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We show that the diffusion approximation to the radiative transport equation, which is commonly used in 
biomedical optics to describe propagation of light in tissues, contains a previously unexplored adjustable 
parameter. This parameter is related to the rate of exponential decay of the reduced intensity. In the con-
ventional theories, there are two distinct choices for this parameter. However, neither of these choices 
are optimal. When the optimal value for the parameter is used, the resulting DA becomes much more 
accurate near the medium boundaries, e.g., at the depth of up to a few `∗, where `∗ is the transport mean 
free path (typically, about 1mm in tissues). We refer to the new adjustable parameter as to the reduced ex-
tinction coefficient. The proposed technique can reduce the relative error of the predicted diffuse density 
of the optical energy from about 30% to less than 1%. The optimized diffusion approximation can still be 
inaccurate very close to an interface or in some other physical situations. Still the proposed development 
extends the applicability range of the diffusion approximation significantly. This result can be useful, 
for instance, in tomographic imaging of relatively shallow (up to a few `∗ deep) layers of tissues in the 
reflection geometry. 

OCIS codes: (010.5620) Radiative transfer; (290.1990) Diffusion; (170.3660) Light propagation in tissues
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1. INTRODUCTION

Derivation of the diffusion approximation (DA) to the Boltz-
mann’s equation is a fundamental theoretical result, which ex-
plains the emergence of diffusion phenomena from complex
non-equilibrium kinetics. In the context of biomedical optics,
the diffusion equation (DE) is frequently used to approximate
the solutions to the stationary or time-dependent radiative trans-
port equation (RTE). Many optical imaging modalities such as
diffuse optical tomography [1, 2] are based on inverting the DE.
Even though inversion of the RTE has also been developed [3–5],
DA remains the mainstay of optical tomography.

While various derivations of the DA have been known for a
long time (e.g., see [6]), a detailed investigation of the subject
started in the 1990s motivated by the newly emerging applica-
tion in optical tomography and imaging. It has been generally
understood that the DA is applicable when µa � µs, where
µa and µs are the absorption and scattering coefficients of the
medium [? ], and then only sufficiently far from the source
of radiation (assumed to be localized) and from the medium
boundaries. However, the exact conditions of applicability of
the DA or the associated error estimates proved to be difficult to
obtain.

In part, this is due to a number of uncertainties inherent in
the various derivations of the DA. One such uncertainty is re-
lated to the definition of the diffusion coefficient D [7–10]. There

exist different methods of defining D: by using the so-called P1
approximation [11], or by asymptotic analysis [12], or by com-
puting the largest “diffuse” eigenvalue in the discrete spectrum
of the linear operator of the RTE [13]. All these methods yield
somewhat different results and the discrepancy can be signifi-
cant if the ratio µa/µs is not small. Some comparison of different
definitions can be found in [7, 14]. However, in the case of bio-
logical tissues in the near-IR spectral range, µa/µs ∼ 10−5, and
the above problem is not significant. In this paper, we use the
definition D = `∗/3, where `∗ is the photon transport mean free
path (defined below); other definitions will not be considered.

Another uncertainty is related to the boundary conditions for
the DE at diffuse-nondiffuse interfaces. The most general mixed
boundary condition admitted by the DE contains the so-called
extrapolation distance parameter `. One naturally wishes to find
the value of ` that results in the best fit between the DE and
RTE solutions. Analytical but somewhat ad hoc expressions for
the optimal ` have been obtained [11, 15–17] (some of them are
discussed below), but it seems equally reasonable to treat ` as
an adjustable parameter. A more accurate description of propa-
gation of multiply-scattered light near such interfaces is based
on the theory of boundary layers [12]. However, this theory
involves functions that are not obtained from a DE. Recently, a
new method for treating the boundary layers was proposed [18]
in which the diffusion coefficient is allowed to change close to
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the interface even though the medium is physically uniform.
While this can yield accurate results for reflection or transmis-
sion, it is not clear how this approach can be used in the context
of tomography.

Finally, one needs to determine the correct source term for
the DE. This problem is nontrivial because the source term for
the RTE is a function of the form ε(r, ŝ), where r is the radius
vector of position and ŝ is a unit vector of direction. In contrast,
the source term for the DE is of the form S(r) and, therefore,
it has less degrees of freedom than ε(r, ŝ). This fundamental
mathematical difficulty is addressed in the diffusion theory by
defining source functions that mimic the ŝ-dependence of ε(r, ŝ)
by the shape of S(r) [18–21].

In this paper, we focus on the problem of correct determina-
tion of S(r). This problem is closely related to decomposition of
the total specific intensity (from now on, simply, intensity) into
the reduced and diffuse components. There are infinitely many
ways in which this can be done and, in each case, a different
expression for the source term S(r) is obtained. The two conven-
tional definitions of the reduced intensity are discussed in Sec. 2.
More generally, it can be shown that the decomposition in ques-
tion is governed by an additional adjustable parameter, which
is denoted below by µ̄ [13]. We will refer to µ̄ as to the reduced
extinction coefficient. This parameter remains largely unexplored
in the literature. In this paper, we treat µ̄ (and also the extrapo-
lated boundary distance `) as adjustable parameters. We then
optimize these two parameters using rigorous RTE solutions as
a benchmark and show that the precision of the resulting DA
near diffuse-nondiffuse interfaces can be noticeably improved
compared to the standard theory. We emphasize that the main
contribution to this improvement comes from optimizing µ̄ as
we obtain the conventional results for the optimal `. However,
the optimal value of µ̄ is not universal; it depends on the details
of the phase function even if the scattering asymmetry parame-
ter g is fixed. Further, the optimization performed in this paper
is applicable to the normal and close to normal incidences only.
An optimized DA equally applicable to all angles of incidence
likely does not exist.

Our approach can be viewed as an approximate theory of
transition layers because the reduced intensity decays exponen-
tially with depth. The results of this paper can be important for
optical imaging modalities involving diffuse reflection measure-
ments, especially when relatively shallow (up to a few transport
mean free paths) concentration of a fluorescent contrast agent is
the quantity of interest. In this case, the rate of excitation of the
fluorophores is proportional to the local density of electromag-
netic energy u(r) [22], and we will seek the reduced extinction
coefficient µ̄ that yields the most accurate approximation for
u(r).

The paper is organized as follows. Derivation of the opti-
mized DA is given in section 2 and its relation to the traditional
theories are discussed in sections 3. Sections 4, 5, 6, contain
numerical examples for one-dimensional propagation (incident
plane wave illumination). In section 7 three-dimensional so-
lutions are considered for a incident pencil beam of small but
finite radius. All numerical solutions to the RTE that are used
as benchmarks have been obtained by Monte Carlo simulations
(we assumed no index mismatch at the diffuse-nondiffuse in-
terface). Finally, section 8 contains a discussion of the obtained
results.

2. OPTIMIZED DIFFUSION APPROXIMATION

The mathematical point of departure for developing the opti-
mized DA is the RTE, which we write here in the stationary form
as

(ŝ · ∇+ µt)I(r, ŝ) = µs

∫
A(ŝ, ŝ′)I(r, ŝ′)d2s′ + ε(r, ŝ) . (1)

Here µt = µs + µa is the extinction coefficient, µs and µa are
the scattering and absorption coefficients, A(ŝ, ŝ′) is the phase
function and ε(r, ŝ) is the RTE source. The medium is assumed
to be isotropic on average, which implies that A(ŝ, ŝ′) = f (ŝ · ŝ′),
and the phase function is normalized by the condition∫

A(ŝ, ŝ′)d2s′ = 2π
∫ 1

−1
f (x)dx = 1 . (2)

In this paper, d2s denotes the element of solid angle about the
direction of the unit vector ŝ, that is, d2s = sin θdθdϕ, where θ
and ϕ are the polar and azimuthal angles of ŝ in the laboratory
frame.

Similarly to the conventional theory, the optimized DA in-
volves a decomposition of the total intensity into the reduced
and diffuse components, I = Ir + Id, where the reduced com-
ponent is ballistic and propagates through the medium without
scattering. The physical idea behind this decomposition is that
the total intensity, especially close to the source, always has a
highly singular component that can not be described by a DA.
This singular component is included in Ir. In contrast, the diffuse
component is assumed to be a smooth function of ŝ.

As was noted in [13], the splitting of the total intensity into
the diffuse and reduced parts is rather arbitrary. In general, the
reduced intensity is defined by the equation

(ŝ · ∇+ µ̄)Ir(r, ŝ) = ε(r, ŝ) , (3)

where µ̄ is the rate of exponential decay of Ir away from the
source (the reduced extinction coefficient). The value of µ̄ is so
far undetermined and we argue that it can not be determined
theoretically, at least not without considering the complicated
theory of boundary layers in transport problems, which we wish
to avoid here.

Still, to build a usable approximation, one needs to make
some choice for µ̄. The most common such choice µ̄ = µt = µa +
µs is due to Ishimaru [23]. To justify this choice, one can imagine
that Ir gives the fraction of incident radiation (“photons”) that
are neither absorbed nor scattered up to a given propagation
distance. In this sense, the above definition of µ̄ is consistent
with the common understanding of the term “extinction”. For
the same reason, Ir is sometimes referred to as the coherent
component of the intensity, even though this terminology is not
precise.

However, the physical intuition fails us in this instance and
the choice µ̄ = µt (that is, the reduced and the total extinction
coefficients are the same) is in fact problematic. Indeed, µt does
not characterize the absorption and scattering in the medium
completely; there is also the phase function. If the phase func-
tion is highly forward-peaked, µt ceases to be a meaningful
parameter. Indeed, consider the case of biological tissues in the
near-IR spectral range, for which µa/µt ∼ 6 · 10−5 but single
scattering occurs predominantly in a narrow cone whose axis is
the incident direction. It is clear that many photons will change
their direction upon single scattering only slightly and will not
be noticeably different from the photons that did not experience
scattering at all. In this case, a more reasonable choice for µ̄
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seems to be in between µa and µt, which differ by several orders
of magnitude.

We note that, in Ishimaru’s classical exposition of the sub-
ject [23], there is an additional subtle point, which is not typically
discussed. Namely, Ishimaru considers the surface and the vol-
ume sources for the RTE separately and assumes that only the
surface term gives rise to the reduced intensity [? ]. Further,
the surface term (which is due to the radiation entering the
medium from outside) is not written explicitly but is accounted
for through the boundary conditions applied to Ir. We however
do not see a justification for treating the surface and volume
sources in the RTE differently. In the optimized DA, both types
of sources produce the reduced intensity. Correspondingly, we
work below with just one source function ε(r, ŝ) in Eq. (1), which
can include both surface and volume contributions. In this
formulation of the problem, the total intensity satisfies homoge-
neous half-range boundary conditions at all diffuse-nondiffuse
interfaces.

The second obvious choice for µ̄ is µ̄ = µ∗ where µ∗ = µa +
(1− g)µs is reciprocal of the transport mean free path `∗ [24].
Here g =

∫
s · ŝ′A(s, ŝ′)d2s′ = 2π

∫ 1
−1 x f (x)dx is the scattering

asymmetry parameter. This choice is free from the paradox
mentioned above: in the limit g → 1 (highly forward-peaked
scattering), µ̄ approaches µa rather than µt, as one can expect on
physical grounds. In addition, this choice results in the source
function for the DE of a particularly simple form (see below).

What is important for us here is that neither of the two choices
for the reduced extinction coefficient µ̄ described above have
been rigorously justified. We therefore find it more logical to
treat µ̄ as an adjustable parameter (together with the extrapola-
tion distance `, defined precisely below). We therefore are not
making any assumptions about µ̄ at this point and proceed with
the derivation.

As in all conventional diffusion theories, we seek diffuse
component of the intensity in the form [? ]

Id(r, ŝ) ≈ 1
4π

[ud(r) + 3ŝ · Jd(r)] , (4)

where

ud(r) =
∫

Id(r, ŝ)d2s , Jd(r) =
∫

ŝId(r, ŝ)d2s . (5)

are the diffuse density and current of energy. We then substitute
the decomposition I = Ir + Id, where Id is given by Eq. (4) and Ir
satisfies Eq. (3), into Eq. (1). Since we have used an ansatz for Id
that is not of sufficiently general form, the resulting equation will
not generally hold. However, one can require that the zeroth
and first angular moments (integrals with respect to d2s and
ŝd2s) of this equation hold. From this requirement, we obtain
the following set of differential equations for ud and Jd:

∇ · Jd + µaud = E ≡ (µ̄− µa)ur , (6a)
1
3
∇ud + µ∗Jd = Q ≡ (µ̄− µ∗)Jr , (6b)

where

ur(r) =
∫

Ir(r, ŝ)d2s , Jr(r) =
∫

ŝIr(r, ŝ)d2s (7)

are the reduced density and current of energy. The latter quan-
tities can usually be found analytically by solving Eq. (3) and
substituting the solution into Eq. (7). Explicit forms of the scalar
and vector source functions E and Q are given below for some

special cases. The total density and current are given by the sums
of the reduced and diffuse components, that is, u = ur + ud and
J = Jr + Jd.

We can eliminate Jd from Eq. (6) to obtain a second-order
equation containing ud only:

−∇ · D∇ud + µaud = S , (8)

where D = `∗/3 is the diffusion coefficient and

S = E− `∗∇ ·Q (9)

is the source for the DE. The presence of the derivative in Eq. (9)
can lead to some confusion. Indeed, the differentiation can result
in appearance of a delta-function, and this delta-function can
be centered exactly at the medium boundary. In this case, it
is not immediately obvious whether this delta-function should
be included in the source function or not. While this question
can be addressed, we find it easier to work with the first-order
Eq. (6).

The latter, however, must be complemented by a boundary
condition. The function given in Eq. (4) can not satisfy the half-
range boundary condition of the RTE. Therefore, this rigorous
condition is customarily replaced by the equation [23]∫

n̂·ŝ≤0
(n̂ · ŝ)Id(r, ŝ)d2s

∣∣∣∣
r∈∂Ω

= 0 , (10)

where n̂ is the outward unit normal to the boundary ∂Ω of the
region Ω occupied by the medium. Substituting the decomposi-
tion Eq. (4) into Eq. (10), we obtain

(ud − 2n̂ · Jd)|r∈∂Ω = 0 . (11)

This is a special case of the more general boundary condition(
ud − 3

`

`∗
n̂ · Jd

)∣∣∣∣
r∈∂Ω

= 0 , (12)

where ` is an adjustable parameter and the factor 3/`∗ has been
introduced for convenience. The boundary condition given in
Eq. (11) is recovered if we take ` = 2`∗/3, which is one the
conventional values for ` if there is no refractive index mismatch
and no Fresnel reflections at the boundary (another commonly-
encountered choice is ` = 0.71`∗).

Equations (6) and (12) form the mathematical basis of the
optimized DA.

3. DIFFUSION APPROXIMATION WITHOUT THE VEC-
TOR SOURCE

While Eqs. (6),(12) have been derived above in a straightforward
manner, they might look not very familiar due to the presence
of the vector source term Q. Note that the boundary condition
equivalent to Eq. (12) but involving ud only is of the form

(ud + `n̂ · ∇ud − 3`n̂ ·Q)|r∈∂Ω = 0 , (13)

which is inhomogeneous and different from the frequently-
encountered homogeneous boundary condition

(ud + `n̂ · ∇ud)|r∈∂Ω = 0 . (14)

While it is known that the correct boundary condition in a DA
contain a free term [7, 12], the homogeneous condition (14) is
used far more frequently in the optical tomography literature.
In fact, the questions of choosing the right boundary condition
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and the source term for the DA are closely related and should
not be considered separately.

One of the goals of this paper is to provide a clear and
mathematically-consistent derivation of the source term and
the corresponding boundary condition. To this end, it appears
instructive to consider an alternative formulation that does not
contain the vector source Q. Of course, Q = 0 if µ̄ = µ∗. But we
will consider now a more general approach to removing Q from
consideration, which does not use the assumption µ̄ = µ∗.

The basic idea behind this approach can be loosely summa-
rized as follows. First, we can shift the support of the source
functions E(r) and Q(r) into the medium by an infinitesimal
distance so that it no longer touches the boundary, and this
operation should not influence the solution to the DE substan-
tially, certainly, not sufficiently deep inside the medium. Then
Q(r) = 0 if r ∈ ∂Ω [? ]. Therefore, the shift results in Eq. (8) with
S given by (9) and the homogeneous boundary condition (14).
However, the source term S in Eq. (8) still depends on Q.

The next step is to note that the function S(r) might be
quite complicated and not known precisely but, apparently,
all that matters are the moments M0 =

∫
S(r)d3r and M1 =∫

(r − rs)S(r)d3r, where rs ∈ ∂Ω is the point at which an in-
finitely narrow incident beam enters the medium (the source
location). For the one-dimensional propagation problem, which
is considered in sections 4 through 6 of this paper, the moments
are defined as M0 =

∫
S(z)dz and M1 = ẑ

∫
zS(z)dz, where z is

the depth direction and the radiation enters the medium through
the plane z = 0. For a more general three-dimensional case, we
can write [25]

u(r) =
∫

G(r, r′)S(r′)d3r′

≈ G(r, rs)M0 +
∂G(r, r′)

∂r′

∣∣∣∣
r′=rs

·M1 , (15)

where G(r, r′) is the Green’s function for Eq. (8), that is, the solu-
tion to Eq. (8) for S(r) = δ(r− r′) subject to the homogeneous
boundary condition (14) with respect to both arguments. It then
follows from Eq. (14) that

n̂ · ∂G(r, r′)
∂r′

∣∣∣∣
r′=rs

= −1
`

G(r, rs) . (16)

In addition, for a normally incident beam,

M1 = −n̂
µ̄/µ∗ − µa/µ̄

µ̄− µa
M0 . (17)

This relation can be verified by a direct computation keeping in
mind that the expression ∇ ·Q contains a delta-function due to
the displacement of the support of Q into the medium, which
ensues differentiation of a discontinuous function. We can now
rewrite Eq. (15) as

u(r) ≈
(

1 +
1
`

µ̄/µ∗ − µa/µ̄

µ̄− µa

)
G(r, rs)M0 . (18)

In other words, the density deep inside the medium is given,
up to a constant overall factor, by the Green’s function G(r, rs),
which is independent of the form of the source. Note that, in the
case µ̄ = µ∗, the factor in the brackets in the right-hand side of
Eq. (18) becomes equal to 1 + `∗/` in agreement with [25].

So far, we have not really departed from the mathematical
formalism of the optimized DA. All we did was to move the
support of the functions E(r) and Q(r) away from the boundary

by an infinitesimal distance, so that the boundary condition now
does not contain Q and is of the homogeneous form given by
Eq. (14). In particular, Eq. (18) is a valid asymptote in the opti-
mized DA. However, the form of this asymptote suggests that
the only trace of µ̄ is in the overall coefficient. This further sug-
gests that we can simplify the formalism by forgetting about the
vector source Q and assuming (without any further justification)
that it is zero.

If we follow the above prescription, we will have to solve
Eq. (8) in which S = E with the homogeneous boundary condi-
tion Eq. (14). We will refer to this approach and the correspond-
ing solutions as to conventional. Of course, the conventional
and the optimized approaches coincide exactly if µ̄ = µ∗ but,
otherwise, they can differ strongly near the boundaries. In the
conventional approach, the relation between M0 and M1 is of
the form

µ̄M1 = −n̂M0 , (19)

which corresponds to the asymptotic solution

u(r) ≈
(

1 +
1

µ̄`

)
G(r, rs)M0 . (20)

This is of the same functional form as Eq. (18), up to an overall
constant. However, we emphasize again that the solutions in
the optimized and the conventional DAs are substantially dif-
ferent near the boundaries, and this difference is not reduced to
multiplication by a constant.

As mentioned above, we will optimize solutions to Eq. (6)
treating µ̄ and ` as adjustable parameters. For comparison pur-
poses, we will also optimize (with respect to the same parame-
ters) the conventional solutions described above. We reiterate
that the conventional solutions are obtained by solving Eq. (8)
with S = E (that is, we set Q = 0) subject to the homogeneous
boundary condition Eq. (14).

Finally, note that all the arguments of this section can be re-
peated for one-dimensional propagation in which all quantities
of interest depend only on the depth z.

4. NUMERICAL EXAMPLES FOR ONE-DIMENSIONAL
PROPAGATION AND NORMAL INCIDENCE

Let the scattering medium occupy the half-space z > 0 and con-
sider a plane wave, normally-incident family of rays. This excita-
tion is described by the RTE source term ε(r, ŝ) = Wδ(z)δ2(ŝ, ẑ)
where δ2 is the angular delta-function and W is the incident
energy per unit time per unit area. Then the reduced intensity
is of the form Ir(r, ŝ) = W exp(−µ̄z)δ2(ŝ, ẑ). From this we can
compute the reduced density and current of energy according
to Eq. (7) and the source terms according to Eq. (6) (second
equalities). The result is

E(z) = W(µ̄− µa) exp(−µ̄z) , (21a)

Q(z) = W(µ̄− µ∗) exp(−µ̄z)ẑ . (21b)

It can be seen that Eq. (6) takes in this case the form

∂Jd(z)
∂z

+ µaud(z) = W(µ̄− µa) exp(−µ̄z) , (22a)

1
3

∂ud(z)
∂z

+ µ∗ Jd(z) = W(µ̄− µ∗) exp(−µ̄z) . (22b)

Here Jd is the Cartesian component of the diffuse current in the Z
direction; the other two Cartesian components of the diffuse and
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µ̄ = µt
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Fig. 1. Total density u (a), total current J (b) and the diffuse
component of the current Jd (c) as functions of the normalized
depth z/`∗ for one-dimensional propagation in the half space
z > 0. Parameters of the medium are µa/µs = 0.03/500 and
g = 0.98. The curves µ̄ = µt and µ̄ = µ∗ were computed
according to Eq. (26) with µ̄ as labeled and ` = 2`∗/3. The
curves labeled ”OPT” were computed according to the same
formulas but for the optimal values of µ̄ and `, which are in
this case µ̄opt = 2.84µ∗, `opt = 0.69`∗.

total currents are zero by symmetry. The boundary condition
Eq. (12) takes the form

ud(0) + 3
`

`∗
Jd(0) = 0 . (23)

The solution to Eqs. (22),(23) is

1
W

ud(z) = (A− 1)e−µ̄z + Be−kdz , (24a)

1
W

Jd(z) =
(

µa

µ̄
A− 1

)
e−µ̄z +

µa

kd
Be−kdz , (24b)

where

A = − 2µ̄2

µ̄2 − k2
d

, kd =
√

3µaµ∗ , (25a)

B =
3µ̄2 − k2

d
µ̄2 − k2

d
+

3`
1 + kd`

µ∗ − µ̄kd +
k2

d
3

µ̄ + kd

 . (25b)

Here kd is the diffuse wave number. To obtain the total density
and current, we must add the reduced components to ud and Jd.
In the case considered, ur = Jr = W exp(−µ̄z) so that

1
W

u(z) = Ae−µ̄z + Be−kdz , (26a)

1
W

J(z) =
µa

µ̄
Ae−µ̄z +

µa

kd
Be−kdz . (26b)

This solution can be compared to the density and current ob-
tained by solving the RTE without any approximations. Al-
though one-dimensional RTE can be solved by a variety of
analytical methods, we have used in this paper Monte Carlo
simulations to obtain such solutions. The corresponding com-
putational package has been developed by us and is publicly
available [? ]. Further, we have used the nonlinear optimization
algorithm implemented in Gnuplot to fit the analytical solution
given in Eq. (26a) (for the density) to the Monte Carlo numerical
solution. The variables µ̄ and ` have been used as the adjustable
parameters in the fitting procedure. Results are shown in the
figures below.

Simulations illustrated in Fig. 1 were performed for a medium
with the ratio µa/µs = 0.03/500 and Henyey-Greenstein phase
function with the scattering asymmetry parameter g = 0.98.
These parameters are characteristic of biological soft tissues in
the near-IR spectral range. We plot the total density in Panel
(a), the total current in Panel (b) and the diffuse component
of the current in Panel (c) for various values of the adjustable
parameters. Different curves and data points shown in the figure
are explained next.

The dots labeled MC in Fig. 1 are the result of Monte Carlo
simulations. Note that, in order not to overcrowd the figure, we
show only a few Monte Carlo data points in the plot. The total
number of computed data points is 400; they are equally spaced
between z = 0 and z = 10`∗, and the Monte Carlo process
was run to achieve high statistical confidence of each data point.
All 400 data points were used in the optimization procedure.
Note also that the Monte Carlo simulation was carried out in a
much wider slab (either 50`∗ or 100`∗ wide), so that the effect
of the far face of the slab is negligible in the interval 0 < z <
10`∗, which is displayed in the figure. Finally, the leftmost data
point was computed by accumulating the statistics of photons
crossing the surface while all other data points were computed
by accumulating the statistics of photons visiting a given volume
voxel (a thin infinite layer for the one-dimensional problem
considered here). Both approaches are correct, but the specific
intensity changes very fast in a thin boundary layer and it is
difficult to achieve accurate results by accumulating volume
statistics in this region.

The curves labeled µ̄ = µt and µ̄ = µ∗ in Fig. 1 have been
computed according to Eq. (26) for the above values of µ̄ and ` =
2`∗/3. It can be seen that both curves coincide with the Monte
Carlo data at sufficiently large depths but deviate significantly
near the surface, the loss of precision being more significant for
the µ̄ = µ∗ curve. The maximum relative error is about 30% in
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Fig. 2. Same as in Fig. 1 but for g = 0.8 and the diffuse com-
ponent of the current is not shown. The optimal parameters in
this case are µ̄opt = 2.58µ∗, `opt = 0.69`∗.

both cases, but the significant errors extent up to z ∼ 1`∗ for
µ̄ = µt and up to z ∼ 3`∗ for µ̄ = µ∗.

Finally, the curve labeled OPT was computed using the op-
timal values of µ̄ and `, µ̄opt = 2.84µ∗ and `opt = 0.69`∗. This
curve shows an excellent agreement with the MC data almost
everywhere. The only exceptions are the points very close to
the surface (separated from the surface by a small fraction of `∗),
where any DA necessarily breaks. The cause of this breakdown
is related not so much to the presence of continuous spectrum in
the RTE solutions (which can not be captured in any diffusion
theory) but rather the half-range boundary conditions of the
RTE. We will illustrate the cause for this discrepancy when we
consider the angular dependence of the specific intensity.

It is also interesting to note that the inaccuracy of the DA
with suboptimal parameters affects mostly the density u but
not the current. The total current is almost independent of the
choice of parameters and is always positive (directed into the
medium) as could be expected from energy conservation. The
diffuse component of the current, however, depends strongly
on the parameters and is negative close to the surface. This can
be easily understood: the negative current describes the diffuse
reflectance of the medium.

In Fig. 2, we show the results for a similar medium but with
g = 0.8. In this case, the µ̄ = µt curve is not dramatically
inaccurate but the optimized curve is still much better. The
optimal parameters for this medium are µ̄opt = 2.58µ∗, `opt =
0.69`∗. Generally, we have found that the ratio µ̄opt/µ∗ tends to
increase with g. For example, we have obtained the following
values for this ratio: 1.43 for g = 0, 1.96 for g = 0.25, 2.26 for g =
0.5. Corresponding plots are not shown but in all cases excellent
agreement has been obtained between the optimized curves and

the Monte Carlo data points. The result µ̄opt/µ∗ = 1.43 (rather
than unity) for g = 0 should not be surprising. Recall that
the RTE has a continuous and discrete spectra of eigenvalues
λn and that in the case of isotropic scattering there is only two
discrete eigenvalues λd = ±1/kd while the continuous spectrum
is contained in the interval −µt ≤ λ ≤ µt. Also, µt = µ∗ = 1/`∗

for isotropic scattering. The rate of exponential decay is the
reciprocal of the eigenvalue λ, and the result λ̄opt = 1.43`∗ =
1.43/µt can be viewed as some weighed average of all exponents
contained in the interval [0, 1/µt].

As for the ratio `opt/`∗, it remained relatively stable with
a tendency to increase slightly with g, i.e., from 0.67 for g =
0 to 0.69 for g = 0.98. This behavior is somewhat counter-
intuitive. Indeed, the ratio `opt/`∗ ≈ 0.71 can be obtained from
the exact analytical solution to the RTE for reflection from a half-
space with isotropic scattering and µa/µs → 0 [26], which, in
the case of the Henyey-Greenstein phase function, corresponds
to g = 0 (the Milne problem). We, however, obtain a similar
ratio of 0.69 for a highly anisotropic forward-peaked scattering.
Moreover, when we decrease g, the optimal ratio `opt/`∗ does
not tend to 0.71 but decreases and approaches 2/3. In fact, the
extrapolation distance of the exact solution to the Milne problem
is not necessarily the optimal extrapolation distance for the DA;
the two solutions are substantially different. It is also worth
noting that adjusting the value of ` has only a minor effect on
the fit quality; which is mainly influenced by the choice of µ̄.

In Fig. 3 we show results for a medium similar to that of Fig. 1
(with g = 0.98) but with twice larger absorption. The results are
qualitatively the same as in Fig. 1, with µ̄opt = 2.82µ∗, `opt =
0.69`∗. It appears that the choice of optimal parameters does
not depend on absorption significantly as long as µa/µs is small.
The difference of the optimal ratio µ̄opt/µ∗ with Fig. 1 (2.82 vs.
2.84) can be due to numerical errors. We note in this respect that,
in order to achieve stably reproducible results, optimization
must be performed in sufficiently large intervals of z. In our
simulations, the optimized parameters were stable within 1% to
2% relative error and could depend within these limits on the
particular realization of the Monte Carlo process and sampling
of the data points.

It is now evident that the most challenging case for building
any diffusion theory is the one with the largest ratio µt/µ∗. For
the medium considered in Fig. 1, this ratio is ≈ 50. The opti-
mized DA can still be very accurate in this case, but the correct
choice of the reduced extinction coefficient µ̄ is important. We
therefore use the medium of Fig. 1 to illustrate the quality of
the conventional DA described in Sec. 3. Recall that the latter
is obtained by solving Eq. (8) in which we set S = E (or Q = 0)
subject to the homogeneous boundary condition Eq. (14). For
the one-dimensional problem considered here, this is mathemat-
ically equivalent to replacing the right-hand side of Eq. (22b) by
zero; everything else remains unchanged. The resulting solution
is still of the form Eq. (26) but the constants A and B are now
different, viz,

A =
µ̄2 − 3µ∗µ̄

µ̄2 − k2
d

, B =
3µ∗µ̄− k2

d
µ̄2 − k2

d

1 + `µ̄

1 + `kd
. (27)

The solutions obtained according to the conventional DA are
illustrated in Fig. 4. The curves labeled µ̄ = µ∗ in Fig. 4 and
Fig. 1 are identical. The curve labeled µ̄ = µt, however, does
not provide a reasonable approximation in the conventional
DA (Fig. 4). The large-depth asymptote is in this case off by an
overall factor but, of course, it has the same rate of exponential
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Fig. 3. Same as in Fig. 1 but for twice stronger absorption,
µa/µs = 0.06/500, and the diffuse component of the current
is not shown. The optimal parameters in this case are µ̄opt =
2.82µ∗, `opt = 0.69`∗.

decay described by the function exp(−kdz). Near the boundary,
the conventional DA can not be made accurate even by using
optimization. The optimal parameters are in this case µ̄opt =
1.31µ∗, `opt = 0.99`∗ and these parameters do not provide an
accurate fit. The above optimal value of ` is quite far from
the commonly accepted values (from 2/3 to 0.71), which is an
indication that the formula itself is wrong. The mismatch at
the boundary persists in the case of a finite slab as well (data
not shown), which is not the case for the optimized DA whose
accuracy in finite slabs is illustrated next.

The optimized DA solutions in finite slabs are of a more
general form than Eq. (24) or Eq. (26). Namely, we have in this
case for the total current and density

1
W

u(z) = Ae−µ̄z + B1e−kdz + B2ekdz , (28a)

1
W

J(z) =
µa

µ̄
Ae−µ̄z +

µa

kd
(B1e−kdz − B2e−kdz) . (28b)

Here the coefficient A is the same as in Eq. (25a) but B1 and B2
are rather complicated. The corresponding expressions can be
simplified by neglecting the terms that are exponentially small
and of the order of exp(−µ̄L). These, typically, very small terms
originate from the overlap of the reduced intensity with the far
surface of the slab, which gives rise to inhomogeneous boundary
conditions at that surface. Then B1 and B2 take the form

B1 =
(1 + kd`)

2

(1 + kd`)2 − (1− kd`)2 exp(−2kdL)
B , (29a)

B2 =
(1− kd`)

[
k2

d(1− 2`µ̄ + 3`µ∗)− 3µ̄2(1 + `µ∗)
]

(µ̄2 − k2
d) [(1 + kd`)2 exp(2kdL)− (1− kd`)2]

, (29b)
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Fig. 4. Same as in Fig. 1 and for the same medium parame-
ters, but analytical curves were computed according to the
conventional DA. The optimal parameters in this case are
µ̄opt = 1.31µ∗, `opt = 0.99`∗. The curves µ̄ = µ∗ in this figure
and in Fig. 1 are identical.

where B is the constant defined in Eq. (25b).
In Fig. 5, we plot the total density according to the optimized

DA in finite slabs of different widths L (L = 10, 20, 40`∗) for a
medium of the same optical properties as in Fig. 1. As before,
the Monte Carlo statistics was accumulated in 400 thin layers
and only approximately 1/20 of all data points are shown in
the figure. In addition, the left-most and the right-most data
points were computed by counting the photons that cross the
corresponding surface. It can be seen that the agreement is in all
cases excellent. The slight discrepancy seen very close to either
boundary in the case L = 10`∗ is of the same magnitude and
extent as is seen in Fig. 1 near the boundary z = 0 (about 10%
relative error; errors of the same order of magnitude can be seen
in the back-reflected quantities discussed in section 7 below for
a pencil beam illumination). It should be emphasized that the
optimized parameters used to compute the analytical curves in
Fig. 5 were computed by considering the half-space data.

We next turn to the angular dependence of the intensity. Due
to the azimuthal symmetry of the problem, it depends only on
the polar angle θ. In Fig. 6, we plot I as a function of cos θ at
different values of z near the interface z = 0 through which the
incident radiation enters the medium. The theoretical curves
were computed according to Eq. (4) to which a term of the form
exp(−µ̄optz)δλ(cos θ) has been added, where

δλ(x) =
λ

π2
1

(x− 1)2 + λ2 (30)

is a forward-peaked angular delta function. The normalization
factor in Eq. (30) is chosen so that 2π

∫ 1
−1 δλ(x)dx ≈ 1. In Fig. 6,
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Fig. 5. Total density in finite slabs of of varying width for the
same medium as in Fig. 1. Monte Carlo simulations vs opti-
mized DA. The curves labeled OPT have the same parameters
µ̄opt and `opt as in Fig. 1. The total width of the slab corre-
sponds to the interval of z shown in each plot.

we have taken (quite arbitrarily) λ = 0.005. The additional term
defined above represents the reduced intensity. It is shown as
a finite-width Lorentzian because a true delta-function can not
be displayed in a plot. Even though this may be not obvious
from the plots, the integral weight of this additional term is
approximately equal to the integral weight of the forward peak
that is seen in all Monte Carlo simulation results.

The curve labeled BR in Fig. 6(a) is the angular distribution
of the back-reflected intensity. It was computed by a Monte
Carlo simulation counting the outgoing photons that cross the
z = 0 boundary from inside the medium. The same function can
also be defined analytically as a solution to a nonlinear integral
equation and is known as the Chandrasekhar function [27]. For
our purposes, the numerical Monte Carlo result suffices. It can be
seen that the reflected intensity satisfies the half-range boundary
condition of the RTE and is therefore zero for cos θ > 0 (for all
ingoing directions). Due to this reason, the shape of the curve is
highly nonlinear and it is clear that this dependence can not be
captured with any precision by a DA.
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Fig. 6. Angular dependence of the intensity I(z, θ) at various
depths z as labeled for the same medium parameters as in
Fig. 1. Monte Carlo simulations (MC) compared to the diffu-
sion approximation (DA). Panel (a) also shows the angular
dependence of the intensity back-reflected at the plane z = 0
(BR). Not all MC data points are shown and some of them lie
outside of the areas of the plots. The thin blue lines that con-
nect the MC data points are drawn to guide the eye.

However, as soon as we evaluate I(θ) inside the medium, the
shape of the curve starts to change. At z = 0.025`∗ (Fig. 6(a)),
the intensity becomes nonzero for ingoing directions and it has
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a pronounced forward peak. The DA still can not capture this
dependence accurately but some qualitative correspondence
is obvious. At larger optical depths (Figs. 6(b-d)), the exact
function becomes increasingly linear and the forward peak less
pronounced. At z = 1.425`∗, the DA is already quite accurate.
Of course, the DA can not predict accurately the width or exact
shape of the forward peak, which is still present at this depth. It
simply replaces it by a delta-function of approximately the same
integral weight.

It can be concluded that any DA has three adjustable pa-
rameters: two parameters describing the linear segment of the
angular dependence of the intensity and one parameter describ-
ing the evolution (exponential decay) of the forward peak. This
last parameter is the reduced extinction coefficient µ̄, and it
has not been considered in the traditional theory. In this paper,
we have used a numerical optimization technique to find the
optimal value of this parameter.

Another conclusion is that any DA can not be equally accu-
rate for arbitrary angles of incidence. This follows from the fact
that the angular distribution of the reflected intensity is not cap-
tured correctly by the DA and then using reciprocity relations
for the Green’s function of the RTE. The optimization performed
in this paper applies to normal incidence only and it can be
expected to remain accurate for incidence angles such that the
curve labeled BR in 6(a) does not deviate too much from a linear
behavior. In Sec. 5, we will show that this is indeed the case.

5. NUMERICAL EXAMPLES FOR ONE-DIMENSIONAL
PROPAGATION AND OBLIQUE INCIDENCE

As was demonstrated above, the angular distribution of the
back-reflected light is not well described by the DA. Invoking
the reciprocity relation for the RTE Green’s function, we can
conclude that the optimization of µ̄ and ` that was performed
above is not applicable to all incidence angles. Rather, it applies
to normal incidence only. There is no reason to believe that the
same optimized parameters would yield accurate approximation
for oblique incidence.

Consider incident intensity that, in the half-space z < 0, is of
the form Iinc = Wδ2(ŝ, ŝ0), where ŝ0 is some direction, generally,
different from the direction of the Z-axis and making an angle
θ with the latter. It can be shown that the surface source term
for the RTE is in this case ε(r, ŝ) = W cos θδ(z)δ2(ŝ, ŝ0). We
can find the reduced intensity from Eq. (3). A straightforward
calculation results in Ir(z, ŝ) = Wδ2(ŝ, ŝ0) exp(−µ̄z/ cos θ), and
the corresponding reduced density and current are ur(z) =
W exp(−µ̄z/ cos θ) and Jr(z) = Wŝ0 exp(−µ̄z/ cos θ). For the
diffuse components, we then have two coupled equations

ẑ · ∂Jd
∂z

+ µaud = W(µ̄− µa) exp(−µ̄z/ cos θ) , (31a)

ẑ
3

∂ud
∂z

+ µ∗Jd = Wŝ0(µ̄− µ∗) exp(−µ̄z/ cos θ) . (31b)

An important difference with the normal incidence case is that
now Jd and Jr have more than one nonzero Cartesian compo-
nents. Generally, we can assume that the vector ŝ0 lies in the
XZ-plane and the same is true for Jr and Jd. The boundary
condition at the z = 0 interface is

ud(0) + 3
`

`∗
Jdz(0) = 0 . (32)

The solutions in the half-space z > 0 for the total density and
the normal component of the total current are

1
W

u(z) = Ae−µ̄z/ cos θ + Be−kdz , (33a)

1
W

Jz(z) =
µa

µ̄
Ae−µ̄z/ cos θ +

µa

kd
Be−kdz , (33b)

where

A = − (3− 1/ cos2 θ)µ̄2

(µ̄/ cos θ)2 − k2
d

, (34a)

B =
3µ̄2 − k2

d
(µ̄/ cos θ)2 − k2

d
− kd`

1 + kd`

3µ̄ cos θ + kd
µ̄/ cos θ + kd

+
3µ∗` cos θ

1 + kd`
. (34b)

In the case θ = 0 (normal incidence), these expressions coincide
with those given in Eq. (25).

In Fig. 7, we plot Monte Carlo and theoretical (that is, given
by Eq. (33)) results for the total density u(z) and same medium
parameters as in Fig. 1. As above, theoretical curves are plotted
for various values of parameters where the optimal parameters
were computed for the normal incidence. It can be seen that the
optimized DA works reasonably well for moderate incidence
angles, up to tan θ ∼ 0.5, but breaks down for larger values of
θ. For tan θ = 2, the DA results are not accurate even in the
asymptotic regime. We note that the exact function u(z) always
has a maximum, albeit it can be very close to the surface for
large incidence angles. The theoretical curves also have maxima
for sufficiently small values of tan θ but for tan θ larger than
some critical value, the theoretical function are monotonically
decreasing. Overall, it can be concluded that, for tan θ & 1, the
standard and the optimized DAs are all inaccurate.

Another interesting feature of oblique incidence, which is
not captured quantitatively by any DA is the lateral current.
As mentioned above, the current J has two nonzero Cartesian
components, which lie in the plane XZ spanned by the vector ŝ0
and the Z-axis. In Eq. (33b), only the normal z-component of the
current was given. The lateral component Jx (the total current)
can also be found from Eq. (31) and is given by

1
W

Jx =
µ̄

µ∗
sin θ exp(−µ̄z/ cos θ) . (35)

Interestingly, this current physically exists in the system even
though ∂ud/∂x = 0 and, thus, this current is not subject to Fick’s
law. The lateral current, however, decays exponentially with
the depth z. The lateral current is plotted in Fig. 8. It can be
seen that the theoretical formula Eq. (35) describes this current
qualitatively but not quantitatively. Indeed, the lateral current is
not a diffusion phenomenon and can be properly accounted for
only by the transport theory.

6. EFFECTS OF THE PHASE FUNCTION

So far, we have considered only the Henyey-Greenstein phase
function, that is, we assumed that

A(ŝ, ŝ′) =
1

4π

1− g2

(1− 2gŝ · ŝ′ + g2)
3/2 , (36)

where g is scattering asymmetry parameter. Although g defines
the Henyey-Greenstein functions completely, a more general
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Fig. 7. Same as in Fig. 1 but for off-normal incidence. Here θ
is the angle between the collimation direction of incident radi-
ation and normal to the surface; θ = 0 for normal incidence.
However, the front of the incident radiation is still infinitely
broad and the problem is one-dimensional.

phase function is not defined by g. In other words, there are
many different phase functions with the same value of g. For
example, we can consider an exponential function of the form

A(ŝ, ŝ′) =
β

4π

exp (βŝ · ŝ′)
sinh(β)

. (37)

Here the scattering asymmetry parameter is related to β by
g = coth(β)− 1/β. This equation can be uniquely inverted, and
for every 0 < g < 1 we can find the corresponding parameter
β. It should be noted that Henyey-Greenstein and exponential
phase functions with the same g are quite different. In particular,
the probability of backscattering is much smaller in the later
than in the former case.

In Fig. 9, we plot the total density as a function of depth z
for one-dimensional propagation in a finite slab of the width
L = 10`∗. The theoretical solutions are given in this case by
Eq. (28). We have used two different phase functions (Henyey-
Greenstein and exponential) with the same value of g in Monte
Carlo simulations. It can be seen that the numerical solutions
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Fig. 8. Lateral current Jx for off-normal incidence. Same
medium and simulation parameters as in Fig. 7.

for these two phase functions differ significantly for z . 2`∗.
However, in the asymptotic region, and near the far face of the
slab, the solutions essentially coincide. This is an expected result:
the higher angular moments of the phase function are important
only sufficiently close to the source.

However, the goal of this paper is to find a DA that is as
accurate as possible everywhere, including close to the source.
It can be seen that no such universal approximation exists. The
optimal parameters depend on the higher moments of the phase
function. For the exponential phase function the optimal values
are µ̄opt = 4.38µ∗ and `opt = 0.71`∗, which differs from the
respective values for the Henyey-Greenstein function (µ̄opt =
2.84µ∗ and `opt = 0.69`∗. The parameter that is changed most is
µ̄opt but `opt is also noticeably different.

It is interesting to note that `opt for the exponential phase
function matches closely the theoretical result deduced from
the solution of the Milne problem for isotropic scattering. Also,
the quality of the fit is better for the Henyey-Greenstein phase
function. This is probably due to the fact that the exponential
phase function suppresses strongly backscattering and, as a
result, the diffuse regime is reached after more scattering events.



Research Article Journal of the Optical Society of America A 11

OPT EXP

OPT HG

MC EXP

MC HG
1
W u

z/ℓ∗

1086420

4

2

0

Fig. 9. Density as a function of depth z for the same medium
parameters as in Fig. 1 but two different phase functions la-
beled as HG (Henyey-Greenstein) and EXP (exponential). MC
and OPT label Monte Carlo simulations and optimized the-
oretical curves computed according to Eq. (28). Simulations
were performed in a finite slab of width L = 10`∗. Optimal pa-
rameters are different for the HG and OPT curves. For HG, the
parameters are the same as in Fig. 1. For EXP, µ̄opt = 4.38µ∗,
`opt = 0.71`∗.

7. NUMERICAL EXAMPLES IN THREE DIMENSIONS

Consideration of a narrow collimated incident beam is some-
what complicated by the following fact. If we take the incident
beam to be described mathematically by a delta-function in the
transverse directions, i.e., δ(ρ), where ρ = (x, y), then the so-
lutions to both the RTE and the DE will contain singularities,
which are difficult to represent or compare graphically. We there-
fore will consider an incident beam of small but finite width. Let
the RTE source function be of the form

ε(ρ, z) = w(ρ)δ(z)δ2(s, ẑ) ,
∫

w(ρ)d2ρ = W . (38)

Here W is the total power of the incident beam (incoming energy
per unit time, but not per unit surface, as was the case in the one-
dimensional geometry). We assume that the beam is perfectly
collimated and all incident rays are parallel to the Z-axis. This is
expressed mathematically by the angular delta-function δ2(s, ẑ)
in Eq. (38). The reduced intensity is given in this case by

Ir(ρ, z) = w(ρ)e−µ̄zδ2(s, ẑ) . (39)

Correspondingly, the source functions in Eq. (6) are

E(ρ, z) = w(ρ)e−µ̄z , Q(ρ, z) = ẑE(ρ, z) . (40)

We can now solve Eq. (6) by Fourier transform. To this end, we
use the integral expansion

ud(ρ, z) =
∫

ũd(q, z)eiq·ρ d2q
(2π)2 , (41)

and similarly for all other ρ-dependent functions. Upon substi-
tution into Eq. (6), we find the following pair of equations for
the Fourier transforms of the diffuse density ũd(q, z) and the
z-component of the diffuse current J̃dz(q, z):

∂ J̃dz(q, z)
∂z

+

(
q2

3µ∗
+ µa

)
ũd(q, z) = (µ̄− µa)e−µ̄zw̃(q) , (42a)

1
3

∂ũd(q, z)
∂z

+ µ∗ J̃dz(q, z) = (µ̄− µ∗)e−µ̄zw̃(q) . (42b)

Once these equations are solved, the radial component of the
diffuse current, Jd⊥, can be found from the equation

J̃d⊥(q, z) = − iq
3µ∗

ũd(q, z) , (43)

The solution to Eq. (42) with the boundary condition (12) (which
can also be Fourier transformed) is similar in form to Eq. (24)
with a few modifications, namely,

ũd(q, z) =
{
[A(q)− 1] e−µ̄z + B(q)e−κ(q)z

}
w̃(q) , (44a)

J̃dz(q, z) =
{
[C(q)− 1] e−µ̄z +

κ(q)
3µ∗

B(q)e−κ(q)z
}

w̃(q) . (44b)

where

A(q) = − 2µ̄2 + q2

µ̄2 − κ2(q)
, C(q) = −

2µaµ̄ +
µ̄
µ∗ q2

µ̄2 − κ2(q)
, (45a)

B(q) =
3µ̄2 − κ2(q)

µ̄2 − k2
d

+
3`

1 + κ(q)`

µ∗ − µ̄κ(q) + k2
d

3
µ̄ + κ(q)

 , (45b)

κ(q) =
√

k2
d + q2 . (45c)

It can be seen that the expressions (44),(45) are reduced to
(24),(25) in the case q = 0. As before, we need to add the
diffuse and the reduced components of the density and cur-
rent to obtain the total quantities. It follows from Eq. (39) that
ũr(q, z) = e−µ̄z F̃(q), J̃r(q, z) = ẑur(q, z), so that the addition
results in cancellation of the unities in the square brackets in
Eq. (44). This is similar to the transition from Eq. (24) to Eq. (26);
here we do not write out expressions for the total quantities
explicitly.

We now specialize to the case of a symmetric pencil beam
of radius a described by the function w̃(q) = 2W

aq J1(aq), where
J1(x) is the cylindrical Bessel function of the first kind (not to be
confused with the current density). We can use the Fourier-space
solution (44) and the transformation rule (41) to compute the
solutions in real space. The Fourier integral can not be computed
analytically but is easy to evaluate numerically. We note that the
integral is converging and contains no singularities. In particular,
the integrand does not have a singularity at q2 = µ̄2 − k2

d, even
though the coefficients A(q), B(q) and C(q) are singular at this
point.

The radial dependence of the density u(ρ, z) at different
depth z inside the medium is shown in Fig. 10. Parameters
of the medium are the same as in Fig. 1 except that the incident
field is now a pencil beam of the radius 0.5µ∗. Although op-
timization of the reduced extinction coefficient µ̄ was carried
out for an infinite-front, plane incident wave, we see that the
optimized DA still outperforms the conventional DAs. In fact, it
can be seen that the optimized DA is noticeably more accurate
up to the depth of z ∼ 8`∗. We note that all DA predict a jump
of the density at the edge of the incident pencil beam, that is, at
ρ = a while the exact solution is continuous everywhere. We
note that the conventional DAs with µ̄ = µ∗ and µ̄ = µt can be
accurate for some values of the parameters, but the optimized
DA is more universally applicable.

We next consider the density and current exactly at the in-
terface, that is, at z = 0. As was already shown in section 4 for
wide-front plane-wave illumination, any DA is not capable of
capturing correctly the angular dependence of the backscattered
intensity, I(ŝ). There is no reason why this conclusion would
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Fig. 10. Radial dependence of u at different depths z as la-
beled. Incident cylindrical pencil beam has the radius of 0.5`∗

(diameter of 1`∗). Labels of different curves and data sets are
the same as in Fig. 1. Note that the discontinuity of solutions
at the edge of the incident beam (at ρ = 0.5`∗) is an artifact of
the DA in which the reduced (discontinuous) density is added
to the diffuse (continuous) density; the exact RTE solutions are
continuous, albeit the radial derivative can be large at the edge
of the incident beam.

not be applicable to the three-dimensional geometry of a narrow
incident beam, which is considered in this section. In fact, com-

OPT
µ̄ = µ∗
µ̄ = µt
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(a) Reflected Density
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− (ℓ∗)2
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Fig. 11. Radial dependence of the reflected density u (a) and
the normal component of the current Jz (b), evaluated at the
interface z = 0. Same parameters as in Fig. 10.

parison of the quantities computed exactly at the interface by
Monte Carlo simulations and from a DA is not very meaningful.
Indeed, the DA always accounts for hypothetical photons that
propagate in the incoming directions; while we know from the
RTE half-range boundary conditions that the specific intensity is
strictly zero in such directions (at the interface). Therefore, the
predictions of a DA for, say, the normal component of current at
the interface do not correspond to measurable quantities.

Nevertheless, we plot in Fig. 11 the density u and the nor-
mal component of the current, Jz at the interface. Again, the
predictions of various DAs are compared to the rigorous Monte
Carlo results. In this figure, the range of the radial variable ρ
is a < ρ < 10`∗, where a = 0.5`∗ is the radius of the incident
pencil beam. Therefore, the region close to the axis of the beam
(ρ < a) is excluded from consideration. While the Monte Carlo
results in this region are meaningful, the DA predictions can
change sign and are, generally, meaningless. Besides, we note
that it is technically difficult to measure the back-scattered in-
tensity emitted exactly from the point where the incident beam
enters the medium. This signal can be dominated by specular
reflection, for example. However, as soon as we cross the point
ρ = a, the agreement between the DAs and the Monte Carlo
results becomes quite decent. It is interesting to note that, for
the quantities displayed in Fig. 11, the DA with µ̄ = µ∗ provides
the best approximation. The fact that µ̄ = µ̄opt does not provide
the best approximation in this case is not surprising. Indeed, we
have performed the optimization of µ̄ for the density inside the
medium, not on its boundary. We also note that, in the case of
non-contact measurements, the quantity of interest is I(rd, n̂),
where rd is a point on the surface corresponding to a given opti-
cal detector (say, a CCD pixel) and n̂ is the unit vector pointing
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from rd to the detector (say, the optical axis of the CCD camera).
In the case of contact measurements, some convolution of the
form

∫
F(s)I(rd, ŝ)d2s is measured, where F(s) is the angular

acceptance function; the signal becomes equal to J(rd) in the
special case F(s) = n̂ · ŝ.

8. SUMMARY AND DISCUSSION

We have discussed construction of the source function for the
diffusion equation (DE), which serves as an approximation to a
more fundamental radiative transport equation (RTE). We were
particularly interested in the case when the incident radiation
enters a multiply-scattering medium from outside through a
diffuse-nondiffuse interface. The stationary DE can be written as
two first order ordinary differential equations (6) for the diffuse
density and current ud and Jd. These equations contain two
source terms E(r) and Q(r). Alternatively, one can transform
Eq. (6) into a second order equation (8). In this case, there is
only one scalar source term S(r), which is expressed in terms
of E(r) and Q(r) according to Eq. (9). The main goal of this
paper was to find the optimal (that is, yielding the most accurate
approximation) relation between the source function of the RTE
ε(r, ŝ) and the function S(r). The problem is nontrivial because
the latter function has less degrees of freedom. The dependence
of the RTE source term ε(r, ŝ) on ŝ is mimicked in the diffusion
approximation (DA) by a more complicated dependence of S(r)
on r.

In a DA, the total density and current of radiation energy in
a multiply-scattering medium are given by sums of diffuse and
reduced components, i.e., u = ud + ur, J = Jd + Jr, where the re-
duced density and current are expressed in terms of the reduced
intensity Ir according to Eq. (7). However, the reduced intensity
can be defined in infinitely many different ways. Each definition
gives rise to a particular DA. Following [13], we have parameter-
ized this family of DAs by the reduced extinction coefficient µ̄,
which is the rate of exponential decay of the reduced intensity
away from the source. It turns out that the source functions E(r)
and Q(r), or S(r), are defined by µ̄ uniquely, so that the task is
to find the optimal value of µ̄. We have approached this task by
comparing the theoretical predictions of the DA to the results
of Monte Carlo simulation and optimizing the discrepancy in
terms of µ̄ and also in terms of the extrapolated distance pa-
rameter `. We have found that the optimal value of ` is close to
the conventionally used value (between 2`∗/3 and 0.71`∗), but
our results for the optimal value of µ̄ are unconventional. The
two conventional choices for the reduced extinction coefficient
are µ̄ = µt or µ̄ = µ∗. We however find that the optimal value
of µ̄ lies between these two values; typically, µ̄opt ≈ 3`∗ � µt.
We note however that the numerical value of µ̄opt depends on
the scattering phase function of the medium (even if the scat-
tering asymmetry parameter is fixed) and, potentially, on the
angle of incidence. We have performed optimization for normal
incidence only.

There are good reasons why the reduced extinction coeffi-
cient µ̄ has not been considered previously. If the RTE source
ε(r, ŝ) is localized inside the medium and far from the bound-
aries and if the point of observation is far from the support
of ε(r, ŝ), then the exact shape of S(r) is unimportant as long
as the zeroth moment M0 =

∫
S(r)d3r is approximately con-

stant. As was shown in [13], M0 depends on µ̄ weakly. This
consideration applies to the definitions of S(r) that were consid-
ered in Refs. [19–21]. If the source of the RTE is supported on
the medium boundary (the so-called surface source), the next

moment of S(r), M1
∫

rS(r)d3r, comes into play. However, the
typical boundary conditions for the DA result in linear relations
between M0 and M1, e.g., Eq. (17), which also seems to indi-
cate that the exact value of µ̄ is unimportant. From the above
arguments, we can conclude the following. If the samples are a
few centimeters thick and the region of interest is sufficiently far
from the boundaries (as is the case in many implementations of
optical tomography), the correct definition of S(r) is not critical.

However, in the reflection geometry and, especially, when the
region of interest is relatively shallow, the effects associated with
an imprecise definition of S(r) come to the fore. We emphasize
that the function S(r) depends strongly on µ̄. Correspondingly,
the solutions in the superficial layers also depend strongly on
µ̄, and this dependence is not reduced to multiplication by a
constant. We have found that a simple optimization procedure
can find an optimal value of µ̄, which can reduce the error quite
dramatically close to the surface and not affect the accuracy far
away from the surface. This result can be particularly useful in
imaging modalities involving diffuse reflection measurements
or when inhomogeneities of the medium can be located close to
the interface.

The theory developed in this paper is, in fact, an attempt to
account phenomenologically for the transition layers without
abandoning the diffusion theory framework altogether. As was
shown in [12], the solutions to the RTE can be approximated
with high accuracy by a superposition of the interior and the
boundary layer terms, where the former satisfies a DE. However,
the boundary layer term can not be computed from a DE. If it
is computed according to the procedure described in [12], an
accurate approximation to the angular dependence of the inten-
sity at the medium boundary can be obtained. Obviously, this
dependence is highly nonlinear and can not be described in prin-
ciple by a DA alone. The boundary layer solution can be added
to the DA solution. In this paper, however, we took a different
approach and stayed entirely withing the framework of the diffu-
sion theory. We have shown that even in this case the boundary
layers can be accounted for by appropriately splitting the total
intensity into the reduced and diffuse parts. It can also be said
that the reduced intensity is itself an additive term and that, by
tuning the value of µ̄, we can select the optimal value of this
additive term. This observation establishes a correspondence
between the approaches of this paper and Ref. [12].

Finally, we have only considered stationary propagation in
this paper. If time-dependent solutions are sought, one can con-
sider additional adjustable parameters to improve accuracy at
short times. It was suggested that this can be achieved by using
the telegraph equation [28], which contains a second-order time
derivative. In the stationary regime, the telegraph equation and
the DE considered in this paper are equivalent. It is possible
that combining the approach of this paper and using the tele-
graph equation as suggested in [28] can produce an accurate
approximation at both short times and short distances.
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