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We investigate the ability of polarization filtering to improve direct imaging of absorbing objects which are buried within scattering environments. We extend on previous empirical investigations by exploiting an efficient perturbation-based formalism, which is applicable to arbitrarily arranged sources and detectors with arbitrary polarizations. From this approach, we are able in some cases to find certain non-trivial linear combinations of polarization measurement channels that maximize the object resolution and visibility.

INTRODUCTION

Analysis of diffuse, multiply scattered light propagating through turbid media [1,2] has long been used in optical tomography to non-invasively retrieve information about optical properties of interest, such as the three-dimensional distributions of the absorption and scattering coefficients [3][4][START_REF] Arridge | Optical tomography: forward and inverse problems[END_REF]. Neglecting the effects of phase and interference, multiply scattered light can be described by the radiative transport equation (RTE) or, at a less fundamental level, by the diffusion equation, which is an approximation to the former. Optical tomography frequently relies on the diffusion equation (e.g., [START_REF] Choe | Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI[END_REF][START_REF] Choe | Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography[END_REF]) since inversion of the RTE is a complicated mathematical task. There exists, however, a persistent interest in imaging through turbid media in the mesoscopic scattering regime or beyond the limitations of the diffusion approximation, which include the requirement that the scattering be much stronger than absorption, the requirement of sufficiently large source-detector separations, and neglect of light polarization. If these conditions are not met, the diffusion approximation is inapplicable and the RTE must be used instead.

Many numerical and analytical approaches to solving the RTE have been explored in the past. The commonly used numerical methods are based on using discrete ordinates for the angular variable and discrete difference or finite element discretization for the spatial variable, or on Monte Carlo simulations. The advantage of numerical methods is generality and accurate handling of the medium boundaries while the disadvantage is high, often unmanageable computational complexity. Therefore, several analytical methods for solving the RTE have been developed. Cumulant expansion of the 1084-7529/17/070001-01 Journal So far, there have been few studies of polarization filtering in tomography. Inversion of the RTE has been reported using both numerical [START_REF] Abdoulaev | Three-dimensional optical 665 tomography with the equation of radiative transfer[END_REF][START_REF] Joshi | Radiative transport-based frequency-domain fluores-669 cence tomography[END_REF][START_REF]Inverse transport theory and applications[END_REF] and analytical [START_REF] Machida | Radiative transport and optical tomography with large da-674 tasets[END_REF] methods. However, the vast majority of these implementations, and all those exploiting the diffusion equation, are limited to the use of unpolarized light and polarization-insensitive measurements. We note that the standard diffusion equation does not account for polarization of light. Generalization of the diffusion theory for polarized light can potentially be considered by computing the first two angular moments of the vector RTE (vRTE).

However, this approach appears to be problematic due to the very nature of the diffusion approximation: it assumes that the light at any given point in space is almost isotropic, yet the spatial regions where this condition is satisfied also tend to be vacant of any preferred orientation of linear polarization [START_REF] Xu | Random walk of polarized light in turbid me-676 dia[END_REF].

There are additional difficulties related to computing angular moments of functions involving four-dimensional Stokes vectors, which must be defined in a special reference frame for each propagation direction, and a large number of coupled equations that can be formally derived by this approach. It appears that attempts to use the diffusion theory to describe polarization would be impractical for all but the circular component of polarization, which may persist long after isotropization of photon direction in certain media [START_REF] Mackintosh | Polarization 678 memory of multiply scattered light[END_REF][START_REF] Xu | Circular polarization memory of light[END_REF]. On the other hand, the vRTE is sufficiently flexible and contains a description of polarization that is adequate for the purposes of imaging.

The fact that polarization and the vRTE are rarely exploited in optical tomography could be thought of as a shortcoming given that in the context of non-tomographic imaging in turbid media, it is well established that the use of polarized light can remove some of the blurring effects of multiple scattering. This has been demonstrated for imaging through a variety of scattering media, such as fog [START_REF] Van Der Laan | Detection range enhancement using circularly polarized 684 light in scattering environments for infrared wavelengths[END_REF], water [START_REF] Dubreuil | Exploring underwater target detection by imaging polarim-688 etry and correlation techniques[END_REF], and tissues [START_REF] Demos | Optical polarization imaging[END_REF].

Crucial for direct imaging is the extraction of ballistic light and other "short-path" photons from the diffuse background.

Correspondingly, numerous gating techniques have been proposed in order to extract the non-diffuse photons.

Schmitt et al. [START_REF] Schmitt | Use of polar-692 ized light to discriminate short-path photons in a multiply scattering 693 medium[END_REF] showed that short-path photons can be extracted through subtraction of two orthogonal polarization measurements. They then demonstrated increased image contrast for 1D scanning of absorbing objects. Similarly, Emile et al.

[27] selected polarization-maintaining photons through polarization modulation and obtained 1D profiles of embedded objects. Following the same ideas, Mujumdar and Ramachandran [START_REF] Mujumdar | Imaging through turbid media using polarization modulation: dependence on scattering anisotropy[END_REF] improved the experimental setup, generating 2D images on a CCD camera without the need to scan. [START_REF] Demos | Optical polarization imaging[END_REF] have shown the usefulness of considering separately the parallel and perpendicular polarization components of light pulses in backscattering. Silverman and Strange [START_REF] Silverman | Object delineation within turbid media by backscattering of phase-modulated light[END_REF] found an increase in visibility when imaging objects through a scattering medium composed of latex spheres in water. They also showed better image contrast with circular polarization compared to linear polarization. Likewise, Lewis et al. [START_REF] Lewis | Backscattering target detection in a turbid medium by polarization discrimination[END_REF] reported increased target visibility for circular polarization when imaging through polystyrene sphere suspensions. is the sensitivity kernel of optical tomography [START_REF] Tricoli | Reciprocity relation for the vector radiative transport equation and 662 its application to diffuse optical tomography with polarized light[END_REF], a quantity that is central to imaging. Also, G 0 r; ŝ; r 0 ; ŝ0 is the 4 × 4
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Green's function for the vRTE in the homogeneous reference medium with δμ a 0 and, finally, I 0 is the specific intensity in the reference medium. For the latter quantity, we can write

I 0 r b ; ŝb G 0 r b ; ŝb ; r a ; ŝa S in : (3) 
We can now define the 4 × 4 matrix data function Φ by the relation

ΦS in ≡ I 0 -I: (4) 
This data function depends on the positions and collimation directions of the source and detector, that is, Φ Φr b ; ŝb ; r a ; ŝa . We then have the following equation coupling the inhomogeneities of the medium to the data function: Z K r b ; ŝb ; r a ; ŝa ; rδμ a rd 3 r Φr b ; ŝb ; r a ; ŝa ;

which is a generalization of the linearized equation of optical tomography that was derived in [START_REF] Schotland | Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation[END_REF] for the scalar RTE. The most obvious difference here is that both K and Φ are now matrices. While the first element Φ 11 has the same interpretation as in the scalar problem (as the shadow in the measured intensity created by the absorptive heterogeneities), the remaining elements contain additional information. The scalar quantity 1 2 S out • ΦS in is the difference between the physical measurement channels recorded for the homogeneous and the perturbed medium. Individually, these channels are positive scalars for any physically accessible states S in and S out , and the subtraction of two such measurements (resulting in the shadow 1 2 S out • ΦS in ) corresponds to various linear combinations of the elements of Φ. Note that, while these individual measurements are positive scalars, the elements of Φ can be positive or negative [START_REF] Tricoli | Reciprocity relation for the vector radiative transport equation and 662 its application to diffuse optical tomography with polarized light[END_REF]. Another substantial difference is that, in the scalar problem, the diffusion approximation can be introduced in the appropriate limit, significantly simplifying the computation of the sensitivity kernel [START_REF] Panasyuk | Superresolution and corrections to the diffusion approximation in optical tomography[END_REF]. In contrast, a diffusion limit for Eq. ( 5) is not known and there are technical difficulties in deriving a diffusion approximation for this quantity. In addition,

we wish to exploit the information contained in the additional elements of Φ, which are most significant in the sub-diffusion regime. In this case, K can be computed by solving vRTE for a given reference medium and Φ (or some linear combination of its elements) can be obtained by performing several physical measurements.

In what follows, we use Monte Carlo simulations and the technique developed in [START_REF] Tricoli | Reciprocity relation for the vector radiative transport equation and 662 its application to diffuse optical tomography with polarized light[END_REF] to compute the Green's function assumed to be the same in both cases. Additionally, the scatter-

318
ing albedo is μs ∕μ t 0.99 in both media. Thus, the effects of 319 absorption do not play a significant role in this study. We note, 320 however, that stronger values of absorption (a smaller albedo) 321 can result in a similar deblurring effect, as was demonstrated 322 in [START_REF] Yoo | Imaging objects hidden in scattering media using an absorption technique[END_REF].
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The various images in Fig. 2 sult is not unexpected [START_REF] Schmitt | Use of polar-692 ized light to discriminate short-path photons in a multiply scattering 693 medium[END_REF][START_REF] Moscoso | Depolarization and blurring of optical images by biological tissues[END_REF], our ability to efficiently compute the sensitivity kernel elements at the object location will provide valuable insight into how different linear combinations of polarization measurements can better resolve the embedded absorber, as we will see throughout the remainder of this paper.

In the next demonstration shown in Fig. 3, we consider the same Mie-scattering medium as above, but use various linear polarization filters. As in the previous example, the upper row of Fig. 3 shows the matrix elements of Φ measured for a buried object shaped as the letter "F," and the lower row 

SCANNING IN THE BACKSCATTERING GEOMETRY

In this section we investigate the sensitivity to buried objects as measured by a scanning source-detector pair in the backscattering configuration. This geometry is of particular interest in applications involving biomedical imaging, as it is most suitable for non-invasive monitoring of superficial layers of soft tissues.

Referring to Fig. 1(b), a collimated source is normally incident on the medium surface and a collimated detector is arranged to collect light exiting at some distance from the source and in the direction ŝb . This arrangement is held fixed while the sourcedetector pair is scanned across the medium surface. In this example, we consider a medium with similar properties to that of Intralipid, which is a common phantom material used to approximate scattering in biological tissues. The medium used in the simulation consists of a polydispersion of spheres with an exponential distribution in size and the refractive index contrast n s ∕n b 1.11. The resulting scattering asymmetry parameter of this medium is g 0.75 at the wavelength λ 633 nm, which is in agreement with previously measured Intralipid properties [START_REF] Van Staveren | Light scattering in intralipid-10% in the wavelength range of 400-1100 nm[END_REF]. Additionally, the scattering albedo was set to μs ∕μ t 0.99, the same as in the transmission geometry.

We first display in Fig. 5 the sensitivity kernel elements in the object plane (at z L∕2) for the detection angle of θ 10°to the normal, a source-detector separation of 0.32l , and a total slab thickness of L 3.6l . In this configuration, the axis of the incident source and the axis of the detector intersect in the object plane at z 1.8l . This arrangement is chosen to element, corresponding to unpolarized illumination and detection, can be seen to have the most broad distribution, as was also the case in the transmission geometry. A central peak can still be observed at the point where the source and detector intersect. This is due to single scattering, which dominates for sufficiently shallow locations (given that the detector conditions allow it), as can be shown analytically [START_REF] Florescu | Single-scattering optical tomography[END_REF]. The central peak of the K 41 K 44 kernel elements, corresponding to the Stokes V -component and incident right-handed circularly polarized light, is seen to be negative. This is expected because single scattering at a large scattering angle (170°in this case) results in a flip of helicity for this particular medium. All such elements relating to polarized contributions can also be seen to have significantly sharper peaks than the unpolarized K 11 element, suggesting the effective gating of single-scattered photons. These other elements, however, still exhibit some broad, low-magnitude tails, which are due to multiply scattered photons. The tails naturally tend to blur the image recorded by scanning the source-detector pair. Therefore, we wish to find some linear combination of these curves that corresponds to the central peak being as close to a delta function as possible. We were able to find that, for this medium, the linear combination To verify that the corresponding combination of the elements of Φ increases the resolution of a buried object, we compare the corresponding matrix data elements to other linear combinations. In Fig. 6, we show these various data matrix elements for a buried object, this time in the shape of a cross. malized to K 11 summed over the entire object plane. 

SUMMARY AND DISCUSSION
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In this work, we have used the efficient numerical tools recently 547 developed in [START_REF] Tricoli | Reciprocity relation for the vector radiative transport equation and 662 its application to diffuse optical tomography with polarized light[END_REF] to demonstrate the potential of polarization 548 filtering in the context of imaging through turbid media.
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While not all of the results shown are surprising (e.g., using 550 circular or linear polarization in transmission through Rayleigh-
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type media [START_REF] Schmitt | Use of polar-692 ized light to discriminate short-path photons in a multiply scattering 693 medium[END_REF][START_REF] Moscoso | Depolarization and blurring of optical images by biological tissues[END_REF]), we have gone a step further than simply With reference to media containing optically small Rayleigh scatterers, these are in some sense easier to image with polarization gating, especially in the transmission geometry, due to the rapid polarization randomization of non-ballistic photons.

Our results indicate that polarization gating can be useful in such media up to the depth of ∼20l . In this case, obtaining depth resolution is also feasible by varying the angles of incidence and detection. Additionally, the problem of backscattering in such media is similar to the problem of inverting the broken-ray transform [START_REF] Florescu | Single-scattering optical tomography[END_REF]. What is achieved by polarization gating is the increased precision of the broken-ray transform description, which relies on detection of singly scattered light.

Inversion of the broken-ray transform is possible if many scans are performed with different source-detector separations, so that some depth resolution can be achieved.

In summary, by manipulating the contribution of the various sensitivity kernel elements in the object plane via simple linear combinations, we can find the optimal set of physical measurements and post-processing of the recorded data that will result in the clearest image of the buried absorber. This technique offers a more rational approach toward customizing a polarization-filtering scheme for a given medium and imaging geometry than simply trialling large numbers of physical measurements with no information as to the effect this can have on the resulting images.
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  Figs.1(a) and 1(b), respectively. Further, we may place a polari-

F1: 1 Fig. 1 . 5 detector collects light in the direction ŝb . 260 G 0 Fig. 2 .

 11526002 Figures 2(a)-2(d) show the dependence of the data function Φ on the lateral position x; y of the source-detector pair for an object shaped as the letter "F," and Figs. 2(e)-2(h) show the dependence of the matrix kernel K on x; y for z L∕2 with the source-detector axis being fixed at the center of the field of view. The two left columns [Panels (a), (b), (e), (f )] correspond to a medium containing Rayleigh scattering particles (the scattering asymmetry parameter is g 0 in this case) with an optical depth of L 20l , where l 1∕μ a 1 -gμ s is the transport mean free path. The right two columns [Panels (c),(d), (g), (h)] are for a medium containing large spherical particles (which we will refer to as "Mie" particles) with highly forward-peaked scattering characterized by the asymmetry parameter g 0.95, and a slab depth of L 1l . We note that the single scattering matrix of such particles can be computed from Mie theory, given their size, and refractive index relative to the background medium[START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. The Mie particles in this example have a size parameter ka 7.15, where k is the wavenumber in the background material of the slab and a is the particle radius. Further, the refractive index contrast is n s ∕n b 1.037, where n s and n b are the sphere and the background refractive indices, respectively. Note that the physical thickness of both media is the same and is equal to 20∕μ t .

  correspond to different linear 324 combinations of the elements of Φ and K , where all such 325 elements have been normalized to the sum of K 11 over the 326 entire object plane. The Φ 11 element represents the difference 327 in intensity (the shadow) between the case where the absorber is 328 present and the case of homogeneous medium, given an unpo-329 larized illumination and an unfiltered detection. This yields a 330 significantly blurred shadow of the absorber in both Rayleigh 331 and Mie-type media. The linear combination Φ 41 Φ 44 rep-332 resents the shadow for the measured Stokes component V , and 333 an incident right-handed circularly polarized source. This signal 334 is related to photons that have preserved their right-handed hel-335 icity and, in agreement with previous studies [26,36], this im-336 age is sharper in the case of the Rayleigh medium [Panel (b)] 337 due to the rapid randomization of polarization for the photons 338 that propagate off axis (particularly, over long optical paths). 339 This means that this component of polarization filters out 340 the non-ballistic trajectories. Similar results are obtained for 341 linear polarizations in the Rayleigh case (not shown here). 342 For the Mie scattering medium, the elements relating to the 343 circular-polarized component [Panel (d)] appear to be almost 344 identical to that of the unpolarized case. A similar result was 345 found in [26] for a medium containing large particles, and 346 it was explained by the effect of circular polarization memory 347 [21,22,42,43], which preserves the helicity of incident light 348 over significant distances in such media, even if propagating 349 off axis. Thus, for media having intrinsically high scattering 350 asymmetry, measurements involving the circular component 351 of polarization alone are not likely to significantly improve 352 the resolution of buried objects compared to polarization-353 insensitive measurements, unless the medium contains particles 354 that can destroy circular polarization memory while 355 maintaining a high asymmetry [44]. 356 The data in Figs. 2(a)-2(d) are presented in a fashion similar 357 to the earlier investigations mentioned above, where shadows of 358 buried objects are observed with various polarization filters. 359 However, due to the way in which we have formulated the 360 problem, we can gain further insight by investigating what 361 is happening within the medium. In Figs. 2(e)-2(h), we display 362 the elements of the sensitivity kernel, K , computed in the ob-363 ject plane, that is, at z L∕2, for a fixed source-detector pair 364 positioned in the center of the field of view. These functions 365 were used to produce the shadows of the absorber presented 366 in Figs. 2(a)-2(d), where they are convoluted with the buried 367 object during the scanning process to provide the images we 368 have just discussed. Thus, the closer to a delta function the 369 dependence of these kernel elements on x; y is within the 370 object plane, the sharper the shadow of an absorber will be 371 at the detector. For the Rayleigh case, it can be seen that, while 372 the unpolarized element K 11 is quite broad, the circular 373 component K 41 K 44 is much more localized near the axis of the source-detector pair [Panels (e) and (f )]. In the Mie case, the unpolarized and the circularly polarized kernel elements are equally broad [Panels (g) and (h)]. While this re-
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 2 shows the corresponding elements of K in the object plane at z L∕2. Note that the two figures for the unpolarized case [Panels (a) and (e)] are identical to the previous Mie example, and are repeated here for direct comparison. The matrix elements related to linear polarization channels are shown in Panels (b) and (c) for Φ and in Panels (f ) and (g) for K . Here we display the linear combinations Φ 21 Φ 22 and Φ 21 -Φ 22 and the corresponding combinations for K , which are relevant to imaging with the Stokes Q component. For example, a measurement with the incident beam linearly polarized along the X -axis and a linear filter in front of the detector which is fully transmissive to X -polarized light will yield the combination 1 11 Φ 12 Φ 21 Φ 22 (linear co-polarized channel). If the detector is rotated to be fully transmissive to Y -polarized light, the measurement will yield 1 2 Φ 11 Φ 12 -Φ 21 -Φ 22 (linear cross-polarized channel). Subtraction of these two channels results in the shadow of the Q component of the Stokes vector for X -polarized input, Φ 21 Φ 22 . Performing a similar set of measurements, but with the incident Y -polarized light yields the combination Φ 21 -Φ 22 . Now, looking at the images in Panels (b) and (c), we see that these are blurred in an asymmetric fashion, which mirrors the asymmetry in the corresponding images in Panels (f ) and (g). However, when the latter two images are summed together, resulting in the image shown in Panel (d), the asymmetry is reduced and the object becomes more visible. This is due to the increase in sharpness of the resulting kernel element K 21 , as can be seen in Panel (h). The lower magnitude azimuthal features of K 21 can be seen to produce some artifacts in Panel (d), yet the outline of the target is still clearly visible. To obtain the image in Panel (d) physically, we must perform the measurement of the Stokes component Q when the incident light is linearly polarized in the X direction (involving two physical measurements), perform a separate measurement for incident linear polarization along Y (involving two physical measurements), and sum the two images together. Thus, although this imaging modality does require multiple measurements and some post-processing of data, it can still be considered direct, as it does not involve solution of an ill-posed inverse problem. With this demonstration, it becomes clear that if we can find some linear combination of kernel elements that produce a sharp point spread function in the object plane, we can improve the sharpness of the corresponding linear combination of the data matrix elements. As a consequence, the visibility of the buried object is then 432 improved. We will see more examples of this in the backscat-433 tering geometry in the next section. 434 One should keep in mind that the use of polarizing elements 435 results in signals of relatively lower intensity as compared to 436 unpolarized analysis. To elaborate on the feasibility of the vari-437 ous imaging channels discussed above, we have computed the 438 ratio ρ K 21 K 22 ∕K 11 for slabs of various thickness L. 439 The quantity ρ, similar to a degree of polarization, but of 440 the shadow of an inhomogeneity, is computed in the central 441 pixel (on the source-detector axis) and in the mid-plane of 442 the slab, z L∕2. The dependence of ρ on the slab width 443 L is shown in Fig. 4. As expected, ρ decreases rapidly with 444 L. If we consider the ratio ρ 0.01 as the limit of detectability 445 of the signal (which assumes we can observe a shadow 2 orders of magnitude lower than the unpolarized shadow), then the total slab thickness after which the use of linear polarization filters is no longer possible is ∼l for this Mie medium (with g 0.95) in the transmission geometry.
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 33144 Fig. 3. Elements of the matrix data function Φ [top row, Panels (a-d)] for a buried object shaped as the letter "F" obtained by scanning the source-
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 22 33 8.5K 41 K 44 (shown by the solid red line in the figure) can achieve just that.

Fig. 5 .

 5 Fig. 5. Sensitivity kernel elements along the Y direction within the

1 Fig. 6 .

 16 Various linear combinations of the data matrix elements Φ, measured in the backscattering geometry for a cross-shaped target located in F6:2 the object plane at the depth z 1.8l . Panel (a) shows the object shape. All matrix elements are normalized to K 11 summed over the entire object F6:3 plane. 525 circular polarization channels, shows a higher symmetry 526 and a somewhat improved level of visibility of the object. 527 However, as predicted, the case with the greatest visibility 528 of the buried absorber is that of the combination 529 2Φ 22 2Φ 33 8.5Φ 41 Φ 44 , which is shown in Panel 530 (h). In addition to a sharp peak in the object plane, the cor-531 responding linear combination of sensitivity kernel elements 532 also results in a highly symmetric point spread function in 533 the object plane. To physically attain the linear combination 534 shown in Panel (h), a series of 10 different measurements must 535 be performed (for both the background medium and the 536 medium containing the target). However, to put this in more 537 simple terms, the image in Panel (h) is simply obtained by com-538 bining the images in other panels according to the rule (c)-(d) 539 +(e)-(f )+8.5(g). We found that, for the considered medium 540 type and the detection angle of 10°, this linear combination 541 of the K components was the most effective for a range of slab 542 thicknesses, where the example shown with L 3.6l was to-543 ward the upper limit for which a clear direct image of the object 544 was still visible.
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  Figs.3(b) and 3(c). In the case of backreflection geometry for an Intralipid-like medium, discussed in Section 4, we found that 10 independent scans involving linear and circular polarization filters are required to achieve the optimal result.
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