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Abstract: We report the elaboration of novel bio-sourced ecocatalysts for Ullmann coupling reaction. 

Ecocatalysis is based on the recycling of metals issued from phytoremediation or rehabilitation, and an 

innovative chemical valorization of the subsequent biomass in the field of catalysis. Here, we describe 

the efficient copper accumulation by plants via phytoextraction and rhizofiltration. These 

phytotechnologies were revisited to demonstrate a novel potential of these natural resources for the 

Green Chemistry. Taking advantage of the remarkable ability of the selected plants to accumulate 

Cu(II) species into their roots or leaves, these latter can be directly used for the preparation of 

ecocatalysts, called Eco-Cu
®

. The formed Eco-Cu
®

 catalysts are thoroughly characterized via ICP-MS, 

IR study of pyridine sorption/desorption, TEM, XRD, SM and model reactions, in order to elucidate 

the chemical composition and catalytic activity of these new materials. Significant differences of 

properties and activities were observed between Eco-Cu
®

 and conventional Cu catalysts. Eco-Cu
®

 

appear as highly active catalysts in Ullmann coupling reactions with lower Cu quantity compared to 

known copper catalysts. 

Keywords: phytoextraction; Congolese mining sites; rhizofiltration; contaminated 

effluents; ecological recycling; ecocatalysis; copper catalysis; Ullmann coupling 

 

1. Introduction 

Intensive mining and industrial metallurgic activities are responsible for the pollution of soils and 

aquatic systems with metal trace elements (TEs). This is incredibly worrying, since the soil plays an 

essential role largely determining food production and water quality. Moreover, TEs are some of the 
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most harmful pollutants. They are not biodegradable and persist in organisms and contaminated 

ecosystems.  

For instance, the devastating effects of mining in the southern province of the Democratic Republic of 

the Congo characterize one of the critical patterns implicated in global environmental change. In 

Katanga, the negative consequences of mining operations for the local population are clear: large-scale 

destruction of natural ecosystems and arable soils, severe impacts on hydrological processes, increased 

sediment pollution in rivers and the groundwater table, reduction of biodiversity, soil erosion, and 

release of Cu and Co, which leads to contamination of soils, surface and ground water. Animals are 

contaminated upon contact, through the inhalation of metal dust, ingestion of contaminated water and 

food. Metal pollutants travel through the food chain, and thus they have also a significant impact on 

human health. 

Phytoremediation is used to solve environmental problems caused by TEs. Given their phytotoxicity, 

metalliferous soils are under high selection pressure and generate particular habitats for plant species 

and their associated microorganisms. This results in a unique biological resource, metallophytes. These 

plants are defined as being capable of tolerating high concentrations of TEs, surviving and reproducing 

on such sites
1
. Phytoextraction is one of the few interesting solutions for sustainable phytoremediation 

of soils degraded or contaminated by TEs. It is defined as the partial rehabilitation of soils through the 

accumulation of TEs in aerial parts of hyperaccumulator plants (e.g. A. murale
2
, A. vulneraria

3
, G. 

exul
4
). Rhizofiltration is equivalent to phytoextraction process, but it takes place in an aqueous 

medium instead of the rhizosphere
5
.  

However, the development of phytoextraction and rhizofiltration is still restricted because 

contaminated biomass is not recovered: the aerial parts of hyperaccumulator plants, or roots of plants 

derived from rhizofiltration are considered as contaminated waste. Moreover, the extraction of TEs by 

the root system increases the fraction of soluble elements. The sustainability of phytoextraction and 

rhizofiltration is entirely related to the recycling of the generated biomass. 

Our group has recently proposed a unique use and valorization of phytoextraction and rhizofiltration: 

ecocatalysis
6-8

. Plant waste produced is recovered using an innovative concept of ecological recycling. 

Taking advantage of the remarkable adaptive capacity of some plants to hyperaccumulate metals, 

ecocatalysis is based on an original use of metal species of plant origin as reactants and catalysts in 

fine organic chemical reactions. This allows the preparation of biomolecules using an eco-responsible 

and bio-inspired approach. The obtained results demonstrate that these new catalytic systems present 

unique chemical reactivity. Ecocatalysts constitute an entire new generation of Lewis acid catalysts
9-15

, 

very efficient green oxidative
16

, reductive
17

, and sustainable coupling agents in organic synthesis
18

. 

They can be used as alternative reagents in place of those prohibited by the European legislation 

REACH. Finally, we could use these reagents to develop innovative bio-inspired syntheses capable of 

reducing the environmental impact of implemented procedures. 

Ecocatalysis created a change in the paradigm: biomass from phytoextraction and rhizofiltration is no 

longer considered as contaminated waste, but as a natural restoration system with high added value. 

This biomass is a natural reservoir of transition metals, precious in organic synthesis. In other words, 

wastes have become useful and innovative chemical tools. 

This article aims at describing new results in the field of phytoremediation of systems contaminated by 

copper from anthropogenic activities, and to study the recovery of the derived biomass through the 
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concept of ecocatalysis. Comparatively, the copper phytoextraction is studied on mining sites in 

Katanga, while copper rhizofiltration is carried out with contaminated copper solutions. Results clearly 

allow the preparation, characterization and study of the reactivity of these first Eco-Cu
® 

catalysts in N- 

and O-arylation coupling reactions.  

 

2. Results and Discussion 

2.1.1. Phytoextraction:  

TEs contaminants occurrence and impact on humans and other organisms have already been reported 

in Katanga (Democratic Republic of the Congo)
19

. Tropical soils contaminated by metal smelters and 

mining represent a secondary source of contamination with major environmental issue related to low 

pH
20

 of Ferralsol increasing TEs mobility, intense erosion by rainfall in the rainy season, and aerial 

dispersal of metal particles by wind in the dry season. Reduction of environmental risks and TEs 

dispersion can be performed by phytoremediation, using TEs tolerant and hyperaccumulator plants 

from the plant biodiversity of natural habitats enriched in Cu
21-23

. This study is the first investigation 

on the phytoextraction of soils contaminated by copper smelters and mining associated to the 

preparation of Cu ecocatalysts.  

 

Copper concentrations in plant shoots of Anisopappus chinensis 

Mean of Cu concentration in A. chinensis plant shoots (FCu) was 230 µg g
-1

dry weight (DW) (range: 

45‒504 µg g
-1

DW). The high variation of Cu accumulation observed in A. chinensisis in accordance 

with previous studies
22-24

. As already highlighted for other Cu-accumulating species, such variations 

can be genetic, especially due to genetic differentiation within and between populations
25, 26

. Better 

understanding of such accumulation variations requires an accurate characterization of the soil-root 

interface properties and mechanisms controlling Cu mobility and availability
24, 27

. Soil parameters like 

pH, redox potential, organic matter quality and quantity, oxides, clays, sulphides and carbonates are 

known to be essential factors controlling TEs mobility in soils
28

. In Congolese metalliferous soils, Cu 

is known to be mostly adsorbed by organic matter and iron oxide species
20, 24

.  

 

Evaluation of phytoextraction parameters for one year of plant growth 

Mean of shoot biomass of individuals of A. chinensis (n = 20) was 1.18 g (range: 0.14‒3.79 g). 

Biomass productivity (Ybio) was estimated to 17.7 g/m
2
/year whether 177 kg/ha/year (range: 20‒568 

kg/ha/year). Mean Cu content in A. chinensis plant shoots was 287 µg of Cu per plant from the DW 

(range: 29‒1781 µg plant
-1

). A comparable amount of Cu per plant can be phytoextracted using the Cu-

tolerant species Elsholtzia splendens
29, 30

. 

Total Cu phytoextracted (YCu = FCu.Ybio) /ha/year on contaminated soil using plants of A. chinensis 

from “Mine de l’Etoile” could reach 286 g/ha/year. A much more higher yield of phytoextracted Cu 

can be obtained with E. splendens (1.7 kg Cu ha
-1

) 
29, 30

, but compared to some crop species, such a 

yield of phytoextraction could be about five times higher (e.g. sunflower with 59 g Cu ha
−1

)
31

. A. 

chinensis appears to be a good candidate for Cu phytoextraction. However, due to the great variability 

of its ability to extract Cu from the soil, phytoextraction using A. Chinensis should be improved by 
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plant selection and genotyping. Indeed, an individual from another natural population could 

accumulate Cu up to 1 335 µg g
-1

 DW for 5.1 g:6.7g plant
-1

, i.e. a yield almost quadrupled (1 

kg/ha/year)
24

. Potentially, Cu phytoextraction might be improved by performing a multispecies system 

introducing other Cu tolerant and accumulator species. Such an innovative system on Cu contaminated 

soils could lead to an increased phytoextraction yield as some species are known to accumulate Cu in 

their shoots more effectively than A. chinensis (e.g. Haumaniastrum robertii)
32

.  

This first evaluation on phytoextraction of soils contaminated by Cu in Tropical Africa has shown a 

medium yield of Cu phytoextracted. Perspectives would be to test it at field scale with a multi-species 

system, introducing functional diversity of Cu-tolerant plants (species and populations). 

 

2.1.2.Rhizofiltration 

 

Choice of the plants 

Three plants have been studied to test their ability to accumulate copper into their roots from aqueous 

medium. Bacopa monnieri was already known to well accumulate copper into its roots
5, 33

. Lolium 

multiflorum was known to accumulate other metallic elements than copper, such as palladium, and its 

main asset relies on its well-developed root biomass
18, 34

. Finally, Eichhornia crassipes was also 

known to accumulate copper
35

, to multiply easily and also for its amazing root biomass, which of 

course are assets to perform ecocatalysis. 

 

Plant growth 

Before studying the efficiency of these plants in rhizofiltration, it was interesting to have an insight of 

the plant biomass growth, and of the biomass measuring (Table 1). The amount of root biomass is 

important for the removal of copper from aqueous media, and also affects the quantity of ecocatalyst 

(Eco-Cu
®

) possibly formed.  

 

B. monnieri and E. crassipes were directly bought in a garden center. L. multiflorum was grown in our 

laboratory, and the germination percentage after 9 days was 82%.  

 

Table 1. Biomass measuring (mg/plant) for Lolium multiflorum, Bacopa monnieri and Eichhornia 

crassipes. 

 

Species Substrate for growth 
Growth 

period 

Root 

biomass 

(mg/plant) 

Shoot 

biomass 

(mg/plant) 

Lolium 

multiflorum 

Fleximix Root Riot 

Organic Starter Cubes
 8 weeks 6.8 20.2 

     

Bacopa monnieri 
Natural substrate 

Manado
 5 months 

a 
54 840.8 
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Eichhornia 

crassipes 
/  5743 1629  

a
Period between the start of the cultivation on Manado substrate until the beginning of Cu accumulation 

 

In terms of root biomass, E. crassipes gave better results than the other plants, which is an asset for 

copper accumulation, and for ecocatalysts preparation. Moreover, this plant is easy to handle because it 

can grow without any substrate thanks to its inflated petiole.  

 

Plant analysis: determination of metal concentrations in roots and leaves 

Copper concentrations in roots and leaves of the three plants were determined by an ICP-MS analysis. 

The results are shown in table 2. 

 

Table 2. Copper concentration in roots and leaves (wt% ± standard deviation), and BCF and TF 

calculation. 

 

Plant 

Cu 

concentration 

in effluent 

(mg/L) 

Roots 

(wt% ±SD) 

BCF 

(in roots) 

Leaves  

(wt% ± SD) 

BCF 

(in leaves) 
TF 

Bacopa 

monnieri
a 

10.5 1.34 ± 0.011 1279 0.097 ± 0.0011 92 0.072 

       

Lolium 

multiflorum
b 

10.6 0.71 ± 0.0036 666 0.0031 ± 0.000007 2.9 0.0044 

 
 

 
 

 
 

 

Eichhornia 

crassipes
c 

10.5 2.55 ± 0.027 2430 

0.082 ± 0.00073 78 0.032 

0.19 ± 0.0014 

(petiole) 

180.4 

(petiole) 

0.074 

(petiole) 

a
During Cu accumulation the substrate used for growth was removed 

b
Lolium multiflorum was still on Fleximix Root Riot Organic Starter Cubes during copper accumulation 

c
No substrate used 

 

Concentration of copper in root biomass is much higher in E. crassipes than in L. multiflorum and B. 

monnieri. Besides, the translocation factors in the petiole and leaves of E. crassipes remain low, with 

values between those obtained with L. multiflorum and B. monnieri. These results combined with 

biomass measuring make E. crassipes a good candidate for rhizofiltration to produce ecocatalysts.  

 

2.2.1. Preparation of the Eco-Cu
® 

catalysts 
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Eco-Cu1-2
®

 (A. chinensis), were prepared from harvested plants’ leaves and Eco-Cu3-4
®

 (B. monnieri), 

Eco-Cu5-6
®

 (L. multiflorum) and Eco-Cu7-8
®

 (E. crassipes), were prepared from harvested plants’ roots 

following the described procedure (see experimental part, section 3.4.). Each ecocatalyst must be 

subjected to a heat treatment sufficient to destroy organic matter. Eco-Cu2
®

, Eco-Cu4
®, 

Eco-Cu6
®

 and 

Eco-Cu8
®

 were activated by chemical treatment with hydrochloric acid from Eco-Cu1
®

, Eco-Cu3
®

, Eco-

Cu5
®

 and Eco-Cu7
®

 respectively. This step enables metal chlorides formation inside of the 

ecocatalysts. 

 

2.2.2. ICP-MS characterization of the Eco-Cu
®
 

 

Table 3 shows mineral composition of the different Eco-Cu
®

 catalysts. It can be divided in two parts: 

ecocatalysts derived from phytoextraction (Eco-Cu1-2
®

) and those obtained from rhizofiltration (Eco-

Cu3-8
®

). Copper concentrations in Eco-Cu
®

 catalysts are quite different depending on the nature of the 

plant, which is in agreement with phytoextraction and rhizofiltration studies reported in the previous 

sections 2.1.1. and 2.1.2. It is clear that ecocatalysts derived from plants used in rhizofiltration are 

more concentrated in Cu than ecocatalysts derived from plants used in phytoextraction. For instance, 

copper concentrations in Eco-Cu3-4
®

 are 20 times higher than in Eco-Cu1-2
®

, which confirms that B. 

monnieri is a much better copper accumulator than A. chinensis. However, as reported previously (see 

section 2.1.1. and 2.1.2.), the biomass of A. chinensis is more abundant than the biomass of B. 

monnieri, which is an asset to produce ecocatalysts in larger quantities. E.crassipes is the best plant 

tested for rhizofiltration, with a weight percentage of copper in its resulting ecocatalyst at least twice 

higher than in the other ecocatalysts. Moreover, some significant differences between the compositions 

of the catalysts are observed: A. chinensis catalysts are poor in sodium and rich in potassium whereas 

these rates are reversed in case of B. monnieri. In the case of plants used in rhizofiltration, the main 

difference, apart from the copper rate, is the calcium rate:  L. multiflorum is richer in calcium than E. 

crassipes.  

Even if the two phytotechnologies, phytoextraction and rhizofiltration, gave different results in terms 

of accumulation and biomass, they are complementary for the remediation of contaminated targets, soil 

or water. This article is an opportunity to study the recovery of these different types of biomass 

through the preparation and the activity of ecocatalysts. 

 

 

Table 3. Mineral composition of Eco-Cu
®

 catalysts (wt% ± standard deviation) established by ICP-

MS. 

 

 Ecocatalystst Plant  

   Na Mg Al K Ca Fe Zn Cu 

 
Eco-Cu1

®
 

Anisopappus chinensis 

0.11 7.85 1.01 23.29 8.44 0.92 0.08 0.38 

 ±4.05 ±0.59 ±3.83 ±4.66 ±1.46 ±0.59 ±1.59 ±0.38 

 
Eco-Cu2

®
 

0.31 6.40 0.68 18.73 7.80 0.78 0.06 0.26 

 ±1.55 ±0.64 ±0.77 ±0.60 ±0.91 ±0.80 ±0.48 ±0.97 
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Eco-Cu3

®
 

Bacopa monnieri 

9.60 3.23 3.40 6.23 8.28 1.97 0.06 9.15 

 ±0.86 ±0.36 ±0.95 ±0.83 ±0.93 ±0.72 ±1.15 ±0.77 

 
Eco-Cu4

® 
5.29 1.86 1.93 3.48 4.91 1.21 0.04 4.75 

 ±0.18 ±0.53 ±1.14 ±0.29 ±0.77 ±0.34 ±0.77 ±0.45 

 
Eco-Cu5

® 

Lolium multiflorum 

0.78 0.60 0.00 1.11 34.61 0.04 0.09 3.29 

 ±0.70 ±0.13 ±2.96 ±0.36 ±0.35 ±0.71 ±0.49 ±0.52 

 
Eco-Cu6

®
 

0.50 0.36 0.00 0.72 22.18 0.02 0.05 2.02 

 ±0.69 ±1.48 ±6.00 ±0.71 ±0.59 ±1.86 ±0.72 ±1.05 

 
Eco-Cu7

®
 

Eichhornia crassipes 

1.26 0.43 0.13 0.38 0.97 1.85 0.06 18.15 

 ±0.06 ±0.30 ±1.01 ±1.51 ±1.02 ±0.55 ±3.50 ±0.25 

 
Eco-Cu8

® 
0.84 0.26 0.05 0.14 0.61 0.81 0.03 10.37 

 ±0.57 ±0.95 ±1.82 ±0.34 ±6.97 ±0.21 ±5.86 ±0.23 

 

2.2.3. XPS Analysis 

XPS analysis was performed on Eco-Cu8
®

 to study the oxidation state of copper after thermal 

treatment and activation with HCl.  

The strong peak at 202 ± 0.1 eV corresponding to chlorine 2p3/2 illustrates the formation of chloride 

due to the aq. HCl activation of the material.  

High resolution analysis of the copper element was carried out. The 2p3/2 Cu signal consists of a 

combination of two components: 933 and 935 ± 0.1 eV. The more intense one is characterized by a 

binding energy of 933 ± 0.1 eV, indicating the expected presence of Cu(II). The component at 935 ± 

0.1 eV has a lower intensity (about 13% of the main peak) and may be assigned to Cu(I), in agreement 

with the literature
36

. It is assumed that the observation of Cu (I) is not due to Eco-Cu8
®

, because it is 

well known that Cu(II) is easily reduced to Cu(I) when subjected to XPS analysis
37

. Finally, strong 

2p3/2 satellite peaks of Cu(II) are present in the region of 940-950 ± 0.1 eV
36

. 

 

 

 

 

 

 

 

Figure 1. XPS analysis of Eco-Cu8
® 

 

The formation of Cu(II) is the consequence of an oxidative thermal treatment under air flow of plants' 

roots. This hypothesis is reinforced by the reaction of Eco-Cu8 with aqueous ammonia and the 

formation of a deep blue [Cu(NH3)4]
2+

 complexes. 
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Figure 2. Analytical characterization of  Eco-Cu8
® 

 

In the aim to specify the nature of copper (II) chloride salts, mass spectrometry analysis were 

performed by direct-injection mass spectrometric method. 

 

2.2.5. Direct-injection mass spectrometric analysis 

 

Structural information for Eco-Cu8
® 

was collected using mass spectrometry with electrospray 

ionization operated in the negative ion mode. This MS method provided sufficient sensitivity and 

selectivity for the rapid identification of an anionic inorganic species, but it led to the electrochemical 

reduction of Cu(II) into Cu(I) according to Gianelli works
38

. 

With Eco-Cu8
®

, two Cu chlorides species were detected: CuCl3
2-

 and CuCl2
-
. Taking into account the 

copper oxidation state reduction of Cu by the ESI method, we can conclude that Eco-Cu8
®

 consists of a 

mixture of CuCl4
2-

 and CuCl3-
.
This hypothesis is consistent with the XPS analysis. 

 

2.2.6. XRD studies 

 

XRD analyses of Eco-Cu8
® 

were performed in order to determine the crystalline structure of the 

complexes in the catalyst (Figure 3). One polymetallic compound was detected: K6Fe2O5. Manganese 

was present in the manganosite form MnO, in the presence of sodium chloride and calcium sulfate 

hydrate. Copper was present in the amorphous form. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. XRD analysis of Eco-Cu8
® 
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2.2.7 TEM studies 

 

The morphology and structure of Eco-Cu8
®  

was further characterized using TEM. Figures 4a and 4b 

shows the TEM images. The microstructure of the ecocatalyst is layered with dark shades and clear 

areas, indicating a satisfactory uniformity in the composition of the ecocatalyst. TEM images of Eco-

Cu8
® 

in figure 4b reveal Cu nanoparticles, which are embedded in the solid matrix. These nanoparticles 

are not aggregated and are well dispersed at the surface of the matrix. The particle size has been 

determined based on the average size of 40 particles. The particles show a relatively narrow size 

distribution centered around 4-8 nm. 

 

  

Figures 4a and4b. TEM images of Eco-Cu8
®
 

 

 

2.2.8. Acidity characterization of the Eco-Cu
® 
catalyst 

 

We decided to study Lewis and Brønsted acid properties of our best ecocatalyst (Eco-Cu8
®

, see 2.3 

section) versus commercial copper chlorides. Lewis acidity is usually defined by its strength and its 

hardness according to the HSAB principle, described by Pearson
39, 40

. Two conventional methods were 

used: the first one is based on the infrared study of pyridine adsorption/desorption on the catalysts. The 

second, introduced by Corma et al. consists in studying the rearrangement of a cyclic acetal. The first 

method enables a comparison of the Lewis acid strength and Brønsted acidity between different 

catalysts. The method implemented by Corma et al. enables also a comparison of the hardness of 

Lewis acidity.  

Pyridine is often used as a probe to evaluate Lewis and Brønsted acidity of solid acids
41, 42

 by 

monitoring its infrared absorption bands between 1400 and 1660 cm
-1

. Infrared spectra of pyridine 

adsorbed on Eco-Cu8
®

, on commercial anhydrous CuCl2, and on CuCl2.2H2O were recorded at 23°C 

and at 150°C in order to distinguish physisorbed pyridine from pyridine coordinately bonded to Lewis 

acid sites. The absorption bands around 1450 cm
-1

 observed on the spectra are characteristic of 

strongly bonded pyridine to Lewis acid sites
41, 42

 (Figure 5). Because the frequencies of these 

absorption bands were similar in the three catalysts, we can conclude that the strength of the Lewis 

acidity is not really different between Eco-Cu8
®

, anhydrous CuCl2 and CuCl2.2H2O. Besides, two 
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absorption bands, characteristic of pyridinium ion, were observed at 1530 and 1537 cm
-1 42

 with Eco-

Cu8
® 

only. Thus Eco-Cu8
® 

present a Brønsted acidity contrary to both commercial copper chlorides.  

 

 

Figure 5. IR spectra of pyridine adsorbed on Eco-Cu8
®

, on commercial anhydrous CuCl2 and 

CuCl2.2H2O. 

 

These first conclusions were completed and supported by another method, implemented and tested by 

Corma et al.
43, 44

. This method consists in studying the rearrangement pathway of the cyclic acetal of 

α-bromopropiophenone, in the presence of a catalyst. The selectivity of products formed during the 

reaction provides informations to assess the hardness of the Lewis acid sites of the catalysts. It can also 

highlight their Brønsted acid property. The selectivity results obtained are presented in Table 4. The 

Brønsted acid pathway is slightly stronger in Eco-Cu8
®

 than in both commercial copper chlorides, 

which supports the previous infrared study of adsorbed pyridine. According to conversion rates, Eco-

Cu8
®

 is more active on cyclic acetal than both commercial copper chlorides, which might result from 

its stronger Brønsted acid character. Finally, the product from the soft Lewis acid pathway is only 

formed with commercial copper chlorides but not with Eco-Cu8
®

. Therefore, the Lewis acidity of Eco-

Cu8
®

 is harder than the Lewis acidity of commercial copper chlorides, which might be due to the 

presence of other elements known to be hard Lewis acids
45

, such as iron or calcium as shown by the 

ICP-MS analysis (Table 3).  

 

Table 4. Conversion rates and selectivities of products coming from the rearrangement of cyclic acetal 

of α-bromopropiophenone with Eco-Cu8
®

 and commercial anhydrous CuCl2 and CuCl2.2H2O. 
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a
 Determined by GC-MS analysis 

 

 

2.3. Reactivity of Eco-Cu
®
 in Ullmann coupling reaction 

 

Copper was the first metal used in cross-coupling reactions
46, 47

 decades before palladium- and nickel-

catalyzed procedures had emerged. Copper has the advantage of being inexpensive, earth-abundant, 

non-toxic and then found in widespread applications in homogeneous chemical catalysis. Indeed for 

more than a century, copper is an effective catalyst for the useful and practical formation of C(aryl)-N, 

C(aryl)-C, and C(aryl)-O bonds
48-50

. Such copper-mediated coupling reactions have numerous 

industrial applications, including the synthesis of intermediates as well as synthetic targets for the life 

sciences, agrochemical and polymer industries
51, 52

. However, Ullmann-type coupling reactions have 

been neglected for a long time because of their drawbacks: harsh reaction conditions often used, 

limited range of suitable substrates and moderate yields obtained. These condensations are usually 

conducted in aprotic polar solvents such as N-methylpyrrolidone or N,N-Dimethylformamide at high 

temperature, with copper reagent rarely used in catalytic quantities. Therefore important efforts are 

provided among the community of organic chemists to discover new milder, inexpensive and 

environmentally benign reaction conditions. Recently, several research groups obtained interesting 

results in producing inexpensive copper catalysts complexed with simple ligands
53

, able to perform 

economical and efficient N-arylation of nitrogen-containing heterocycles with aryl halides. These 

ligands derived from phosphines
54

, amino acids
55

, β-diketones
56

 or 1,2-diamines
57, 58

. They are 

important to improve both the catalyst concentration and its electronic density. With these ligands, the 

coupling reactions are more efficient, but this implies increasing cost, bad ecological footprint and 

contamination of the final product. The past few years, to circumvent those inconveniences, ligand-

Catalysts
 Conversion 

rate
a
 [%] 

Selectivity
a
 [%] 

   

Brønsted acidity 

products 

 

Hard Lewis acidity 

products 

 

Soft Lewis 

acidity product 

Eco-Cu8
®

 100 64 36 0 

Anhydrous CuCl2 49 52 41 7 

CuCl2.2H2O 65 39 58 3 

(R=H, Br, Cl) (X=H, Br, Cl) 

Page 11 of 27
16
 2
1:
08
:2
7.
 

http://dx.doi.org/10.1039/c6ra08664k


 12 

 

 

free Ullmann coupling have been performed using CuI and Cu2O as catalysts with good results. Indeed 

Ullmann-type coupling reaction can be catalyzed by all copper species from Cu(I) to Cu(II) and even 

by metal copper since the original work of Ullmann and Goldberg
46, 47, 59, 60

. In 1928, Weston et al. 

published results concerning the Ullmann reaction comparing a wide range of catalyst sources, leading 

them to say that: “almost any copper or copper compound may be used as a source of catalyst”, 

although Cu(I) salts appeared to give better results. In fact, it has been demonstrated later by analytical 

meanings that the active species is the cuprous salt (Cu
+
) which if not directly introduced, can be 

generated by in situ reduction of Cu(II) or oxidation of Cu(0)
61-64

. Besides it is known that common 

nitrogen heterocycles such as phtalimide, pyrrole, imidazole and pyrazole derivatives are more reactive 

in Ullmann coupling 
65-68

. In spite of the significant progress, more efficient, air or/and moisture-stable 

and easy-synthesized ligands are still in demand, in order to facilitate these coupling reactions under 

relatively mild conditions. The copper-mediated Ullmann reaction still suffers from required drastic 

reaction conditions: ligands and large amount of Cu are necessary for successful coupling reactions. 

From these observations, and regarding the efficiency of palladium ecocatalsysts (Eco-Pd
®

) developed 

in our laboratory in cross-coupling reactions
18

, the catalytic potential of Eco-Cu
® 

should be 

investigated. 

 

2.3.1. Results 

 

With regard to the unusual acid properties of the Eco-Cu
® 

, it was interesting to study their reactivity in 

arylation of amines and alcohols. The Lewis acidity of Eco-Cu
®

 was an interesting parameter to 

modulate the reactivity of nucleophiles, and to activate the halide partners during the oxidative 

addition step. 

The first part of this work is a comparative study of the different Eco-Cu
®

 catalysts on a model 

coupling reaction. It is known that common nitrogen heterocycles such as phtalimide, pyrrole, 

imidazole and pyrazole derivatives are particularly reactive in the Ullmann coupling reaction
65-68

. 

Thus, the model N-arylation was performed with pyrazole and iodobenzene, using the conditions 

described by Taillefer et al.
65

 who developed one of the few examples of bimetallic catalysis
69, 70

. 

Cesium carbonate was chosen to avoid the use of strong bases, as described by the group of 

Buchwald
71

 in diaryl ether synthesis. Many different copper salts and oxides have been used to 

catalyze Ullmann-type reactions. These results suggested that each Eco-Cu
®

could be efficient in the 

reaction. However we observed that Eco-Cu
® 

activated by HCl (Eco-Cu2
®

, Eco-Cu4
®

, Eco-Cu6
®

 and 

Eco-Cu8
®

) are much more efficient than Eco-Cu
®

 solely thermally treated (Eco-Cu1
®

, Eco-Cu3
®

, Eco-

Cu5
®

, and Eco-Cu7
®

) (Table 5). Then, we observed a direct correlation between coupling efficiency 

and copper concentration inside the catalyst, which is an essential observation concerning the recovery 

of biomass obtained via phytoextraction or rhizofiltration technics. Indeed, although Eco-Cu4
®

, Eco-

Cu6
®

 and Eco-Cu8
®

 give similar good conversion rates with copper concentrations from 2 to 10 percent 

by weight (Table 5), Eco-Cu2
®

with only 0.26 percent by weight of copper, has shown a much lower 

conversion rate. 

Moreover, with most of the ecocatalysts, we managed to get good yields with only 1mol% of copper, 

which is a very low catalytic loading compared to studies described in previous literature (10-20 

mol%)
72-74

. Using small amounts of catalyst is a significant advantage for this type of C-N coupling 

Page 12 of 27
16
 2
1:
08
:2
7.
 

http://dx.doi.org/10.1039/c6ra08664k


 13 

 

 

reaction, both for practical, environmental and economic reasons. Thus, we attempted to optimize the 

catalyst amount using the most active ecocatalyst, Eco-Cu8
®

, (entries 8, 9, 10). The coupling reaction 

was still possible with 0.25 mol% of copper (entry 10). Surprisingly, increasing the catalyst amount 

did not improve the conversion rate (entry 9).As the results show, the catalytic loading of 1 mol% is a 

very good compromise between catalyst economy and chemical efficiency. It is important to mention 

that similar reactions under ligand-free conditions, described in literature, require a considerably 

higher loading of copper sources and more drastic reaction conditions e.g. 20 mol%, 8h at 120
o
C in n-

PrCNas described by Hu an coworkers
75

, or 10 mol%, 24h at 120
o
C in DMF as described by Zhang et 

al.
74

. In comparison, the same authors reported that the N-arylation of pyrazole with iodobenzene using 

an excess of tetraethylenepentamine (TEPA) (2 equiv.), as a base, and 10 mol% of copper source were 

still necessary, TBAB (0.3 equiv.) and reaction time of 12 h at 125
o
C

76
. The loading of copper could 

be reduced to 5 mol%. However, if the amount of copper is reduced, then use of unusual copper 

sources such as CuO hollow nanospheres immobilized onto acetylene black
77

, or Cu2O coated Cu 

nanoparticles
78

, must be used. Unfortunately, both protocols require harsh reaction conditions, 18h at 

180
o
C and 18h at 150

o
C, respectively. Finally the loading of copper sources of 0.08 mol% for the N-

arylation of pyrazole with iodobenzene under ligand-free-like conditions was reported by Bolmet. al.
79

. 

However the reaction described requires the presence of DMEDA (20 mol%). It was carried out at 

135
o
C for 24 h and authors did not test other aryl halides, thus the scope of the reaction remains 

unknown. It can be concluded therefore, that the use of Eco-Cu
®

 catalysts represents a clear advantage 

over the literature protocols. 

Finally, the results obtained with the use of Eco-Cu
®

 catalysts can also be advantageously compared to 

commercial Cu catalysts, such as CuCl2, CuCl and CuO (entries 11, 12, 13and 14). Commercial CuO 

exhibited poor activity in the conditions used. Commercial CuCl2 and CuCl promoted the reaction, but 

conversion rates were lower than those obtained with Eco-Cu8
®

. These results demonstrated the 

performance of Eco-Cu
®

. 

Table 5. Screening of Eco-Cu
®

 using fixed reaction conditions. 

 

Entry
a
 Eco-Cu

®
 catalyst Cu in catalyst (wt. %) Cu quantity (mol%)

 
Yields (%)

b 

1 Eco-Cu1
®

 0.38 1 25
c 

2 Eco-Cu2
®

 0.26 1 37
c 

3 Eco-Cu3
®

 9.1 1 18
c 

4 Eco-Cu4
®

 4.8 1 84 

5 Eco-Cu5
®

 3.3 1 11
c 

6 Eco-Cu6
®

 2.0 1 77 

7 Eco-Cu7
®

 18 1 66 

Page 13 of 27
16
 2
1:
08
:2
7.
 

http://dx.doi.org/10.1039/c6ra08664k


 14 

 

 

8 Eco-Cu8
®
 10 1 85 

9 Eco-Cu8
®

 10 4 83 

10 Eco-Cu8
®

 10 0.25 57 

11 CuCl2 - 1 48
c 

12 CuCl2 - 3 79
c 

13 CuCl - 1 76
c 

14 CuO - 1 9
c 

a
Reaction conditions: iodobenzene (5 mmol), pyrazole (7.5 mmol), Eco-Cu

®
 (50 µmol), Cs2CO3 (10 mmol), DMF (5 mL), 

90 °C, 15 h, argon atmosphere 

b
Isolated yields 

c
Yields were determined by GC-MS analysis 

 

Eco-Cu8
® 

appears as a highly active catalyst in N-arylation reaction without ligands and additives, 

which represents a valuable alternative compared to classical catalytic systems used in literature. 

Moreover, the reaction requires a considerably low quantity of Cu (1 mol%). This is important in light 

of the need to lower the residual copper levels in the product after work-up, especially in the case of 

pharmaceutical synthesis. 

The very good performance of Eco-Cu8
®

 could be partially explained by its polymetallic composition, 

and more precisely by the presence of alkaline metals, as highlighted by ICP-MS analysis (see section 

2.2.2). Indeed, Zhang et al.
80

, have demonstrated the benefits of inorganic salt particles in transition 

metal-catalyzed coupling reactions. The partial negative charges on the salt surface create an electron-

donating effect, which increases the electron density of the metal center. Besides, the anions at the 

surface of the solid salt particles have a similar influence on the aryl halide. The combination of these 

effects promotes the oxidative addition step and enhances the reaction rate. 

Furthermore, Fan et al. have described the activity of several Lewis acids to assist the polarization of 

the aryl-halogen bond. Significant rate-enhancement has been reported by addition of catalytic 

amounts of Lewis acids during transition metal-catalyzed cross coupling reactions
81, 82

. As metallic 

elements highlighted by ICP-MS analysis in Eco-Cu8
® 

are Lewis acids, they might thus promote the 

reaction.  

Finally, these results are consistent with our previous work on Heck-Mizoroki and Suzuki-Miyaura 

cross coupling reactions with Eco-Pd
®

 catalysts
18

, characterized by an excellent dispersion of active 

centers on the saline matrix. 

After this first screening of different Eco-Cu
®

 catalysts, the methodology has been extended to 

different amines, by using the most active catalyst, Eco-Cu8
®

, with Cs2CO3 at 90°C. As shown in 

Table 6, azole derivatives are the most reactive substrates, whereas no conversion rate was observed 

with aniline. Besides, low conversion rates were obtained with secondary amines such as pyrrolidine 

and morpholine (entries 5 and 6).  

 

Table 6. Screening of amines using fixed reaction conditions. 
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Entry
a 

Nucleophile Yield (%)
b 

GC/MS spectral data
d
 

1 pyrazole 85 
rt = 11.63 min,  

m/z = 144 (51, 77, 90, 117) 

2 imidazole 54 
rt = 12.76 min,  

m/z = 144 (51, 77, 90, 117) 

3 2-pyrrolidone 31
c 

 

4 aniline 0
c 

 

7 pyrrolidine 6
c 

 

8 morpholine 5
c 

 

 

a
Reaction conditions: iodobenzene (5 mmol), nucleophile (7.5 mmol), Eco-Cu8

®
 (50 µmol), Cs2CO3 (10 mmol), DMF (5 

mL), 90°C, 15 h, argon atmosphere 

b
Isolated yields 

cYields were determined by GC-MS analysis 

dAll compounds synthetized were fully characterized and found to be in agreement with the literature data. GC retention 

time and mass spectrometry (EI) data are given. 

 

After those preliminary results, our efforts have been focused on pyrazole as nucleophile for Ullmann 

condensation. Numerous aryl halides substituted with various electron-withdrawing and -donating 

groups were investigated (Table 7) at different temperatures, with Cs2CO3 as base, 1mol% of catalytic 

charge and without ligands. The Ullmann reaction required DMF as solvent. Indeed water, toluene and 

γ-valerolactone were tested as green solvents
83

 but the reaction did not occur, except in γ-valerolactone 

with limited conversion rate (results not shown). The usual influence of the nature of the halide in 

coupling reactions was respected (entries 1, 5 and 9). Eco-Cu8
® 

was efficient in cross-coupling 

reactions with aryl iodides, aryl bromides and even aryl chlorides. The use of aryl chlorides in 

Ullmann type reactions is especially desirable to industries, because they are often less expensive than 

iodides and bromides, thus their use has a real economic advantage
84

. 

Tertiary amines were formed in good to excellent yields if temperature was adjusted. Noteworthy, the 

coupling reaction of pyrazole was sensitive to electronic effects of substituents on aryl halides partners. 

The presence of p-OMe electron-donating substituent clearly diminished the efficiency of the reaction. 

This could be counter balanced by a moderate elevation of the reaction temperature (entries 1, 2 and 3) 

from 90 to 110°C. Finally, electron-withdrawing groups facilitated the coupling reaction depending on 

the electronegativity of the groups (entries 4-9). Thus, the reaction was quantitative in4h at 90°C using 

iodoacetophenone (entry 4).  

 

Table 7. Aryl halides and temperature conditions screening. 
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Entry
a
 

 
Aryl halide T°C Time (h) Yield(%)

b
 GC/MS spectral data 

d
 

1 

 

90 15 85 
 rt = 11.63 min,  

m/z = 144 (51, 77, 90, 117) 

2 

 

90 15 63
c 

 
rt = 13.97 min,  

m/z = 174 (77, 131, 159) 

3 

 

110 15 93 

 

 

4 

 

90 4 >98 

 

rt = 15.31 min,  

m/z = 186 (89, 116, 143, 171) 

5 

 

90 15 31
c 

 

 

6 

 

90 4 >98 

 

rt = 15.55 min,  

m/z = 189 (65, 89, 116, 131, 

159) 

7 

 

90 4 >98 

 

 

8 

 

90 15 73 

 

rt = 14.61 min,  

m/z = 169 (75, 102, 115, 142) 

9 

 

110 15 89 

 

 

 

a
Reaction conditions: Aryl halide (5 mmol), pyrazole (7.5 mmol), Eco-Cu8

®
 (50 µmol), Cs2CO3 (10 mmol), DMF (5 mL), 

argon atmosphere 

b
Isolated yields 

cYields were determined by GC-MS analysis 

I N+
Eco-Cu®8

N

HN

NCs2CO3, DMF,

90°C, 15 h

R
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d
All compounds synthetized were fully characterized and found to be in agreement with the literature data 

85
. GC retention 

time and mass spectrometry (EI) data are described. 

 

Finally, regarding the encouraging results obtained in arylation of amines, the efficiency of Eco-Cu8
® 

catalyst was studied in the synthesis of alkyl aryl ethers (Table 8). The synthesis of the latter was 

already described by Ullmann in his original articles
46, 47

. However, despite the recent progress in the 

catalytic Ullmann reaction, less articles have appeared for the C-O than for the C-N coupling reaction. 

The most convenient approach is based on the reaction of aryl bromides or iodides with phenols and 

usually involves the presence of high ligand and copper loadings (10-30%mol)
86-89

 and elevated 

temperatures (50-110
o
C)

87-89
. In the case of the use of aryl chlorides even higher temperatures are 

necessary (135
o
C)

90
. Importantly, examples involving “ligand-free” coupling of aryl halides with 

phenols are scarcely described in the literature and they usually require extreme reaction conditions 

(temperatures of 150-160
o
C)

91, 92
. 

The Eco-Cu®-catalyzed C-O bond-forming reactions were very efficient, without ligands and with 

Cs2O3 as base. In the presence of 1 mol% of Cu, satisfactory to high yields were obtained for various 

aryl alkyl ethers. Contrary to conventional procedures, the reaction was sensitive to both electron-

withdrawing and -donating groups on the substrates, and also to the nature of the halide partner. Indeed 

good conversion rates were obtained with aryl iodides and aryl bromides in mild conditions (entries 1-

5), whereas strong activating substituents and an increase in the reaction temperature were required to 

perform the coupling reaction with aryl chlorides (entries 11-12). These conditions were compatible 

with a wide range of functionalities including nitriles, ketones, ethers, alkyl and nitro groups. 

 

Table 8.Eco-Cu®-catalyzed synthesis of alkyl aryl ethers 

 

 

Entry
a Aryl 

halide 
Nucleophile T°C Product Yield(%)

b GC/MS 

spectral data
d
 

1 

  

110 

 

66
c 

rt = 14.17 min, 

m/z = 198 (77, 

91, 155, 183)
93

 

2 

 
 

110 
 

64
c 

rt = 14.72 min,  

m/z = 200 (51, 

77, 129, 185)
93

 

3 

 
 

110 

 

>98 

rt = 17.13 min,  

m/z = 240 (77, 

105, 225)
94  

4 

  

130 

 

>98  
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5 

 
 

130 
 

>98  

6 

  

130 

 

84  

7 

 
 

130 
 

82  

8 

  

130 
 

92 

rt = 14.62 min,  

m/z = 200 (51, 

77, 92, 129, 

157)
95

 

9 

  

130 
 

51
c 

 

10 

  

110 
 

>98 

rt = 18.18 min,  

m/z = 240 (80, 

108, 210)
96

 

11 

 
 

110 

 

>98 

rt = 17.29 min,  

m/z = 243 (77, 

108, 170, 

213)
97

  

12 

  

110 
 

>98  

 
a
Reaction conditions: Aryl halide (5 mmol), phenol (6mmol), Eco-Cu8

®
 (50 µmol), Cs2CO3 (10 mmol), DMF (5 mL), 15 h, 

argon atmosphere 

b
Isolated yield 

c
 Yields were determined by GC-MS analysis 

d
All compounds synthetized were fully characterized and found to be in agreement with the literature data: GC retention 

time / Mass spectrometry (EI) / literature references for NMR spectroscopy are given 

 

Innovative reusability technologies of Eco-Cu8
® through ecological recycling based on rhizofiltration 

were under investigation" 

3. Experimental Section  

3.1. General remarks  
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NMR spectra were recorded on a Brüker Avance 300 spectrometer at room temperature, 
1
H frequency 

is at 300 MHz, 
13

C frequency is at 75 MHz.  IR spectra were recorded on a Perkin Elmer Spectrum 100 

FT-IR spectrometer in ATR mode. GC-MS analyses were performed on a Shimadzu QP2010SE 

apparatus. Two different methods were used for analysis. Method A: GC-MS (Phenomenex ZB-5MSi 

Guardian column, 0.25 µm x 0.25 mm x 30 m) with hydrogen as carrier gas using the following 

temperature program: isothermal at 80°C (4 min), then linear gradient from 80°C to 270°C at 

20°C/min.Method B: GC-MS (Phenomenex ZB-5MSi Guardian column, 0.18 µm x 0.18 mm x 20 m) 

with hydrogen as carrier gas using the following temperature program: isothermal at 100°C (1 min), 

then linear gradient from 100°C to 145°C at 50°C/min, then isothermal at 145°C (0.50 min), then 

increasing from 145°C to 190°C at 50°C/min, then isothermal at 190°C (0.60 min), and finally 

increasing from 190°C to 320°C at 90°C/min.GC-MS samples were prepared in dichloromethane using 

1,1’-biphenyl as internal standard. Mass spectra were recorded in electron impact (EI) mode at 70 V 

and identified by comparison with data of the NIST 11 software library and by comparison of the 

retention time of the standard compounds. X-ray photoelectron spectroscopy (XPS) analysis were 

performed with a Kratos Analytical Axis Ultra DLD, using an Al Kα source monochromatized at 

1486.6 eV. We used a hemispheric analyzer working at pass energy of 50 eV for the global spectrum 

and 20 eV when focusing on the sole core levels. Direct-injection mass spectrometry was performed 

with a Micromass Quattro micro API™, which was combined with HPLC detector and triple 

quadrupolemass analyser for determining mass-to-charge ratio (m/z). The transmission electron 

microscopy (TEM) images were taken using a Jeol 1400 Plus Transmission Electron 

Microscope at accelerating voltage of 120 kV. Ecocatalyst was put in suspension in EtOH 70% 

and was dropped off on a grid CF 300-Cu (carbon film on 300 Mesh copper grids). 

 

3.2. Elemental analyses 

 

Chemical element analyses of plants and ecocatalysts were determined by ICP-MS analyses 

(inductively coupled plasma mass spectrometry). ICP-MS analyses were performed using the metal 

analysis of total dissolved solutes in water. The samples were first digested either in a mixture of 

hydrochloric acid (37%) (8 mL) and nitric acid (65%) (2 mL) (L. multiflorum, E. crassipes and 

ecocatalysts Eco-Cu
®

), or in pure nitric acid (B. monnieri, A. chinensis) using a microwave-assisted 

digestion. Microwave digestions were performed on a Mileston ETHOS Touch Control device with 

two different temperature programs: 1. Linear gradient from 20 to 90°C at 10°C/mn, then from 90 to 

170°C at 16°C/mn, then from 170 to 210°C at 10°C/mn and then 20 min isothermal at 210°C (L. 

multiflorum, E. crassipes, and ecocatalysts Eco-Cu
®

); 2. Linear gradient from 20 °C to 180°C at 32 

°C/mn, then 10 min isothermal at 180 °C (B. monnieri, A. chinensis). Samples were then diluted to 0.1 

mg.L
-1

 in 2.5% aqueous nitric acid. Three blanks were recorded for each step of the digestion and 

dilution procedure. ICP-MS analyses were performed on a Thermo Scientific™ ELEMENT XR™ 

ICP-MS.All analysis results were performed in triplicate. 

 

 

3.3. Phytoextraction 
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Study site 

The study site is the “Mine de l’Etoile”, in the vicinity of Lubumbashi, a “locus classicus” of Cu and 

Co hyperaccumulation by plants in Katanga (Democratic Republic of the Congo)
22

. Soil of “Mine de 

l’Etoile” is contaminated by tailings which were spontaneously colonized by some Cu-Co tolerant 

species. Total Cu concentrations in soil vary from 10,000 to 30,000 mg.kg
-1 20

.  

 

A. chinensis L. Hook.f. & Arn. (Asteraceae) is a perennial pseudo-metallophyte presenting a large 

variation of Cu concentrations in shoots in natura
23, 24

. Plant shoots of 20 individuals of A. chinensis 

were collected all over the “Mine de l’Etoile” (11° 38′ S; 27° 35′ E,. 1277 m asl). This site is 

characterized by a subtropical humid climate including a rainy season (from November to March) and 

a dry season (from May to September). Maximum density of individuals (ind) of A. chinensis were 

estimated to 15 ind/m
2 

from field observations (i.e. mean of 10 quadrats of m
2
). Biomass productivity 

(BP) of monospecific crop of A. chinensis was then estimated: BP = mean biomass of A. chinensis 

individual x 15.  

 

Determinations of Cu concentration in plant shoots 

After harvesting, plants were carefully brushed (whole shoots), washed with Alconox
®

 1% in 

deionized water, dried at 65°C for 48h
22

 and weighted. Determination of Cu concentration in A. 

chinensis was performed in two steps. A mass of leaves was digested using a mixture of 8 mL HNO3 

and 2 mL HCl
98

 Vessels containing the mix were heated by microwaves for digestion
24, 99

.Then, Cu 

concentration in samples was determined by ICP-MS. 

 

 

Evaluation of phytoextraction parameters 

Cu amount phytoextracted per hectare and per year was calculated by the following formula:  

 

YCu = FCu.Ybio 

 

FCu: Average fraction of Cu in A. chinensis biomass 

Ybio: Biomass productivity of hyperaccumulator (kg/ha/year) 

YCu: Total Cu gain (g/ha/year) 

 

3.4. Rhizofiltration 

 

Germination and growth 

B. monnieri was bought directly in a garden center Jardiland. It was then immersed in a hydroponic 

reservoir with a natural substrate called Manado (pozzolan) and 17 L of distillated water. The plants 

were fed once every week with a fertilizer called “S7 Vitamix”, mainly containing 0.65% K2O, 0.14% 

Mg, 0.41% S, 0.06% N, 0.065% Fe, 0.026% Mn. The plants were grown under neon light (12 h per 

day) and under ambient temperature. The cultivation lasted 5 months in these conditions before the 

beginning of copper accumulation.  
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L. multiflorum was grown in our lab. Seeds were first transferred in Fleximix Root Riot Organic 

Starter Cubes
©

, 82% of seeds were germinated after 9 days. The culture plate was placed in a shallow 

hydroponic reservoir, to be sure that only the roots of the plants were immersed in water at ambient 

temperature. The plants were fed with a fertilizer called “water lily dream” containing 1% K2O, 0.14% 

Mo, 0.0028% Zn, 0.0027% Cu, 0.0004% Li. They were exposed during 8 weeks, 12 h per day, under 

mercury lamp UV (37,000 lumens), before the beginning of copper accumulation.  

E. crassipes was bought in a garden center Jardiland. They were put in an outdoor pool with water 

during 6 months without additional fertilizer.  

 

Conditions of accumulation 

After five months of growth, B. monnieri was placed in another hydroponic reservoir, without 

substrate, and with 17 L of an aqueous solution made of distillated water and 40 mg/L of 

Cu(NO3)2.3H2O (10.5 mg/L of Cu). The accumulation occurred under ambient temperature, and under 

neon light (12 h per day), during 7 days.  

After 8 weeks of growth, L. multiflorum was exposed to an aqueous media made of distillated water 

with 40 mg/L of Cu(NO3)2.3H2O (10.5 mg/L of Cu). The accumulation occurred under ambient 

temperature, and under mercury lamp UV (37,000 lumens), during 7 days.  

After 6 months in the pool, E. crassipes was exposed to an aqueous solution made of 40 mg/L of 

Cu(NO3)2.3H2O(10.5 mg/L of Cu). The accumulation occurred outside (the plants suffered from 

necrosis quickly in inside pool), during 7 days.  

 

Crops 

The plants were collected and separated into roots and aerial parts. Plant tissues were washed with 

distillated water to remove any metallic particles attached to the plant surfaces. Then the biomass was 

dried in an oven at 80°C during 48 h.  

 

Evaluation of rhizofiltration parameters 

Biomass measuring: 

Once harvested and dried, the root biomass and the shoot biomass were weighted for each plant.  

 

BCF (bioconcentration factor):  

The BCF was calculated as the ratio of a given element concentration in the plant tissues (P, mg/kg dry 

weight) at harvest to the concentration of the element in the effluent (E, mg/L) according to Eq.(1) 

 BCF=P/E            (1) 

     

TF (translocation factor): 

TF was calculated by dividing the Cu concentration in shoot tissues (As, mg/kg dry weight) by the 

concentration of Cu accumulated in root tissues (Ar, mg/kg dry weight) (Eq.(2)): 

TF = (As/Ar)            (2) 

 

Determination of metals concentration in roots and shoots 
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Metal concentrations in roots and shoots were determined by ICP-MS. The procedure is the same as 

described in section 3.2.,  Elemental analyses.  

 

 

3.4. Preparation of Eco-Cu
®
 catalysts 

 

Eco-Cu
®

 catalysts were prepared either from roots of plants used for rhizofiltration, or from harvested 

leaves of plants used for phytoextraction. Biomasses were first dried into an oven at 80°C, then 

thermally treated in an oven using the following temperature program: linear gradient from 20 to 

550°C (1 h)and then 4 hours at 550°C before a slow cooling overnight to obtain ashes (Eco-Cu1
®

 (A. 

chinensis), Eco-Cu3
®

 (B. monnieri), Eco-Cu5
®

(L. multiflorum) and Eco-Cu7
®

(E. crassipes)). Thereafter 

the ashes obtained were subjected to a chemical treatment. The typical procedure used was as follow: 

around 50 mg of ashes were suspended in concentrated hydrochloric acid (5 mL). The solutions were 

stirred at 80 °C for 4h and then evaporated to dryness under vacuum to get Eco-Cu2
® 

(A. chinensis), 

Eco-Cu4
® 

(B. monnieri), Eco-Cu6
® 

(L. multiflorum) and Eco-Cu8
® 

(E. crassipes)) respectively, as 

yellow powders. Eco-Cu
®

 catalysts were stored under vacuum in a desiccator. 

 

Thermic treatment: Eco-Cu1
®

, Eco-Cu3
®

, Eco-Cu5
®

, Eco-Cu7
®

 

Thermic and chemical treatment; Eco-Cu2
®

, Eco-Cu4
®

, Eco-Cu6
®

, Eco-Cu8
®

 

 

3.4. Characterization of Eco-Cu
®
 catalysts 

 

3.4.1. Chemical element analysis 

 

ICP-MS was used to determine the composition of the various ecocatalysts prepared. ICP-MS analyses 

were performed as described section 3.2. Elemental analyses.  

 

3.4.2. Acidity characterization 

 

Pyridine-FTIR (Fourier transform infrared spectroscopy): 

Excess pyridine was adsorbed on catalysts, then the samples were degassed for 15 min at 23 °C (10
−3

 

Pa) and a first IR spectrum was recorded. The samples were then degassed for 30 min at 150 °C (10
−3

 

Pa) to eliminate the physisorbed pyridine and a second IR spectrum was recorded. 

 

Rearrangement of α-bromopropiophenone cyclic acetal:  

A solution of α-bromopropiophenone cyclic acetal (75.8 mg, 295 µmol, 1 equiv.) in 1,2-

dichlorobenzene (3.35 mL) was poured onto catalyst (mass corresponding to 12.4 µmol of Cu, 0.04 

equiv.). Thereafter water was added (5.31 µL, 295 µmol, 1 equiv.) and the resulting suspension was 

stirred at 175°C for 20 h. The crude was analyzed by GC-MS (method B).  

 

3.4.3. Analytic test of Eco-Cu8
®
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EcoCu8
®

 (8.1 µmol of Cu, 5 mg) was suspended into aq. 30 w% ammonia (200 µL). The suspension 

was vortexed and the liquid phase turned deep blue within 1 minute demonstrating the presence of 

Cu
2+

 into our catalyst by forming [Cu(NH3)4]
2+

 complexes. The mixture was centrifuged for better 

observation of the solution. 

 

 

3.5. General procedure for catalytic Ullmann coupling reaction and analysis of reaction products 

 

The general procedure is described here with the case of 1H-pyrazole.  

To a solution of 1H-pyrazole (510 mg, 7.5 mmol) and iodobenzene (560 µL, 5.0 mmol) in dry DMF (5 

mL) were sequentially added: Eco-Cu
®

 catalysts (3.3 mg, 0.05 mmol of Cu) and Cs2CO3 (3.25 g, 10.0 

mmol). The resulting mixture was stirred at 90°C under inert atmosphere for 15 h. After cooling to 

room temperature, the crude was diluted with ethyl acetate, filtered and concentrated under reduced 

pressure. The resulting residue was purified on a silica gel column (Cyclohexane/ethyl acetate 8:2) to 

give 1-phenyl-1H-pyrazole as a colourless oil (647 mg, 90% yield). 
1
H NMR (300 MHz, CDCl3) ppm: 

δ = 7.93-7.92 (dd, 1H), 7.76-7.70 (m, 3H), 7.49-7.42 (m, 2H), 7.32-7.26 (m, 1H), 6.48-6.46 (m, 1H); 
13

C NMR (75 MHz, CDCl3) ppm: δ = 143.6, 142.7, 131.9, 129.2, 128.9, 121.7, 110.1; MS (EI): m/z 

144  (M
+
, 100%), 117, 104, 90, 77, 51. 

 

4. Conclusion 

The aim of this work was to prepare and to study novel copper catalysts based on using Cu 

hyperaccumulator plants which present an interest for the phytoremediation of mining sites and 

contaminated aqueous systems. From these studies, it may be concluded that the new catalytic systems 

show a very interesting activity in the arylation of nucleophiles. The chemistry described in this article 

demonstrated that Eco-Cu® catalysts are original and show valuable physicochemical properties, 

especially regarding their polymetallic composition. Eco-Cu® catalysts offer unexplored potential for 

coupling reactions, especially those deriving from rhizofiltration (E. crassipes). Eco-Cu®-catalyzed C-

N and C-O bond forming reactions are interesting methods for the synthesis of tertiary amines and aryl 

ethers. The development of these new ecocatalytic systems represents exciting opportunities to 

valorize phytoremediation of polluted ecosystems and for future organic synthesis. The combination of 

these beneficial properties will undoubtedly prompt further research efforts toward the development of 

ecocatalysis. 
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