
cancers

Article

Expression of the Major and Pro-Oncogenic H3K9
Lysine Methyltransferase SETDB1 in Non-Small Cell
Lung Cancer

Paola Cruz-Tapias 1,2,3,4,*,†, Vlada Zakharova 1,†, Oscar M. Perez-Fernandez 5,†,
William Mantilla 6, Sandra Ramírez-Clavijo 2 and Slimane Ait-Si-Ali 1,*

1 Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université de Paris,
Université Paris Diderot, F-75013 Paris, France

2 Grupo de investigación Ciencias Básicas Médicas, Faculty of Natural Sciences and Mathematics,
Universidad del Rosario, Bogotá 111221, Colombia

3 School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
4 Doctoral Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá 111221, Colombia
5 Department of Cardiology, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá 110131, Colombia
6 Department of Hematology-oncology. Fundación Cardioinfantil - Instituto de Cardiología,

Bogotá 110131, Colombia
* Correspondence: paola.cruz@univ-paris-diderot.fr (P.C.-T.); slimane.aitsiali@univ-paris-diderot.fr (S.A.-S.);

Tel.: +33-(0)1-5727-8919 (S.A.-S.)
† These authors are equally contributed.

Received: 16 July 2019; Accepted: 6 August 2019; Published: 8 August 2019
����������
�������

Abstract: SETDB1 is a key histone lysine methyltransferase involved in gene silencing. The SETDB1
gene is amplified in human lung cancer, where the protein plays a driver role. Here, we investigated
the clinical significance of SETDB1 expression in the two major forms of human non-small cell lung
carcinoma (NSCLC), i.e., adenocarcinoma (ADC) and squamous cell carcinoma (SCC), by combining
a meta-analysis of transcriptomic datasets and a systematic review of the literature. A total of 1140
NSCLC patients and 952 controls were included in the association analyses. Our data revealed higher
levels of SETDB1 mRNA in ADC (standardized mean difference, SMD: 0.88; 95% confidence interval,
CI: 0.73–1.02; p < 0.001) and SCC (SMD: 0.40; 95% CI: 0.13–0.66; p = 0.003) compared to non-cancerous
tissues. For clinicopathological analyses, 2533 ADC and 903 SCC patients were included. Interestingly,
SETDB1 mRNA level was increased in NSCLC patients who were current smokers compared to
non-smokers (SMD: 0.26; 95% CI: 0.08–0.44; p = 0.004), and when comparing former smokers and
non-smokers (p = 0.009). Furthermore, the area under the curve (AUC) given by the summary receiver
operator characteristic curve (sROC) was 0.774 (Q = 0.713). Together, our findings suggest a strong
foundation for further research to evaluate SETDB1 as a diagnostic biomarker and/or its potential use
as a therapeutic target in NSCLC.
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1. Introduction

Lung cancer causes more than 1.6 million deaths per year worldwide, despite current progress in
treatment [1]. The two major lung cancer types are non-small cell lung cancer (NSCLC) and small cell
lung cancer (SCLC). The lung cancer mortality rate is driven by the high possibility of metastasis and
problems in early diagnosis [2,3]. Lung cancer is a complex disease, which involves both genetic and
epigenetic alterations (reviewed in [4]).
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The combined use of next-generation high-throughput sequencing (NGS) and ultra-sensitive mass
spectrometry technologies has substantially improved our understanding of molecular epigenetic
mechanisms, such as histone post-translational modifications (PTMs) and transcriptional regulation in
normal and pathological conditions, especially in cancer. Histone PTMs are one of the most important
mechanisms of epigenetic regulation of gene expression and chromatin organization. As such,
histone lysine methylation is a key regulatory mechanism of chromatin organization. Histone lysine
methylation status is regulated by histone lysine methyltransferases (KMTs) and lysine demethylases
(KDMs). A large number of studies have substantiated the link between aberrant histone lysine
methylation and malignancy, and the roles of KMTs in cancer metastasis [5]. In particular, the
methylation of histone 3 lysine 9 (H3K9), which is directly involved in heterochromatin formation
and both gene repression and silencing [6]. The main H3K9 KMTs, namely, G9A, GLP, SUV39H and
SETDB1, are deregulated in many cancers, and variations in the global or local patterns of H3K9
methylations are found in tumor cells. For instance, abnormal H3K9 methylations have been associated
with poor survival and higher risk of relapse [7]. A loss of H3K9 dimethylation (H3K9me2) has been
found in prostate, lung and kidney cancer patients [8,9], and H3K9me3 is a diagnostic marker of
metastasis in lung cancer patients [10]. In addition, mutations in KMT genes or abnormal expression
of KMTs are found in tumors [11].

SETDB1 (also named KMT1E) is a major H3K9 KMT known to be required for mammalian
development as it regulates pluripotency in the early embryo [12], stem cell potential and terminal
differentiation in many progenitor cell types [13,14]. SETDB1 is central in embryonic stem cell (ESC)
pluripotency and self-renewal [15–17] and in many adult stem cells. Interestingly, tumors consist of
heterogeneous cell populations and a subset of cells, so called cancer stem cells (CSCs), which express
pluripotency markers and have the ability for self-renewal, such as ESCs. CSCs have been proposed as
an origin for certain types of tumors, and the expression of pluripotency markers might hereby play a
role [18]. Thus, SETDB1 key roles in stemness regulation may provide a link between ESCs and CSCs
biology. We participated in a study showing that the human SETDB1 gene is amplified in melanoma,
in which SETDB1 accelerates tumorigenesis [19].

Furthermore, SETDB1 is overexpressed in lung cancer [20] and silences certain genes by
direct interaction with the DNA methyltransferase DNMT3A [21], and both are implicated in
epithelial-to-mesenchymal transition (EMT) and metastasis [22]. Most interestingly, an amplification of
the SETDB1 gene was also described in lung cancer, in which SETDB1 is considered as a pro-oncogene
able to increase tumor invasion [23]. The SETDB1 gene was found to be amplified in lung cancer cell
lines and primary tumors [23]. The same study showed that the SETDB1 gene is amplified several
times in human NSCLC and SCLC cell lines and in primary lung tumors. The authors observed
an increase in SETDB1 copy number. Importantly, SETDB1 protein overexpression was associated
with elevated cell growth rates and the invasive potential of cancer cells in nude mouse models [23].
High levels of SETDB1 expression are also associated with poor prognosis in terms of overall survival
of patients [24]. SETDB1 hyperactivation affects various signaling pathways such as WNT, MAPK,
Toll-like receptors (TLRs), focal adhesion, and JAK-STAT pathways in lung cancer cells [24].

Here, we tested the clinical significance of SETDB1 expression in NSCLC, based on the analysis
of large-scale transcriptomic datasets. To this end, we conducted different meta-analyses using 45
microarray datasets from the Gene Expression Omnibus (GEO) database. Furthermore, summary
receiver operator characteristic curve (sROC) analysis was used to determine the discriminative yield
of SETDB1 expression in NSCLC. In parallel, a systematic review of the literature was conducted up to
April 2019 to provide information about the association of SETDB1 expression and NSCLC. Our results
showed higher levels of SETDB1 mRNA in both ADC and SCC tissues compared to non-cancerous
tissue controls. Interestingly, SETDB1 mRNA level was increased in former or current smoker NSCLC
patients compared to non-smokers.

Our findings suggest that SETDB1 expression levels could be used as a diagnostic biomarker
and/or potentially be used as a therapeutic target in NSCLC.
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2. Results

2.1. Association Between SETDB1 Expression and NSCLC

Our initial search strategy identified 1247 microarray datasets (Figure 1). After screening and
eligibility assessment, we included a total of 20 datasets reporting expression levels of SETDB1
mRNA in cancerous and adjacent non-cancerous specimens that were resected from NSCLC patients.
In addition, a total of five datasets reporting expression levels of SETDB1 in cancerous specimens from
NSCLC patients and normal specimens from a healthy control group were included for meta-analysis.
The main characteristics of the elected studies are described in Table 1.

Overall, 1140 NSCLC cases and 952 controls were analyzed. The expression of SETDB1 was
significantly increased in NSCLC tissues compared to normal lung tissues (SMD: 0.66; 95% CI: 0.52–0.80;
p < 0.001) with moderate heterogeneity (I2 = 54.4%; p < 0.001) (Figure 2A). Independent analyses of the
association between SETDB1 mRNA levels and NSCLC for each GEO dataset are presented in the
Supplementary Figure S1. There was no evidence of publication bias based on the funnel plot and
Egger’s test, as seen in Supplementary Figure S2A.

Subgroup analyses were performed for the most common subtypes of NSCLC, namely,
adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Interestingly, the expression of SETDB1
was significantly increased in both, tissues from patients with ADC (SMD: 0.88; 95% CI: 0.73–1.02;
p < 0.001) as well as SCC (SMD: 0.40; 95% CI: 0.13–0.66; p = 0.003) compared to non-cancerous lung
tissues (Figure 2B,C). The heterogeneity was moderate for ADC (I2 = 30.7%; p = 0.09) and SCC
(I2 = 37.8%; p = 0.09). There was no evidence of publication bias based on the funnel plot and Egger’s
test (Figure S2B,C).

Thus, a global increase in SETDB1 mRNA level seems to be a hallmark of NSCLC, both of ADC
and SCC subtypes.
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Table 1. Overview of the datasets selected from GEO for case-control analyses.

GEO
Dataset Country Year ADC SCC NSCLC * Controls Sample Type in

Patients Sample Type in Controls Platform SETDB1 ID Reference

GSE32867 Canada 2012 58 58 Cancer tissue Adjacent non-cancerous
tissues

Illumina Human WG-6 v3.0
Expression BeadChips ILMN_1718207 [25]

GSE18842 Spain 2010 14 31 46 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Genome
U133 Plus 2.0 Array 203155_at [26]

GSE19804 Taiwan 2010 60 60 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix GeneChip Human
Genome U133 plus array 203155_at [27]

GSE103512 Germany 2017 30 25 14 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix
HT-U133plus-2-PM

microarrays
203155_PM_at [28]

GSE63459 USA/Japan 2015 33 32 Cancer tissue Adjacent non-cancerous
tissues

Illumina HumanRef-8 v3
Expression Beadchip arrays ILMN_1718207 [29]

GSE75037 USA 2016 83 83 Cancer tissue Adjacent non-cancerous
tissues

Illumina BeadChip array
HumanWG-6 V3 ILMN_1718207 [30]

GSE33532 Germany 2014 10 4 6 20 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix U133 Plus 2.0
arrays 203155_at [31]

GSE44077 USA 2013 14 5 2 21 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Gene 1.0
ST Array [transcript (gene)

version]
7905258 [32]

GSE43458 USA 2013 80 30 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Gene 1.0
ST Array [transcript (gene)

version]
7905258 [33]

GSE21933 USA/Taiwan 2012 11 10 21 Cancer tissue Adjacent non-cancerous
tissues Phalanx Human OneArray PH_hs_0023897 [34]

GSE31552 USA 2014 21 9 2 32 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Gene 1.0
ST Array [transcript (gene)

version]
7905258 [35]

GSE10072 Italy 2008 58 49 Cancer tissue Healthy lung tissues Affymetrix Human Genome
U133A Array 203155_at [36]

GSE4115 USA 2007 90 Cancer tissue Healthy lung tissues Affymetrix Human Genome
U133A Array 203155_at [37]

GSE31547 USA 2018 30 20 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Genome
U133A Array 203155_at Notpublished

GSE7670 Taiwan 2007 26 27 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Genome
U133A Array 203155_at [38]

GSE2514 USA 2005 20 19 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix GeneChip
microarray (HGU95Av2) 34189_at [39]
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Table 1. Cont.

GEO
Dataset Country Year ADC SCC NSCLC * Controls Sample Type in

Patients Sample Type in Controls Platform SETDB1 ID Reference

GSE11117 Switzerland 2010 13 14 15 Cancer tissue Chronic inflammatory
lung disease tissues

Nova Chip microarrays
(Novartis) H200002955 [40]

GSE1987 Israel 2006 28 9 Cancer tissue Healthy lung tissues Affymetrix Human Genome
U95A Array 34189_at [41]

GSE19188 Netherlands 2010 45 27 65 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Genome
U133 Plus 2.0 Array 203155_at [42]

GSE74706 Germany 2016 10 8 18 Cancer tissue Adjacent non-cancerous
tissues

Agilent-026652 Whole
Human Genome Microarray 4

× 44K v2
A_23_P126393 [43]

GSE46539 Taiwan 2015 115 115 Cancer tissue Adjacent non-cancerous
tissues

Illumina WG-DASL
HumanRef8 v3 or

HumanHT12 v4 BeadChip
ILMN_1718207 [44]

GSE2088 Japan 2011 9 48 30 Cancer tissue Healthy lung tissues CHUGAI 41K microarray 11758 [45]

GSE12428 Netherlands 2008 34 28 Cancer tissue
Adjacent non-cancerous

tissues/Healthy lung
tissues

Agilent-012391 Whole
Human Genome Oligo

Microarray G4112A
7231 [46]

GSE27262 Taiwan 2012 25 25 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Genome
U133 Plus 2.0 Array 203155_at [47]

GSE101929 USA 2017 25 25 Cancer tissue Adjacent non-cancerous
tissues

Affymetrix Human Genome
U133 Plus 2.0 Array 203155_at [48]

* Non-small cell lung carcinoma (NSCLC): Patients are not classified as adenocarcinoma (ADC) or squamous cell carcinoma (SCC).
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Figure 2. SETDB1 mRNA expression is significantly increased in NSCLC patients. (A) Forest plot
of standardized mean difference (SMD) comparing SETDB1 mRNA levels in NSCLC patients and
non-cancerous controls, including adjacent non-cancerous specimens that were resected from NSCLC
patients or normal specimens from a healthy control. (B) and (C) Subgroup meta-analysis of the
SETDB1 mRNA levels between ADC patients (B) and SCC patients (C) compared to non-cancerous
controls. Standardized mean differences for each dataset are represented by the squares, and the
horizontal line crossing the square represents the 95% CI. The diamonds represent the estimated overall
effect. The arrows indicate that the upper limit of the SMD is higher than 2.
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2.2. Expression of SETDB1 Is Increased in Current and Former Smokers Compared to NSCLC
Non-Smoker Patients

Since tobacco use is the leading cause of lung cancer [1], we next investigated whether the
expression of SETDB1 is associated with smoking in NSCLC. Thus, we compared the changes in
SETDB1 mRNA levels between current, former and non-smoker NSCLC patients. Twelve microarray
datasets, including 297 current smoker, 547 former smoker and 220 non-smoker NSCLC patients
were used in this meta-analysis. Our results showed that SETDB1 mRNA levels were increased in
tissues from NSCLC patients who were current smokers compared to non-smokers (SMD: 0.26; 95% CI:
0.08–0.44; p = 0.004), with low heterogeneity (I2 = 11%; p = 0.33) (Figure 3A). Furthermore, the same
association was found when comparing NSCLC tissues from former smokers and non-smokers (SMD:
0.26; 95% CI: 0.06–0.46; p = 0.009), with low heterogeneity (I2 =0%; p = 0.80) (Figure 3B). In addition,
for 12 datasets reporting only whether the patients were smokers or non-smokers, an independent
analysis was performed, showing that SETDB1 mRNA levels were higher in smokers (SMD: 0.19;
95% CI: 0.05–0.33; p = 0.006), with low heterogeneity (I2 = 0%; p = 0.503) (Figure S3A). There was no
evidence of publication bias based on the funnel plot and Egger’s test (Figure S2D–F).

Furthermore, to evaluate whether the association of SETDB1 mRNA levels with smoking status
correlated with a cancer subtype, subgroup analyses were performed for ADC patients. Herein, SETDB1
mRNA expression was higher in tissues from patients with ADC who were current smokers compared
to non-smokers (SMD: 0.35; 95% CI: 0.03–0.67; p = 0.027), with moderate heterogeneity (I2 = 44.3%;
p = 0.072). Also, a trend was observed, approaching statistical significance, showing an increase in
expression levels of SETDB1 in ADC tissues from former smokers (SMD: 0.25; 95% CI: −0,005–0.52;
p = 0.055), with low heterogeneity (I2 = 21.2%; p = 0.26). Subgroup analyses for SCC patients were
not possible because of an insufficient number of non-smoker patients. There was no evidence of
publication bias based on the funnel plot and Egger’s test.

Finally, there were no clinical or pathological characteristics (gender, age and clinical stage)
associated with the smoking status of the NSCLC patients and the increase in SETDB1 expression
levels (Table 2).

Together, these data indicate that higher levels of SETDB1 mRNA correlate with the patient’s
smoking history status.
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Figure 3. Upregulation of SETDB1 mRNA is correlated with smoking history. (A) Forest plot of
overall analysis of SETDB1 mRNA expressions between NSCLC patients reported as current smokers
compared to non-smoker patients. (B) Forest plot of overall analysis of SETDB1 mRNA expressions
between NSCLC patients reported as former smokers compared to non-smoker patients. Standardized
mean differences (SMD) for each dataset are represented by the squares, and the horizontal line crossing
the square represents the 95% CI. The diamonds represent the estimated overall effect.

2.3. Association Between SETDB1 Levels and Pathological Characteristics of the NSCLC Samples

Overall, 34 microarray datasets containing information about pathological characteristics were
analyzed (Table 1 and Table S1). There was no statistical evidence that pathological stages or
tumor-node-metastasis (TNM) stages in ADC and SCC have an association with the expression
levels of SETDB1 (Table 2). However, as shown in Supplementary Figure S3B, a possible trend
toward significance showing an association between SETDB1 expression and NSCLC patients carrying
mutations for the TP53 gene was observed (SMD: 0.15; 95% CI: −0.004–0.31; p = 0.052), with low
heterogeneity (I2 = 0%; p = 0.60). There was no evidence of publication bias based on the funnel plot
and Egger’s test (Figure S2G). No associations were found between SETDB1 expression and NSCLC
patients carrying mutations for neither the Epidermal Growth Factor Receptor (EGFR) nor the KRAS
oncogenes (Table 2).

Collectively, these findings suggest that high levels of SETDB1 mRNA are not dependent
on an NSCLC patient’s gender or age and are maintained at every clinical stage during the
carcinogenic process.

Table 2. Analysis of the association between SETDB1 mRNA expression and clinical and
pathological characteristics.

Characteristics Std Diff in Means Lower Limit Upper
Limit p-Value

Clinical Characteristics
Size and extent of the main tumor (T)

ADC T1 vs. T2/T3/T4 −0.03 −0.156 0.096 0.636
SCC T1 vs. T2/T3/T4 0.077 −0.192 0.346 0.574

Spread to nearby lymph nodes (N)
ADC N0 vs. N1/N2/N3 0.028 −0.21 0.266 0.82
SCC N0 vs. N1/N2/N3 0.075 −0.137 0.287 0.489

Stage of cancer
ADC 1 vs. 2/3/4 −0.023 −0.129 0.083 0.666
SCC 1 vs. 2/3/4 −0.038 −0.179 0.103 0.596

Presence of mutations in genes
EGFR 0.088 −0.116 0.291 0.399
KRAS 0.114 −0.114 0.342 0.326
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Table 2. Cont.

Characteristics Std Diff in Means Lower Limit Upper
Limit p-Value

Smoking Status
NSCLC—Age 0.007 −0.125 0.139 0.918

NSCLC—Gender 0.013 −0.131 0.158 0.857
ADC—Age 0.011 −0.106 0.128 0.853

ADC—Gender 0.012 −0.184 0.208 0.906
ADC—Stage 1 vs. 2/3/4 −0.106 −0.239 0.027 0.119

SCC—Age 0.07 −0.137 0.277 0.505
SC—Gender −0.096 −0.339 0.148 0.441

SCC—Stage 1 vs. 2/3/4 0.068 −0.201 0.338 0.619

2.4. Diagnostic Value of SETDB1 in NSCLC, Based on Meta-Analysis

A summary receiver operator characteristic curve (sROC) analysis was carried out to determine
the discriminative yield of SETDB1 mRNA level in NSCLC. A total of 1140 patients from 25 GEO
microarray datasets were included in this analysis. Detailed information and independent ROC curves
of each record are presented in Supplementary Figure S4. The overall combined area under the sROC
curve was 0.774 (Standard Error, SE = 0.031), and the diagnostic odds ratio was 6.69 (95% CI: 3.96–11.29),
with high heterogeneity (I2 = 83.8%; p < 0.0001) (Figure 4). The combined sensitivity and specificity
were 0.69 (95% CI: 0.66–0.72) and 0.71 (95% CI: 0.68–0.74), respectively (Figure S5), with a pooled LR+

of 2.55 (95% CI: 1.95–3.35) and a pooled LR- of 0.41 (95% CI: 0.32–0.53).
Altogether, our analyses revealed that SETDB1 expression yielded a moderate prediction value

for NSCLC.
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Figure 4. Summary receiver operator characteristic curve (sROC) and diagnostic odds ratio (OR),
showing a moderate discriminative yield of SETDB1 mRNA expression for NSCLC. (A) Symmetrical
summary receiver operator characteristic curve (sROC) based on 1140 NSCLC tissues and 952
non-cancerous tissues (25 GEO datasets). The size of the circle symbolizes the sample size of each
study included in the meta-analysis. (B) Forest plot for diagnostic odds ratios in NSCLC diagnosis.
The circles represent odds ratios for each dataset. The diamond represents the estimated overall effect,
based on the meta-analysis random-effect method.

2.5. Literature Review on SETDB1 in NSCLC

A total of 13 records were retrieved from the databases Pubmed, EBI-EMBL, Web of Science,
Embase, Bibliovie and Cochrane Library (Figure S6). The main results are recapitulated in Table 3 and
Supplementary Table S2. In summary, the studies used more than 20 lung cancer cell lines, primary
tissues and xenograft models.

Concerning the analysis of SETDB1 status in primary tissues, there are seven studies reporting
the association of SETDB1 with the carcinogenic process in lung cancer (Table 3). Thus, the SETDB1
gene is amplified in NSCLC tissues [23,24] and could be considered as a marker of a shorter survival
period in ADC patients [49]. Moreover, SETDB1 mRNA levels were higher in tissues from NSCLC
patients compared to non-tumor tissues [24,50,51], and this increase was associated with advanced
grade NSCLC tumors [24], shorter overall survival in NSCLC patients [50] and shorter disease-free
survival in NSCLC patients in stage I [51]. Interestingly, the amplification of the SETDB1 gene was
correlated with high SETDB1 mRNA levels [23,24] and protein overexpression in NSCLC tissues [23].
Finally, SETDB1 protein levels were higher in tissues from lung cancer patients compared to non-tumor
tissues [24,50,52]. Sun et al. reported a possible trend correlating SETDB1 expression with an advanced
pathological state [24]. However, Wu et al. observed a higher expression of SETDB1 during the early
stages of lung cancer [52].

In addition, ten studies reported the pro-oncogenic role of SETDB1 in lung carcinogenesis, based
on cell lines and xenograft models (Table S2). In general, SETDB1 is associated with the regulation of
cell proliferation, cellular invasion [20,23,24,52] and apoptosis [53]. Moreover, SETDB1 participates
during the oncogenic process by the activation of different pathways, including WNT [24] and AKT, [50]
or by the regulation of miRNAs, such as the miR-29 family [54]. Finally, three studies reported results
highlighting the possible therapeutic targeting of SETDB1 during lung cancer treatment [55–57].
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Table 3. Literature review on SETDB1 status in primary lung cancer tissues.

Study Study Design and Subjects Main Findings Methods and Analysis Conclusions

Wu et al. 2014 [52]
Primary tumors of lung cancer patients at different

clinical stages (n = 192) and adjacent normal
tissues (n = 16).

SETDB1 protein levels were elevated in lung
cancer tissues compared to non-tumor tissues.

Possible association with early stages.
IHC, tissue microarray SETDB1 is highly expressed in

lung cancer.

Rodriguez-Paredes et al.
2014 [23]

Primary ADC (n = 20), SCC (n = 20), SCLC (n = 19)
tissues.

Amplification of the SETDB1 gene correlates with
elevated SETDB1 transcripts and protein

overexpression in tissues from patients with
NSCLC and SCLC.

FISH, qPCR, IHC SETDB1 is amplified and highly
expressed in NSCLC and SCLC.

Sun et al. 2015 [24]

TCGA ADC dataset. Amplification of SETDB1 loci correlates with
elevated SETDB1 transcripts. Bioinformatics

SETDB1 is amplified and highly
expressed in NSCLC.

Eight microarrays from GEO and Expression Atlas
databases. Primary NSCLC (n = 60) and their

paired adjacent normal tissues (n = 60).

SETDB1 mRNA levels were higher in NSCLC
tissues compared to non-tumor tissues. Elevated
expression of SETDB1 correlates with advanced

grade tumors.

Bioinformatics, RT-qPCR

Lung cancer tissues (n = 387) and normal
bronchial epithelium cells (n = 106).

SETDB1 protein levels were elevated in lung
cancer tissues compared to non-tumor tissues.

Possible association with an advanced
pathological stage.

IHC, tissue microarray

Inoue et al. 2015 [49]

Primary ADC (n = 164) and SCC (n = 99) tissues.

High-level amplification of the SETDB1 gene in
ADC tissues was associated with an advanced

pathological stage.
FISH

SETDB1 gene amplification is a
marker of poor survival in ADC.

Low-level amplification of the SETDB1 gene was
observed in SCC tissues. FISH

SETDB1 gene amplification was associated with
shorter postoperative overall survival in ADC

patients.
Kaplan-Meier analysis

Lafuente-Sanchis et al.
2015 [51]

Stage I primary NSCLC (n = 64) and adjacent
normal tissues.

SETDB1 mRNA was upregulated in primary
NSCLC tissues. High SETDB1 mRNA levels were
associated with a shorter disease-free survival in

stage I NSCLC.

RT-qPCR, Kaplan-Meier
analysis

High mRNA levels of SETDB1
as a prognostic marker of a

shorter disease-free survival.
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Table 3. Cont.

Study Study Design and Subjects Main Findings Methods and Analysis Conclusions

Chen et al. 2018 [54] Stage III and IV primary NSCLC tissues (n = 30)
and paired adjacent normal tissues (n = 30).

SETDB1 mRNA was upregulated in primary
NSCLC tissues. SETDB1 and TP53 mRNA levels

were negatively correlated.
RT-qPCR SETDB1 is highly expressed in

NSCLC.

Wang et al. 2019 [50]

Oncomine database: NSCLC tissues (n = 1926).

SETDB1 mRNA was upregulated in NSCLC
tissues. Higher expression of SETDB1 mRNA was

associated shorter overall survival in NSCLC
patients.

Bioinformatics,
Kaplan-Meier analysis

High mRNA levels of SETDB1
as a prognostic marker of poor

survival in NSCLC patients.

Primary NSCLC tissues (n = 9) and paired adjacent
normal tissues (n = 9).

SETDB1 was overexpressed in most paired NSCLC
tumors compared to non-tumor tissues. WB

SETDB1 is highly expressed in
NSCLC.

Primary NSCLC tissues (n = 156).
SETDB1 protein levels were elevated in NSCLC

tissues (SETDB1 was detected in the nucleus and
cytoplasm).

IHC

Abbreviations: The Cancer Genome Atlas (TCGA), immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), reverse transcription polymerase chain reaction (RT-qPCR),
Western blot (WB).
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3. Discussion

Lysine methylation is a key post-translational modification that regulates gene expression at
different levels, ranging from transcriptional to post-transcriptional and translational. For instance,
lysine methylation affects the stability, localization and activity of proteins, such as proteins involved in
cell signaling pathways and in the transcriptional and post-transcriptional regulation of gene expression;
TP53, NF-κB, YAP and STAT3 are some examples of important methylated proteins [58–61]. Therefore,
lysine methylation and its regulators have a key impact on normal cell fate and its deregulation in
disease, such as in cancer.

Histone lysine methylation plays important roles in lung cancer development [10]. Dynamic
histone lysine methylation status is regulated by the interplay among histone methyltransferases
(KMTs) or demethylases (KDMs). The genes coding for these enzymes may be subject to
mutations, chromosomal deletions or amplifications, and these factors change the overall histone
methylation/demethylation balance. For example, recent publications reported that SETDB1 is subject
to gene amplification-associated activation in lung tumorigenesis [23]. SETDB1 might impact the
cancer phenotype by acting on different substrates. Indeed, in addition to its best-known target,
namely, H3K9, it is also known that SETDB1 methylates many other non-histone substrates with high
relevance to lung cancer. These include the tumor suppressor TP53 and the kinase AKT [50,62]. Thus,
SETDB1 overexpression in lung cancer cells could be crucial at different molecular levels, not only at
the chromatin level.

Here, we asked whether SETDB1 overexpression was related to the clinical features of lung cancer
patients with two major types of NSCLC, namely, adenocarcinoma and squamous cell carcinoma.

We analyzed 25 published gene transcriptomic datasets and found that SETDB1 mRNA level was
significantly increased in NSCLC tissues compared to normal lung tissues. In many cases, the copy
number gain or amplification of the SETDB1 gene locus in primary tumors was accompanied with
elevated SETDB1 mRNA and protein levels [23,24,50,51,54]. SETDB1 was also found to be amplified
and/or upregulated in several NSCLC cell lines (NCI-H1437, NCI-H1395, A549, Calu-1, SK-MES-1,
SK-LU-1, SW-900, and PC14) [20,23,54].

Our subgroup analyses for ADC and SCC showed higher SETDB1 mRNA levels in ADC as
compared to SCC, while SETDB1 expression in both cancer subtypes was still significantly higher than
in normal lung tissues. This is consistent with lower levels of SETDB1 amplification in SCC compared
to ADC [49].

We observed no statistically significant correlation between the clinical stage of ADC or SCC and
SETDB1 expression. Previously published studies differ on this issue. Indeed, Inoue et al. reported
that SETDB1 amplification in ADC was associated with an advanced cancer stage [49]. In contrast,
Lafuente-Sanchis et al. showed that high SETDB1 expression in NSCLC was observed at the earliest
cancer stages [51]. In all cases, amplification and a high level of expression of SETDB1 were associated
with a shorter disease-free survival [49–51]. These discrepancies may be due to both the different
selection criteria of the cases but also to a different number of patients included in these studies.

Several studies observed overexpression of SETDB1 in other types of tumors, like hepatocellular
carcinoma and melanoma, which was associated with a poor prognosis [19,63,64]. Importantly,
the silencing of SETDB1 was shown to inhibit cell proliferation, cell invasion, tumor growth and
metastasis in different types of cancer [65,66]. In vitro and in vivo experiments showed that SETDB1
overexpression was associated with elevated cell growth rates and invasive potential of cancer cells in
nude mouse models [20,23,50,55]. SETDB1 hyperactivation affects various signaling pathways, such as
the WNT, MAPK, Toll-like receptors (TLRs), focal adhesion, and JAK-STAT pathways in lung cancer
cells [24]. In particular, the WNT signaling pathway helps maintain cancer stem cells and correlates
with an increased tumor growth and initial potential [67]. The major (canonical) WNT pathway
signaling occurs through β-catenin [68]; abnormal expression of β-catenin is linked to the development
of particular types of breast, colorectal, prostate and lung cancers [69]. Wang et al. demonstrated that
SETDB1-mediated AKT methylation correlates with AKT hyperactivation in NSCLC, promotes tumor
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development and predicts poor outcome [50]. Chen et al. showed that SETDB1 negatively regulated
the expression of TP53 [54]. Indeed, Lafuente-Sanchis et al., with multivariate analysis, confirmed the
independent prognostic value of SETDB1 for patients with the early stage of NSCLC [51].

As many other oncogenes, in certain conditions SETDB1 can participate in tumor suppression:
the expression of SETDB1 was significantly decreased in highly metastatic sublines of the CL1 lung
cancer cell line (adenocarcinoma) [52], but at the same time SETDB1 mRNA was high in the primary
tumor samples in the early stages of NSCLC compared to the advanced stages. Accordingly, Wu et al.
reported not only a pro-oncogenic role of SETDB1, but also an anti-oncogenic role in different stages
of lung carcinogenesis, which is probably related to the cellular model chosen [52]. Thus, SETDB1
could play different roles in lung tumorigenesis. A strong correlation exists between high SETDB1
expression and the earliest stage of NSCLC, supporting the role of the gene at least in the first step
of lung tumorigenesis. At later stages, SETDB1 becomes dispensable for tumor progression and its
expression diminishes, though it remains high compared to normal lung epithelial cells. This behavior
is found with many oncogenes [70].

Our findings open up the possibility to use SETDB1 expression level as a marker for early detection
of patients at early stages of NSCLC and as a potential drug target in these patients.

4. Materials and Methods

4.1. Search Strategy for Microarray Databases in the Gene Expression Omnibus (GEO) Repository

Available microarray datasets related to NSCLC were downloaded from the GEO repository (https:
//www.ncbi.nlm.nih.gov/gds). The final date for inclusion was April 2019. The search strategy included
the terms (“Carcinoma, Non-Small-Cell Lung” [Mesh]) AND (“Homo sapiens” [porgn:_txid9606]).

The inclusion criteria were the following: (1) enrolled data must be obtained from humans;
(2) microarray datasets with information about SETDB1 expression; (3) the sample type is not cell
lines; (4) sufficient information to calculate the standardized mean difference (SMD); (5) for association
analyses between SETDB1 expression and NSCLC, two types of studies are included: (i) paired
cancerous and adjacent non-cancerous tissues resected from NSCLC patients, (ii) cancerous specimens
from NSCLC patients and normal specimens from a healthy control group. Importantly, the sample
size must contain at least a ratio of 4:1 for cases and controls; (6) for clinical and pathological analyses,
patients who had adenocarcinoma or squamous cell carcinoma with clinical information.

4.2. Data Extraction

Based on the inclusion criteria, the following detailed parameters were extracted: GEO accession
number, PubMed identifier (PMID), sample type, cancer type (NSCLC, ADC or SCC), sample size,
gender, age, cancer stage, smoking history and expression values of SETDB1, by using the tool GEO2R
from the National Center for Biotechnology Information (NCBI).

4.3. Statistical Analysis

For each GEO dataset, the association between SETDB1 expression and NSCLC was assessed by a
Student’s t-test or a Mann–Whitney unpaired test based on normality distribution. Furthermore, to
generate individual receiver operator characteristic (ROC) curves, the true positive (TP), false positive
(FP), false negative (FN), and true negative (TN) values were estimated. All aforementioned analyses
were performed using the Statistical Package for Social Sciences (SPSS Version 25, Chicago, IL, USA).

For meta-analysis, standardized mean difference (SMD) with 95% confidence interval (95% CI)
was used as a summary statistic, considering the fact that all studies measured the same outcome
but at different scales. Heterogeneity was calculated by means of Cochran’s (Q) and Higgins’s (I2)
tests. The I2 test was expressed as a ratio ranging from 0% to 100%. If I2 > 30% and p-value < 0.05, the
random-effects model was selected. Otherwise, the fixed-effects model was selected. A significant
Q-statistic (p < 0.10) indicated heterogeneity across studies. To further evaluate the probable sources of

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
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heterogeneity, subgroup analyses were carried out. The presence of publication bias was graphically
examined using funnel plots and Egger’s regression asymmetry tests. Data were analyzed using the
Comprehensive Meta-Analysis version 2 program (Biostat, Englewood, NJ, USA 2004).

For diagnostic study, a summarized receiver operator characteristic curve (sROC) was constructed
and the area under the sROC curve (AUC) was recorded, as well as the sensitivity and specificity.
These analyses were performed using the MetaDiSc 1.4 software.

4.4. Search Strategy for Peer-Reviewed Journals

A systematic review of electronic databases (Pubmed, EBI-EMBL, Web of Science, Embase,
Bibliovie and Cochrane Library) was done independently by two experts. The final date for inclusion
was April 2019. The search included publications about the association of SETDB1 and NSCLC. The
search strategy used MeSH terms (“Carcinoma, Non-Small-Cell Lung”[Mesh]) AND (“SETDB1 protein,
human” [Supplementary Concept]). Only manuscripts published in a peer-reviewed journal as a full
paper were included. Summaries or abstracts were not accepted.

5. Conclusions

Epigenetic mechanisms and regulators are often deregulated in human disease conditions.
Thus, epigenetic mechanisms have gained paramount importance in biomedical research, since their
reversibility provides new possibilities in therapeutic intervention. On the other hand, their expression
status could have a prognostic and diagnostic value. Here, we tested the clinical significance of
SETDB1 mRNA level in lung cancer subtypes. Our overall pooled meta-analysis outcome revealed
higher levels of SETDB1 mRNA in NSCLC as compared to non-cancerous control tissues. Interestingly,
SETDB1 mRNA level was higher in tissues from NSCLC patients who were current or former smokers
compared to non-smokers. Together, our findings suggest the possibility to use SETDB1 mRNA level
as a marker for NSCLC early detection and as a potential druggable target in these patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/8/1134/s1,
Figure S1: Box plots displaying the expression levels of SETDB1 mRNA between NSCLC and non-tumor samples
for each GEO dataset, Figure S2: Funnel plots for main meta-analyses performed., Figure S3: (A) Forest plot of the
association of SETDB1 mRNA level with NSCLC patients reported as smokers compared to non-smoker patients,
(B) Forest plot of association between SETDB1 mRNA level and NSCLC patients carrying mutations for TP53
gene, Figure S4: Individual ROC curves showing discriminative yield of SETDB1 mRNA level for NSCLC for
each GEO dataset, Figure S5: The combined sensitivity and specificity showing moderate discriminative yield
of SETDB1 mRNA expression for NSCLC, Figure S6: Workflow of the study selection for qualitative synthesis,
Table S1: Overview of additional datasets selected from GEO for clinicopathological analyses, Table S2: Literature
review about SETDB1 status in cell lines and xenograft models.
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