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We investigate the ability of polarization filtering to improve direct imaging of absorbing objects which are buried 
within scattering environments. We extend on previous empirical investigations by exploiting an efficient 
perturbation-based formalism, which is applicable to arbitrarily arranged sources and detectors with arbitrary 
polarizations. From this approach, we are able in some cases to find certain non-trivial linear combinations of 
polarization measurement channels that maximize the object resolution and visibility. 
OCIS codes: (110.6960) Tomography; (290.5855) Scattering, polarization; (110.5405) Polarimetric imaging.
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45time-dependent RTE Green’s function was proposed in [8]
46for an infinite medium. Later this method was generalized
47to account for light polarization [9] and to media with planar
48boundaries [10]. In [10], the sensitivity kernel (the weight
49function) of linearized optical tomography has also been com-
50puted. However, calculation of the cumulant expansion past
51second order is rather complicated. In addition, the boundary
52conditions used in [10] are appropriate for the diffuse propa-
53gation regime but not compatible mathematically with the
54more complicated half-range RTE boundary conditions. A dif-
55ferent analytical approach based on the method of rotated refer-
56ence frames (MRRF) was developed in [11–13]. In the MRRF,
57there is no restriction on the order of expansion and the rig-
58orous half-range boundary conditions of the RTE are used.
59However, the limitation is that the MRRF constructs an expan-
60sion in a finite orthonormal basis of functions that are not
61square-integrable. This results in numerical instabilities.
62Although this problem was rectified in later research [14], it
63can be concluded that numerical methods and, in particular,
64Monte Carlo simulations retain their significance and utility
65in the mesoscopic scattering regime.
66In this paper, we utilize a recently developed Monte Carlo-
67based method for computing the sensitivity kernels of optical
68tomography [15]. With the improvements described in [15],
69we can perform such calculations with sufficient efficiency.
70The main goal of the simulations reported below is to show
71how polarization filtering and computational post-processing
72of data can be used to improve the visibility of objects buried
73within multiply scattering environments directly, without
74solving a complicated inverse problem.
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1. INTRODUCTION

Analysis of diffuse, multiply scattered light propagating 
through turbid media [1,2] has long been used in optical 
tomography to non-invasively retrieve information about 
optical properties of interest, such as the three-dimensional dis-
tributions of the absorption and scattering coefficients [3–5]. 
Neglecting the effects of phase and interference, multiply scat-
tered light can be described by the radiative transport equation 
(RTE) or, at a less fundamental level, by the diffusion equation, 
which is an approximation to the former. Optical tomography 
frequently relies on the diffusion equation (e.g., [6,7]) since 
inversion of the RTE is a complicated mathematical task. 
There exists, however, a persistent interest in imaging through 
turbid media in the mesoscopic scattering regime or beyond the 
limitations of the diffusion approximation, which include the 
requirement that the scattering be much stronger than absorp-
tion, the requirement of sufficiently large source-detector sep-
arations, and neglect of light polarization. If these conditions 
are not met, the diffusion approximation is inapplicable and 
the RTE must be used instead.

Many numerical and analytical approaches to solving the 
RTE have been explored in the past. The commonly used 
numerical methods are based on using discrete ordinates for 
the angular variable and discrete difference or finite element 
discretization for the spatial variable, or on Monte Carlo sim-
ulations. The advantage of numerical methods is generality and 
accurate handling of the medium boundaries while the disad-
vantage is high, often unmanageable computational complex-
ity. Therefore, several analytical methods for solving the 
RTE have been developed. Cumulant expansion of the
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75 So far, there have been few studies of polarization filtering
76 in tomography. Inversion of the RTE has been reported using
77 both numerical [16–18] and analytical [19] methods. However,
78 the vast majority of these implementations, and all those
79 exploiting the diffusion equation, are limited to the use of un-
80 polarized light and polarization-insensitive measurements. We
81 note that the standard diffusion equation does not account for
82 polarization of light. Generalization of the diffusion theory for
83 polarized light can potentially be considered by computing the
84 first two angular moments of the vector RTE (vRTE).
85 However, this approach appears to be problematic due to
86 the very nature of the diffusion approximation: it assumes that
87 the light at any given point in space is almost isotropic, yet the
88 spatial regions where this condition is satisfied also tend to be
89 vacant of any preferred orientation of linear polarization [20].
90 There are additional difficulties related to computing angular
91 moments of functions involving four-dimensional Stokes vec-
92 tors, which must be defined in a special reference frame for each
93 propagation direction, and a large number of coupled equations
94 that can be formally derived by this approach. It appears that
95 attempts to use the diffusion theory to describe polarization
96 would be impractical for all but the circular component of
97 polarization, which may persist long after isotropization of pho-
98 ton direction in certain media [21,22]. On the other hand, the
99 vRTE is sufficiently flexible and contains a description of

100 polarization that is adequate for the purposes of imaging.
101 The fact that polarization and the vRTE are rarely exploited
102 in optical tomography could be thought of as a shortcoming
103 given that in the context of non-tomographic imaging in turbid
104 media, it is well established that the use of polarized light can
105 remove some of the blurring effects of multiple scattering. This
106 has been demonstrated for imaging through a variety of scat-
107 tering media, such as fog [23], water [24], and tissues [25].
108 Crucial for direct imaging is the extraction of ballistic light
109 and other “short-path” photons from the diffuse background.
110 Correspondingly, numerous gating techniques have been
111 proposed in order to extract the non-diffuse photons.
112 Schmitt et al. [26] showed that short-path photons can be
113 extracted through subtraction of two orthogonal polarization
114 measurements. They then demonstrated increased image con-
115 trast for 1D scanning of absorbing objects. Similarly, Emile et al.
116 [27] selected polarization-maintaining photons through
117 polarization modulation and obtained 1D profiles of embedded
118 objects. Following the same ideas, Mujumdar and Rama-
119 chandran [28] improved the experimental setup, generating
120 2D images on a CCD camera without the need to scan.
121 Demos and Alfano [25] have shown the usefulness of consid-
122 ering separately the parallel and perpendicular polarization
123 components of light pulses in backscattering. Silverman and
124 Strange [29] found an increase in visibility when imaging ob-
125 jects through a scattering medium composed of latex spheres in
126 water. They also showed better image contrast with circular
127 polarization compared to linear polarization. Likewise, Lewis
128 et al. [30] reported increased target visibility for circular polari-
129 zation when imaging through polystyrene sphere suspensions.
130 Ni et al. used time-gating and early-arriving photon detection
131 to improve the information content in the state of polarization
132 of light passing through turbid media [31] with the application

133to wireless communication through the atmosphere. More
134recently, Miller et al. [32] used circular polarization for imaging
135through fog. Da silva et al. used elliptically polarized light to
136vary imaging depth [33]. Further, Sridhar and Da Silva [34]
137investigated the use of elliptically polarized channels to increase
138imaging contrast in tissues.
139The above-mentioned works have demonstrated experimen-
140tally the deblurring effect of polarization gating. However, far
141fewer theoretical investigations of polarization gating have been
142performed. In one such study, Tyo [35] has calculated analyti-
143cally and numerically the point spread function of linearly
144polarized light (at the detector in the transmission geometry).
145It was shown that a significant narrowing of the point spread
146function was achieved when the difference of the field compo-
147nents is considered instead of their sum. Later work by
148Moscoso et al. showed similar findings, and also highlighted
149the dependence on the type of scattering material [36].
150In this work we seek a deeper understanding of the effects of
151polarization gating for direct imaging by combining some
152elements and mathematical approaches that are used in tomo-
153graphic modalities of optical imaging with polarization-gating
154techniques that are employed in non-tomographic imaging. In
155particular, we utilize the recently developed numerical tech-
156nique [15], which allows one to efficiently compute the sensi-
157tivity kernel for polarization-resolved optical tomography by
158Monte Carlo simulations. This provides insight into the effect
159of perturbations at all locations within a medium. We then in-
160vestigate various physical polarization gates or linear combina-
161tions thereof and find those that result in the strongest
162deblurring of images in both transmission and reflection
163geometries. We show that the combinations of polarization
164measurement channels which maximize the image quality
165are at times non-trivial and depend on the type of media
166and imaging geometry.
167We stress that the scanning-based approach to imaging of
168turbid media demonstrated in this study does not require sol-
169ution of an ill-posed inverse problem and is in this sense direct.
170Yet, while our approach is not tomographic, we make a step
171toward defining sensitivity kernels that are the least ill-posed
172and, therefore, most conductive for performing tomographic
173reconstructions.
174The remainder of this paper is organized as follows. In
175Section 2 we define the sensitivity kernel for polarization-
176selective optical tomography. In Section 3 we consider scanning
177of a plane-parallel sample by an axially aligned source-detector
178pair in the transmission geometry. Reflection geometry is fur-
179ther considered in Section 4. The summary and discussion are
180given in Section 5.

1812. POLARIZATION-DEPENDENT SENSITIVITY
182KERNEL

183Consider a slab of scattering material occupying the region
1840 < z < L. Inside the medium, the vector specific intensity
185I�r; ŝ� � �I ; Q; U ; V � describing the four Stokes components
186obeys the stationary vRTE [37]. Here, r is the vector of posi-
187tion, ŝ is a unit vector specifying the direction in space, and all
188four Stokes components are functions of these two variables,
189with dimensionality of power per surface area per unit solid
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190 angle. Below, we will use calligraphic capital letters to denote
191 various four-component vectors, such as the Stokes vector of
192 specific intensity.
193 Referring to Fig. 1, let a collimated, continuous-wave laser
194 source described by δ�r − ra�δ�ŝ − ŝa�Sin be incident on the
195 medium, where Sin is a vector describing an arbitrary polari-
196 zation state of the source. Note that Sin has the dimensionality
197 of power. A detector then measures the specific intensity of
198 light exiting the medium at a different point on the slab surface,
199 rb, and in the direction of ŝb. We will explore both the trans-
200 mission and reflection geometries, which are illustrated in
201 Figs. 1(a) and 1(b), respectively. Further, we may place a polari-
202 zation filter in front of the detector whose effect on the specific
203 intensity can be characterized by the projection onto a dimen-
204 sionless output state vector Sout. If we define this state vector to
205 have unit magnitude, then the measured signal is the scalar
206 product 1

2Sout · I�rb; ŝb�.
207 If the medium is not spatially uniform, the measured signal
208 will depend on the location and strength of any inhomogene-
209 ities that are present. We assume that the inhomogeneities are
210 purely absorbing so that we can write for the scattering and
211 absorption coefficients of the medium μs�r� � μ̄s and
212 μa�r� � μ̄a � δμa�r�, where μ̄s and μ̄a are constant back-
213 ground values of the respective coefficients and δμa�r� is the
214 absorptive inhomogeneity. We further assume that δμa�r� is

215sufficiently small, either in magnitude or in its support, so that
216the vRTE can be linearized in δμa. Then, within the accuracy of
217the first Born approximation, we have

I�rb; ŝb� � I0�rb; ŝb� −
Z

K �rb; ŝb; ra; ŝa; r�Sinδμa�r�d3r;

(1)

218where

K �rb; ŝb; ra; ŝa; r� �
Z

G0�rb; ŝb; r; ŝ�G0�r; ŝ; ra; ŝa�d2s (2)

219is the sensitivity kernel of optical tomography [15], a quantity
220that is central to imaging. Also, G0�r; ŝ; r 0; ŝ 0� is the 4 × 4
221Green’s function for the vRTE in the homogeneous reference
222medium with δμa � 0 and, finally, I0 is the specific intensity
223in the reference medium. For the latter quantity, we can write

I0�rb; ŝb� � G0�rb; ŝb; ra; ŝa�Sin: (3)

224We can now define the 4 × 4 matrix data function Φ by the
225relation

ΦSin ≡ I0 − I : (4)

226This data function depends on the positions and collimation
227directions of the source and detector, that is,
228Φ � Φ�rb; ŝb; ra; ŝa�. We then have the following equation
229coupling the inhomogeneities of the medium to the data
230function:Z

K �rb; ŝb; ra; ŝa; r�δμa�r�d3r � Φ�rb; ŝb; ra; ŝa�; (5)

231which is a generalization of the linearized equation of optical
232tomography that was derived in [38] for the scalar RTE. The
233most obvious difference here is that both K and Φ are now
234matrices. While the first element Φ11 has the same interpreta-
235tion as in the scalar problem (as the shadow in the measured
236intensity created by the absorptive heterogeneities), the remain-
237ing elements contain additional information. The scalar
238quantity 1

2Sout ·ΦSin is the difference between the physical
239measurement channels recorded for the homogeneous and
240the perturbed medium. Individually, these channels are positive
241scalars for any physically accessible states Sin and Sout, and the
242subtraction of two such measurements (resulting in the shadow
2431

2Sout ·ΦSin) corresponds to various linear combinations of the
244elements of Φ. Note that, while these individual measurements
245are positive scalars, the elements of Φ can be positive or neg-
246ative [15]. Another substantial difference is that, in the scalar
247problem, the diffusion approximation can be introduced in the
248appropriate limit, significantly simplifying the computation of
249the sensitivity kernel [39]. In contrast, a diffusion limit for
250Eq. (5) is not known and there are technical difficulties in de-
251riving a diffusion approximation for this quantity. In addition,
252we wish to exploit the information contained in the additional
253elements of Φ, which are most significant in the sub-diffusion
254regime. In this case, K can be computed by solving vRTE for a
255given reference medium and Φ (or some linear combination of
256its elements) can be obtained by performing several physical
257measurements.
258In what follows, we use Monte Carlo simulations and the
259technique developed in [15] to compute the Green’s function

Scanning source

Aligned detector

Scanning source-detector
pair

Buried absorber
(in x-y plane)

Buried absorber
(in x-y plane)

(a)

(b)

F1:1 Fig. 1. Geometries of scanned images of buried absorbers. (a) On-
F1:2 axis transmission geometry with normally aligned source and detector.
F1:3 (b) Backscattering using a scanning source-detector pair separated by a
F1:4 distance jrabj in the Y direction. Source is normally incident while the
F1:5 detector collects light in the direction ŝb.
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260 G0 and the sensitivity kernel K numerically. We then substi-
261 tute some “objects,” that is, model functions δμa�r� into Eq. (5)
262 and compute the dependence of the data function on the
263 positions of the source and detector. The advantage of this
264 approach is that, once K is computed for a given medium
265 and imaging geometry, we can simulate easily any individual
266 measurement channel or a combination of such channels. In
267 this way, we can, in some cases, obtain the image of δμa�r�
268 directly, that is, without inverting Eq. (5). To achieve this re-
269 sult, we will examine which matrix element of K (or a linear
270 combination thereof ) is closest to a delta function at the loca-
271 tion of interest within the medium and, therefore, provides the
272 sharpest point spread function for imaging. This result, in turn,
273 informs us of which physical measurement channels and which
274 post-processing should be used to achieve the greatest
275 resolution of a buried object at a given location.

276 3. SCANNING WITH ALIGNED SOURCE AND
277 DETECTOR IN TRANSMISSION GEOMETRY

278 In this section, we use Monte Carlo simulations to compute the
279 sensitivity kernel and the data function in the transmission
280 geometry for the case when the source and detector are aligned
281 directly on axis. Referring to Fig. 1(a), a collimated laser light
282 source is normally incident on the upper surface of the
283 medium, and a detector is arranged to collect light leaving
284 the slab on axis to the source at the lower surface. This
285 source-detector pair is scanned in the XY -plane. Note that this
286 data collection scheme is not equivalent to wide-front

287illumination of the medium and taking a photograph of the
288other side. The target is a purely absorbing planar object located
289in the mid-plane of the slab. In the simulations, the width of
290the target in the Z direction was equal to one voxel used for
291accumulating the Monte Carlo statistics. We emphasize that no
292depth resolution is obtained or sought in these simulations.
293Figures 2(a)–2(d) show the dependence of the data function
294Φ on the lateral position �x; y� of the source-detector pair for an
295object shaped as the letter “F,” and Figs. 2(e)–2(h) show the
296dependence of the matrix kernel K on �x; y� for z � L∕2 with
297the source-detector axis being fixed at the center of the field of
298view. The two left columns [Panels (a), (b), (e), (f )] correspond
299to a medium containing Rayleigh scattering particles (the scat-
300tering asymmetry parameter is g � 0 in this case) with an op-
301tical depth of L � 20l�, where l� � 1∕�μ̄a � �1 − g�μ̄s � is the
302transport mean free path. The right two columns [Panels (c),
303(d), (g), (h)] are for a medium containing large spherical par-
304ticles (which we will refer to as “Mie” particles) with highly
305forward-peaked scattering characterized by the asymmetry
306parameter g � 0.95, and a slab depth of L � 1l�. We note
307that the single scattering matrix of such particles can be com-
308puted from Mie theory, given their size, and refractive index
309relative to the background medium [40]. The Mie particles
310in this example have a size parameter ka � 7.15, where k is
311the wavenumber in the background material of the slab and
312a is the particle radius. Further, the refractive index contrast
313is ns∕nb � 1.037, where ns and nb are the sphere and the back-
314ground refractive indices, respectively. Note that the physical
315thickness of both media is the same and is equal to 20∕μ̄t .
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F2:1 Fig. 2. Sensitivity to a buried object within a Rayleigh scattering medium of optical depth L � 20l� [first two columns, Panels (a),(b),(e),(f )] and
F2:2 within a Mie scattering medium of optical depth L � 1l� [second two columns, Panels (c),(d),(g),(h)]. The physical depth of both media is the same
F2:3 and equal to 20∕μ̄t . The top row of images [Panels (a)–(d)] display various matrix elements of the data function Φ obtained by scanning the source-
F2:4 detector pair in the XY -plane for a buried object shaped as the letter “F.” The second row of images [Panels (e)–(h)] show the corresponding matrix
F2:5 elements of the sensitivity kernel K within the object plane, at z � L∕2, for a single, centrally located position of the source and detector. All figures
F2:6 are normalized to their respective kernel element K 11 summed over the entire object plane.

4 Vol. 34, No. 7 / / Journal of the Optical Society of America A Research Article



316 Here μ̄t � μ̄a � μ̄s is the attenuation coefficient, which is
317 assumed to be the same in both cases. Additionally, the scatter-
318 ing albedo is μ̄s∕μ̄t � 0.99 in both media. Thus, the effects of
319 absorption do not play a significant role in this study. We note,
320 however, that stronger values of absorption (a smaller albedo)
321 can result in a similar deblurring effect, as was demonstrated
322 in [41].
323 The various images in Fig. 2 correspond to different linear
324 combinations of the elements of Φ and K , where all such
325 elements have been normalized to the sum of K 11 over the
326 entire object plane. The Φ11 element represents the difference
327 in intensity (the shadow) between the case where the absorber is
328 present and the case of homogeneous medium, given an unpo-
329 larized illumination and an unfiltered detection. This yields a
330 significantly blurred shadow of the absorber in both Rayleigh
331 and Mie-type media. The linear combination Φ41 �Φ44 rep-
332 resents the shadow for the measured Stokes component V , and
333 an incident right-handed circularly polarized source. This signal
334 is related to photons that have preserved their right-handed hel-
335 icity and, in agreement with previous studies [26,36], this im-
336 age is sharper in the case of the Rayleigh medium [Panel (b)]
337 due to the rapid randomization of polarization for the photons
338 that propagate off axis (particularly, over long optical paths).
339 This means that this component of polarization filters out
340 the non-ballistic trajectories. Similar results are obtained for
341 linear polarizations in the Rayleigh case (not shown here).
342 For the Mie scattering medium, the elements relating to the
343 circular-polarized component [Panel (d)] appear to be almost
344 identical to that of the unpolarized case. A similar result was
345 found in [26] for a medium containing large particles, and
346 it was explained by the effect of circular polarization memory
347 [21,22,42,43], which preserves the helicity of incident light
348 over significant distances in such media, even if propagating
349 off axis. Thus, for media having intrinsically high scattering
350 asymmetry, measurements involving the circular component
351 of polarization alone are not likely to significantly improve
352 the resolution of buried objects compared to polarization-
353 insensitive measurements, unless the medium contains particles
354 that can destroy circular polarization memory while
355 maintaining a high asymmetry [44].
356 The data in Figs. 2(a)–2(d) are presented in a fashion similar
357 to the earlier investigations mentioned above, where shadows of
358 buried objects are observed with various polarization filters.
359 However, due to the way in which we have formulated the
360 problem, we can gain further insight by investigating what
361 is happening within the medium. In Figs. 2(e)–2(h), we display
362 the elements of the sensitivity kernel, K , computed in the ob-
363 ject plane, that is, at z � L∕2, for a fixed source-detector pair
364 positioned in the center of the field of view. These functions
365 were used to produce the shadows of the absorber presented
366 in Figs. 2(a)–2(d), where they are convoluted with the buried
367 object during the scanning process to provide the images we
368 have just discussed. Thus, the closer to a delta function the
369 dependence of these kernel elements on �x; y� is within the
370 object plane, the sharper the shadow of an absorber will be
371 at the detector. For the Rayleigh case, it can be seen that, while
372 the unpolarized element K 11 is quite broad, the circular
373 component K 41 � K 44 is much more localized near the axis

374of the source-detector pair [Panels (e) and (f )]. In the Mie
375case, the unpolarized and the circularly polarized kernel
376elements are equally broad [Panels (g) and (h)]. While this re-
377sult is not unexpected [26,36], our ability to efficiently
378compute the sensitivity kernel elements at the object location
379will provide valuable insight into how different linear combi-
380nations of polarization measurements can better resolve the
381embedded absorber, as we will see throughout the remainder
382of this paper.
383In the next demonstration shown in Fig. 3, we consider the
384same Mie-scattering medium as above, but use various linear
385polarization filters. As in the previous example, the upper
386row of Fig. 3 shows the matrix elements of Φ measured for
387a buried object shaped as the letter “F,” and the lower row
388shows the corresponding elements of K in the object plane
389at z � L∕2. Note that the two figures for the unpolarized case
390[Panels (a) and (e)] are identical to the previous Mie example,
391and are repeated here for direct comparison. The matrix
392elements related to linear polarization channels are shown in
393Panels (b) and (c) for Φ and in Panels (f ) and (g) for K . Here
394we display the linear combinations Φ21 �Φ22 and Φ21 −Φ22

395and the corresponding combinations for K , which are rel-
396evant to imaging with the Stokes Q component. For example,
397a measurement with the incident beam linearly polarized along
398the X -axis and a linear filter in front of the detector which is
399fully transmissive to X -polarized light will yield the combina-
400tion 1

2 �Φ11 �Φ12 �Φ21 �Φ22� (linear co-polarized channel).
401If the detector is rotated to be fully transmissive to Y -polarized
402light, the measurement will yield 1

2 �Φ11 �Φ12 −Φ21 −Φ22�
403(linear cross-polarized channel). Subtraction of these two chan-
404nels results in the shadow of the Q component of the Stokes
405vector for X -polarized input, Φ21 �Φ22. Performing a similar
406set of measurements, but with the incident Y -polarized light
407yields the combination Φ21 −Φ22. Now, looking at the images
408in Panels (b) and (c), we see that these are blurred in an asym-
409metric fashion, which mirrors the asymmetry in the corre-
410sponding images in Panels (f ) and (g). However, when the
411latter two images are summed together, resulting in the image
412shown in Panel (d), the asymmetry is reduced and the object
413becomes more visible. This is due to the increase in sharpness of
414the resulting kernel element K 21, as can be seen in Panel (h).
415The lower magnitude azimuthal features of K 21 can be seen to
416produce some artifacts in Panel (d), yet the outline of the target
417is still clearly visible. To obtain the image in Panel (d) physi-
418cally, we must perform the measurement of the Stokes compo-
419nent Q when the incident light is linearly polarized in the X
420direction (involving two physical measurements), perform a
421separate measurement for incident linear polarization along
422Y (involving two physical measurements), and sum the two
423images together. Thus, although this imaging modality does
424require multiple measurements and some post-processing of
425data, it can still be considered direct, as it does not involve sol-
426ution of an ill-posed inverse problem.With this demonstration,
427it becomes clear that if we can find some linear combination of
428kernel elements that produce a sharp point spread function in
429the object plane, we can improve the sharpness of the corre-
430sponding linear combination of the data matrix elements. As
431a consequence, the visibility of the buried object is then
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432 improved. We will see more examples of this in the backscat-
433 tering geometry in the next section.
434 One should keep in mind that the use of polarizing elements
435 results in signals of relatively lower intensity as compared to
436 unpolarized analysis. To elaborate on the feasibility of the vari-
437 ous imaging channels discussed above, we have computed the
438 ratio ρ � �K 21 � K 22�∕K 11 for slabs of various thickness L.
439 The quantity ρ, similar to a degree of polarization, but of
440 the shadow of an inhomogeneity, is computed in the central
441 pixel (on the source-detector axis) and in the mid-plane of
442 the slab, z � L∕2. The dependence of ρ on the slab width
443 L is shown in Fig. 4. As expected, ρ decreases rapidly with
444 L. If we consider the ratio ρ � 0.01 as the limit of detectability
445 of the signal (which assumes we can observe a shadow 2 orders

446of magnitude lower than the unpolarized shadow), then the
447total slab thickness after which the use of linear polarization
448filters is no longer possible is ∼l� for this Mie medium (with
449g � 0.95) in the transmission geometry.

4504. SCANNING IN THE BACKSCATTERING
451GEOMETRY

452In this section we investigate the sensitivity to buried objects as
453measured by a scanning source-detector pair in the backscatter-
454ing configuration. This geometry is of particular interest in ap-
455plications involving biomedical imaging, as it is most suitable
456for non-invasive monitoring of superficial layers of soft tissues.
457Referring to Fig. 1(b), a collimated source is normally incident
458on the medium surface and a collimated detector is arranged to
459collect light exiting at some distance from the source and in the
460direction ŝb. This arrangement is held fixed while the source-
461detector pair is scanned across the medium surface. In this ex-
462ample, we consider a medium with similar properties to that of
463Intralipid, which is a common phantom material used to
464approximate scattering in biological tissues. The medium used
465in the simulation consists of a polydispersion of spheres with an
466exponential distribution in size and the refractive index contrast
467ns∕nb � 1.11. The resulting scattering asymmetry parameter
468of this medium is g � 0.75 at the wavelength λ � 633 nm,
469which is in agreement with previously measured Intralipid
470properties [45]. Additionally, the scattering albedo was set to
471μ̄s∕μ̄t � 0.99, the same as in the transmission geometry.
472We first display in Fig. 5 the sensitivity kernel elements in
473the object plane (at z � L∕2) for the detection angle of θ �
47410° to the normal, a source-detector separation of 0.32l�, and a
475total slab thickness of L � 3.6l�. In this configuration, the axis
476of the incident source and the axis of the detector intersect in
477the object plane at z � 1.8l�. This arrangement is chosen to
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478 maximize the effect of a perturbation on the single scattering
479 contribution at the detector. If, instead, the axes are not over-
480 lapping at the object location, the scanning process will result in
481 two copies of the buried object (with a spacing directly relating
482 to the source-detector misalignment in the object plane) or, for
483 deeper objects, the result is a significant increase in blurring,
484 with the features of the object being elongated in the direction
485 of the source-detector separation.
486 In Fig. 5, various sensitivity kernel elements are plotted as
487 functions of the coordinate y for x � 0 and z � L∕2. We dis-
488 play the elements in this case as one-dimensional scans so that
489 we can see small details in the functions more clearly. The K 11

490element, corresponding to unpolarized illumination and detec-
491tion, can be seen to have the most broad distribution, as was
492also the case in the transmission geometry. A central peak can
493still be observed at the point where the source and detector
494intersect. This is due to single scattering, which dominates
495for sufficiently shallow locations (given that the detector con-
496ditions allow it), as can be shown analytically [46]. The central
497peak of the K 41 � K 44 kernel elements, corresponding to the
498Stokes V -component and incident right-handed circularly po-
499larized light, is seen to be negative. This is expected because
500single scattering at a large scattering angle (170° in this case)
501results in a flip of helicity for this particular medium. All such
502elements relating to polarized contributions can also be seen to
503have significantly sharper peaks than the unpolarized K 11

504element, suggesting the effective gating of single-scattered pho-
505tons. These other elements, however, still exhibit some broad,
506low-magnitude tails, which are due to multiply scattered pho-
507tons. The tails naturally tend to blur the image recorded by
508scanning the source-detector pair. Therefore, we wish to find
509some linear combination of these curves that corresponds to the
510central peak being as close to a delta function as possible. We
511were able to find that, for this medium, the linear combination
5122K 22 � 2K 33 � 8.5�K 41 � K 44� (shown by the solid red line
513in the figure) can achieve just that.
514To verify that the corresponding combination of the ele-
515ments of Φ increases the resolution of a buried object, we com-
516pare the corresponding matrix data elements to other linear
517combinations. In Fig. 6, we show these various data matrix el-
518ements for a buried object, this time in the shape of a cross.
519Here we see in Panel (b) that the Φ11 element, relating to
520polarization-insensitive imaging, is again the most blurred case.
521Panels (c)–(f ), relating to various linear polarization channels,
522show a small improvement relative to the unpolarized case,
523yet each exhibits a noticeable asymmetry, which can skew
524the interpretation of the target. Panel (f ), which results from
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525 circular polarization channels, shows a higher symmetry
526 and a somewhat improved level of visibility of the object.
527 However, as predicted, the case with the greatest visibility
528 of the buried absorber is that of the combination
529 2Φ22 � 2Φ33 � 8.5�Φ41 �Φ44�, which is shown in Panel
530 (h). In addition to a sharp peak in the object plane, the cor-
531 responding linear combination of sensitivity kernel elements
532 also results in a highly symmetric point spread function in
533 the object plane. To physically attain the linear combination
534 shown in Panel (h), a series of 10 different measurements must
535 be performed (for both the background medium and the
536 medium containing the target). However, to put this in more
537 simple terms, the image in Panel (h) is simply obtained by com-
538 bining the images in other panels according to the rule (c)−(d)
539 +(e)−(f )+8.5(g). We found that, for the considered medium
540 type and the detection angle of 10°, this linear combination
541 of the K components was the most effective for a range of slab
542 thicknesses, where the example shown with L � 3.6l� was to-
543 ward the upper limit for which a clear direct image of the object
544 was still visible.

545 5. SUMMARY AND DISCUSSION

546 In this work, we have used the efficient numerical tools recently
547 developed in [15] to demonstrate the potential of polarization
548 filtering in the context of imaging through turbid media.
549 While not all of the results shown are surprising (e.g., using
550 circular or linear polarization in transmission through Rayleigh-
551 type media [26,36]), we have gone a step further than simply
552 using polarized light for illumination and polarization filters for
553 detection. First, our simulations involve a collimated source-
554 detector pair scanned over the surface of a plane-parallel
555 medium either in the transmission geometry (on axis) or in
556 the reflection geometry. Second, to achieve the best images,
557 we analyze the sensitivity kernel, K , within the medium, at
558 the location of the buried object. This informs us on which
559 post-processing of the scan data recorded via several physical
560 measurement channels is required. For example, to achieve
561 the result shown in Fig. 6(h), 10 separate scans should be per-
562 formed for both the background (reference) medium and the
563 medium containing the target.
564 The task of determining the optimal combination of the
565 physical measurement channels is non-trivial and the simula-
566 tion technique developed in [15] can help seeking such combi-
567 nations. One important result is that the choice of the optimal
568 combinations depends strongly on the types of medium and on
569 the imaging geometry. In the transmission geometry, with on-
570 axis imaging of media containing optically large particles char-
571 acterized by forward-peaked Mie scattering, the use of linear
572 polarization filters is optimal. We have found that the best lin-
573 ear combination of channels is achieved by measuring the dif-
574 ference in intensity between cross-polarized and co-polarized
575 channels (Stokes Q component). In other words, we first
576 illuminate the medium by an X -polarized beam and perform
577 two scans with X - and Y -polarized linear filters at the detector.
578 Then the same two scans are repeated for the Y -polarized
579 incident beam, requiring four separate scans in total. We
580 emphasize that the data recorded in these four scans are
581 not redundant, as is clearly demonstrated by comparing

582Figs. 3(b) and 3(c). In the case of backreflection geometry
583for an Intralipid-like medium, discussed in Section 4, we found
584that 10 independent scans involving linear and circular polari-
585zation filters are required to achieve the optimal result.
586With reference to media containing optically small Rayleigh
587scatterers, these are in some sense easier to image with polari-
588zation gating, especially in the transmission geometry, due to
589the rapid polarization randomization of non-ballistic photons.
590Our results indicate that polarization gating can be useful in
591such media up to the depth of ∼20l�. In this case, obtaining
592depth resolution is also feasible by varying the angles of inci-
593dence and detection. Additionally, the problem of backscatter-
594ing in such media is similar to the problem of inverting the
595broken-ray transform [46]. What is achieved by polarization
596gating is the increased precision of the broken-ray transform
597description, which relies on detection of singly scattered light.
598Inversion of the broken-ray transform is possible if many scans
599are performed with different source-detector separations, so
600that some depth resolution can be achieved.
601In summary, by manipulating the contribution of the vari-
602ous sensitivity kernel elements in the object plane via simple
603linear combinations, we can find the optimal set of physical
604measurements and post-processing of the recorded data that
605will result in the clearest image of the buried absorber. This
606technique offers a more rational approach toward customizing
607a polarization-filtering scheme for a given medium and imaging
608geometry than simply trialling large numbers of physical mea-
609surements with no information as to the effect this can have on
610the resulting images.
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