ratio Φ 1 • Φ -1 of corresponding fundamental solutions then defines a holomorphic map from ∆ * ǫ to G which we use as a clutching function to define a principal G-bundle P over ∆. The connections A, A 1 define a single meromorphic connection on P . Moreover P is trivial since all G-bundles over a disk are-cf. [START_REF] Grauert | [END_REF] p.370.)

Now choose j such that K d j = 1. By induction on the number of non-trivial Stokes factors we may assume there is a connection B having Stokes factor K d for each d = d j but having Stokes factor 1 ∈ Sto d j (A 0 ) along d j . Write K = K d j for simplicity and let B s = -s * (B) as usual. (Here s is the identity section of the trivial G-bundle G × ∆.) Let χ j (z) be the canonical fundamental solution of B on Sect j from Definition 5 and define χ(z) := χ j Kχ -1 j . Let d j be the lift of the direction d j to the universal cover ∆ * of the punctured disk determined by the chosen branch of log(z) and let Sect j be the lift of Sect j . Let S * denote the sector in ∆ * (of opening more than 2π) from d j -π 2k-2 + δ to d j + 2π + π 2k-2 -δ, and let S = Sect( d j -π 2k-2 + δ, d j + π 2k-2 -δ). Here δ > 0 is fixed so that no Stokes directions lie in the interior of either component of Sect( d j -π 2k-2 , d j + π 2k-2 ) \ S (i.e. δ < min{|d j -d j±1 |}). We now claim that there exists a holomorphic map τ : S * → G having an asymptotic expansion with constant term 1 in S * and such that [START_REF]Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations, Symmetries and integrability of difference equations[END_REF] τ (ze 2πi ) = τ (z)χ(z)

for any z ∈ Sect j ∩ S, where χ is pulled up to Sect j in the obvious way. Such τ may be constructed as follows. Let S ′ = Sect( d j -π 2k-2 + δ, d j + π) and (as in [3] Lemma 4.3.2 and using the exponential map for G) extend χ to a C ∞ map f : S ′ → G such that f | S = χ, f (z) = 1 for arg(z) in some neighbourhood of d j + π and f ∼ 1 on all S ′ . (By construction χ ∼ 1 on Sect( d j -π 2k-2 , d j + π 2k-2 ).) Then define a C ∞ g-valued one-form α on ∆ by letting α = f -1 ∂f on S ′ and extending by zero. Now solve the ∂-problem g -1 ∂g = α for a smooth map g from some neighbourhood of 0 ∈ ∆ to G, with g(0) = 1. (This is possible for the same reasons as in the GL n (C) case, for which cf. e.g. [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] p.555.) Finally define τ : S * → G by τ = gf -1 for arg(z) ≤ d j + π and τ = g for arg(z) ≥ d j + π; one easily checks this has the properties claimed.

To complete the proof define χ(z) := τ (z)χ j (z) for z in S * (where χ j is continued from Sect j as a fundamental solution of B). Then (18) implies A s := (d χ) χ -1 is invariant under rotation by 2π and so defines a g-valued one-form on a neighbourhood of 0 in ∆ * . We will show that the corresponding connection A on the trivial principal G-bundle has the desired properties. First observe that A s = τ [B s ] by holomorphicity, since this certainly holds near 0 in Sect j . Since τ admits an asymptotic expansion τ

∈ G[[z]] in S * it follows that A s admits Laurent expansion τ [B s ]. Thus if B s = F [A 0 ] (from Lemma 1) then A s = ( τ • F )[A 0 ]
, and so A has formal type A 0 as required. Now from the range of validity of the asymptotic expansion of τ , and from the uniqueness of the sums in Theorem 1, we deduce that for z ∈ Sect i :

Σ i ( τ • F )(z) = τ ( z) • Σ i ( F )(z)
where z ∈ ∆ * lies over z and between directions d j and d j + 2π. (On Sect j-1 and Sect j one needs to use the extension lemma, Lemma 24, as well-which is applicable by the choice of δ.) In turn we immediately find that A has the same Stokes factors as B except in Sto d j (A 0 ). Here (across d j ) by definition A has Stokes factor

Φ -1 j Φ j-1 = χ -1 j τ -1 (z)τ (ze 2πi )χ j-1
if j = #A, where Φ i , χ i denote canonical solutions of A, B respectively. Since B has trivial Stokes factor here χ j-1 = χ j and so by [START_REF]Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations, Symmetries and integrability of difference equations[END_REF] and the definition of χ we find Theorem 6. Let S be an open sector in the complex z plane with vertex 0 and opening not exceeding

π k-1 . Let f (z, L, x) : ∆ × C N × U → C N be a holomorphic map such that (i) The Jacobian matrix ∂f i ∂(L) j L=0,z=0
is invertible for all x ∈ U , and

(ii) The differential equation

(22) dL dz = f (z, L, x) z k admits a formal power series solution L = ∞ 1 L r (x)z r ∈ C N [[z]] ⊗ O(U).
Then there exists, for sufficiently small z ∈ S, a holomorphic solution L(z, x) of ( 22) having asymptotic expansion L in S uniformly in some neighbourhood of x 0 ∈ U.

Proof. Without parameters this is Theorem 14.1 of [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF]. The method of successive approximations used there extends immediately to the case with parameters since the uniform convergence of successive approximations does not destroy holomorphicity with respect to parameters (cf. [START_REF]Perturbation at an irregular singular point, Japan-United States Seminar on Ordinary Differential and Functional Equations[END_REF] Remark 2 p.161). Alternatively Sibuya proves a very similar result ( [START_REF] Sibuya | Simplification of a system of linear ordinary differential equations about a singular point[END_REF] Lemma 2) for the case where the parameters become singular on a sector. As remarked in [START_REF] Hsieh | Note on regular perturbations of linear ordinary differential equations at irregular singular points[END_REF] p.100 the case when the parameters are nonsingular and on a disc (as required here) is proved in exactly the same manner.

The trick to convert (21) into the form ( 22) is as follows. (We will have C N = u -.) Since U -is unipotent the exponential map exp : u -→ U -is an algebraic isomorphism, and its derivative gives an isomorphism exp * : T u -→ T U -of the tangent bundles. If we identify T u -∼ = u -× u -using the vector space structure of u -and T U -∼ = U -× u -using left multiplication in U -then we deduce: Thus, setting u -= e L , equation ( 21) is equivalent to [START_REF] Jimbo | Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendant[END_REF] with the map f defined by

(L, f (z, L, x)) = ψ -1 (u -, h(z, u -, x)) ∈ u -× u - for any z ∈ ∆, L ∈ u -, x ∈ U, where u -= e L and h(z, u -, x) := z k π -(u -1 -A(z, x)u -), ∂ ∂z is from (21).
Clearly the formal solution u -of (21) induces a formal solution of ( 22) of the desired form and so all that remains to solve [START_REF] Jimbo | Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendant[END_REF] is to check the Jacobian condition in Theorem 6. Geometrically this condition says precisely that the graph Γ

(f ) ⊂ u h -× u v -of the map f (0, •, x) : u h -→ u v -is transverse to the horizontal subspace u h -at L = 0. (Here u h -, u v
-are just copies of u -labeled 'horizontal' and 'vertical'; f is viewed as a section of the tangent bundle to u h -.) Since ψ is a diffeomorphism it is sufficient to check this transversality condition on U -× u -. By definition the graph of f corresponds to the graph of h under ψ. Clearly L = 0 iff u -= 1 and h(1) = π -(A 0 ) = 0 since A 0 ∈ t. (Here we omit the arguments z = 0 and x of h for notational simplicity.) Thus ψ(0, f (0)) = (1, 0) and we must check that the two vector spaces ψ * (u -×{0}) and T (1,0) Γ(h) are transverse subspaces of the tangent space T

(1,0) (U -× u -) = u -× u -. The tangent space to the graph of h at (1, 0) is {(X, π -[X, A 0 ]) X ∈ u -}
and one may calculate that the derivative of ψ maps the horizontal subspace u -× {0} to {(X, 0) X ∈ u -}.

Since A 0 (x) ∈ t reg it follows immediately that these two subspaces are indeed transverse. Thus we may apply Theorem 6 to obtain a holomorphic solution L(z, x) of ( 22) and in turn obtain a solution u -= e L of [START_REF] Hsieh | Note on regular perturbations of linear ordinary differential equations at irregular singular points[END_REF]. Given this solution u -, now consider the t component [START_REF] Hochschild | The structure of Lie groups[END_REF], where δ : g = u -⊕t⊕u + → t is the projection. This equation has formal solution t and so the right-hand side of ( 23) has nonsingular asymptotic expansion as z → 0 in S. Immediately this implies (23) has a unique holomorphic solution tending to 1 ∈ T as z → 0, given by

(23) (dt)t -1 = δ(u -1 -Au -) -A 0 of the full equation
t(z, x) = exp z 0 δ(u -1 -Au -) -A 0 (cf.
[37] Theorem 8.7 p.38). Thus we have obtained all except the u + component of the desired solution F = u -tu + . To obtain u + we repeat all the above procedure with the opposite factorisation F = w + sw -of F (with w ± ∈ U ± and s ∈ T ). This yields w + and s. Then, for sufficiently small z, the components u + and w -are determined (holomorphically) from u -, w + , s, t by the equation w -1 + u -t = sw -u -1 + since both Bruhat decompositions are unique and the left-hand side is known. The resulting solution F = u -tu + = w + sw -then has the desired properties.

Appendix B

In this appendix we will explain how the results of Section 2 enable us to extend Theorems 1 and 2 of [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] from GL n (C) to arbitrary connected complex reductive groups G. The main modifications of the proofs in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] are purely notational and so here we will concentrate on giving a clear statement of the results. The set-up is as follows.

Let K be any compact connected Lie group. Choose a maximal torus T K ⊂ K and a nondegenerate symmetric invariant bilinear form K on k = Lie(K). (Thus if K is semisimple we may take K to be the Killing form, or if K = U(n) then K(A, B) = Tr(AB) will do.)

Let G be the complex algebraic group associated to K (as in [START_REF] Chevalley | Theory of Lie groups[END_REF]; G is the variety associated to the complex representative ring of K). Any complex connected reductive Lie group G arises in this way (see [START_REF] Hochschild | The structure of Lie groups[END_REF]). We have g = k⊗C with Cartan subalgebra t = t K ⊗C and G has maximal torus T = exp(t). Extend K C-bilinearly to K : g ⊗ g → C. The group G comes equipped with an involution (with fixed point set canonically isomorphic to K), which we will denote by g → g - † . (It is denoted ι in [START_REF] Chevalley | Theory of Lie groups[END_REF].) This induces an anti-holomorphic involution of g (to be denoted X → -X † ) fixing k pointwise.

Note that t comes with two real structures: one (A → -A † ) from the identification t = t K ⊗ C and another (to be denoted A → A) defined via the identification t = t R ⊗ C where t R := X * (T )⊗ Z R. (Here X * (T ) := Hom(C * , T ) is embedded in t by differentiation.) One may check t K = it R .

Apart from the choices K, t K , K made so far we need to make three further choices in order to define the monodromy map [START_REF] Kirillov | q-Weyl group and a multiplicative formula for universal R-matrices[END_REF] ν : g * -→ G * .

These are: 1) A regular element A 0 ∈ t reg . This determines anti-Stokes directions etc. as in Section 2 (taking the pole order k = 2).

2) An initial sector Sect 0 bounded by two consecutive anti-Stokes directions, and 3) A choice of branch of log(z) on Sect 0 . The choice of initial sector determines a system of positive roots R(d 1 ) ∪ • • • ∪ R(d l ) as in Lemma 4 (with l = #A/2) and thus a Borel subgroup B + ⊂ G containing T . Let B -be the opposite Borel subgroup and define the dual Poisson Lie group G * as in [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF] in terms of B ± . G * is a contractible Lie group of the same dimension as G and has a natural Poisson Lie group structure which may be defined directly and geometrically as for GL n (C) in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF].

The monodromy map [START_REF] Kirillov | q-Weyl group and a multiplicative formula for universal R-matrices[END_REF] is then defined as follows. Given B ∈ g * , consider the meromorphic connection on the trivial principal G-bundle over the unit disc ∆ determined by the g-valued meromorphic one-form

A s := A 0 z 2 + B z dz,
where B is viewed as an element of g via K. This connection has Stokes multipliers (S + , S -) = (S 1 , S 2 ) ∈ U + × U -defined in Definition 5 above, using choices 2) and 3), and so determines an element (b -, b + , Λ) ∈ G * via the formulae:

b -= e -πiΛ S -1 -, b + = e -πiΛ S + e 2πiΛ , Λ = δ(B) so that b -1 -b + = S -S + exp(2πiΛ). (Here δ : g → t is the projection with kernel u + ⊕ u -.) A slightly more direct/elegant definition of ν may be given, without first going through Stokes multipliers, exactly as before in Section 4 of [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF].

The monodromy map ν is a holomorphic map by Corollary 8 and it is easy to prove (as in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF]) it is generically a local analytic isomorphism and any generic symplectic leaf of g * maps into a symplectic leaf of G * . The approach of [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] extends to yield: Theorem 7. The monodromy map ν is a Poisson map for each choice of A 0 , Sect 0 , log(z), where g * has its standard complex Poisson structure and G * has its canonical complex Poisson Lie group structure, but scaled by a factor of 2πi.

Proof. As in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF]; Just replace any expression of the form Tr(AB) by K(A, B) and any reference to the difference of eigenvalues of any element A ∈ g (which now makes no sense), by the eigenvalues of ad A ∈ End(g). (The left and right-invariant Maurer-Cartan forms on G make sense of expressions of the form H -1 H ′ and H ′ H -1 for maps H into G.) The only minor subtlety is in the proof of [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] Lemma 27 where one needs the fact that Ad (e Q ) (n -) tends to zero as z → 0 along a certain direction (-θ) for any fixed n -∈ u -. However this follows directly from the third part of Lemma 22 of the present paper.

Remark 27. Thus locally the monodromy maps give appropriate 'canonical' coordinate changes to integrate the explicit non-linear isomonodromy equations [START_REF] Concini | Quantum coadjoint action[END_REF]. This indicates just how complicated the monodromy maps are: for G = SL 3 (C) equation ( 13) is equivalent to the full family of Painlevé VI equations-generic solutions of which are known to involve 'new' transcendental functions. Now suppose A 0 is purely imaginary (A 0 = -A 0 ). Then there are only two anti-Stokes directions; the two halves of the imaginary axis. Take Sect 0 to be the sector containing the positive real axis R + and use the branch of log(z) which is real on R + . One may then check (as in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] + , b - † -, -Λ † ). The group K * has a natural (real) Poisson Lie group structure which may be defined as in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] for K = U(n). All of these restricted monodromy maps are Ginzburg-Weinstein isomorphisms: Theorem 8. If A 0 is purely imaginary then the corresponding monodromy map restricts to a (real) Poisson diffeomorphism k * ∼ = K * from the dual of the Lie algebra of K to the dual Poisson Lie group (with its standard Poisson structure, scaled by a factor of π).

Proof. The proof in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] goes through once the notational changes given in the previous proof are made. The fact that the 'unique Hermitian logarithms' appearing in the proof of Lemma 31 [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] still exist (Hermitian now meaning -X † = -X ∈ g), follows easily from the fact that G has a faithful representation ρ : G ֒→ GL N (C) with ρ(K) = ρ(G) ∩ U(N) (cf. [START_REF] Chevalley | Theory of Lie groups[END_REF] Lemma 2 p.201).

Remark 28. 1) The permutation matrices used in [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] have now been banished; Consequently the group G * now depends on the choice of initial sector (a priori we make no
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  the Stokes factors of A across d ±α in the left diagram in Figure 1 (and similarly K ′ ± for the right diagram). Clearly K + = K ′ + since across d α we have K

[ 28 ]

 28 Theorem 1 p.348). In more detail recall ([6] Theorem 4.4) that the set C{z} k,d of formal power series which are k-summable in the direction d is a differential subalgebra of C[[z]]. Then k-summation maps this injectively onto some set O k,d of germs at 0 of holomorphic functions on Sect(d -π 2k-2 , d + π 2k-2 ). Quite generally the map taking asymptotic expansions is easily seen to be a differential algebra morphism, and so here it restrict to an isomorphism O k,d ∼ = -→C{z} k,d of differential algebras. By definition the multisummation operator is the inverse morphism.

Theorem 5 .

 5 There exists a meromorphic connection A on the trivial principal G-bundle over ∆ having formal type A 0 and Stokes factors {K d }.

Lemma 26 .

 26 There is an algebraic isomorphismψ : u -× u - ∼ = -→U -× u -which is linear in the second component and such that if L(z) : ∆ → u -is any holomorphic map then ψ L, dL dz = e L , e -L d dz (e L ) .

  Lemma 29) that if (b -, b + , Λ) = ν(B) then ν(-B † ) = (b - † + , b - † -, -Λ † ) so that νrestricts to a (real analytic) map ν| k * : k * -→K * , where k * ∼ = k via K and K * ⊂ G * is defined to be the fixed point subgroup of the involution (b -, b + , Λ) → (b - †
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Φ -1 j Φ j-1 = χ -1 j χχ j = K as required. (Similarly if j = #A.)

Proof (of Lemma 7). Here an alternative construction of the 'sums' of Theorem 1 will be given, closer to the usual approach in the GL n (C) case. This is more direct than the multisummation approach above and enables us to prove that the sums vary holomorphically with parameters. The usual construction of Σ 0 ( F ) (cf. e.g. [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF]) consists of two steps. Roughly speaking one converts the equation satisfied by F into two independent nonlinear equations for 'parts' of F . Then an asymptotic existence theorem is used to find analytic solutions to these two equations, that are asymptotic to the corresponding parts of F . Usually for G = GL n (C) (see [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF] §12.1, [START_REF] Sibuya | Simplification of a system of linear ordinary differential equations about a singular point[END_REF]) the two equations involve the upper and lower triangular parts of F -1. For general G this makes no sense: an alternative procedure will be used here to reduce the problem to the same asymptotic existence theorem.

If a and b are the boundary directions of the sector Š (so Š = Sect(a, b)), let S := Sect b -π 2k-2 , a + π 2k-2 (a sector of opening less than π k-1 centred on Š). For simplicity write F = Σ 0 ( F ) for the G-valued map we are seeking. This should have asymptotic expansion F as z → 0 in S and should solve (for each x ∈ U) the equation

on the sector S ⊂ ∆, where d is the exterior derivative on ∆. (Here (dF )F -1 is defined in the usual way as the pullback of the right-invariant Maurer-Cartan form on G under the map F and F A 0 F -1 := Ad F A 0 .) Note that such F is unique since (for each x) the extension lemma (Lemma 24) says F extends to Sect 0 maintaining the asymptotic expansion F , and so the uniqueness part of Theorem 1 fixes F . Now, because the big cell G 0 = U -T U + ⊂ G is open and contains the identity, we find Lemma 25.

(1) F admits a unique factorisation

(2) For z ∈ S sufficiently close to 0, any solution F of (19) asymptotic to F has a unique factorisation [START_REF] Hitchin | Frobenius manifolds[END_REF] and rearranging yields:

Taking the u -component of this gives the independent equation [START_REF] Hsieh | Note on regular perturbations of linear ordinary differential equations at irregular singular points[END_REF] u -1 -du -= π -(u -1 -Au -) for u -, where π -: g = u -⊕ t ⊕ u + → u -is the projection. We wish to solve (21) using the following asymptotic existence theorem with parameters, which is also used in the GL n (C) case. choice of positive roots). The pleasant effect is that ν is now always T -equivariant, with T acting on g * via the coadjoint action and on G * via the left or right dressing action. (The left and right dressing actions agree when restricted to T .) In turn the Ginzburg-Weinstein isomorphisms constructed above are all T K -equivariant.

2) The new proof of the theorem of Duistermaat given in Section 6 of [START_REF] Boalch | Stokes matrices, Poisson Lie groups and Frobenius manifolds[END_REF] for GL n (C) also extends immediately to connected complex reductive G.