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Symplectic Manifolds and Isomonodromic Deformations

Philip Boalch
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We study moduli spaces of meromorphic connections (with arbitrary order poles) over

Riemann surfaces together with the corresponding spaces of monodromy data (involving

Stokes matrices). Natural symplectic structures are found and described both explicitly

and from an infinite dimensional viewpoint (generalising the Atiyah-Bott approach). This

enables us to give an intrinsic symplectic description of the isomonodromic deformation

equations of Jimbo, Miwa and Ueno, thereby putting the existing results for the six Painlevé

equations and Schlesinger’s equations into a uniform framework.
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1. INTRODUCTION

Moduli spaces of representations of fundamental groups of Riemann surfaces

have been intensively studied in recent years and have an incredibly rich structure:

For example, a theorem of Narasimhan and Seshadri [56] identifies the space of

irreducible unitary representations of the fundamental group of a compact Riemann

surface with the moduli space of stable holomorphic vector bundles on the surface.

In particular, this description puts a Kähler structure on the space of fundamental

group representations—it has a symplectic structure together with a compatible

complex structure. A remarkable fact is that although the complex structure on

the space of representations will depend on the complex structure of the surface,

the symplectic structure only depends on the topology, a fact often referred to as

‘the symplectic nature of the fundamental group’ [22].
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The geometry is richer still if we consider the moduli space of complex funda-

mental group representations: Due to results of Hitchin, Donaldson and Corlette,

the Kähler structure above now becomes a hyper-Kähler structure and the sym-

plectic structure becomes a complex symplectic structure,which is still topological.

One of the main aims of this paper is to generalise this complex symplectic struc-

ture. (Hyper-Kähler structures will not be considered here.)

First recall that, over a Riemann surface, there is a one to one correspondence be-

tween complex fundamental group representations and holomorphic connections

(obtained by taking a holomorphic connection to its monodromy/holonomy rep-

resentation). Then replace the word ‘holomorphic’ by ‘meromorphic’—we will

study the symplectic geometry of moduli spaces of meromorphic connections.

In fact, as in the holomorphic case, these moduli spaces may also be realised

in a more topological way, using a generalised notion of monodromy data. By

restricting a meromorphic connection to the complement of its polar divisor and

taking the corresponding monodromy representation, a map is obtained from the

moduli space of meromorphic connections to the moduli space of representations

of the fundamental group of the punctured Riemann surface. For connections with

only simple poles this map is generically a covering map and so we are essentially

in the well-known case of representations of fundamental groups of punctured

Riemann surfaces. However in general there are local moduli at the poles—it

is not sufficient to restrict to the complement of the polar divisor and take the

monodromy representation as above.

Fortunately this extra data—the local moduli of meromorphic connections—

has been studied in the theory of differential equations for many years and has a

monodromy-type description in terms of ‘Stokes matrices’, which encode (as we

will explain) the change in asymptotics of solutions on sectors at the poles. The

Stokes matrices and the fundamental group representation fit together in a natural

way and the main question we ask is simply: “What is the symplectic geometry

of these moduli spaces of generalised monodromy data?”

Recently, Martinet and Ramis [50] have constructed a huge group associated

to any Riemann surface, the ‘wild fundamental group’, whose set of finite dimen-

sional representations naturally corresponds to the set of meromorphic connections

on the surface. Although we will not directly use this perspective, the question

above can then be provocatively rephrased as asking: “What is the symplectic

nature of the wild fundamental group?”

The motivation behind these questions is to understand intrinsically the sym-

plectic geometry of the full family of isomonodromic deformation equations of

Jimbo, Miwa and Ueno [40]. The initial impetus was the theorem of B.Dubrovin

[19] identifying the local moduli space of semisimple Frobenius manifolds with a

space of Stokes matrices. (In brief, this means certain Stokes matrices parameterise

certain two-dimensional topological quantum field theories.) The original aim was

to find a more intrinsic approach to the intriguing (braid group invariant) Poisson

structure written down by Dubrovin on this space of Stokes matrices in the rank



SYMPLECTIC MANIFOLDS AND ISOMONODROMIC DEFORMATIONS 3

three case (see [19] appendix F and also the recent paper [67] of M.Ugaglia for the

higher rank formula). The key step in the proof of Dubrovin’s theorem is that (in the

semisimple case) the WDVV equations (of Witten-Dijkgraaf-Verlinde-Verlinde)

are equivalent to the equations for isomonodromic deformations of certain mero-

morphic connections on the Riemann sphere with just two poles, of orders one

and two respectively (so the space of solutions corresponds to the moduli of such

connections—the Stokes matrices).

More generally Jimbo, Miwa and Ueno [40] have written down a vast family of

nonlinear differential equations, governing isomonodromic deformations of mero-

morphic connections over P1 having arbitrarily many poles of arbitrary order (on

arbitrary rank bundles). These are of independent interest and can be thought of as

a universal family of nonlinear equations: They are the largest family of nonlinear

differential equations known to have the ‘Painlevé property’ (that, except on fixed

critical varieties, solutions will only have poles as singularities). Special cases in-

clude the six Painlevé equations (which arise as the isomonodromic deformation

equations for connections on rank two bundles overP1, with total pole multiplicity

four) and Schlesinger’s equations (the simple pole case—see below).

In brief, the six Painlevé equations were found almost a hundred years ago, as

a means to construct new transcendental functions (namely their solutions—the

Painlevé transcendents); R.Fuchs discovered then that the sixth Painlevé equation

arises as an isomonodromic deformation equation. The subject then lay more or

less dormant until the late 1970’s when (spectacularly) Wu, McCoy, Tracey and

Barouch [73, 52] found that the correlation functions of certain quantum field

theories satisfied Painlevé equations. Subsequently Jimbo, Miwa, Môri and Sato

[60, 39] showed that this was a special case of a more general phenomenon and

developed the theory of ‘holonomic quantum fields’ which led to [40]. See for

example [36, 69] for more background material.

One expects isomonodromic deformations to lurk underneath most integrable

partial differential equations since the heuristic ‘Painlevé integrability test’ says

that a nonlinear PDE will be ‘integrable’ if it admits some reduction to an ODE

with the Painlevé property (for example the KdV equation has a reduction to

the first Painlevé equation and all six Painlevé equations appear as reductions of

the anti-self-dual Yang-Mills equations; see [1, 51]). They certainly appear in a

diverse range of nonlinear problems in geometry and theoretical physics, such as

Frobenius manifolds [19] or in the construction of Einstein metrics [65, 30].

On the other hand general solutions of isomonodromy equations cannot be given

explicitly in terms of known special functions; as mentioned above general solu-

tions are new transcendental functions (see [68]). This is the reason we turn to

geometry to understand more about these equations. Recent work on isomon-

odromic deformations seems to have focused mainly on particular examples, in

particular exploring the rich geometry of the six Painlevé equations and searching

for the few, very special, explicit solutions that they do admit. The question we
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address here is simply “What is the symplectic geometry of the full family of

isomonodromic deformation equations of Jimbo, Miwa and Ueno?”

Geometrically the isomonodromy equations constitute a flat (Ehresmann) con-

nection on a fibre bundle over a space of deformation parameters, the fibres being

certain moduli spaces of meromorphic connections over P1. Thus the idea is to

find natural symplectic structures on such moduli spaces and then prove they are

preserved by the isomonodromy equations. In certain special cases, such as the

Schlesinger or six Painlevé equations the symplectic geometry is well-known (see

[28, 29, 57]). The main results of this paper are analogous to those of Hitchin

[29] and Iwasaki [35] who explained intrinsically why Schlesinger’s equations

and certain rank two higher genus isomonodromy equations (respectively) admit a

time-dependent Hamiltonian description. However for the general isomonodromy

equations considered here a Hamiltonian description is still not known: this work

indicates strongly that such description should exist. (See also Remark 7.1.)

For example, understanding the symplectic geometry of the isomonodromic

deformation equations enables us to ask questions about their quantisation. This

has been addressed in certain cases by Reshetikhin [59] and Harnad [27] and leads

to Knizhnik-Zamolodchikov type equations.

A key step (Theorem 6.1) is to establish that the transcendental map taking

a meromorphic connection to its (generalised) monodromy data, is a symplectic

map. This is the ‘inverse monodromy theory’ version of the well-known result in

inverse scattering theory, that the map from the set of initial potentials to scattering

data is a symplectic map (see [20] Part 1, Chapter III).

Although apparently not mentioned in the literature, a useful perspective (ex-

plained in Section 7) has been to interpret the paper [40] of Jimbo, Miwa and

Ueno, as stating that the Gauss-Manin connection in non-Abelian cohomology (in

the sense of Simpson [64]) generalises to the case of meromorphic connections.

This offers a fantastic guide for future generalisation.

The Prototype: Simple Poles

The simplest way to explain the results of this paper is to first describe the

intrinsic symplectic geometry of Schlesinger’s equations, following Hitchin [29].

Choose matrices A
1

; : : : ; A

m

2 End(C n ), distinct numbers a
1

; : : : ; a

m

2 C

and consider the following meromorphic connection on the trivial rank n holo-

morphic vector bundle over the Riemann sphere:

r := d�

�

A

1

dz

z � a

1

+ � � �+A

m

dz

z � a

m

�

: (1)

This has a simple pole at each a

i

and will have no further pole at 1 if and

only if A
1

+ � � � + A

m

= 0, which we will assume to be the case. Thus, on

removing a small open disc D
i

from around each a
i

and restricting r to the m-

holed sphere S := P

1

n (D

1

[ � � � [D

m

), we obtain a (nonsingular) holomorphic

connection. In particular it is flat and so, taking its monodromy, a representation of
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the fundamental group of the m-holed sphere is obtained. This procedure defines

a holomorphic map, which we will call the monodromy map, from the set of such

connection coefficients to the set of complex fundamental group representations:

�

(A

1

; : : : ; A

m

)

�

�

P

A

i

= 0

	

�

a

�!

�

(M

1

; : : : ;M

m

)

�

�

M

1

� � �M

m

= 1

	

(2)

where appropriate loops generating the fundamental group of S have been chosen

and the matrix M
i

2 G := GL

n

(C ) is the automorphism obtained by parallel

translating a basis of solutions around the ith loop.

This map is the key to the whole theory and is generically a local analytic

isomorphism. It is tempting to think of �
a

as a generalisation of the exponential

function, but note the dependence on the pole positions a is rather complicated

since the monodromy map solves Painlevé type equations (see below).

We can however study the geometry of the monodromy map, particularly the

symplectic geometry. First, to remove the base-point dependence, quotient both

sides of (2) by the diagonal conjugation action ofG. Secondly restrict the matrices

A

i

to be in fixed adjoint orbits. (These may be identified with coadjoint orbits using

the trace, and so have natural complex symplectic structures.) Thus we pick m

generic (co)adjoint orbits O
1

; : : : ; O

m

and require A
i

2 O

i

. Also define C
i

� G

to be the conjugacy class containing exp(2�

p

�1A

i

) for any A
i

2 O

i

. Fixing

A

i

2 O

i

implies M
i

2 C

i

. The key fact now is that the sum
P

A

i

is a moment

map for the diagonal conjugation action ofG onO
1

�� � ��O

m

and so (2) becomes

O

1

� � � � �O

m

==G

�

a

�! Hom
C

�

�

1

(S); G

�

=G (3)

where the subscript C means we restrict to representations having local mon-

odromy around a
i

in the conjugacy class C
i

. The symplectic geometry of this

set of representations has been much studied recently. The primary symplectic

description is due to Atiyah and Bott [6, 5] and involves interpreting it as an in-

finite dimensional symplectic quotient, starting with all C1 connections on the

manifold-with-boundaryS (see also [7]). Alternatively, a purely finite dimensional

description of the symplectic structure is given by the cup product in parabolic

group cohomology [13] and finding a finite dimensional proof of the closedness

of this symplectic form has occupied many people. (See [41, 21, 4, 25, 3].)

By construction the left-hand side of (3) is a finite dimensional symplectic quo-

tient and one of the key results of [29] was that, for any choice of pole positions

a, the monodromy map �
a

is symplectic; it pulls back the Atiyah-Bott symplectic

structure on the right to the symplectic structure on the left, coming from the coad-

joint orbits. This fact is the key to understanding intrinsically why Schlesinger’s

equations are symplectic, as we will now explain.

Observe that if we vary the positions of the poles slightly then the spaces on the

left and the right of (3) do not change. However the monodromy map �
a

does vary.

Schlesinger [61] wondered how the matricesA
i

should vary with respect to the pole

positions a
1

; : : : ; a

m

such that the monodromy representation �
a

(A

1

; : : : ; A

m

)
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stays fixed, and thereby discovered the beautiful family of nonlinear differential

equations which now bear his name:

�A

i

�a

j

=

[A

i

; A

j

℄

a

i

� a

j

if i 6= j; and
�A

i

�a

i

= �

X

j 6=i

[A

i

; A

j

℄

a

i

� a

j

:

These are the equations for isomonodromic deformations of the logarithmic

connectionsronP1 that we began with in (1). Hitchin’s observation now is that the

local self-diffeomorphisms of the symplectic manifoldO
1

�� � ��O

m

==G induced

by integrating Schlesinger’s equations, are clearly symplectic diffeomorphisms,

because they are of the form �

�1

a

0

Æ �

a

for two sets of pole positions a and a0 and

the monodromy map is a local symplectic isomorphism for all a.

This is the picture we will generalise to the case of higher order poles, after

rephrasing it in terms of symplectic fibrations. The main missing ingredient is the

Atiyah-Bott construction of a symplectic structure on the generalised monodromy

data; when the discs are removed any local moduli at the poles is lost. We will work

throughout over P1 since the weight of this paper is to see what to do locally at a

pole of order at least two, and because our main interest is the Jimbo-Miwa-Ueno

isomonodromy equations, which are for connections over P1. However, apart

from in Section 2 and for the explicit form of the isomonodromy equations, global

coordinates on P1 are not used and so most of this work generalises immediately

to arbitrary genus compact Riemann surfaces, possibly with boundary.

The organisation of this paper is as follows. The next three sections each give

a different approach to meromorphic connections. In Section 2 we generalise the

left-hand side of (3) and prove the results we will need later regarding the sym-

plectic geometry of these spaces. Section 3 describes the generalised monodromy

data of a meromorphic connection on a Riemann surface, both the local data (the

Stokes matrices) and the global data fitting together the local data at each pole.

This generalises the spaces of fundamental group representations above—the no-

tion of fixing the conjugacy class of local monodromy is replaced by fixing the

‘formal equivalence class’. In Section 4 we introduce an appropriate notion of

C

1 singular connections and prove the basic results one might guess from the

non-singular case, relating flat singular connections to spaces of monodromy data

and to meromorphic connections on degree zero holomorphic bundles. The notion

of fixing the formal type of a meromorphic connection corresponds nicely to the

notion of fixing the ‘C1Laurent expansion’ of a flatC1 singular connection. Sec-

tion 5 then shows that the Atiyah-Bott symplectic structure generalises naturally

to these spaces of C1 singular connections, and that as in the non-singular case,

the curvature, when defined appropriately, is a moment map for the gauge group

action. Thus the spaces of generalised monodromy data also appear as infinite di-

mensional symplectic quotients. (One should note that the ‘naive’ extension of the

Atiyah-Bott symplectic structure to C1 singular connections does not work since

the two-forms that arise are too singular to be integrated.) Section 6 summarises
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the preceding sections in a commutative diagram and then proves the key result,

that the monodromy map pulls back the Atiyah-Bott type symplectic structure on

the generalised monodromy data to the explicit symplectic structure of Section

2, on the spaces of meromorphic connections. Section 7 explains geometrically

what the Jimbo-Miwa-Ueno isomonodromy equations are (we will write them ex-

plicitly in the appendix), and then proves the main result, Theorem 7.1, that the

isomonodromic deformation equations of Jimbo-Miwa-Ueno are equivalent to a

flat symplectic connection on a symplectic fibre bundle having the moduli spaces

of Section 2 as fibre. Note that in the general case there are more deformation

parameters: we may vary the ‘irregular types’ of the connections at the poles, as

well as the pole positions. This produces, in particular, many nonlinear symplectic

braid group representations on the spaces of monodromy data. Finally, we end by

sketching a relationship between Stokes matrices and Poisson Lie groups.

2. MEROMORPHIC CONNECTIONS ON TRIVIAL BUNDLES

Let D = k

1

(a

1

) + � � � + k

m

(a

m

) > 0 be an effective divisor on P1 (so that

a

1

; : : : ; a

m

2 P

1 are distinct points and k
1

; : : : ; k

m

> 0 are positive integers) and

let V ! P

1 be a rank n holomorphic vector bundle.

Definition 2.1. A meromorphic connection r on V with poles on D is a

mapr : V ! V 
K(D) from the sheaf of holomorphic sections ofV to the sheaf

of sections of V 
K(D), satisfying the Leibniz rule: r(fv) = (df)
 v+ frv,

where v is a local section of V , f is a local holomorphic function and K is the

sheaf of holomorphic one-forms on P1.

If we choose a local coordinate z on P1 vanishing at a
i

then in terms of a local

trivialisation of V , r has the formr = d�A, where

A = A

k

i

dz

z

k

i

+ � � �+A

1

dz

z

+A

0

dz + � � � (4)

is a matrix of meromorphic one-forms and A
j

2 End(C n ); j � k

i

.

Definition 2.2. A meromorphic connectionr will be said to be generic if

at each a
i

the leading coefficient A
k

i

is diagonalisable with distinct eigenvalues

(if k
i

� 2), or diagonalisable with distinct eigenvalues mod Z (if k
i

= 1).

This condition is independent of the trivialisation and coordinate choice. We

will restrict to such generic connections since they are simplest yet sufficient for

our purpose (to describe the symplectic nature of isomonodromic deformations).

Definition 2.3. A compatible framing at a
i

of a vector bundle V with

generic connectionr is an isomorphism g

0

: V

a

i

! C

n between the fibre V
a

i

and

C

n such that the leading coefficient of r is diagonal in any local trivialisation of

V extending g
0

.
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Given a trivialisation of V in a neighbourhoodof a
i

so thatr = d�A as above,

then a compatible framing is represented by a constant matrix (also denoted g
0

)

that diagonalises the leading coefficient: g
0

2 G such that g
0

A

k

i

g

�1

0

is diagonal.

At each point a
i

choose a germ d �

i

A

0 of a diagonal generic meromorphic

connection on the trivial ranknvector bundle. (We use the terminology that a trivial

bundle is just trivialisable, but the trivial bundle has a chosen trivialisation. Also

pre-superscripts iA, whenever used, will signify local information near a
i

.) Thus
i

A

0 is a matrix of germs of meromorphic one-forms, which we require (without

loss of generality) to be diagonal. If z
i

is a local coordinate vanishing at a
i

, write

i

A

0

= d(

i

Q) +

i

�

0

dz

i

z

i

(5)

where i�0 is a constant diagonal matrix and i

Q is a diagonal matrix of meromorphic

functions.

Definition 2.4. A connection (V;r) with compatible framing g
0

at a
i

has

irregular type i

A

0 if g
0

extends to a formal trivialisation of V at a
i

, in which r

differs from d�

i

A

0 by a matrix of one-forms with just simple poles.

Equivalently this means, if r = d�A in some local trivialisation, we require

gAg

�1

+(dg)g

�1

= d(

i

Q)+

i

�dz

i

=z

i

for some diagonal matrix i

� not necessarily

equal to i

�

0 and some formal bundle automorphism g 2 G[[z

i

℄℄ = GL

n

(C [[z

i

℄℄)

with g(a
i

) = g

0

. The diagonal matrix i

� appearing here will be referred to as the

exponent of formal monodromy of (V;r; g
0

).

Let A denote the choice of the effective divisor D and all the germs i

A

0. The

spaces which generalise those on the left-hand side of (3) are defined as follows.

Definition 2.5. The moduli spaceM�

(A) is the set of isomorphism classes

of pairs (V;r) where V is a trivial rank n holomorphic vector bundle over P1 and

r is a meromorphic connection on V which is formally equivalent to d � i

A

0 at

a

i

for each i and has no other poles.

Following [40], we also define slightly larger moduli spaces:

Definition 2.6. The extended moduli space fM�

(A) is the set of isomor-

phism classes of triples (V;r;g) consisting of a generic connectionr (with poles

onD) on a trivial holomorphic vector bundle V overP1 with compatible framings

g = (

1

g

0

; : : : ;

m

g

0

) such that (V;r;g) has irregular type i

A

0 at each a
i

.

The term ‘extended moduli space’ is taken from the paper [37] of L.Jeffrey,

since these spaces play a similar role (but are not the same).

Remark 2. 1. For use in later sections we also define spacesM(A) and fM(A)

simply by replacing the word ‘trivial’ by ‘degree zero’ in Definitions 2.5 and 2.6

respectively.
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SinceM�

(A) and fM�

(A) are moduli spaces of connections on trivial bundles

we can obtain explicit descriptions of them. First define G
k

to be the group of

(k � 1)-jets of bundle automorphisms:

G

k

:= GL

n

�

C [� ℄=�

k

�

where � is an indeterminate. Then the main result of this section is:

Proposition 2.1.

�M

�

(A) is isomorphic to a complex symplectic quotient

M

�

(A)

�

=

O

1

� � � � �O

m

==G (6)

where G := GL

n

(C ) and O
i

� g

�

k

i

is a coadjoint orbit of G
k

i

.

� Similarly there are complex symplectic manifolds (extended orbits) eO
i

with

dim(

e

O

i

) = dim(O

i

) + 2n and (free) HamiltonianG actions, such that

f

M

�

(A)

�

=

e

O

1

� � � � �

e

O

m

==G: (7)

� In this way f

M

�

(A) inherits (intrinsically) the structure of a complex sym-

plectic manifold, the torus actions changing the choices of compatible framings

are Hamiltonian (with moment maps given by the values of the i

�’s) andM�

(A)

arises as a symplectic quotient by these m torus actions.

Because of the third statement here (and that M�

(A) may not be Hausdorff)

we will mainly work with the extended moduli spaces. They will be the phase

spaces of the isomonodromy equations. Before proving Proposition 2.1 we first

collect together all the results we will need regarding the extended orbits eO
i

.

Extended Orbits

Fix a positive integer k � 2. Let B
k

be the subgroup of G
k

of elements

having constant term 1. This is a unipotent normal subgroup and in fact G
k

is the

semi-direct product G n B

k

(where G := GL

n

(C ) acts on B
k

by conjugation).

Correspondingly the Lie algebra of G
k

decomposes as a vector space direct sum

and dualising we have:

g

�

k

= b

�

k

� g

�

: (8)

Concretely if we have a matrix of meromorphic one-formsA as in (4) with k = k

i

then the principal part ofA can be identified as an element of g�
k

simply by replacing

the coordinate z by the indeterminate �:

A

k

i

d�

�

k

i

+ � � �+A

1

d�

�

2 g

�

k

: (9)
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Abusing notation, this element of g

�

k

will also be denoted by A. Such A’s are

identified as elements of g

�

k

via the pairing hA;Xi := Res
0

(Tr(A(�) � X)) =

P

k

i=1

Tr(A
i

X

i�1

) where X = X

0

+X

1

� + � � �+X

k�1

�

k�1

2 g

k

. Then from

(8), b

�

k

is identified with the set of A in (9) having zero residue and g

� with

those having only a residue term (zero irregular part). Let �res : g

�

k

! g

� and

�irr : g
�

k

! b

�

k

denote the corresponding projections.

Now choose a diagonal elementA0

= A

0

k

d�=�

k

+ � � �+A

0

2

d�=�

2 of b�
k

whose

leading coefficient A0

k

has distinct eigenvalues. For example if k = k

i

, such A0

arises from the irregular part d(iQ) of i

A

0 in (5). Let O
B

� b

�

k

denote the B
k

coadjoint orbit containingA0.

Definition 2.7. The extended orbit eO � G� g

�

k

associated to O
B

is:

e

O :=

�

(g

0

; A) 2 G� g

�

k

�

�

�irr(g0Ag
�1

0

) 2 O

B

	

where �irr : g
�

k

! b

�

k

is the natural projection removing the residue.

If (g
0

; A) 2

e

O then eventually A will correspond to the principal part of a

generic meromorphic connection and g
0

to a compatible framing.

Lemma 2.2. The extended orbit eO is canonically isomorphic to the symplectic

quotient of the productT �G
k

�O

B

byB
k

, where both the cotangent bundleT �G
k

and the coadjoint orbit O
B

have their natural symplectic structures.

Proof. B

k

acts by the coadjoint action on O
B

and by the standard (free) left

action on T �G
k

(induced from left multiplication of the groups). A moment map

is given by � : T

�

G

k

� O

B

! b

�

k

; (g;A;B) 7! ��irr(Ad�
g

(A)) + B where

B 2 O

B

and (g;A) 2 G

k

� g

�

k

�

=

T

�

G

k

via the left trivialisation. Thus

�

�1

(0) =

�

(g;A;B)

�

�

�irr(gAg
�1

) = B

	

: (10)

It is straightforward to check that the map

� : �

�1

(0)!

e

O; (g;A;B) 7! (g(0); A) (11)

is well-defined, surjective and has precisely the B
k

orbits as fibres.

This gives eO the structure of a complex symplectic manifold. Next we examine

the torus action on eO corresponding to changing the choice of compatible framing.

If (g
0

; A) 2

e

O then by hypothesis there is some g 2 G

k

such that gAg�1 =

A

0

+�d�=� for some matrix �. It is easy now to modify g such that � is in fact

diagonal. (Conjugating by 1 +X�

k�1 for an appropriate matrix X will remove

any off-diagonal part of �.) It follows that there is a well-defined map:

�

T

:

e

O ! t

�

; (g

0

; A) 7! ��

d�

�

;
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where, as above, if R = �d�=� 2 t

� and �

0

2 t then hR;�0i = Tr(��0).

Lemma 2.3. 1) The map�
T

is a moment map for the free action of T �
=

(C

�

)

n

on eO defined by t(g
0

; A) = (tg

0

; A) where t 2 T .

2) The symplectic quotient at the value �R of �
T

is the G
k

coadjoint orbit

through the element A0

+R of g�
k

.

3) Any tangents v
1

; v

2

to eO � G� g

�

k

at (g
0

; A) are of the form

v

i

= (X

i

(0); [A;X

i

℄ + g

�1

0

_

R

i

g

0

) 2 g� g

�

k

for some X
1

; X

2

2 g

k

and _

R

1

;

_

R

2

2 t

� (where g

�

=

T

g

G via left multiplication),

and the symplectic structure on eO is then given explicitly by the formula:

!

e

O

(v

1

; v

2

) = h

_

R

1

;

e

X

2

i � h

_

R

2

;

e

X

1

i+ hA; [X

1

; X

2

℄i (12)

where eX
i

:= g

0

X

i

g

�1

0

2 g

k

for i = 1; 2.

Proof. There is a surjective ‘winding’ map w : G

k

� t

�

!

e

O defined by

(g;R) 7! (g(0); g

�1

(A

0

+R)g). It fits into the commutative diagram:

G

k

� t

�

�

,! �

�1

(0) � T

�

G

k

�O

B

pr
�! T

�

G

k

?

y

w

?

y

�

e

O =

e

O

(13)

where � is from (11), pr is the projection and �(g;R) := (g; g

�1

(A

0

+R)g;A

0

).

Since the O
B

component of � is constant the pullback of the symplectic structure

on T �G
k

along prÆ � is the pullback of the symplectic structure on eO alongw. Let

T act onT �G
k

by the standard left action t(g;A) = (tg; A), onO
B

by conjugation

(t(B) = tBt

�1) and onG
k

�t

� by left multiplication: t(g;R) = (tg; R). Observe

that all the maps in (13) are then T -equivariant and that a moment map on T �G
k

is given by � : T

�

G

k

! t

�

; (g;A) 7! �Æ(�res(gAg
�1

)) since the map Æ Æ �res

(taking the diagonal part of the residue term of an element of g�
k

) is the dual of the

derivative of the inclusion T ,! G

k

. Statement 1) now follows from the fact that

the pullback of � along prÆ � is the pullback of �
T

alongw (both maps pullback to

the projectionG
k

�t

�

! t

�). The third statement is proved by directly calculating

the pullback of the symplectic structure on T �G
k

along pr Æ �. (Note (X
i

;

_

R

i

) is

just a lift of v
i

to G
k

� t

�.) The second statement follows directly from (12).

Thus, by projecting to g

�

k

, we see eO is a principal T bundle over an n-parameter

family of G
k

coadjoint orbits. An alternative description will also be useful:

Lemma 2.4 (Decoupling). The following map is a symplectic isomorphism:

e

O

�

=

T

�

G�O

B

; (g

0

; A) 7! (g

0

; �res(A); �irr(g0Ag
�1

0

))
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where T �G �

=

G� g

� via the left trivialisation.

Proof. It is an isomorphism as the map (g

0

; S; B) 7! (g

0

; g

�1

0

Bg

0

+ S) 2

e

O

(where (g

0

; S; B) 2 T

�

G � O

B

) is an inverse. Under this identification, a sec-

tion s of the projection � in (13) is given by: s : T

�

G � O

B

! T

�

G

k

� O

B

;

(g

0

; S; B) 7! (g

0

; g

�1

0

Bg

0

+ S;B) where left multiplication is used to trivi-

alise the cotanget bundles. A straightforward calculation shows s is symplectic.

This will be important because O
B

admits global Darboux coordinates.

Corollary 2.5. The free G action h(g
0

; A) := (g

0

h

�1

; hAh

�1

) on e

O is

Hamiltonian with moment map �
G

:

e

O ! g

�

; (g

0

; A) 7! �res(A):

Proof. After decoupling eO; G acts only on the T �G factor and it does so by the

standard action coming from right multiplications, which has moment map �
G

.

Finally in the simple pole case (k = 1) not yet considered we define

e

O :=

�

(g

0

; A) 2 G� g

�

�

�

g

0

Ag

�1

0

2 t

0

	

� G� g

�

where t

0

� t

� is the subset containing diagonal matrices whose eigenvalues are

distinct mod Z. If we identify G � g

� with T �G then e

O is in fact a symplectic

submanifold (see [24] Theorem 26.7). The formula (12) holds unchanged and the

free G and T actions are still Hamiltonian with the same moment maps as above

(the diagonalisation of A used to define �
T

is simply g
0

Ag

�1

0

). Note that the

winding map w : G� t

0

!

e

O; (g

0

; R) 7! (g

0

; g

�1

0

Rg

0

) is now an isomorphism.

Proof (of Proposition 2.1). Choose a coordinate z to identifyP1with C [1 such

that each a
i

is finite. Define z
i

:= z � a

i

. The chosen meromorphic connection

germs d� i

A

0 determineG
k

i

coadjoint orbitsO
i

and extended orbits eO
i

as above:

Define O
i

to be the coadjoint orbit through the point of g�
k

i

determined (using the

coordinate choice z
i

) by the principal part of i

A

0 in (5). Similarly the irregular

part of iA0 determines a point of b�
k

i

and eO
i

is the extended orbit associated to the

B

k

i

coadjoint orbit through this point.

Now supposer is a meromorphic connection on a holomorphically trivial bun-

dle V overP1 with poles on the divisorD. Upon trivialising V we findr = d�A

for a matrix A of meromorphic one-forms of the form

A =

m

X

i=1

�

i

A

k

i

dz

(z � a

i

)

k

i

+ � � �+

i

A

1

dz

(z � a

i

)

�

(14)

where the i

A

j

are n � n matrices. The principal part of A at a
i

determines an

element iA 2 g

�

k

i

as above (replacing z� a
i

by � in the ith term of the sum (14)).
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The crucial fact now is thatr is formally equivalent to d� i

A

0 at a
i

if and only

if i

A is in O
i

. The ‘only if’ part is clear since the gauge action restricts to the

coadjoint action on the principal parts of A. The converse is not true in general

(even if formal meromorphic transformations are allowed: see [8]), but it does hold

in the generic case we are considering here, and is well-known (see [11]). Also,

using the description of the extended orbits as principal T bundles, it follows that

if r is generic and has compatible framings g = (

1

g

0

; : : : ;

m

g

0

) then (V;r;g)

has irregular type i

A

0 at a
i

if and only if (ig
0

;

i

A) is in eO
i

.

Thus any meromorphic connection on the trivial bundle with the correct formal

type determines and is determined by a point of the product O
1

� � � � � O

m

.

Observe however that a general point of O
1

� � � � � O

m

will give a connection

with an additional pole at z =1 unless we impose the constraint

1

A

1

+ � � �+

m

A

1

= 0: (15)

Also observe that the choice of global trivialisation of V corresponds to the action

ofG onO
1

�� � ��O

m

by diagonal conjugation. The first statement in Proposition

2.1 follows simply by observing that the left-hand side of (15) is a moment map

for this G action on O
1

� � � � � O

m

(since the G action on each O
i

factor is the

restriction of the coadjoint action to G � G

k

i

).

The proof of the second statement is completely analogous. (The G action on
e

O

i

is given in Corollary 2.5.)

Lemma 2.4 makes it transparent that fM�

(A) is a smooth complex manifold:

the symplectic quotient by G just removes a factor of T �G from the product of

extended orbits. It is straightforward to check the complex symplectic structure

so defined on f

M

�

(A) is independent of the coordinate choices used above. (In

fact arbitrary local coordinates z
i

may be used.)

Finally the statements concerning the torus actions are immediate from Lemma

2.3, since the G and T action on each extended orbit commute.

Remark 2. 2. Open subsets of the symplectic quotients O
1

� � � � � O

m

==G

in (6) have been previously studied: They are algebraically completely integrable

Hamiltonian systems [2, 12]. See also [18] Sections 4.3 and 5.3. The perspective

there is to regard these as spaces of meromorphic Higgs fields, rather than as spaces

of meromorphic connections.

3. GENERALISED MONODROMY

This section describes the monodromy data of a generic meromorphic con-

nection, involving both a fundamental group representation and Stokes matrices,

largely following [8, 11, 40, 43, 50]. The presentation here is quite nonstandard
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however and care has been taken to keep track of all the choices made and thereby

see what is intrinsically defined.

Fix the data A of a divisorD =

P

k

i

(a

i

) on P1 and connection germs d� i

A

0

at each a
i

as in Section 2. Let (V;r;g) be a compatibly framed meromorphic

connection on a holomorphic vector bundle V ! P

1 with irregular type A.

In brief, the monodromy data arises as follows. The germ d�

i

A

0 canonically

determines some directions at a
i

(‘anti-Stokes directions’) for each i and (using

local coordinate choices) we can consider the sectors at each a
i

bounded by these

directions (and having some small fixed radius). Then the key fact is that the

framings g (and a choice of branch of logarithm at each pole) determine, in a

canonical way, a choice of basis of solutions of the connection r on each such

sector at each pole. Now along any path in the punctured sphereP1nfa
1

: : : : ; a

m

g

between two such sectors we can extend the two corresponding bases of solutions

and obtain a constant n�nmatrix relating these two bases. The monodromy data

of (V;r;g) is simply the set of all such constant matrices, plus the exponents of

formal monodromy.

Before filling in the details of this procedure we will give a concrete definition

of the monodromy manifolds that store this monodromy data and so give a clear

idea of where we are going. All of the monodromy manifolds are of the following

form. Suppose N
1

; : : : ; N

m

are manifolds, we have maps �
i

: N

i

! G

0 to some

group G0 for each i and that there is an action of G = GL

n

(C ) on G0 (via group

automorphisms) and on each N
i

such that �
i

is G-equivariant. Define a map � to

be the (reverse ordered) product of the �
i

’s:

� : N

1

� � � � �N

m

! G

0

; (n

1

; : : : ; n

m

) 7! �

m

(n

m

) � � � �

2

(n

2

)�

1

(n

1

):

Since G acts on G0 by automorphisms, � is G-equivariant and ��1(1) is a G-

invariant subset of the product N
1

� � � � �N

m

. We will write the quotient as:

N

1

� � � � �N

m

==G := �

�1

(1)=G: (16)

This is viewed simply as a convenient way to write down the various sets of

monodromy data that arise1. There is no conflict of notation since the symplectic

quotients of Section 2 arise in this way by taking N
i

= O

i

(or eO
i

), G0 = (g

�

;+)

and the �
i

’s as the moment maps for the G actions. All of the examples in this

section however will have G0 := G acting on itself by conjugation.

Recall in the simple pole case that we fixed generic coadjoint orbitsO
1

; : : : ; O

m

of G to define a symplectic space of connections on trivial bundles over P1. By

choosing appropriate generators of the fundamental group of the punctured sphere

we see that the corresponding space of monodromy data is of the above form:

Hom
C

�

�

1

(P

1

n fa

1

; : : : ; a

m

g); G

�

=G

�

=

C

1

� � � � � C

m

==G (17)

1The relationship with [3] will be discussed elsewhere.
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whereG acts on each conjugacy class C
i

by conjugation and each map �
i

: C

i

! G

is just the inclusion.

Considering higher order poles in Section 2 amounted to replacing the coadjoint

orbits ofG above by coadjoint orbits ofG
k

i

(still denotedO
i

) or by extended orbits
e

O

i

. By analogy, in this section we now replace each conjugacy class in the simple

pole case by a larger manifold C
i

(the multiplicative version of O
i

), or by eC
i

(the

multiplicative version of eO
i

). The basic definition is somewhat surprising:

Definition 3.1.

� Let U
+=�

be the upper/lower triangular unipotent subgroups of G, then

e

C

i

:= G� (U

+

� U

�

)

k

i

�1

� t

where t is the set of diagonal n � n matrices and k

i

is the pole order at a
i

.

(If k
i

= 1 replace t by t

0 here; the elements with distinct eigenvalues mod Z.)

A point of eC
i

will be denoted (C

i

;

i

S;

i

�

0

) where i

S = (

i

S

1

; : : : ;

i

S

2k

i

�2

) 2

U

+

� U

�

� U

+

� � � � � U

�

.

� The formula t(C
i

;

i

S;

i

�

0

) =

�

t �C

i

; (t �

i

S

1

� t

�1

; : : : ; t �

i

S

2k

i

�2

� t

�1

);

i

�

0

�

defines a free action of the torus T on eC
i

and, given some fixed choice of i�0, we

define C
i

to be the subset of the quotient having t component fixed to this value:

C

i

:= (

e

C

i

=T )j
i

�

0
:

� The map �
i

:

e

C

i

! G is defined by the formula

�

i

(C

i

;

i

S;

i

�

0

) = C

�1

i

�

i

S

2k

i

�2

� � �

i

S

2

�

i

S

1

� exp

�

(2�

p

�1)

i

�

0

�

� C

i

:

(This is T invariant so descends to define �
i

: C

i

! G.)

� Finally G acts on eC
i

(and on C
i

) via g(C
i

;

i

S;

i

�

0

) = (C

i

g

�1

;

i

S;

i

�

0

) (so that

�

i

is clearly G-equivariant, where G acts on itself by conjugation).

The triangular matrices iS
j

(with 1’s on their diagonals) appearing here are the

Stokes matrices. Note that in every case the dimension of eC
i

is the same as the

dimension of the extended orbit eO
i

(and similarly dim(C

i

) = dim(O

i

)). Also

note that if the pole is simple (k
i

= 1) then eC
i

= G� t

0 and that C
i

can naturally

be identified with the conjugacy class through exp(2�
p

�1 �

i

�

0

) 2 G.

Our aim in the rest of this section is to define an (abstract) space of monodromy

data M(A) and an intrinsic holomorphic map � from the moduli space M�

(A)

of Section 2 to M(A), obtained by taking monodromy data. We will call � the

monodromy map,although the names Riemann-Hilbert map or de Rham morphism

also apply. Recall in Proposition 2.1 that after making some choices (of local

coordinates in that case) a concrete description of the moduli space M�

(A) was

obtained. Analogously here, after making some choices (of some ‘tentacles’;

something like a choice of generators of the fundamental group—see Definition

3.9), we will see that the quotient C
1

�� � ��C

m

==G is a concrete realisation of the
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space of monodromy data. Thus we will have the diagram:

O

1

� � � � �O

m

==G C

1

� � � � � C

m

==G

x

?

�

=

x

?

�

=

M

�

(A)

�

�! M(A):

(18)

As in Section 2 we will work mainly with the extended version (putting tildes on

all the spaces in the above diagram) since the spaces are then manifolds (and again

the non-extended version may be deduced by considering torus actions).

Lemma 3.1. The extended monodromy manifold fM(A)

�

=

e

C

1

� � � � �

e

C

m

==G

is indeed a complex manifold and has the same dimension as fM�

(A).

Proof. Remove the G action by fixing C
1

= 1, so fM(A) is identified with

the subvariety �
m

� � � �

1

= 1 of the product eC0
1

�

e

C

2

� � � � �

e

C

m

where eC0
1

is

the subset of eC
1

having C
1

= 1. The result now follows from the implicit func-

tion theorem since the map �
m

� � � �

1

:

e

C

0

1

�

e

C

2

� � � � �

e

C

m

! G is surjective

on tangent vectors (except in the trivial case m = 1; k

1

= 1). In particular

dim

f

M(A) =

P

dim(

e

C

i

)�2n

2 and, from Proposition 2.1, this is dim f

M

�

(A).

Local Moduli: Stokes Matrices

First we will set up the necessary auxiliary data. Let d � A

0 be a diagonal

generic meromorphic connection on the trivial rank n vector bundle over the unit

disc D � C with a pole of order k � 2 at 0 and no others. Let z be a coordinate

on D vanishing at 0. Thus (as in Section 2) A0

= dQ + �

0

dz

z

where �

0 is a

constant diagonal matrix andQ is a diagonal matrix of meromorphic functions. Q

is determined byA0 and z by requiring that it has constant term zero in its Laurent

expansion with respect to z. Write Q = diag(q
1

; : : : ; q

n

) and define q
ij

(z) to

be the leading term of q
i

� q

j

. Thus if q
i

� q

j

= a=z

k�1

+ b=z

k�2

+ � � � then

q

ij

= a=z

k�1.

Let the circle S1 parameterise rays (directed lines) emanating from 0 2 C ;

intrinsically one can think of this circle as being the boundary circle of the real

oriented blow up of C at the origin. If d
1

; d

2

2 S

1 then Sect(d
1

; d

2

) will denote

the (open) sector swept out by rays rotating in a positive sense from d

1

to d
2

. The

radius of these sectors will be taken sufficiently small when required later.

Definition 3.2. The anti-Stokes directions A � S

1 are the directions

d 2 S

1 such that for some i 6= j: q
ij

(z) 2 R

<0

for z on the ray specified by d:

These are the directions along which eqi�qj decays most rapidly as z approaches

0 and it follows that A is independent of the coordinate choice z. (For uniform

notation later, define A to contain a single, arbitrary direction if k = 1; this will

be used only as a local branch cut.)
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Definition 3.3. Let d 2 S1 be an anti-Stokes direction.

� The roots of d are the ordered pairs (ij) ‘supporting’ d:

Roots(d) := f(ij)

�

�

q

ij

(z) 2 R

<0

along dg:

� The multiplicity Mult(d) of d is the number of roots supporting d.

� The group of Stokes factors associated to d is the group

Sto
d

(A

0

) := fK 2 G

�

�

(K)

ij

= Æ

ij

unless (ij) is a root of dg:

It is straightforward to check that Sto
d

(A

0

) is a unipotent subgroup of G =

GL

n

(C ) of dimension equal to the multiplicity of d. Beware that the terms ‘Stokes

factors’ and ‘Stokes matrices’ are used in a number of different senses in the

literature. (Our terminology is closest to Balser, Jurkat and Lutz [11]. However

our approach is perhaps closer to that of Martinet and Ramis [50] but what we call

Stokes factors, they call Stokes matrices, and they do not use the things we call

Stokes matrices.)

The anti-Stokes directions A have �=(k � 1) rotational symmetry: if q
ij

(z) 2

R

<0

then q
ji

(z exp(

�

p

�1

k�1

)) 2 R

<0

. Thus the number r := #A of anti-Stokes

directions is divisible by 2k � 2 and we define l := r=(2k � 2). We will refer

to an l-tuple d = (d

1

; : : : ; d

l

) � A of consecutive anti-Stokes directions as a

‘half-period’. When weighted by their multiplicities, the number of anti-Stokes

directions in any half-period is n(n� 1)=2 = Mult(d
1

) + � � �+ Mult(d
l

). Also a

half-period d determines a total ordering of the set fq
1

; : : : ; q

n

g defined by:

q

i

<

d

q

j

() (ij) is a root of some d 2 d: (19)

A simple check shows (ij) is a root of some d 2 d precisely if eqi=eqj ! 0 as

z ! 0 along the ray �(d) 2 S1 bisecting Sect(d
1

; d

l

) (so that (19) is the natural

dominance ordering along �(d)). In turn there is a permutation matrix P 2 G

associated to d given by (P )

ij

= Æ

�(i)j

where � is the permutation of f1; : : : ; ng

corresponding to (19): q
i

<

d

q

j

, �(i) < �(j). A key result is then:

Lemma 3.2. Let d = (d

1

; : : : ; d

l

) � A be a half-period (where d
i+1

is the

next anti-Stokes direction after d
i

in a positive sense).

1) The product of the corresponding groups of Stokes factors is isomorphic as

a variety, via the product map, to the subgroup of G conjugate to U
+

via P :

Y

d2d

Sto
d

(A

0

)

�

=

PU

+

P

�1

; (K

1

; : : : ;K

l

) 7! K

l

� � �K

2

K

1

2 G

2) Label the rest of A uniquely as d
l+1

; : : : ; d

r

(in order) then the following map

from the product of all the groups of Stokes factors, is an isomorphism of varieties:

Y

d2A

Sto
d

(A

0

)

�

=

(U

+

� U

�

)

k�1

; (K

1

; : : : ;K

r

) 7! (S

1

; : : : S

2k�2

)
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where S
i

:= P

�1

K

il

� � �K

(i�1)l+1

P 2 U

+=�

if i is odd/even.

Proof. 1) holds since the groups of Stokes factors are a set of ‘direct spanning’

subgroups of PU
+

P

�1; see Borel [15] Section 14. It is also proved directly in

Lemma 2 of [11]. 2) follows from 1) simply by observing that the orderings associ-

ated to neighbouring half-periods are opposite.

Now we move on to the local moduli of meromorphic connections. Let Syst(A0

)

denote the set of germs at 0 2 C of meromorphic connections on the trivial rank

n vector bundle, that are formally equivalent to d�A

0. Concretely we have

Syst(A0

) = f d�A

�

�

A =

b

F [A

0

℄ for some bF 2 G[[z℄℄ g

where A is a matrix of germs of meromorphic one-forms, G[[z℄℄ = GL

n

(C [[z℄℄)

and bF [A0

℄ = (d

b

F )

b

F

�1

+

b

FA

0

b

F

�1. The group G[[z℄℄ does not act on Syst(A0

)

since in general bF [A0

℄ will not have convergent entries. The subgroup Gfzg :=

GL

n

(C fzg) of germs of holomorphic bundle automorphisms does act however

and we wish to study the quotient Syst(A0

)=Gfzgwhich is by definition the set of

isomorphism classes of germs of meromorphic connections formally equivalent

to A0. Note that any generic connection is formally equivalent to some such A0.

In the Abelian case (n = 1) and in the simple pole case (k = 1) Syst(A0

)=Gfzg

is just a point; the notions of formal and holomorphic equivalence coincide. In

the non-Abelian, irregular case (n; k � 2) however, Syst(A0

)=Gfzg is non-trivial

and we will explain how to describe it explicitly in terms of Stokes matrices.

It is useful to consider spaces slightly larger than Syst(A0

):

Definition 3.4.

� Let dSyst
f

(A

0

) be the set of compatibly framed connection germs with both

irregular and formal type A0.

� Let dSyst
mp

(A

0

) := f(A;

b

F )

�

�

A 2 Syst(A0

);

b

F 2 G[[z℄℄; A =

b

F [A

0

℄g; be the

set of marked pairs.

Thus dSyst
f

(A

0

) is the set of pairs (A; g
0

) with A 2 Syst(A0

) and g
0

2 G,

such that g
0

[A℄ and A0 have the same leading term. Clearly the projection to the

first factor is a surjection dSyst
f

(A

0

) � Syst(A0

) and the fibres are the orbits of

the torus action t(A; g
0

) = (A; t � g

0

) (where t 2 T �
=

(C

�

)

n).

Lemma 3.3. There is a canonical isomorphism dSyst
mp

(A

0

)

�

=

dSyst
f

(A

0

):

For each compatibly framed connection germ (A; g

0

) 2

dSyst
f

(A

0

) there is a

unique formal isomorphism b

F 2 G[[z℄℄ with A =

b

F [A

0

℄ and bF (0) = g

�1

0

.

Proof. It is sufficient to prove that if bF [A0

℄ = A

0 then b

F 2 T , since this

implies the map (A;

b

F ) 7! (A; g

0

) with g

0

:=

b

F (0)

�1, is bijective. Now if
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b

F [A

0

℄ = A

0 then the (ij) matrix entry f of bF is a power series solution to

df = (d(q

i

� q

j

) + (�

i

� �

j

)dz=z)f , where �
i

= (�

0

)

ii

. It follows (us-

ing Definition 2.2 if k = 1) that f = 0 unless i = j when it is a constant.

See for example [8] for an algorithm to determine bF from g

0

. Below we will use

‘dSyst(A0

)’ to denote either of these two sets. Heuristically the action g(A; bF ) =

(g[A℄; g Æ

b

F ) of Gfzg on the marked pairs is free and so one expects the quotient

H(A

0

) :=

dSyst(A0

)=Gfzg

to be in some sense nice (as is indeed the case). Moreover the actions of T and

Gfzg on dSyst(A0

) commute so Syst(A0

)=Gfzg

�

=

H(A

0

)=T .

The fundamental technical result we need to quote in order to describe H(A

0

)

is the following theorem. First we set up a labelling convention, that will be-

have well when we vary A0 in later sections. Choose a point p in one of the r

sectors at 0 bounded by anti-Stokes rays. Label the first anti-Stokes ray when

turning in a positive sense from p as d
1

and label the subsequent rays d
2

; : : : ; d

r

in turn. Write Sect
i

:= Sect(d
i

; d

i+1

); the ‘ith sector’ (indices are taken modulo

r). Note p 2 Sect
r

= Sect
0

; the ‘last sector’. Also define the ‘ith supersector’

to be dSect
i

:= Sect
�

d

i

�

�

2k�2

; d

i+1

+

�

2k�2

�

: This is a sector containing the

ith sector symmetrically (the same direction bisects both) and has opening greater

than �=(k � 1). (The rays bounding these supersectors are usually referred to as

‘Stokes rays’.)

Theorem 3.1. Suppose bF 2 G[[z℄℄ is a formal transformation such thatA :=

b

F [A

0

℄ has convergent entries. Set the radius of the sectors Sect
i

;

dSect
i

to be less

than the radius of convergence of A. Then the following hold:

1) On each sector Sect
i

there is a canonical way to choose an invertible n� n

matrix of holomorphic functions �
i

(

b

F ) such that �
i

(

b

F )[A

0

℄ = A.

2) �

i

(

b

F ) can be analytically continued to the supersector dSect
i

and then�
i

(

b

F )

is asymptotic to bF at 0 within dSect
i

.

3) If g 2 Gfzg and t 2 T then �

i

(g Æ

b

F Æ t

�1

) = g Æ�

i

(

b

F ) Æ t

�1

:

The point is that on a narrow sector there are generally many holomorphic

isomorphisms between A0 and A which are asymptotic to b

F and one is being

chosen in a canonical way. The details of the construction of �
i

(

b

F ) will not be

needed. There are basically two equivalent ways to define �

i

(

b

F ): algorithmic

(start with some solution and modify it to obtain the canonical one which is in

fact uniquely characterised by the second part of the theorem—see [11, 43]), or

summation-theoretic (there are methods of summing the formal series bF on the ith

sector to give the analytic matrix �
i

(

b

F ); the series bF is ‘(k� 1)-summable’—see

[10, 48, 50]). See also [47, 72] regarding asymptotic expansions on sectors.
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Functions on the quotient H(A

0

) are now obtained as follows. Let (A; g
0

) 2

dSyst(A0

) be a compatibly framed connection germ and let bF 2 G[[z℄℄ be the

associated formal isomorphism from Lemma 3.3. The sums of bF on the two

sectors adjacent to some anti-Stokes ray d
i

2 A may be analytically continued

across d
i

and they will generally be different on the overlap. Thus for each anti-

Stokes ray d
i

there is a matrix of holomorphic functions�
i

:= �

i

(

b

F )

�1

Æ�

i�1

(

b

F )

asymptotic to1on a sectorial neighbourhood ofd
i

. Moreover clearly�
i

[A

0

℄ = A

0;

it is an automorphism ofA0. A concrete description of �
i

is obtained by choosing

a basis of solutions of A0, which is made via a choice of branch of log(z).

Thus choose a branch of log(z) along d
1

and extend it in a positive sense across

Sect
1

; d

2

; Sect
2

; d

3

; : : : ; Sect
r

= Sect
0

in turn. In particular we get a lift ep of the

point p 2 Sect
0

to the universal cover of the punctured disc D n f0g and we will

say that these log(z) choices are associated to ep.

Definition 3.5. Fix data (A

0

; z; ep) as above. The Stokes factors of a

compatibly framed connection (A; g
0

) 2

dSyst(A0

) are:

K

i

:= e

�Q

z

��

0

� �

i

� z

�

0

e

Q

; i = 1; : : : ; r = #A

using the choice of log(z) along d
i

, where �
i

:= �

i

(

b

F )

�1

Æ�

i�1

(

b

F ).

Since z�
0

e

Q is a fundamental solution of A0 (i.e. its columns are a basis of

solutions) we have d(K
i

) = 0; the Stokes factors are constant invertible matrices.

By part 3) of Theorem 3.1, K
i

only depends on the Gfzg orbit of (A; g
0

) and so

matrix entries of K
i

are functions on H(A

0

). A useful equivalent definition is:

Definition 3.6. Fix data (A0

; z; ep) and choose (A; g
0

) 2

dSyst(A0

).

�The canonical fundamental solution ofAon the ith sector is�
i

:= �

i

(

b

F )z

�

0

e

Q

where z�
0

uses the choice (determined by ep) of log(z) on Sect
i

. (Note�
i+r

= �

i

.)

� If �
i

is continued across the anti-Stokes ray d
i+1

then on Sect
i+1

we have:

K

i+1

:= �

�1

i+1

Æ �

i

for all i except K
1

:= �

�1

i+1

Æ �

i

Æ M

�1

0

for i = r; where

M

0

:= e

2�

p

�1��

0

is the so-called ‘formal monodromy’.

Taking care to use the right log(z) choices it is straightforward to prove the

equivalence of these two definitions of the Stokes factors. The basic fact then is:

Lemma 3.4. The Stokes factor K
i

is in the group Sto
d

i

(A

0

).

Proof. From Theorem 3.1, �
j

(

b

F ) is asymptotic to b

F at 0 when continued

within the supersector dSect
j

, for each j. Thus (if i 6= 1) z�
0

e

Q

K

i

e

�Q

z

��

0

=

�

i

(

b

F )

�1

�

i�1

(

b

F ) is asymptotic to 1 within the intersection dSect
i

\

dSect
i�1

. As

K

i

is constant we must therefore have (K
i

)

ab

= Æ

ab

unless eqa�qb ! 0 as z ! 0
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along any ray in dSect
i

\

dSect
i�1

. It is straightforward to check this is equivalent to

(ab) being a root of d
i

. (The i = 1 case is similar.)

Thus as in Lemma 3.2 we can define the Stokes matrices of (A; g
0

) 2

dSyst(A0

):

S

i

:= P

�1

K

il

� � �K

(i�1)l+1

P 2 U

+=�

if i is odd/even,where i = 1; : : : ; 2k�2 andP is the permutation matrix associated

to the half-period (d

1

; : : : ; d

l

). To go directly from the canonical solutions to

the Stokes matrices, simply observe that if �
il

is continued in a positive sense

across all the anti-Stokes rays d
il+1

; : : : ; d

(i+1)l

and onto Sect
(i+1)l

we have:

�

il

= �

(i+1)l

PS

i+1

P

�1 for i = 1; : : : ; 2k � 3, and �

il

= �

l

PS

1

P

�1

M

0

for

i = 2k � 2 = r=l where M
0

= e

2�

p

�1�

0

. The main fact we need is then:

Theorem 3.2 (Balser, Jurkat, Lutz [11]). Fix the data (A0

; z; ep) as above.

Then the ‘local monodromy map’ taking the Stokes matrices induces a bijection

H(A

0

)

�

=

�!(U

+

� U

�

)

k�1

; [(A; g

0

)℄ 7�! (S

1

; : : : ; S

2k�2

):

In particularH(A

0

) is isomorphic to the vector space C (k�1)n(n�1) .

Sketch. For injectivity, suppose two compatibly framed systems in dSyst(A0

)

have the same Stokes matrices. Let bF
1

;

b

F

2

be their associated formal isomorphisms

(from Lemma 3.3). Since the Stokes matrices (and therefore the Stokes factors

and the automorphisms �
j

) are equal, the holomorphic matrix �
i

(

b

F

2

)Æ�

i

(

b

F

1

)

�1

has no monodromy around 0 and does not depend on i. Thus on any sector it

has asymptotic expansion b

F

2

Æ

b

F

�1

1

and so (by Riemann’s removable singular-

ity theorem) we deduce the power series bF
2

Æ

b

F

�1

1

is actually convergent with

the function �

i

(

b

F

2

) Æ �

i

(

b

F

1

)

�1 as sum. This gives an isomorphism between

the systems we began with: they represent the same point in H(A

0

). Surjectiv-

ity follows from a result of Sibuya: See [11] Section 6 and also [9] Section 4.

Remark 3. 1. The set H(A

0

) is also described (by the Malgrange-Sibuya

isomorphism) as the first cohomology of a sheaf of non-Abelian unipotent groups

over the circleS1, explaining our notation. However we will not use this viewpoint:

the sums �
i

(

b

F ) lead to canonical choices of representatives of the cohomology

classes that occur. See [9, 43, 50] and the survey [70].

Finally two (by now easy) facts that we will need are:

Corollary 3.5.

� The torus action on H(A

0

) changing the compatible framing corresponds to

the conjugation action t(S) = (tS

1

t

�1

; : : : ; tS

2k�2

t

�1

) on the Stokes matrices,

and so there is a bijection Syst(A0

)=Gfzg

�

=

(U

+

� U

�

)

k�1

=T between the set
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of isomorphism classes of germs of meromorphic connections formally equivalent

to A0 and the set of T -orbits of Stokes matrices.

� If �
0

is continued once around 0 in a positive sense, then on return to Sect
0

it will become

�

0

� PS

2k�2

� � �S

2

S

1

P

�1

M

0

where M
0

= e

2�

p

�1��

0

is the formal monodromy.

Proof. The first part is immediate from Theorem 3.1 statement 3). For the sec-

ond part, from Definition 3.6 we see�
0

becomes�
i

�K

i

� � �K

2

K

1

M

0

when contin-

ued to Sect
i

. Then observe K
r

� � �K

1

= PS

2k�2

� � �S

1

P

�1.

Global Monodromy

Recall we have fixed the dataA of a divisorD =

P

k

i

(a

i

) onP1 and connection

germs d� i

A

0 at each a
i

. Now also choose m disjoint open discs D
i

on P1 with

a

i

2 D

i

and, for each i, a coordinate z
i

on D
i

vanishing at a
i

. Thus the local

picture above is repeated on each such disc. Abstractly the monodromy manifolds

will be defined as spaces of representations of the following groupoid e�.

Choose a base-point p
0

2 P

1

nfa

1

; : : : ; a

m

g and a point b
�

in each of the sectors

bounded by anti-Stokes directions at each pole a
i

, where � ranges over some finite

set indexing these sectors. Let eB
i

denote the (discrete) subset of points of the

universal cover of the punctured disc D
i

n fa

i

g, which are above one of the b
�

’s.

Let eB := fp

0

g [

e

B

1

[ � � � [

e

B

m

. If ep 2 e

B we will write p for the point of P1

underlying ep (namely p
0

or one of the b
�

’s).

Definition 3.7.

1) The set of objects of the groupoid e� is the set eB.

2) If ep
1

; ep

2

2

e

B, the set of morphisms of e� from ep

1

to ep
2

is the set of homotopy

classes of paths  : [0; 1℄! P

1

n fa

1

; : : : ; a

m

g from p

1

to p
2

.

This is clearly a groupoid with multiplication (of composable morphisms)

defined by path composition.

Now let (V;r;g) be a compatibly framed meromorphic connection with irreg-

ular type i

A

0 at a
i

for each i. (Thus, if V is trivial, (V;r;g) represents a point of

the extended moduli space fM�

(A).) For each choice of basis of the fibre V
p

0

of

V at p
0

such (V;r;g) naturally determines a representation of the groupoid e� in

the groupG = GL

n

(C ), as follows.

Suppose [
ep

2

ep

1

℄ is a morphism in e�, represented by a path 
ep

2

ep

1

in the punctured

sphere from p

1

to p
2

. Then from Definition 3.6 (with ep = ep

i

) we obtain a canonical

choice of basis �
i

: C

n

! V of r-horizontal sections of V in a neighbourhood

of p
i

for i = 1; 2. (First use any local trivialisation of V , and then observe the

basis obtained is independent of this choice. In the case ep
i

= p

0

, use the choice of
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basis of V
p

0

to determine�
i

.) Now both bases extend uniquely (as solutions ofr)

along the track 
ep

2

ep

1

([0; 1℄) of the path 
ep

2

ep

1

. Since they are both r-horizontal

bases we have �

1

= �

2

� C on the track of 
ep

2

ep

1

, for some constant invertible

matrix C 2 G. The representation � of e� is defined by setting

�(

ep

2

ep

1

) := C = �

2

�1

�

1

: (20)

ClearlyC only depends on the homotopy class of the path inP1nfa
1

; : : : ; a

m

g and

it is easy to check this is indeed a representation. (For example �maps contractible

loops to 1 and has composition property �(
ep

3

ep

2

� 

ep

2

ep

1

) = �(

ep

3

ep

2

) � �(

ep

2

ep

1

):)

Thus � encodes all possible ‘connection matrices’ between sectors at differ-

ent poles as well as all the Stokes factors and Stokes matrices at each pole. To

characterise the representations of e� that arise in this way we observe:

Lemma 3.6. The representation � has the following two properties:

(SR1) For any i, if ep
1

2

e

B

i

and ep
2

is the next element of eB
i

after ep
1

in a positive

sense and 
ep

2

ep

1

is a small arc in D
i

from p

1

to p
2

then �(
ep

2

ep

1

) 2 Sto
d

(

i

A

0

),

where d is the unique anti-Stokes ray that 
ep

2

ep

1

crosses.

(SR2) For each i there is a diagonal matrix i

� (which has distinct eigenvalues

mod Z if k
i

= 1) such that for any ep
1

2

e

B

i

, ep
2

2

e

B and morphism 

ep

2

ep

1

:

�(

ep

2

(ep

1

+2�)

) = �(

ep

2

ep

1

) � exp(2�

p

�1 �

i

�)

where 
ep

2

(ep

1

+2�)

= 

ep

2

ep

1

as paths, but (ep
1

+ 2�) is the next point of eB
i

after ep
1

(in a positive sense) which is also above p
1

.

Proof. The first part is immediate from Definition 3.5 and Lemma 3.4 whilst the

second is clear from the definition of the canonical solutions, with i

� the exponent

of formal monodromy of (V;r;g) at a
i

.

Definition 3.8.

�A Stokes representation � is a representation of the groupoid e� intoG together

with a choice of m diagonal matrices i� such that (SR1) and (SR2) hold. The set

of Stokes representations will be denoted Hom
S

(

e

�; G).

� The matrices i

� associated to a Stokes representation � will be called the

exponents of formal monodromy of � and the number deg(�) :=
P

i

Tr(i�) is the

degree of �.

� Two Stokes representations are isomorphic if they are in the same orbit of the

following G action on Hom
S

(

e

�; G): if ep
1

; ep

2

2

e

B n fp

0

g, g 2 G define

(g � �)(

p

0

p

0

) = g�(

p

0

p

0

)g

�1

; (g � �)(

p

0

ep

1

) = g�(

p

0

ep

1

);

(g � �)(

ep

2

ep

0

) = �(

ep

2

p

0

)g

�1

; (g � �)(

ep

2

ep

1

) = �(

ep

2

ep

1

):
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� The extended monodromy manifold fM(A) := Hom
S

(

e

�; G)=G is the set of

isomorphism classes of Stokes representations.

Observe that this G action on Hom
S

(

e

�; G) corresponds to the choice of basis

of the fibre V
p

0

made above, and so a compatibly framed meromorphic connection

(V;r;g) canonically determines a point of fM(A). (Also fM(A) does not depend

on the choices of the base-points p
0

; b

�

that were used to define the groupoid e�.)

Proposition 3.7 (see [40]). Two compatibly framed meromorphic connec-

tions are isomorphic if and only if they have isomorphic Stokes representations.

Proof. Suppose (V

1

;r

1

;g

1

); (V

2

;r

2

;g

2

) are isomorphic and both have

irregular type i

A

0 at each a
i

. Thus there is a vector bundle isomorphism ' :

V

1

! V

2 which relates the connections and the framings. It is easy to check

now that, for each i, ' also relates the canonical bases �1;2

(z

i

) : C

n

! V

1;2

of solutions on each sector at a
i

, associated to any point ep 2

e

B

i

. This im-

plies the Stokes representations are isomorphic. Conversely if the Stokes rep-

resentations are isomorphic the local isomorphisms �2

Æ (�

1

)

�1

: V

1

! V

2

extend to P1 to give the desired isomorphism ', as in the proof of Theorem 3.2.

Thus on restricting attention to connections on trivial bundles we get a well-

defined injective map e� :

f

M

�

(A) !

f

M(A) from the extended moduli space
f

M

�

(A) of Section 2. This is the (extended) monodromy map and is the key

ingredient in the whole isomonodromy story. It is a map between complex mani-

folds of the same dimension (see Lemma 3.1 and Proposition 3.8) and moreover

results of Sibuya and Hsieh [63, 32, 62] imply it is holomorphic. (They prove

each canonical fundamental solution varies holomorphically with parameters and

therefore so does all the monodromy data—see also [40] Proposition 3.2.) It fol-

lows immediately that e� is surjective on tangent vectors and biholomorphic onto its

image (since any injective holomorphic map between equi-dimensional complex

manifolds has these properties—see for example [58] Theorem 2.14). We will see

in Section 7 that the image of e� is the complement of a divisor in the degree zero

component of fM(A).

Now we wish to describe the monodromy manifold fM(A) more explicitly and

this requires the following choices:

Definition 3.9. A choice of tentacles T is a choice of:

1) A point p
i

in some sector at a
i

between two anti-Stokes rays (i = 1; : : : ;m).

2) A lift ep
i

of each p
i

to the universal cover of the punctured disc D
i

n fa

i

g.

3) A base-point p
0

2 P

1

n fa

1

; : : : ; a

m

g.

4) A path 
i

: [0; 1℄! P

1

n fa

1

; : : : ; a

m

g in the punctured sphere, from p

0

to

p

i

for i = 1; : : : ;m, such that the loop

(

�1

m

� �

m

� 

m

) � � � � � � (

�1

2

� �

2

� 

2

) � (

�1

1

� �

1

� 

1

) (21)
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based at p
0

is contractible in P1 n fa
1

; : : : ; a

m

g, where �
i

is any loop inD
i

n fa

i

g

based at p
i

encircling a
i

once in a positive sense.

Proposition 3.8. For each choice of tentaclesT there is an explicit algebraic

isomorphism e'

T

:

f

M(A) !

e

C

1

� � � � �

e

C

m

==G from the extended monodromy

manifold to the ‘explicit monodromy manifold’ of Definition 3.1 and (16).

Proof. The choice T determines an isomorphism Hom
S

(

e

�; G)

�

=

�!�

�1

(1) �

e

C

1

�� � ��

e

C

m

as follows. Recall, using the convention used before, that the chosen

point ep
i

2 T determines a labelling of, and a log(z
i

) choice on, each sector and

anti-Stokes ray at a
i

. Let ieb
j

be the element of eB
i

lying in the corresponding

lift of the jth sector iSect
j

at a
i

to the universal cover of the punctured disc

D

i

n fa

i

g. Without loss of generality we assume that ieb
0

= ep

i

and that the base-

point p
0

of e� and T is the same. Also the labelling determines a permutation

matrix P
i

associated to each a
i

(see Lemma 3.2). (If k
i

= 1 set P
i

= 1.) Let



ep

i

p

0

be the morphism of e� from p

0

to ep
i

corresponding to the path 
i

and define

C

i

:= P

�1

i

�(

ep

i

p

0

) 2 G for i = 1; : : : ;m. Next let i�
j

be the morphism from
i

e

b

(j�1)�l

to i

e

b

j�l

with underlying path a simple arc in D
i

n fa

i

g from i

b

(j�1)�l

to
i

b

j�l

in a positive sense (where l = l

i

= r

i

=(2k

i

� 2) and r
i

= #

i

A ). Then

define the Stokes matrices (as explained before Theorem 3.2) by the formulae:
i

S

j

:= P

�1

i

�(

i

�

j

)P

i

for j = 2; : : : ; 2k

i

� 2 and i

S

1

:= P

�1

i

�(

i

�

0

) �

i

M

�1

0

� P

i

.

Finally set i�0 = P

�1

i

i

�P

i

where i

� is the ith exponent of formal monodromy of

� (Definition 3.8). Thus a Stokes representation � determines a point (C;S;�0)

of the product eC
1

� � � � �

e

C

m

, whereC = (C

1

; C

2

; : : : ; C

m

), S = (

1

S; : : : ;

m

S),
i

S := (

i

S

1

; : : : ;

i

S

2k

i

�2

) and �0 = (

1

�

0

; : : : ;

m

�

0

). Now observe that the value

�(

�1

i

��

i

�

i

)of the representation�on the loop�1
i

��

i

�

i

based atp
0

is equal to the

value �
i

(C

i

;

i

S;

i

�

0

) of the map �
i

:

e

C ! G, and so the contractibility of the loop

(21) implies the monodromy data (C;S;�0) satisfies the constraint �
m

� � � �

1

= 1.

This defines the map Hom
S

(

e

�; G) ! �

�1

(1) and it is straightforward to see it is

an isomorphism (using Lemma 3.2 and knowledge of the fundamental group of

the punctured sphere). This map is G-equivariant and so descends to give e'
T

.

Now we turn to the non-extended version. First, taking the exponents of formal

monodromy� = (

1

�; : : : ;

m

�) of any Stokes representation � induces a map

�

T

m

:

f

M(A) �! t

m

; � 7�! �:

Also for each polea
i

there is a torus action on Hom
S

(

e

�; G) defined by the formulae

(t � �)(

ep

2

ep

1

) = t�(

ep

2

ep

1

)t

�1

(t � �)(

eq

2

ep

1

) = �(

eq

2

ep

1

)t

�1

(t � �)(

eq

2

eq

1

) = �(

eq

2

eq

1

) (t � �)(

ep

2

eq

1

) = t�(

ep

2

eq

1

)

(22)
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for any ep
1

; ep

2

2

e

B

i

and eq
1

; eq

2

2

e

B n

e

B

i

, where t 2 T .

Definition 3.10.

�The (non-extended) space of monodromy dataM(A) is the set ofTm orbits in
f

M(A)which have exponents of formal monodromy equal to�0 = (

1

�

0

; : : : ;

m

�

0

),

where i

�

0

= Res
a

i

(

i

A

0

):

M(A) := �

�1

T

m

(�

0

)=T

m

:

� The monodromy map is the map � : M

�

(A) ! M(A) induced from the

extended monodromy map.

The monodromy map is well-defined since part 3) of Theorem 3.1 implies that

the extended monodromy map is Tm-equivariant and also since it is clear that

�

T

m

Æ e� is the moment map for the Tm action on the extended moduli space
f

M

�

(A) (defined in Proposition 2.1).

Corollary 3.9. For each choice of tentacles T there is an explicit algebraic

isomorphism '

T

:M(A)! C

1

� � � � � C

m

==G from the monodromy space to the

explicit set of monodromy data from Definition 3.1 (with C
i

depending on T ).

Proof. The choice of tentacles determines a permutation matrix P
i

for i =

1; : : : ;m. Then define i

�

0

:= P

�1

i

�

i

�

0

� P

i

and use this value to define C
i

.

The rest now follows from Proposition 3.8 since e'
T

is Tm-equivariant, where

(t

1

; : : : ; t

m

) acts on eC
i

via (P�1
i

t

i

P

i

) 2 T and the T -action of Definition 3.1.

Remark 3. 2. (Degree.) If � is a Stokes representation having exponents of

formal monodromy� then the degree deg(�) =
P

i

Tr(i�) of � is an integer. One

way to see this is to choose some tentacles so � determines (via Proposition 3.8)

a point (C;S;�0) of eC
1

� � � � �

e

C

m

satisfying the constraint �
m

� � � �

1

= 1. By

taking the determinant of this constraint we see that
P

i

Tr(i�0) =
P

i

Tr(i�) 2 Z.

(It is also clear that the fixed-degree components fM
d

(A) of the extended mon-

odromy manifolds are pairwise isomorphic.) On the other hand suppose (V;r;g)

is a compatibly framed meromorphic connection on a holomorphic vector bundle

V ! P

1 with irregular type A and exponents of formal monodromy �. Then

by considering the induced connection on the determinant line bundle �

n

V of

V one finds that
P

i

Tr(i�) is equal to the degree of the vector bundle V . The

only point we need to make here is that the germs i

A

0 must be chosen such that
P

i

Tr(i�0) = 0, if the moduli spacesM�

(A) are to be non-empty, and so we will

tacitly assume this throughout.

To end this section we describe the dependence on the local coordinate choices

z

i

that were made right at the start. LetA be a choice of divisorD and connection

germs d� i

A

0 as above. This determines all the spaces fM�

(A);

f

M(A);M

�

(A)

and M(A).



SYMPLECTIC MANIFOLDS AND ISOMONODROMIC DEFORMATIONS 27

Proposition 3.10.

1) The extended monodromy map e� :

f

M

�

(A)!

f

M(A) depends (only) on the

choice of a k
i

-jet of a coordinate z
i

at each a
i

.

2) This coordinate dependence is only within the Tm orbits: The monodromy

map � :M

�

(A)!M(A) is completely intrinsic.

Proof. The key point is to see how a fundamental solution � = �

j

(

b

F )z

�

e

Q

changes when the coordinate z is changed. Here A0

= dQ+ �dz=z is fixed and

Q is determined by (A0

; z) by requiring it to have zero constant term in its Laurent

expansion with respect to z. Suppose z0 = ze

f is a new coordinate choice, for

some local holomorphic function f . One findsQ0 = Q��f+�f(0)�Res
0

(Qdf)

(as meromorphic functions near z = 0), since then Res
0

(Q

0

dz

0

=z

0

) = 0. In turn

�

0

= � � t

�1 where t = exp(Res
0

(Qdf)� �f(0)) 2 T . (The function �
j

(

b

F ) is

intrinsic.) Then observe: 1) If f = O(z

k

) then t = 1, since Q has a pole of order

k�1, and 2)This action of t 2 T corresponds to the torus action we have defined.

Remark 3. 3. One should also note that all the spaces fM�

(A);

f

M(A);M

�

(A)

and M(A) only depend on the principal part of each germ i

A

0. For the mon-

odromy manifolds this is immediate and for the moduli spaces fM�

(A);M

�

(A)

it is because all i

A

0 with the same principal part are formally equivalent via a

transformation with constant term 1 (as explained in Section 2).

4. C1 APPROACH TO MEROMORPHIC CONNECTIONS

This section gives a third viewpoint on meromorphic connections: a C1 ap-

proach. Although we work exclusively with ‘generic’ connections over P1 (as we

wish to study isomonodromic deformations of such connections) we remark that

this C1 approach works over arbitrary compact Riemann surfaces (maybe with

boundary) and the generic hypothesis is also superfluous (see Remark 4.2).

Singular Connections: C1 Connections with Poles

Let D = k

1

(a

1

) + � � � + k

m

(a

m

) be an effective divisor on P1 as usual and

choosem disjoint discsD
i

� P

1 with a
i

2 D

i

and a coordinate z
i

onD
i

vanishing

at a
i

. Define the sheaf of ‘smooth functions with poles on D’ to be the sheaf of

C

1 sections of the holomorphic line bundle associated to the divisor D:

C

1

[D℄ := O[D℄


O

C

1

whereO is the sheaf of holomorphic functions andC1 the infinitely differentiable

complex functions. Any local section of C1[D℄ near a
i

is of the form f=z

k

i

i

for

a C1 function f . Similarly define sheaves 


r

[D℄ of C1 r-forms with poles
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on D (so in particular 
0

[D℄ = C

1

[D℄). A basic feature is that ‘C1-Laurent

expansions’ can be taken at each a
i

. This gives a map

L

i

: 


�

[D℄(P

1

)! C [[z

i

; �z

i

℄℄z

�k

i

i




^

�

C

2 (23)

where C 2 = C dz

i

� C d�z

i

. For example if f is a C1 function defined in a

neighbourhood of a
i

then L
i

�

f=z

k

i

i

�

= L

i

(f)=z

k

i

i

where L
i

(f) is the Taylor

expansion of f at a
i

.

The Laurent map L
i

has nice morphism properties, for exampleL
i

(!

1

^!

2

) =

L

i

(!

1

)^L

i

(!

2

) andL
i

commutes with the exterior derivative d,where d is defined

on the right-hand side of (23) in the obvious way (d(z�1
i

) = �dz

i

=z

2

i

).

We will repeatedly make use of the fact that the kernel of L
i

consists of non-

singular forms, that is: if L
i

(!) = 0 then ! is nonsingular at a
i

. This apparently

innocuous statement is surprisingly tricky to prove directly, but since it is crucial

for us we remark it follows from the following:

Lemma 4.1 (Division). Let D � C be a disk containing the origin. Suppose

f 2 C

1

(D ) and that the Taylor expansion of f at 0 is in the ideal in C [[z; �z ℄℄

generated by z. Then f=z 2 C1(D ).

Proof. This is a special case of a much more general result of Malgrange [44].

The particular instance here is discussed by Martinet [49] p115.

Another fact we will use is that the C1 Laurent expansion map L
i

in (23) is

surjective for each i. This is due to a classical result of E.Borel which we quote

here in the relative case that will be needed later:

Theorem 4.1 (E. Borel). Suppose U is a differentiable manifold, I is a

compact neighbourhood of the origin in R and b

f 2 C [[x; y℄℄ 
 C

1

(U) (where

x; y are real coordinates on C �

=

R

2 ). Then there exists a smooth function f 2

C

1

(U � I � I) such that the Taylor expansion of f at x = y = 0 is bf .

Proof. This is easily deduced, via partitions of unity, by using two applica-

tions of the version of Borel’s theorem proved on p16 of Hörmander’s book [31].

Now let V ! P

1 be a rank n, C1 complex vector bundle.

Definition 4.1. A C

1 singular connection r on V with poles on D is a

map r : V �! V 
 


1

[D℄ from the sheaf of (C1) sections of V to the sheaf

of sections of V 



1

[D℄, satisfying the Leibniz rule: r(fv) = (df)
 v + frv

where v is a local section of V and f is a local C1 function.

Concretely in terms of the local coordinate z
i

on P1 vanishing at a
i

and a local

trivialisation of V , r has the form: r = d�

i

A=z

k

i

i

where i

A is an n� n matrix
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of C1 one-forms. In this paper, to study isomonodromic deformations, we need

only to consider the case when V is the trivial rank n, C1 vector bundle over P1.

(Recall any degree zero vector bundle over P1 is C1 trivial.)

Definition 4.2.

� Let A[D℄ denote the set of C1 singular connections with poles on D on the

trivial C1 rank n vector bundle: A[D℄ :=

�

d � �

�

�

� 2 End
n

�




1

[D℄(P

1

)

�	

where 
1

[D℄ is the sheaf of C1 one-forms with poles on D.

� The gauge group of C1 bundle automorphisms is G := GL

n

(C

1

(P

1

)):

� The curvature of a singular connection d�� 2 A[D℄ is the matrix of singular

two-forms F(�) := (d� �)

2

= �d�+ �

2

2 End
n

�




2

[2D℄(P

1

)

�

:

�The flat connections are those with zero curvature and the subset of flat singular

connections will be denotedAfl[D℄.

Remark 4. 1. Occasionally one comes across notions of curvature of singular

connections involving distributional derivatives. For example a meromorphic con-

nection on a Riemann surface is sometimes said to have a Æ-function singularity

in its curvature at the pole, to account for the monodromy around the pole. The

definition above of curvature does not involve distributional derivatives, and so,

for us, any meromorphic connection over a Riemann surface is flat.

The group G of bundle automorphisms clearly acts on the singular connections

A[D℄ and explicitly this is given by the formula g[�℄ = g�g

�1

+ (dg)g

�1

: This

restricts to an action on Afl[D℄ since F(g[�℄) = g(F(�))g

�1 for g 2 G.

Now choose a generic diagonal connection germ d�

i

A

0 at a
i

for each i and let

A denote this m-tuple of germs and the divisor D, as usual. Since d� � 2 A[D℄

is on the trivial vector bundle, and d� i

A

0 is a germ of a connection on the trivial

bundle, we can compare the Laurent expansion of � at a
i

with i

A

0. In particular

the following definition makes sense:

Definition 4.3.

� Let A(A) be the set of singular connections with fixed Laurent expansions:

A(A) :=

�

d� � 2 A[D℄

�

�

L

i

(�) =

i

A

0 for each i
	

:

� Let eA(A) be the following extended set of singular connections with fixed

Laurent expansions:

e

A(A) :=

�

d� � 2 A[D℄

�

�

L

i

(�) =

i

A

0

+ (

i

��

i

�

0

)

dz

i

z

i

for some i

� 2 t

i

	

where i

�

0

= Res
0

(

i

A

0

), t
i

= t if k
i

� 2 and t

i

= t

0 if k
i

= 1.

� Let G
T

andG
1

denote the subgroups of G of elements having Taylor expansion

equal to a constant diagonal matrix or the identity, respectively, at each a
i

.
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The basic motivation for this definition is Corollary 4.4 below. Note thatA(A)

is an affine space and that if d�� 2 A(A) then (from the division lemma above)

the (0; 1) part of � is nonsingular over all of P1.

Smooth Local Picture

Now we will give a C1 description of the sets H(A

0

) and the local analytic

classes Syst(A0

)=Gfzg defined in Section 3.

We begin with a straightforward observation. Let z be a complex coordinate on

the unit disc D � C . From Borel’s theorem we have an exact sequence of groups:

1�!

0

G

1

�!

0

G

L

0

�!GL

n

(C [[z; �z ℄℄)�!1:

where 0

G is the group of germs at 0 of gauge transformations g 2 G and 0

G

1

:=

ker(L

0

) is the subgroup of germs with Taylor expansion 1.

Fix a generic diagonal connection germ d� A

0 with an order k pole at z = 0.

By projecting a marked pair (A; bF ) onto its second factor we obtain an injection
dSyst(A0

) ,! G[[z℄℄ (see Lemma 3.3) and so in turn may regard dSyst(A0

) as a subset

of GL
n

(C [[z; �z ℄℄). Define bS(A0

) := L

�1

0

(

dSyst(A0

)) to be the lift of this subset to
0

G. Also lift the stabiliser torus T �
=

(C

�

)

n, that is define 0

G

T

:= L

�1

0

(T ):

Lemma 4.2. Taking Taylor series at 0 induces isomorphisms:

Gfzgn

b

S(A

0

)=

0

G

1

�

=

H(A

0

) (24)

and (by considering the residual action of 0G
T

=

0

G

1

�

=

T ):

Gfzgn

b

S(A

0

)=

0

G

T

�

=

Syst(A0

)=Gfzg: (25)

Proof. First observe L
0

induces isomorphisms bS(A0

)=

0

G

1

�

=

dSyst(A0

) and
0

G

T

=

0

G

1

�

=

T . Then recall H(A

0

) := Gfzgn

dSyst(A0

)

Having lifted things up into a smooth context a new interpretation of the smooth

quotients above will be given. In particular it is desirable to remove the groups

Gfzg occurring on the left-hand sides in (24) and (25).

Let 0A[k℄ = 0

A[k(0)℄ denote the set of germs at 0 of C1 singular connections

on the trivial bundle, with poles of order at most k.

Now given g 2 b

S(A

0

) we can apply the formal transformation L
0

(g) to A0 to

obtain a meromorphic connection A := L

0

(g)[A

0

℄. Now apply the C1 gauge

transformation g

�1 to A to define a singular connection �(g) := g

�1

[A℄ =

g

�1

[L

0

(g)[A

0

℄℄. This defines a map � :

b

S(A

0

)!

0

A[k℄. Observe that

� �(g) has Laurent expansion A0 (from the morphism properties of L
0

),

� If h 2 Gfzg is holomorphic then �(hg) = �(g), as h[A℄ = L

0

(h)[A℄, and
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� �(g) is a flat singular connection, since it is C1 gauge equivalent to the

meromorphic connectionA.

Thus � gives a map into the flat connection germs with Laurent expansionA0,

i.e. into 0

Afl(A
0

). In fact it is surjective and its fibres are precisely theGfzg orbits:

Proposition 4.3. The map � defined above induces an isomorphism

Gfzgn

b

S(A

0

)

�

=

�!

0

Afl(A
0

)

onto the set of flat singular connection germs with Laurent expansion A0.

Proof. We have seen the induced map is well defined and now show it is

bijective. For surjectivity, suppose d� � 2

0

Afl(A
0

) is a flat singular connection

with Laurent expansion A0. Thus the d�z component �0;1 of � has zero Laurent

expansion at 0 and so in particular is nonsingular. It follows (see [6] p555 or

[9] p67) that there exists g 2 0

G with (

�

�g)g

�1

= �

0;1 and so A := g

�1

[�℄ is

still flat and has no (0; 1) part. By writing A = dz=z

k for smooth  observe

that flatness implies �

� = 0 and so A is meromorphic. We claim now that A is

formally equivalent toA0, and that L
0

(g) is a formal isomorphism between them.

Firstly L
0

(g) has no terms containing �z because L
0

(

�

�g) = L

0

(�

0;1

g) = 0 since

L

0

(�

0;1

) = 0. Secondly just observe

L

0

(g

�1

)[A

0

℄ = L

0

(g

�1

)[L

0

(�)℄ = L

0

(g

�1

[�℄) = L

0

(A) = A

and so the claim follows. In particular g�1 2 b

S(A

0

) and by construction�(g�1) =

� and so � is onto. Finally if g
1

[A℄ = g

2

[B℄ withA;B meromorphic then h[A℄ =

B with h := g

�1

2

g

1

. Looking at (0; 1) parts gives (��h)h�1 = 0 and so h is holo-

morphic. This proves injectivity.

Combining this with Lemma 4.2 immediately yields the main local result:

Corollary 4.4. There are canonical isomorphisms:

0

Afl(A
0

)=

0

G

1

�

=

H(A

0

) and 0

Afl(A
0

)=

0

G

T

�

=

Syst(A0

)=Gfzg

between the 0

G

1

orbits of flat singular connection germs with Laurent expansion

A

0 and the set of analytic equivalence classes of compatibly framed systems with

formal typeA0, and between the 0

G

T

orbits of flat singular connection germs with

Laurent expansion A0 and the set of analytic equivalence classes of connection

germs formally equivalent to A0.

Proof. This follows directly by substituting 0

Afl(A
0

) for Gfzgn bS(A0

) in

Lemma 4.2. In summary: to go from a flat singular connection d� � 2

0

Afl(A
0

)
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to H(A

0

) just solve (��g)g�1 = �

0;1 and take the Gfzg orbit of L
0

(g

�1

) 2 G[[z℄℄

to give an element ofH(A

0

) (see the proof of Proposition 4.3). Conversely, given
b

F 2 G[[z℄℄ such that A :=

b

F [A

0

℄ is convergent, use E.Borel’s theorem to find

g 2

0

G such that L
0

(g) =

b

F

�1. Then set � = g[A℄ to give � 2 0

Afl(A
0

).

Thus the analytic equivalence classes may be encoded in an entirely C1 way.

These bijections can be thought of as relating the two distinguished types of el-

ements (the meromorphic connections and the connections with fixed Laurent

expansion) within the 0

G orbits in 0

Afl[k℄. That is, they relate the conditions

� 2 Syst(A0

) and � 2 0

Afl(A
0

) on � 2 0

Afl[k℄ by moving within �’s 0

G orbit.

Remark 4. 2. Corollary 4.4 easily extends to the general (non-generic) case,

with the same proof. The precise statement is as follows (but won’t be needed

elsewhere in this paper). Let d � A be any meromorphic connection germ and

let 0

GStab(A) be the subgroup of 0

G consisting of elements g whose Taylor ex-

pansion stabilises A (i.e. L

0

(g)[A℄ = A). Then the set of analytic isomor-

phism classes of meromorphic connection germs formally equivalent to A is

canonically isomorphic to the set of 0

GStab(A)-orbits of flat singular connection

germs with Laurent expansionA: Syst(A)=Gfzg �
=

0

Afl(A)=
0

GStab(A): Similarly

H(A) :=

dSyst
mp

(A)=Gfzg is canonically isomorphic to 0

Afl(A)=
0

G

1

(but in gen-

eral this cannot be interpreted in terms of compatibly framed systems, only in

terms of marked pairs).

Globalisation

Recall we have fixed the dataA (of a divisorD =

P

k

i

(a

i

) on P1 and connec-

tion germs d� i

A

0) and definedA(A) to be the set of singular connections on the

trivial rank n vector bundle on P1 having Laurent expansion i

A

0 at a
i

for each i.

Following the results of the last section we are led to consider such connections

which are flat. The main result is:

Proposition 4.5. There is a canonical bijection between the set of G
T

orbits

of flat C1 singular connections with fixed Laurent expansions A and the set of

isomorphism classes of meromorphic connections with formal type A on degree

zero holomorphic bundles over P1:

M(A)

�

=

Afl(A)=G

T

:

Proof. Suppose (V;r) represents an isomorphism class inM(A). The mero-

morphic connection r is in particular a C1 singular connection, according to

Definition 4.1. Since V is degree zero it is C1 trivial so, by choosing a triviali-

sation, (V;r) determines a singular connection d � � on the trivial bundle over

P

1.
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From the local picture just described, sincer is formally equivalent to i

A

0 at a
i

,

we can choose g 2 G such that g[�℄ has Laurent expansion i

A

0 at a
i

for all i. This

gives an element g[�℄ of Afl(A) and we take the G
T

orbit through it to define the

required map. We need to check this G
T

orbit only depends on the isomorphism

class of (V;r) and that the map is bijective.

Suppose we have two such pairs (V;r) and (V

0

;r

0

) and we choose C1 triv-

ialisations of V and V 0 so that r;r0 give singular connections d � �

1

, d � �

2

respectively. Now a standard �

�-operator argument implies (V;r) �
=

(V

0

;r

0

) if

and only if�
1

and�
2

are in the sameG orbit. Thus an isomorphism class [(V;r)℄of

meromorphic connections determines (and is determined by) a G orbit of singular

connections on the trivial bundle. This G orbit has a subset of singular connections

having Laurent expansion i

A

0 at a
i

for each i. This subset is a G
T

orbit of singular

connections (sinceT is the stabiliser of iA0) and is the element ofAfl(A)=G

T

corre-

sponding to [(V;r)℄.

Corollary 4.6. The set fM(A) of isomorphism classes of triples (V;r;g)

consisting of a nice meromorphic connection r (with poles on D) on a degree

zero holomorphic vector bundle V over P1 with compatible framings g such that

(V;r;g) has irregular type A is canonically isomorphic to the set of G
1

orbits of

flat connections in e

A(A):

f

M(A)

�

=

e

Afl(A)=G

1

:

Proof. As in Corollary 4.4, replacing G
T

by G
1

in Proposition 4.5 corre-

sponds to incorporating a compatible framing as required for fM(A). The de-

sired isomorphism is then obtained by simply repeating the proof of Proposi-

tion 4.5 for each possible set of choices of exponents of formal monodromy�.

Monodromy of Flat Singular Connections

Having related the C1 approach to meromorphic connections we now relate it

to the monodromy approach of Section 3. The key step is to define the generalised

monodromy data of flat C1 singular connections with fixed Laurent expansions,

but this is easy since they too have canonical solutions on sectors:

Lemma 4.7. Suppose � 2

0

Afl(A
0

). For each choice of log(z) there is a

canonical choice �
i

of fundamental solution of � on Sect
i

, given by:

�

i

:= g�

i

(L

0

(g

�1

))z

�

0

e

Q

for any g 2 0

G solving (

�

�g)g

�1

= �

0;1.
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Proof. From the proof of Proposition 4.3, such g is unique up to right mul-

tiplication by h 2 Gfzg and A := L

0

(g

�1

)[A

0

℄ = g

�1

[�℄ is a convergent

meromorphic connection germ. Theorem 3.1 then provides an analytic isomor-

phism �

i

(L

0

(g

�1

)) between A0 and A on Sect
i

. It follows that g�
i

(L

0

(g

�1

))

is an isomorphism between A0 and � which is independent of the choice of g.

Composing this with the fundamental solution z�
0

e

Q of A0 gives the result.

Thus, exactly as in Section 3, a singular connection d� � 2 e

A(A) determines

a Stokes representation � (upto isomorphism). This gives a map (which will be

referred to as the C1 monodromy map):

e� :

e

Afl(A) �!

f

M(A); � 7�! [�℄:

Since the connections in e

Afl(A) are on a degree zero bundle, the image of e� is

in the degree zero component fM
0

(A) of the extended monodromy manifold (see

Remark 3.2). The main result is then:

Proposition 4.8. The C1 monodromy map e� :

e

Afl(A) �!

f

M

0

(A) is

surjective and has precisely the G
1

orbits in e

Afl(A) as fibres, so that

e

Afl(A)=G

1

�

=

f

M

0

(A):

Moreover e� intertwines the G
T

action on e

Afl(A) with the G
T

action on fM
0

(A)

defined via the evaluation map G
T

! T

m and the torus actions of (22).

Before proving this we deduce what the monodromy data corresponds to in the

meromorphic world:

Corollary 4.9. Taking monodromy data induces bijections:

f

M(A)

�

=

f

M

0

(A) and M(A)

�

=

M(A)

between the spaces of meromorphic connections on degree zero bundles and the

corresponding spaces of monodromy data. In particular fM(A) inherits the struc-

ture of a complex manifold from f

M

0

(A).

Proof. The first bijection follows directly from Propositions 4.5 and 4.8. The

second bijection follows from the first by fixing the exponents of formal mon-

odromy and quotienting by the Tm action (using the intertwining property of e�).

Proof (of Proposition 4.8). Choose some tentacles T and a thickening 
i

:

[0; 1℄ � [0; 1℄ ! P

1

n fa

1

; : : : ; a

m

g of each path 

i

(i.e. a ribbon following



i

whose track j
i

j is a closed tubular neighbourhood of the track of 
i

). Let

D

0

be a disc in P1 containing p
0

and disjoint from each disc D
1

; : : : ; D

m

. Let
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jT j := D

0

[

S

m

i=1

(D

i

[ j

i

j) � P

1 be the union of the m+ 1 discs D
i

and the

m ribbons j
i

j. We will suppose (as is clearly possible) that T ; j
i

j; D

0

have been

chosen such that: 1) if i 6= j then j
i

j only intersects j
j

j inside D
0

and 2) that

jT j is homeomorphic to a (closed) disc.

For surjectivity, let�be any degree zero Stokes representation. From Proposition

3.8, specifying � is equivalent to specifying the matrices (C;S;�0) = e'

T

(�).

(Also as in Proposition 3.8, P
i

will denote the permutation matrix associated to

a

i

via the tentacle choice.) Since the Stokes matrices classify germs of singular

connections up to C

1 gauge transformations with Taylor expansion 1, germs

�

i

2

i

e

Afl(
i

A

0

) may be obtained having any given Stokes matrices and residue for

each i = 1; : : : ;m (combine Theorem 3.2 with Corollary 4.4). It is straightforward

to extend�
i

arbitrarily toD
i

. Next the �
i

’s are patched together along the ribbons

j

i

j. Let i�
0

be the canonical solution of �
i

on iSect
0

from Lemma 4.7. Since

G = GL

n

(C ) is path connected it is possible to choose a smooth map �

i

:

j

i

j ! G such that �
i

= 1 on D
0

\ j

i

j and �
i

=

i

�

0

P

i

C

i

on iSect
0

\ j

i

j for

i = 1; : : : ;m. Define � over jT j as follows: �j
D

0

= 0 and for i = 1; : : : ;m

�j

D

i

= �

i

and �j
j

i

j

= (d�

i

)�

�1

i

. It is easy to check these definitions agree on

the overlaps and that when the basis i

�

0

is extended over j
i

j as a solution of �

then �(
ep

i

p

0

) =

i

�

�1

0

�� on j
i

j, where � is the basis which equals 1 on D
0

.

Now we must extend� to the rest ofP1. First the product relation �
m

� � � �

1

= 1

ensures that � has no monodromy around the boundary circle �jT j �
=

S

1, so that

any local fundamental solution 	 extends to give a map 	 : �jT j ! G. Then the

hypothesis that deg(�) = 0 ensures that this loop 	 in G is contractible. To see

this, firstly recall that the determinant map det : G ! C

� expresses G as a fibre

bundle over C � , with fibres diffeomorphic to SL
n

(C ), and that SL
n

(C ) is simply

connected. Then, from the homotopy long exact sequence for fibrations, it follows

that det induces an isomorphism of fundamental groups: �
1

(G)

�

=

�

1

(C

�

)

�

=

Z.

Thus we need to see that the loop  := det(	) : �jT j ! C

� in the punctured

complex plane does not wind around zero. But the winding number of  is

1

2�i

I

�jT j

d 

 

=

1

2�i

I

�jT j

Tr(�)

and the C1 version of Cauchy’s integral theorem (see Lemma 6.3) implies this is

equal to
P

Tr(i�) = deg(�) (using the flatness of � to deduce dTr(�) = 0).

Thus the loop 	 in G may be extended to a smooth map from the the comple-

ment of jT j in P1 to G. We then define � = (d	)	

�1 on this complement and

thereby obtain � 2 e

Afl(A) having the desired monodromy data. Hence the C1

monodromy map is indeed surjective.

Next observe (from Theorem 3.1 and Lemma 4.7) that if h 2 G
T

and �0 = h[�℄

then the canonical solutions of � and �0 are related by: i�0
j

= h �

i

�

j

� t

�1

i

where

t

i

= h(a

i

) 2 T . The intertwining property and the fact that the G
1

orbits are
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contained in the fibres of e� are then immediate from the definition of the Stokes

representation in terms of the canonical solutions

The proof that the fibres are precisely the G
1

orbits is much like the proof of

Proposition 3.7: Suppose �; �0 2 e

Afl(A) have the same monodromy data. Let

' :=

1

�

0

0

(

1

�

0

)

�1 be the induced isomorphism between � and �

0 on 1Sect
0

.

Then ' is single-valued when extended to P

1

n fa

1

; : : : ; a

m

g as a solution of

the induced connection Hom(�; �

0

) on the trivial bundle End(C n ). (When '

is extended around any loop  based at p
1

it has no monodromy since, when

extended around this loop,1�0
0

and 1

�

0

are both multiplied on the right by the same

constant matrix.) Also, since the monodromy data encodes the transitions between

the various canonical fundamental solutions it follows that ' =

i

�

0

j

(

i

�

j

)

�1 for

any i; j. Now observe (from Theorem 3.1 and Lemma 4.7) that i�0
j

(

i

�

j

)

�1 is

asymptotic to1 ata
i

on some sectorial neighbourhood of iSect
j

(j = 1; : : : ; r

i

; i =

1; : : : ;m). It follows that ' extends smoothly to P1 and has Taylor expansion 1

at each a
i

. By construction �0 = '[�℄ so � and �0 are in the same G
1

orbit.

5. SYMPLECTIC STRUCTURE AND MOMENT MAP

In this section we observe that the well known Atiyah-Bott symplectic structure

on nonsingular connections naturally generalises to the singular case we have

been studying. Moreover, as in the nonsingular case we find that the curvature is

a moment map for the action of the gauge group. Thus the moduli spaces of flat

singular connections with fixed expansions arise as infinite dimensional symplectic

quotients.

The main technical difficulty here is that standard Sobolev/Banach space meth-

ods cannot be used since we want to fix infinite-jets of derivatives at the singular

points a
i

2 P

1. Instead the infinite dimensional spaces here are naturally Fréchet

manifolds. We will not use any deep properties of Fréchet spaces but do need a

topology and differential structure. (The explicitness of our situation means we

can get by without using an implicit function theorem—the monodromy descrip-

tion gives eAfl(A)=G

1

the structure of a complex manifold and local slices for this

G

1

action will be constructed directly.) The reference used for Fréchet spaces is

Treves [66] and for Fréchet manifolds or Lie groups see Hamilton [26] and Milnor

[54]; we will give direct references to these works rather than full details here.

The Atiyah-Bott Symplectic Structure on e

A(A)

Let E denote the trivial rank n complex vector bundle over P1 and consider the

complex vector space
1

[D℄(P

1

;End(E)) ofn�nmatrices of globalC1 singular

one-forms on P1 with poles on D (see Section 4). This is the space of sections

of a C1 vector bundle and so can be given a Fréchet topology in a standard way
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([26] p68). Now define W to be the vector subspace

W :=

�

� 2 


1

[D℄(P

1

;End(E))
�

�

L

i

(�) 2 t

dz

i

z

i

for i = 1; : : : ;m

�

of
1

[D℄(P

1

;End(E)) of elements having Laurent expansion zero at each i, except

for a possibly nonzero, diagonal residue term. This is a closed subspace2 and so

inherits a Fréchet topology.

Lemma 5.1. The extended space e

A(A) of singular connections is a complex

Fréchet manifold and if � 2 e

A(A) then the tangent space to e

A(A) at � is canon-

ically isomorphic to the complex Fréchet spaceW defined above: T
�

e

A(A)

�

=

W:

Proof. If allk
i

� 2 then eA(A) is an affine space modelled onW : If�
0

2

e

A(A)

then e

A(A) = f�

0

+ �

�

�

� 2 Wg: In general (some k
i

= 1), eA(A) is identified

in this way with an open subset ofW (recall the residues must be regular modZ):

if �
0

2

e

A(A) then the map f�
0

+ �

�

�

� 2 Wg ! t

m

; � 7!

�

Res
i

L

i

(�)

�

m

i=1

taking the residues is continuous and e

A(A) is the inverse image of an open subset

of t

m. Thus e

A(A) is identified with an open subset of W ; it is thus a Fréchet

manifold (with just one coordinate chart) and the tangent spaces are canonically

identified with W as in the finite dimensional case (see discussion [54] p1030).

Thus following Atiyah-Bott [6] we can define a two-form

!

�

(�;  ) :=

1

2�i

Z

P

1

Tr(� ^  ) (26)

on e

A(A), where � 2 e

A(A) and �;  2 T

�

e

A(A). This integral is well defined

since the two-form Tr(� ^  ) on P1 is nonsingular; its Laurent expansion at a
i

is

a (2; 0) form and so zero. Thus !
�

is a skew-symmetric complex bilinear form on

the tangent space T
�

e

A(A). It is nondegenerate in the sense that if !
�

(�;  ) = 0

for all  then � = 0 (if � 6= 0 then � is nonzero at some point p 6= a

1

; : : : ; a

m

and it is easy then to construct  vanishing outside a neighbourhood of p and such

that !
�

(�;  ) 6= 0). Also !
�

is continuous as a map W �W ! C , since it is

continuous in each factor, and (for Fréchet spaces) such ‘separately continuous’

bilinear maps are continuous ([66] p354). Finally the right-hand side of (26) is

independent of �, so ! is a constant two-form on e

A(A) and in particular it is

closed. Owing to these properties we will say ! is a complex symplectic form on
e

A(A). (See for example Kobayashi [42] for a discussion of the more well-known

theory of symplectic Banach manifolds.)

2since the C1 Laurent expansion maps L
i

are continuous (if we put the topology of simple con-

vergence of coefficients on the formal power series ring which is the image of the Laurent expansion

map L
i

); see [66] p390, where this fact is used to prove E.Borel’s theorem on the surjectivity of L
i

.
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Group Actions

First, the full gauge group G := GL

n

(C

1

(P

1

)) is a Fréchet Lie group; that is,

it is a Fréchet manifold such that the group operations g; h 7! g � h and g 7! g

�1

are C1 maps (see [54] Example 1.3). G is locally modelled on the Fréchet space

Lie(G) := C

1

(P

1

; gl

n

(C )) and has a complex analytic structure coming from the

exponential map exp : Lie(G) ! G; x 7! exp(x) which is defined pointwise in

terms of the exponential map forG. This implies Lie(G) is a canonical coordinate

chart for G in a neighbourhood of the identity since exp has a local inverse g 7!

log(g) (also defined pointwise). In particular Lie(G) is so identified with the

tangent space to G at the identity; the Lie algebra of G.

The group we are really interested in here is G
1

, the subgroup of G consisting of

elements g 2 G having Taylor expansion 1 at each a
i

2 P

1. As above, the Taylor

expansion maps are continuous and so G
1

(the intersection of their kernels) is a

closed subgroup of G. It follows that G
1

is a complex Fréchet Lie group with Lie

algebra

Lie(G
1

) := fx 2 Lie(G)
�

�

L

i

(x) = 0 for i = 1; : : : ;mg

where L
i

is the Taylor expansion map at a
i

. (The same statements also hold for

G

T

except now Lie(G
T

) := fx 2 Lie(G)
�

�

L

i

(x) 2 t for i = 1; : : : ;mg.)

Lemma 5.2. The groups G
1

and G
T

act holomorphically on e

A(A) by gauge

transformations and the fundamental vector field of x 2 Lie(G
T

) takes the value

�d

�

x 2 T

�

e

A(A) at � 2 e

A(A), where d
�

is the singular connection on End(E)

induced from �.

Proof. First the action mapG
T

�

e

A(A)!

e

A(A); (g; �) 7! g�g

�1

+(dg)g

�1

can be factored into simpler maps each of which is holomorphic (see [26]). By

convention the fundamental vector field is minus the tangent field to the flow

generated by x, which may be calculated using the exponential map for G
T

.

The Curvature is a Moment Map

It is clear that the action of G
T

on e

A(A) preserves the symplectic form !: If

g 2 G

T

and� 2 e

A(A) then the derivative of the action of g is simply conjugation:

(g[�℄)

�

: T

�

e

A(A)! T

g[�℄

e

A(A); � 7! g�g

�1

:

and so! is preserved as Tr(�^ ) = Tr(g�g�1^g g�1) for any�;  2 T
�

e

A(A).

More interestingly, this action is Hamiltonian. If we firstly look at the smaller

group G
1

, then, as observed by Atiyah and Bott in the nonsingular case, the cur-

vature is a moment map. To start with observe:

Lemma 5.3. The curvature map F :

e

A(A) �! 


2

(P

1

;End(E)) is an in-

finitely differentiable (even holomorphic) map to the Fréchet space of End(E)
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valued nonsingular two-forms on P1. The derivative of F at � 2 e

A(A) is

(dF)

�

: T

�

e

A(A)! 


2

(P

1

;End(E)); � 7�! �d

�

�

where � 2 T
�

e

A(A) =W and d
�

: 


1

[D℄(P

1

;End(E))! 


2

[2D℄(P

1

;End(E))

is the operator naturally induced from the singular connection �.

Proof. Recall the curvature is given explicitly by F(�) = �d�+ � ^ � and

observe (by looking at Laurent expansions and using the division lemma) that

this is a matrix of nonsingular two-forms. That F is C1 with the stated deriva-

tive follows from basic facts about calculus on Fréchet spaces (see [26] Part I).

Next there is a natural inclusion from 


2

(P

1

;End(E)) to the dual of the Lie

algebra of G
1

given by taking the trace and integrating:

� : 


2

(P

1

;End(E))! Lie(G
1

)

�

; F(�) 7!

�

x 7!

1

2�i

Z

P

1

Tr(F(�)x)

�

where x 2 Lie(G
1

) is a matrix of functions on P1. Using this inclusion we will

regard F as a map into the dual of the Lie algebra of the group. We then have

Proposition 5.4. The curvature F :

e

A(A) �! Lie(G
1

)

� is an equivariant

moment map for theG
1

action on the extended space eA(A) of singular connections.

Proof. Everything has been set up so that the arguments from the nonsingular

case still work, as we will now show. Given x 2 Lie(G
1

), define a (Hamiltonian)

function H
x

on e

A(A) to be the x component of F :

H

x

:= hF ; xi :

e

A(A)! C ; H

x

(�) =

1

2�i

Z

P

1

Tr(F(�)x)

where the angled brackets denote the natural pairing between Lie(G
1

) and its dual.

We need to show that the fundamental vector field of x is the Hamiltonian vector

field of H
x

, i.e. that (dH
x

)

�

= !

�

(�;�d

�

x) as elements of T �
�

e

A(A). Now if

� 2 T

�

e

A(A) then

(dH

x

)

�

(�) = �

1

2�i

Z

P

1

Tr((d
�

�)x) (27)

from Lemma 5.3 and the chain rule. Now observe that Tr(�x) is a nonsingular

one-form on P

1 (as L
i

(x) = 0 for all i). Therefore Stokes’ theorem implies

dTr(�x) = Tr((d
�

�)x) � Tr(� ^ d
�

x) integrates to zero over P1. Hence (27)
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becomes

(dH

x

)

�

(�) = �

1

2�i

Z

P

1

Tr(� ^ d
�

x) = !

�

(�;�d

�

x)

proving that the curvature is indeed a moment map.

The equivariance follows directly from the definition of the coadjoint action of

G

1

: If x 2 Lie(G
1

) then hAd�
g

(F(�)); xi := hF(�);Ad
g

�1
(x)i = hF(g[�℄); xi

using the fact that Tr(F(�)g�1xg) = Tr(F(g[�℄)x).

Thus the subset of flat connections is the preimage of zero under the moment

map: e

Afl(A) = F

�1

(0): Therefore, at least in a formal sense, the moduli space

is a symplectic quotient: e

Afl(A)=G

1

= F

�1

(0)=G

1

: (Recall e

Afl(A)=G

1

was

identified in Section 4 with the space fM
0

(A) of monodromy data, analogously to

the non-singular case.) In the next section we will show that this prescription does

define a genuine symplectic structure on at least the dense open subset of fM
0

(A)

which is the image of the extended monodromy map e�.

Torus Actions

To end this section we consider the action of the larger groupG
T

on the extended

space of singular connections eA(A). This action is also Hamiltonian:

Proposition 5.5. Let � :

e

A(A) �! Lie(G
T

)

� be the map given by taking

the curvature together with the residue at each a
i

: If x 2 Lie(G
T

) and � 2 e

A(A)

h�(�); xi :=

1

(2�

p

�1)

Z

P

1

Tr (F(�)x) �

m

X

i=1

Res
i

L

i

(Tr(�x)):

Then � is an equivariant moment map for the G
T

action on e

A(A).

Proof. For any x 2 Lie(G
T

) define the function H
x

:

e

A(A) ! C to be the x

component of �: H
x

(�) := h�(�); xi: If � 2 T
�

e

A(A) then

(dH

x

)

�

(�) = �

1

(2�

p

�1)

Z

P

1

Tr((d
�

�)x) �

X

i

Res
i

L

i

(Tr(�x)): (28)

Our task is to show !

�

(�;�d

�

x) = (dH

x

)

�

(�). We do this by using the C1

Cauchy integral theorem (see Lemma 6.3). Recall � is a matrix of C1 one-forms

onP1 with (at worst) first order poles in its (1; 0) part at each a
i

. Also x 2 Lie(G
T

)

is a matrix of functions onP1 and has Taylor expansion equal to a constant diagonal

matrix at each a
i

. Thus for each i we can choose a C1 function f
i

: P

1

! C

which vanishes outside D
i

, such that Tr(�x) = � + f

1

dz

1

=z

1

+ � � � f

m

dz

m

=z

m
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for some nonsingular one-form � on P1. Thus dTr(�x) = d� �

P

i

�f

i

��z

i

dz

i

^d�z

i

z

i

and so by Stokes’ theorem and Cauchy’s integral theorem:

Z

P

1

dTr(�x) =
X

i

Z

D

i

�f

i

��z

i

dz

i

^ d�z

i

z

i

= �(2�

p

�1)

X

i

f

i

(a

i

):

(Note f
i

(a

i

) = Res
i

L

i

(Tr(�x)).) Then the equality !
�

(�;�d

�

x) = (dH

x

)

�

(�)

follows from the fact that dTr(�x) = Tr(d
�

(�x)) = Tr((d
�

�)x) � Tr(� ^ d
�

x).

The equivariance follows exactly as before since G
T

=G

1

�

=

T

m is Abelian.

Instead we could do the reduction in stages, and consider the Tm action on
e

Afl(A)=G

1

. This matches up with the Hamiltonian Tm actions considered in

Section 2, since the residues above are the exponents of formal monodromy i

�.

6. THE MONODROMY MAP IS SYMPLECTIC

Most of the story so far can be summarised in the commutative diagram:

f

M(A)

�

=

�!

e

Afl(A)=G

1

S

?

?

y

�

=

e

O

1

� � � � �

e

O

m

==G

�

=

f

M

�

(A)

e�

�!

f

M

0

(A):

(29)

The extended moduli space f

M

�

(A) was defined in Section 2 to be the set of

isomorphism classes of compatibly framed meromorphic connections on trivial

rank n vector bundles with irregular type A. It was given an intrinsic complex

symplectic structure explicitly in terms of (finite dimensional) coadjoint orbits and

cotangent bundles. The extended monodromy manifold fM(A) was defined as the

set of isomorphism classes of Stokes representations and looks like a multiplicative

version of fM�

(A) (when both are described explicitly). fM
0

(A) is the degree zero

component of fM(A) and was identified with the set of G
1

orbits in the extended

space eAfl(A) of flatC1 singular connections. Moreover the curvature was shown

to be a moment map for the action of the gauge groupG
1

on the symplectic Fréchet

manifold e

A(A), so that (formally) eAfl(A)=G

1

is a complex symplectic quotient.
f

M(A) has the same definition as fM�

(A) except with the word ‘trivial’ replaced

by ‘degree zero’. The act of taking monodromy data defines both the right-hand

isomorphism in the diagram and the monodromy map e�, which is a biholomorphic

map onto its image (a dense open submanifold of fM
0

(A)).

Basically the bottom line appears in the work [40] of Jimbo, Miwa and Ueno

but the symplectic structures and the rest of the diagram do not. The torus Tm �

=

(C

�

)

nm acts on each space in (29) and these actions are intertwined by all the

maps. The non-extended picture arises by taking the symplectic quotient (fixing
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the exponents of formal monodromy and quotienting by Tm). We then obtain

another commutative diagram as above but with all the tildes removed.

In this section we show that the symplectic structure on e

A(A) does induce a

symplectic structure on (at least) the dense open submanifold of fM
0

(A) that is the

image of the monodromy map e�, and that this symplectic form pulls back along e�

to the explicit symplectic form on f

M

�

(A). In other words we will prove:

Theorem 6.1. The monodromy map e� is symplectic.

Analogous results have been proved in the simple pole case independently by

Hitchin [29] and by Iwasaki [34, 35]. (Note that Iwasaki considers onlyPSL
2

(C )

Fuchsian equations, but he does so over (fixed) arbitrary genus Riemann surfaces.)

Factorising the Monodromy Map

Recall from Proposition 4.5 how the isomorphism at the top of the above diagram

arose: a meromorphic connection gives rise to aGorbit ofC1 singular connections

and we consider the subset with fixed Laurent expansion at each a

i

to define

the map. In other words we can choose g 2 G to ‘straighten’ a meromorphic

connection to have fixed C1 Laurent expansions and thereby specify an element

of eAfl(A). Here we show that this straightening procedure can be carried out for a

family of connections all at the same time, and so the monodromy map factorises

through e

Afl(A).

As usual we fix the data A consisting of an effective divisor D =

P

k

i

(a

i

)

and diagonal generic connections germs d � i

A

0. Also choose a coordinate z to

identify P1 with C [ 1 such that each a
i

is finite and let D
1

; : : : ; D

m

� P

1 be

disjoint open disks with a
i

2 D

i

, so that z
i

:= z � a

i

is a coordinate on D
i

.

Proposition 6.1. Let U �

f

M

�

(A) be an open subset. Then there exists a

universal family d
P

1

� A of meromorphic connections on the trivial bundle over

P

1 (with compatible framings g = (

1

g

0

; : : : ;

m

g

0

)) parameterised by u 2 U and

a family of smooth bundle automorphisms g 2 GL
n

(C

1

(U � P

1

)) such that for

each u 2 U and each i = 1; 2; : : : ;m:

� g(u; a

i

) 2 GL

n

(C ) is the compatible framing i

g

0

(u) at a
i

specified by u 2 U ,

� The singular connection �(u) := g(u)[A(u)℄ on P1 has Laurent expansion
i

A

0

+

i

R(u) at a
i

2 P

1, where i

R(u) = (

i

��

i

�

0

)dz=z

i

, i�0 = Res
i

(

i

A

0

) and i

�

is the exponent of formal monodromy of (d�A(u);g) at a
i

,

� If z 2 P

1

n (D

1

[ � � � [D

m

) then g(u; z) = 1.

Proof. The construction of the universal family is immediate from the proof

of Proposition 2.1: Using the coordinate choices, fM�

(A) can be identified with

the submanifold of ��1
G

(0) �

e

O

1

� � � � �

e

O

m

which has 1

g

0

= 1. This subset

was identified as a set of matrices of meromorphic one-formsA(u) onP1, together

with compatible framingsg. (Although we do not need this fact, it is easy to check
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that the family (d�A;g) of compatibly framed connections on the trivial bundle

has the appropriate universal property for fM�

(A); it is a fine moduli space.)

Now consider the Laurent expansion L
i

(A) 2 End
n

�

C fz

i

g 
 O(U)

�

dz=z

k

i

i

of A at a
i

2 P

1, where the coefficients are now holomorphic functions on U . (If

u 2 U then L
i

(A)(u) = L

i

(A(u)) as elements of End
n

(C fz

i

g)dz=z

k

i

i

.) Recall

from Lemma 3.3 that the compatible framings determine formal isomorphisms: In

the relative case here this means that, for each i, there is a unique invertible matrix
i

bg 2 GL

n

(C [[z

i

℄℄
O(U)) of formal power series with coefficients inO(U)which

agrees with the compatible framing at a
i

and for each u 2 U satisfies:

i

bg(u)[A(u)℄ =

i

A

0

+

i

R(u) 2 End
n

�

C [[z

i

℄℄

�

dz

z

k

i

i

(30)

with i

R(u) as in the statement of the proposition. (The algorithm to construct such
i

bg’s is as before; it works with coefficients in O(U).)

The crucial step is to now use E. Borel’s result that the Taylor expansion map is

surjective (Theorem 4.1 above). Applying this to each matrix entry of each i

bg in

turn for i = 1; : : : ;m gives matrices of functions ig 2 End
n

(C

1

(U �D

i

)) such

that for each u 2 U the Taylor expansion of ig at a
i

is ibg(u). Since det ig(u; a
i

) =

det

i

g

0

(u) is nonzero for allu 2 U , there is a neighbourhoodofU�fa
i

g � U�P

1

throughout which det(

i

g) is nonzero. It follows (as GL
n

(C ) is connected) that

there is a smooth bundle automorphism g 2 GL

n

(C

1

(U � P

1

)) that equals i

g

in some neighbourhood of U � fa

i

g � U � P

1 for each i and equals 1 outside

U � (D

1

[ � � � [D

m

). In particular g has the desired Taylor expansions at each

a

i

so that � = g[A℄ has the desired C1 Laurent expansions by construction.

Corollary 6.2. The monodromy map e� factorises through e

Afl(A): It is

possible to choose a mapb� from the extended moduli space fM�

(A) to the extended

space of flat singular connections determined by A such that the diagram:

f

M

�

(A)

b�

�!

e

Afl(A)

i

,!

e

A(A)







?

?

y

=G

1

f

M

�

(A)

e�

�!

f

M

0

(A)

commutes and the composition iÆb� into the Fréchet manifold eA(A) is holomorphic.

Proof. Construct g as in Proposition 6.1 with U =

f

M

�

(A) and then define

b�(u) = g(u)[A(u)℄ for all u 2

f

M

�

(A). All that remains is to see that the

composition i Æ b� is holomorphic. Recall (from Lemma 5.1) that by choosing

a basepoint eA(A) is identified with a Fréchet submanifold of the Fréchet space




1

[D℄(P

1

;End(E)) of matrices of C1 one-forms with poles on the divisor D.
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Thus we must prove that the map fM�

(A)! 


1

[D℄(P

1

;End(E)); u 7! �(u) :=

g(u)[A(u)℄ is holomorphic. Now if u
0

2

f

M

�

(A) and W
0

2 T

u

0

f

M

�

(A) is a

tangent vector at u
0

, then we will denote the partial derivative of � along W
0

by

W

0

(�) 2 


1

[D℄(P

1

;End(E)): Here we think of � as a section of the C1 vector

bundle ��(End
n

(


1

[D℄)) over P1 � U (where � : P

1

� U ! P

1 is the obvious

projection). This vector bundle is trivial in theU directions so the partial derivative

makes sense. (Concretely, local sections are of the form
P

h

i

�

i

forC1 functions

h

i

on U and sections �
i

of End
n

(


1

[D℄). Then W
0

differentiates just the h
i

’s:

W

0

(

P

h

i

�

i

) =

P

W

0

(h

i

)�

i

.) It then follows from basic facts about calculus

on Fréchet spaces that the map i Æ b� is holomorphic and has derivative W
0

(�)

along W
0

at u
0

. (This can be deduced from Examples 3.1.6 and 3.1.7 in [26].)

Main Proof

Proof (of Theorem 6.1). Choose g as in Corollary 6.2 above and let b� :

f

M

�

(A) !

e

Afl(A) be the corresponding lift of the monodromy map. It is suffi-

cient for us to prove that the composite map iÆb� :

f

M

�

(A)!

e

A(A) is symplectic.

This is because the symplectic form on fM
0

(A) is defined locally as (i Æ s)�!
e

A(A)

for any local slice s :

f

M

0

(A) !

e

Afl(A) of the G
1

action. But, over the subset

e�(

f

M

�

(A)), such a slice is given by b� Æ e��1. Thus e��!
f

M

0

(A)

= (i Æ b�)

�

!

e

A(A)

and, if i Æ b� is symplectic, this is !
f

M

�

(A)

.

Now choose a pointu
0

2

f

M

�

(A) and two tangent vectorsW
1

;W

2

2 T

u

0

f

M

�

(A).

Define two matrices of singular one-forms onP1,�
j

:=W

j

(�) 2 End
n

(


1

[D℄(P

1

))

(j = 1; 2), to be the corresponding partial derivatives of �(u) := g(u)[A(u)℄. As

in the proof of Corollary 6.2, �
j

is the derivative (i Æ b�)
�

(W

j

) of the map i Æ b�

along W
j

. Therefore what we must prove is:

1

2�i

Z

P

1

Tr(�
1

^ �

2

) = !

f

M

�

(A)

(W

1

;W

2

): (31)

The first step is to obtain a formula for the right-hand side in terms of g. This

comes from Lemma 2.3 since, by construction, the first k
i

terms of the Taylor

expansion of g at a
i

give a section of the ith ‘winding map’w. For j = 1; 2 define
i

_

�

j

= W

j

(

i

�) 2 t where i

� is the ith exponent of formal monodromy (which is

regarded as a t-valued function on f

M

�

(A)). Let i _R
j

:=

i

_

�

j

dz=z

i

and denote the

derivatives of g as _g

j

:= W

j

(g) 2 End
n

(C

1

(P

1

)). Then according to Lemma

2.3, if we define i

X

j

2 g

k

i

to be the first k
i

terms in the Taylor expansion of

g(u

0

)

�1

_g

j

at a
i

then

!

f

M

�

(A)

(W

1

;W

2

) =

m

X

i=1

�

h

i

_

R

1

;

i

e

X

2

i � h

i

_

R

2

;

i

e

X

1

i+ h

i

A(u

0

); [

i

X

1

;

i

X

2

℄i

�

(32)
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where i

A is the Laurent expansion ofA at a
i

and i

e

X

j

=

i

g

0

(u

0

) �

i

X

j

�

i

g

0

(u

0

)

�1

2

g

k

i

for j = 1; 2 and i = 1; : : : ;m.

Now we will calculate the left-hand side of (31). First observe that the two-form

Tr(�
1

^ �

2

) on P1 is non-singular. Indeed the C1 Laurent expansion of �
j

at a
i

is i

_

R

j

, and so the expansion of Tr(�
1

^ �

2

) is a (2; 0) form and so zero. Then the

division lemma implies Tr(�
1

^ �

2

) is non-singular.

Next, by differentiating the expression g(u)[A(u)℄ for � along W
j

we find

�

j

= g(u

0

) �

e

�

j

� g(u

0

)

�1

;

e

�

j

:=

_

A

j

+ d

A(u

0

)

�

g(u

0

)

�1

_g

j

�

(33)

for j = 1; 2, where _

A

j

:= W

j

(A(u)) and g(u) = g(u; �) 2 G. (Note that this

formula is the basic reason why the ‘straightening’ procedure makes the Atiyah-

Bott formula (26) non-trivial in this situation.) In particular we have Tr(�
1

^�

2

) =

Tr(e�
1

^

e

�

2

). Observe this two-form is zero outside of the disks D
i

, since _g

j

is

zero there and each _

A

j

has type (1; 0). It follows that the integral splits up into

integrals over the closed disks:

Z

P

1

Tr(�
1

^ �

2

) =

m

X

i=1

Z

D

i

Tr(e�
1

^

e

�

2

): (34)

We break each term in this sum into two pieces, using the definition (33) of e�
2

:

Tr(e�
1

^

e

�

2

) = Tr(e�
1

^

_

A

2

)+Tr
�

e

�

1

^ d

A(u

0

)

(g(u

0

)

�1

_g

2

)

�

: Therefore by com-

paring with the expression (32), the theorem now follows immediately from:

Claim.

1)

1

(2�

p

�1)

R

D

i

Tr(e�
1

^

_

A

2

) = h

i

A(u

0

); [

i

X

1

;

i

X

2

℄i � h

i

_

R

2

;

i

e

X

1

i;

2)

1

(2�

p

�1)

R

D

i

Tr(e�
1

^ d

A(u

0

)

(g(u

0

)

�1

_g

2

)) = h

i

_

R

1

;

i

e

X

2

i:

The basic tool we will use to evaluate these integrals is:

Lemma 6.3. (ModifiedC1Cauchy Integral Theorem). Let k be a nonnegative

integer, a 2 C a complex number and D
a

a disk in C containing the point a.

Suppose f 2 C1(D

a

) and
�

�f

��z

�

=(z� a)

k

2 C

1

(D

a

). Then
�

�f

��z

�

dz^d�z

(z�a)

k+1

is

absolutely integrable over D
a

and

(2�i)

k!

�

k

f

�z

k

(a) =

I

�D

a

f(z)dz

(z � a)

k+1

+

Z

D

a

�f

��z

dz ^ d�z

(z � a)

k+1

where the line integral is taken in an anti-clockwise direction.

Proof. The k = 0 case is the usual C1 Cauchy integral theorem, see [23] p2.

Differentiating with respect to a then gives the above result: we may reorder the in-

tegration and differentiation due to the absolute integrability.
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Part 1) of the claim arises as follows. Since _

A

2

is a matrix of meromorphic

one-forms we have Tr(e�
1

^

_

A

2

) = Tr(e�
(0;1)

1

^

_

A

2

); and from (33):

e

�

(0;1)

1

=

�

�(g(u

0

)

�1

_g

1

) =

�(g(u

0

)

�1

_g

1

)

��z

d�z:

Also _

A

2

has a pole of order at most k
i

at a
i

and so we can define a smooth function

on D
i

, f 2 C

1

(D

i

), by the prescription fdz = (z � a

i

)

k

i

� Tr
�

g(u

0

)

�1

_g

1

_

A

2

�

on D
i

: By taking the exterior derivative of both sides of this and dividing through

by (z � a

i

)

k

i we deduce

Tr(e�
1

^

_

A

2

) = �

�f

��z

dz ^ d�z

(z � a

i

)

k

i

on D
i

;

where the minus sign occurs since we have reversed the order ofdzandd�z. Observe

that the Taylor expansion of fdz at a
i

has no terms containing �z

i

. Thus �f=��z

has zero Taylor expansion at a
i

and in particular using the division lemma we see

f satisfies the conditions in Lemma 6.3. Also f is zero on the boundary �D
i

since

_g

1

is zero there. Therefore Cauchy’s integral theorem gives

1

(2�

p

�1)

Z

D

i

Tr(e�
1

^

_

A

2

) = �

1

k!

�

k

f

�z

k

(a

i

) with k = k

i

� 1. (35)

This value is just �Res
i

(fdz=(z � a

i

)

k

i

) = �Res
i

(Tr
�

g(u

0

)

�1

_g

1

_

A

2

�

), where

‘residue’ just means taking the coefficient of dz=z
i

in the (C1) Laurent expansion.

This last expression only involves the principal part of _

A

2

at a
i

and the first k
i

terms of the Taylor expansion of g(u
0

)

�1

_g

1

. By definition these first k
i

terms are

given by i

X

1

. Also, by construction, the principal part of A at a
i

is the same as

the principal part of g(u)�1
�

i

A

0

+ (

i

��

i

�

0

)dz=z

i

�

g(u). It follows directly that

PP
i

(

_

A

2

) = PP
i

W

2

(A(u)) = [

i

A(u

0

);

i

X

2

℄ +

i

g

0

(u

0

)

�1

�

i

_

R

2

�

i

g

0

(u

0

):

Statement 1) of the claim is now immediate, upon substituting this and i

X

1

into

the expression�Res
i

(Tr
�

g(u

0

)

�1

_g

1

_

A

2

�

) for the integral (35).

Now for part 2) of the claim. First observe that d
A(u

0

)

e

�

1

= 0 as a matrix of two-

forms onP1. This is equivalent to d
�(u

0

)

�

1

= 0 (since e�
1

= g(u

0

)

�1

�

1

g(u

0

) and

�(u) = g(u)[A(u)℄), which follows immediately by differentiating the equation

d(�(u)) = �(u) ^ �(u) for the flatness of � along W
1

.

Therefore, by Leibniz Tr(e�
1

^ d

A(u

0

)

(g(u

0

)

�1

_g

2

)) = �dTr(e�
1

g(u

0

)

�1

_g

2

).

Now, the Laurent expansion of �
1

at a
i

is just i _R
1

, so that �
1

=

i

 

1

+

i

_

R

1

on D
i

for some matrix of non-singular one-forms i 
1

. Thus the integrand in 2) is

�dTr(g(u
0

)

�1

�

i

 

1

� _g

2

)� dTr(g(u
0

)

�1

�

i

_

R

1

� _g

2

):
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The first term integrates to zero over the disk by Stokes’ theorem (the boundary term

is zero as _g
2

vanishes on �D
i

). Now from the definition i

_

R

1

=

i

_

�

1

dz

z�a

i

we find that

the second term is �f

��z

dz^d�z

z�a

i

where f := Tr(g(u
0

)

�1i

_

�

1

_g

2

). This smooth function

f vanishes on �D
i

and so part 2) of the claim follows using Cauchy’s integral

theorem since f(a
i

) = h

i

R

1

;

i

e

X

2

i. This completes the proof of Theorem 6.1.

7. ISOMONODROMIC DEFORMATIONS AND SYMPLECTIC

FIBRATIONS

Now we will consider smoothly varying the data A that was previously held

fixed (consisting of the pole positions and the choices of generic connection germs

d�

i

A

0 at the poles)—all that is now fixed throughout is the rank n of the bundles,

the numberm of distinct poles and the multiplicities k
1

; : : : ; k

m

of the poles. This

leads naturally to the notion of ‘isomonodromic deformations’ of meromorphic

connections. Our aim is to explain, and then prove, the following:

Theorem 7.1. The Jimbo-Miwa-Ueno isomonodromic deformation equa-

tions are equivalent to a flat symplectic Ehresmann connection on a symplectic

fibre bundle, having the moduli spaces fM�

(A) as fibre.

The Betti Approach to Isomonodromy

A choice of data A determines all the spaces f

M

�

(A);

f

M (A);M

�

(A) and

M(A). Note however that the extended spaces fM�

(A) and fM(A) only depend

on the principal part of each diagonal matrix d(iQ) of meromorphic one-forms,

where i

A

0

= d(

i

Q) +

i

�

0

dz

i

=z

i

. (c.f. Remark 3.3.) Thus if a 2 P

1 it is useful to

define the setX
k

(a) of ‘order k irregular types at a’, to be the set of such principal

parts. Upon choosing a local coordinate z vanishing at a we have an isomorphism

X

k

(a)

�

=

(C

n

n diagonals)� (C

n

)

k�2 (36)

obtained by taking the coefficients of dz=zj of the Laurent expansion in z of A0,

for j = k; k � 1; : : : ; 2. (If k = 1 define X
k

(a) := (point).)

For the rest of this section we will change notation slightly, and let A denote

data (a
1

; a

2

; : : : ; a

m

;

1

A

0

; : : : ;

m

A

0

) where i

A

0

2 X

k

i

(a

i

) and the a
i

are pairwise

distinct points of P1. Thus such A determines the extended spaces fM�

(A) and
f

M(A) (although we need to further specify exponents of formal monodromy i

�

0

to defineM�

(A) and M(A)).

There are three manifolds of deformation parameters we will consider:

Definition 7.1.

� The basic manifold of deformation parametersX is simply the set of suchA.
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� The extended manifold of deformation parameters e

X is the set of such A

together with the choice of a k
i

-jet of a coordinate z
i

at each a
i

.

� If z is a fixed coordinate identifying P1 with C [1, the Jimbo-Miwa-Ueno

manifold of deformation parametersXJMU is the set of all suchA having a
1

=1.

It is easy to see these are complex manifolds, withdim(X) = dim(XJMU)+1 =

dim(

e

X)�

P

k

i

= m�mn+n

P

k

i

. There is an obvious embeddingXJMU ,! X

and a projection e

X � X forgetting the jets of local coordinates. Moreover using

the chosen coordinate z there is an embeddingXJMU ,!

e

X obtained by using the

jets of the coordinates z
i

:= z � a

i

for i = 2; : : : ;m and z
1

:= 1=z. XJMU can

be described very explicitly: via (36) these coordinates identify it with

(C

m�1

n diagonals)� (C

n

n diagonals)m�l � (C

n

)

l+

P

(k

i

�2)

where l = #fi

�

�

k

i

= 1g is the number of simple poles. However our aim here is

more to understand the intrinsic geometry of isomonodromic deformations, than

seek explicitness, and so we will mainly use X and e

X .

Now we move on to the construction of bundles over these parameter spaces.

Definition 7.2. The bundle of extended moduli spaces f

M

� is the set

of isomorphism classes of data (V;r;g; a) consisting of a generic meromorphic

connectionr (with compatible framingsg) on a trivial rankn holomorphic vector

bundle V over a fixed copy of P1 such that r has m poles which are labelled

a

1

; : : : ; a

m

and the order of the pole at a
i

is k
i

.

It is clear from the discussion in Section 2 that a generic compatibly framed

connection determines an irregular type at each pole and it follows that there is

a natural projection f

M

�

� X onto the manifold X of deformation parameters,

taking the pole positions and the irregular types. The fibre of this projection over

a point A 2 X is the extended moduli space f

M

�

(A). The results of Section 2

now yield the following, which will amount to half of Theorem 7.1:

Proposition 7.1. The bundle fM� of extended moduli spaces is a complex

manifold and the projection above expresses it as a locally trivial symplectic fibre

bundle over X . In particular fM� has an intrinsic complex Poisson structure, its

foliation by symplectic leaves is fibrating and the space of leaves is X .

Proof. The only non-trivial part left is to see that fM� is locally trivial as a

bundle of symplectic manifolds. The decoupling lemma from Section 2 is useful

here. Choose m disjoint open disks D
i

� P

1 and choose a coordinate z on P1

which is non-singular on all the D
i

’s. Restrict to the open subset X 0 of X having

a

i

2 D

i

for each i. Let z
i

:= z�a

i

. Now, from Proposition 2.1, overX 0 any fibre
f

M

�

(A) can be identified (using the coordinates z
i

)with a symplectic submanifold

of eO
1

�� � ��

e

O

m

(e.g. as the subset of ��1
G

(0) which has 1

g

0

= 1). In turn, using
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Lemma 2.4, fM�

(A) is identified (if all k
i

� 2) with the symplectic manifold

(T

�

G)

m�1

�

1

O

B

� � � � �

m

O

B

where i

O

B

is the B
k

i

-coadjoint orbit through the element of b

�

k

i

determined by
i

A

0 (on expanding i

A

0 with respect to z
i

and replacing z
i

by �). Thus the de-

pendence of fM�

(A) on A is clear: as A varies, the orbit iO
B

moves around

in b

�

k

i

. The key fact now is that B
k

i

is a nilpotent Lie group: coadjoint orbits

of nilpotent Lie groups are diffeomorphic to vector spaces and admit global Dar-

boux coordinates. Indeed M.Vergne [71] shows how to find dim(

i

O

B

) functions

on b

�

k

i

which restrict to global Darboux coordinates on any i

O

B

that arises as
i

A

0 varies (iO
B

is always a generic orbit). Such coordinates immediately give

a symplectic trivialisation of fM� over X 0. (If k
i

= 1 for some i then e

O

i

is a

fixed symplectic submanifold of T �G; there is no i

O

B

factor to worry about.)

Similarly there is a fibre bundle fM overX whose fibres are the extended mon-

odromy manifoldsfM(A). The key feature of the bundlefM is that it has a canonical

complete flat Ehresmann connection on it—in other words there is a canonical iso-

morphism between nearby fibres. In essence this connection arises by ‘keeping

the monodromy data constant’ so we will call it the isomonodromy connection.

There is a subtlety however because it is the Stokes matrices which are held con-

stant locally, rather than the Stokes factors: For example any anti-Stokes direction

with multiplicity greater than one can break up into distinct anti-Stokes directions

under arbitrarily small deformations of the data A, and the dimensions of the

groups of Stokes factors jump accordingly (so the notion of keeping the Stokes

factors constant makes no sense directly, in general). A precise description of the

isomonodromy connection is as follows.

Suppose A 2 X is a choice of pole positions (a
1

; : : : ; a

m

) and irregular types.

Choose disjoint open discs D
i

� P

1 with a
i

2 P

1, together with a coordinate on

each disc (so directions at a
i

can be drawn as lines on D
i

). If we choose a set of

tentacles T (see Definition 3.9) then there is, from Proposition 3.8,an isomorphism

e'

T

:

f

M(A)!

e

C

1

� � � � �

e

C

m

==G to the explicit monodromy manifold (which is

completely independent of A). The point is that, by continuity, there is a small

open neighbourhoodU
A

ofA inX such that ifA0 moves around inU
A

, then none

of the anti-Stokes directions at a0
i

cross over the base-point p
i

2 D

i

chosen as part

of the tentacles. Thus using the maps e'
T

(with T fixed and A0 varying) we get a

local trivialisation of fM overU
A

. Repeating this process gives an open cover ofX

with a choice of trivialisation of fM over each patch. This describes the bundle fM

explicitly with clutching functions of the form e'

T

1

Æ e'

�1

T

2

. Now the fact that these

clutching functions are constant with respect to the parameters A 2 X means

that we have a well defined flat connection on fM (the local horizontal sections of

which have constant explicit monodromy data (C;S;�0) 2 e

C

1

� � � � �

e

C

m

==G).

This is the isomonodromy connection.
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Now we want to define the relative version of the extended monodromy map.

However recall from Proposition 3.10, that this requires a choices of coordinate

jets. Thus we first pull both bundles fM� and fM back to the extended manifold eX

of deformation parameters along the projection e

X � X . (These bundles over eX

will also be denoted fM� and fM but this should not lead to confusion.) Then, using

the jets of coordinates encoded in eX, the fibrewise monodromy maps fit together to

define a holomorphic bundle map, e� :

f

M

�

!

f

M between the bundles over eX. (As

before this is holomorphic since the canonical solutions depend holomorphically

on parameters.)

Definition 7.3. The isomonodromy connection on f

M

� is the pull-back of

the isomonodromy connection on fM along e�.

See Figure 1. The point is that e� is a highly nonlinear map with respect to the

explicit descriptions of the bundles fM� and fM ; whilst being trivial on fM , the

isomonodromy connection defines interesting nonlinear differential equations on
f

M

�, such as the Painlevé or Schlesinger equations (indicated by a wiggly line in

the figure).

f

M

�

(A)

e�

f

M

�

e

X

e

X

f

M(A)

f

M

FIG. 1. Isomonodromic Deformations

Equivalently one may view e� as a kind of nonlinear Fourier-Laplace transform

(the ‘monodromy transform’), converting hard nonlinear equations on the left-

hand side into trivial equations on the right. The image of e� is a subset of the

degree zero component fM
0

and as before, for dimensional reasons (since it is

injective and holomorphic) e� is biholomorphic onto its image. Moreover Miwa

[55] has proved that the inverse e��1 :

f

M

0

!

f

M

� is meromorphic, so that local

horizontal sections of the isomonodromy connection on fM� will develop at worst

poles when extended around e

X: this is the Painlevé property of the equations. In

particular this implies the image of e� is the complement of a divisor in fM
0

.

Note that the isomonodromy connections are equivariant under the PSL
2

(C )

action on the bundles fM�

;

f

M , induced from automorphisms of P1.
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To be precise, the isomonodromy equations of Jimbo, Miwa and Ueno are the

equations for horizontal sections of the restriction of the isomonodromy connection

on fM� toXJMU ,!

e

X , as we will explain in the appendix. The key idea required

to actually write down equations for such horizontal sections is the following

recharacterisation of the isomonodromy connection, which will also be very useful

in the proof of Theorem 7.1.

Remark 7. 1. Observe that in the order two pole case k
i

= 2, theB
k

i

coadjoint

orbit iO
B

in Proposition 7.1 is just a point. Thus if there are no poles of order three

or more, the bundle f

M

� has a canonical symplectic trivialisation (which is not

directly related to the isomonodromy connection) and so the isomonodromy equa-

tions will be naturally identified with time-dependent flows on a fixed symplectic

manifold. In general however, choices are needed in the use of Vergne’s theorem

in Proposition 7.1, so we do not know a natural way to make such an identification.

In particular, one must find/choose such a symplectic trivialisation before the no-

tion of time-dependent Hamiltonians for isomonodromy even makes sense. This

is a question we hope to return to in the future. (One suspects such a trivialisation

arises naturally by requiring Hamiltonians to come from the logarithmic derivative

of the Jimbo-Miwa-Ueno � function.)

DeRham Approach to Isomonodromy

Suppose � : Y ! X is some fibration over X , with manifolds Y
t

as fi-

bres. Replacing each Y

t

by its cohomology H�

(Y

t

; C ) yields a vector bundle

H�

Rel(Y; C ) ! X . This vector bundle has a natural flat connection on it: the

Gauss-Manin connection. One way to see this is from the homotopy invariance of

cohomology: if � � X is an open ball then Y j
�

is homotopy equivalent to any

fibre Y
t

� Y j

�

so there is a canonical isomorphism H�

(Y

t

; C )

�

=

H�

(Y

s

; C ) for

any s; t 2 �. Alternatively there is a deRham approach as follows. Given a closed

differential form �

t

on a fibre Y
t

, choose any closed form � on Y j
�

extending �
t

,

and let �
s

be the restriction of � to Y
s

. The cohomology class of � in H�

(Y j

�

; C )

is uniquely determined by the cohomology class of �
t

or of �
s

: this process defines

the isomorphism H�

(Y

t

; C )

�

=

H�

(Y

s

; C ) over �.

At least for H1, this generalises to non-Abelian cohomology, replacing C by

G = GL

n

(C ). Topologically H1

(Y

t

; G) = Hom(�

1

(Y

t

); G)=G is the set of

conjugacy classes of fundamental group representations. These fit together into a

(non-linear) fibre bundle H1

Rel(Y;G) ! X , which again clearly has a natural flat

(Ehresmann) connection on it, due to the homotopy invariance of the fundamental

group: the Gauss-Manin connection in non-Abelian cohomology. Simpson [64]

refers to this as the Betti approach and studies the corresponding deRham version.

In the non-Abelian case, one-forms are replaced by connections on vector bundles,

closedness is replaced by flatness, and the notion of differing by an exact form is

replaced by gauge equivalence. Thus the deRham version of H1

(Y

t

; G) is the set
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of isomorphism classes of flat connections on rank n vector bundles over Y
t

, and

the isomorphism H1

(Y

t

; G)

�

=

H1

(Y

s

; G) arises by extending a flat connection

over a fibre Y
t

to a flat connection over the family Y j
�

and then restricting to Y
s

.

The main realisation now is that one can very usefully view the isomonodromy

connection described above as the analogue in the meromorphic case of this non-

Abelian Gauss-Manin connection. This emphasises the basic geometrical nature

of isomonodromy and suggests many generalisations (we are, after all, working

over P1 with G = GL

n

(C )). Note however, the necessity of having explicit

descriptions of the moduli spaces in order to have explicit equations: the distinction

between f

M

�

(A) and f

M(A) is important.

Thus, in the deRham approach, horizontal sections of the isomonodromy con-

nection on fM� over some ball� �

e

X are related to flat meromorphic connections

on vector bundles over P1 � �. This alternative approach was one of the main

results of [40℄ (although not expressed in these terms). More precisely, in the

extended case, the following holds:

Theorem 7.2 (see [40]). Let � �

e

X be an open ball. Then there is a

canonical one to one correspondence between horizontal sections of the isomon-

odromy connection on f

M

� over � and isomorphism classes of triples (V;r;g)

consisting of flat meromorphic connectionsr on vector bundles V over P1 ��

with good compatible framings g, such that for any t 2 � the restriction of

(V;r;g) to the projective line P1 � ftg represents an element in the fibre fM�

t

.

Sketch. See the appendix for more details, and in particular for the definition of

‘good’ compatible framings. To go from such triples (V;r;g) to sections of fM�

over �, simply restrict to the P1 fibres. Lemma A.2 shows why the flatness of r

implies the isomonodromicity of this family of connections over P1. Conversely,

suppose we have a horizontal section of the isomonodromy connection on fM�over

�, or equivalently a compatibly framed isomonodromic family r
t

of meromor-

phic connections overP1, parameterised by t 2 �. Then for each fixed twe have a

canonical basis of horizontal solutions ofr
t

on each sector at each pole onP1�ftg.

The key idea is that as t varies, these bases (where defined) vary holomorphically

with t and r is defined by declaring all of these bases to be horizontal sections

of it. The isomonodromicity of the original family implies this r is well-defined

and flat. Moreover one can deduce that r is meromorphic and, by summing its

principal parts, write down an algebraic expression for r in terms of the origi-

nal horizontal section. This leads directly to the explicit deformation equations.

The non-extended version can easily be deduced from the above result, by

forgetting the framings, and is closer in spirit to the non-singular (Gauss-Manin)

case. First choose an m-tuple� of diagonal n� n matrices. Then define bundles

M

�

(�) and M(�) over the space X of deformation parameters, by restricting

the bundles fM�

! X and f

M ! X to the subsets which have exponents of
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formal monodromy � and quotienting by the action of Tm �

=

(C

�

)

nm. The

isomonodromy connection on f

M descends to induce a canonical isomorphism

between nearby fibres ofM(�)! X , and in turn we obtain a well-defined notion

of local horizontal sections of the isomonodromy connection on M�

(�) ! X .

Immediately we obtain the following (see Malgrange [45, 46] for some global

statements along these lines):

Corollary 7.2. Horizontal sections of the isomonodromy connection on

M

�

(�) over � � X correspond canonically to isomorphism classes of pairs

(V;r) consisting of flat meromorphic connections r on vector bundles V over

P

1

� �, such that for any t 2 � the restriction of (V;r) to the projective line

P

1

� ftg represents an element in the fibre M�

(�)

t

.

Isomonodromic Deformations are Symplectic

Now we will establish the second part of Theorem 7.1, thereby revealing the

symplectic nature of the full family of Jimbo-Miwa-Ueno isomonodromic defor-

mation equations:

Theorem 7.3. The isomonodromy connection on the bundle f

M

�

!

e

X of

extended moduli spaces, is a symplectic connection. In other words, the local

analytic diffeomorphisms induced by the isomonodromy connection between the

fibres of fM� are symplectic diffeomorphisms.

Proof. We will show that arbitrary, small, isomonodromicdeformations induce

symplectomorphisms. Let u
0

be any point of fM� and let x
0

be the image of u
0

in e

X. Let  be any holomorphic map from the open unit disk D � C into e

X such

that (0) = x

0

. For t 2 D , let fM�

t

denote the (symplectic) extended moduli space

which is the fibre of fM� over (t). The standard vector field �=�t on D gives a

vector field on (D ) � e

X which we lift to a vector field V on fM�

j

(D)

, transverse

to the fibres fM�

t

, using the isomonodromy connection. This lifted vector field

may be integrated throughout a neighbourhood of u
0

in fM�

j

(D)

. Concretely, this

means that there is a contractible neighbourhoodU of u
0

in fM�

0

, a neighbourhood

� � D of 0 in C and a holomorphic map F : U �� !

f

M

�

j

(�)

such that for

all u 2 U and t 2 �:

F (u; t) 2

f

M

�

t

; F (u; 0) = u 2

f

M

�

0

and
�F

�t

(u; t) = V

F (u;t)

:

In particular for each t 2 � we have a symplectic form !

t

:= (F j

t

)

�

(!

f

M

�

t

) on

U , where !
f

M

�

t

is the symplectic form defined on the extended moduli space fM�

t

in Section 2 and F j
t

= F (�; t) : U !

f

M

�

t

. Now, given any two tangent vectors
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W

1

;W

2

to U at u
0

, it is sufficient for us to show that the function !
t

(W

1

;W

2

) of

t is constant in some neighbourhood of 0 2 �.

First, as in Proposition 6.1 it is easy to construct a local universal family over

the image of F in f

M

�. Pulling back along F yields a family of meromorphic

connections on the trivial bundle over P1 parameterised by U ��. For each fixed

u 2 U we get an isomonodromic family parameterised by �, that is, a ‘vertical’

meromorphic connection on the trivial bundle over��P1 (whereP1 is the vertical

direction), such that each connection on P1 has the ‘same’ monodromy data. The

result of Jimbo, Miwa and Ueno (Theorem 7.2 above) then tells us how to extend

this vertical connection to a full flat connection over �� P

1. From the algebraic

formula (A.4) for this extension it is clear that this process behaves well as we vary

u 2 U : for each u 2 U we obtain a flat meromorphic connection, which we will

denote r
u

, on the trivial bundle over � � P

1, that depends holomorphically on

u. The poles of r
u

will be denoted by a
1

(t); : : : ; a

m

(t) and the polar divisor in

� � P

1 of r
u

by eD =

P

k

i

�

i

(these are all independent of u 2 U ). Shrinking

� if necessary, choose disjoint open discs D
i

in P1 such that a
i

(t) 2 D

i

for all

t 2 �. For each i let z
i

: D

i

��! C be a function which, for each fixed t 2 �

is a coordinate onD
i

, vanishing at a
i

(t) and having the k
i

-jet at a
i

(t) as specified

by the point of the base eX below (t).

The next step is to push everything over to theC1 picture where the symplectic

forms are expressed simply as integrals. To do this we choose a smooth bundle

automorphism: g 2 GL

n

�

C

1

(U � � � P

1

)

�

which ‘straightens’ the whole

family of connections r
u

at the same time, as in Section 6. The map F into
f

M

� specifies a family of good compatible framings ig
0

: U ��

i

! GL

n

(C ) of

r

u

along �

i

for each i and all u 2 U . Use the coordinate z
i

to define uniquely

a family i

A

0

:= d

P

1

(

i

Q) of diagonal matrices of meromorphic one-forms on

D

i

, parameterised by U � �. (Recall only the principal part of i

Q is specified

by e

X: declare the other terms are zero in its Laurent expansion with respect to

z

i

.) As in Proposition 6.1 the framings extend uniquely to formal isomorphisms
i

bg 2 GL

n

�

C [[z

i

℄℄ 
O(U ��

i

)

�

to (uniquely determined) diagonal connections

d

P

1

� d

P

1

(

i

Q)�

i

�(u)d

P

1

z

i

=z

i

. By definition, that the framings are good, means
i

bg satisfies a stronger condition: it transforms the Laurent expansion ofr
u

along

�

i

into a standard full connection associated to the normal forms for each u:

i

bg[L

i

(r

u

)℄ = d� d(

i

Q(t))�

i

�(u)

d(z

i

)

z

i

; (37)

where d denotes the exterior derivative on the product��P

1, rather than just P1.

The automorphism g is now constructed using Borel’s theorem, as in Proposition

6.1 to have Taylor expansion at a
i

(t) equal to i

bg for all t 2 � and for all u 2 U .

Thus we can use g to straighten the whole family r
u

at the same time. Define

two families of C1 singular connections. First a family er
u

:= g[r

u

℄ on ��P

1

parameterised by U , and second d
�

= d

P

1

�� :=

e

r

u

j

P

1 on P1 parameterised by
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U ��. By construction the C1 Laurent expansion of er
u

at a
i

is given by (37).

It follows, for all u 2 U and t 2 �, that d
�

is an element of the extended space
e

Afl(At

) �

e

A(A

t

) of flat singular connections associated to A
t

:= f

i

A

0

g.

Now differentiate er
u

and d
�

with respect to u along bothW
1

andW
2

at u = u

0

.

Define these derivatives to be 	

j

:= W

j

(

e

r

u

) and  

j

:= W

j

(d

�

) = 	

j

j

P

1

respectively, for j = 1; 2. Each 	

j

is a matrix of singular one-forms on � � P

1

and each  
j

is a matrix of singular one-forms on P1 parameterised by �. Clearly

Tr( 
1

^  

2

) = Tr(	
1

^	

2

)j

P

1

: Also since the Laurent expansion of er
u

is given

by (37) at each a
i

we can deduce what the Laurent expansions of 	
1

and 	

2

are:

L

i

(	

j

) = W

j

(

i

�(u))d

��P

1
(z

i

)=z

i

for j = 1; 2 and i = 1; : : : ;m. It follows

that Tr(	
1

^ 	

2

) is a nonsingular two-form on � � P

1 since L
i

(	

1

^ 	

2

) =

L

i

(	

1

) ^ L

i

(	

2

) = 0 for each i.

Now observe that for each u 2 U the flatness ofr
u

implies the flatness of er
u

.

By differentiating the equation er
u

Æ

e

r

u

= 0 with respect to u along W
1

and W
2

we find er
u

0

	

1

= 0 and er
u

0

	

2

= 0: In particular, by Leibniz, the two-form

Tr(	
1

^	

2

) on �� P

1 is closed.

Thus if we do the fibre integral over P1 we obtain a zero-form on � (i.e. a

function of t):
Z

P

1

Tr(	
1

^	

2

) =

Z

P

1

Tr( 
1

^  

2

):

This is a closed 0-form (i.e. a constant function) since integration over the fi-

bre commutes with exterior differentiation. See for example Bott and Tu [16]

Proposition 6.14.1 (it is important here that Tr(	
1

^	

2

) is nonsingular).

Finally we appeal to Theorem 6.1 to see that for all t 2 �:

1

2�i

Z

P

1

Tr( 
1

^  

2

) = !

t

(W

1

;W

2

)

and so the symplectic form is indeed independent of t.

Closing Remarks

One upshot of Theorem 7.1 is that the symplectic structure on each monodromy

manifold is independent of the choice of deformation parameters; the isomon-

odromy connection on fM is symplectic. This is the generalisation of the ‘sym-

plectic nature of the fundamental group’. As in the non-singular case, one then

wonders if there is an intrinsic finite-dimensional/algebraic approach to this sym-

plectic structure (generalising the cup product in group cohomology). This should

be possible by combining theC1approach here with the ideas of Alekseev,Malkin

and Meinrenken [3].

Alternatively (or perhaps equivalently) a direct connection between Stokes ma-

trices and Poisson Lie groups was observed in [14], which we will briefly sketch

here since it is quite intriguing. Consider the case of connections on P1 with just
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two poles, of orders one and two respectively. The choice of an irregular type at

the order two pole determines the moduli space fM�

(A) and the monodromy man-

ifold fM(A). If we forget the framing at the order one pole, we obtain fM�

(A)=T

which is isomorphic as a Poisson manifold to (a covering of a dense open sub-

set of) g

�. Also fM(A)=T is isomorphic to a covering of a dense open subset of

U

+

�U

�

�t. The monodromy map extends to a map � : g

�

! U

+

�U

�

�t, taking

the Stokes matrices and the exponent of formal monodromy at 0 of the connection

d � (Udz=z

2

+ V dz=z), where V 2 g

�

=

g

� and U is a fixed diagonal matrix

with distinct eigenvalues. The basic observation now is that U
+

�U

�

� t may be

identified with the simply connected Poisson Lie group G� dual to GL
n

(C ). We

then claim that, under such identification, � : g

�

! G

� is a Poisson map, where

g

� and G� both have their standard Poisson structures.3 In particular, taking V to

be skew-symmetric, this claim yields a new approach to the Poisson bracket on

Dubrovin’s local moduli space of semisimple Frobenius manifolds.

APPENDIX

We will give more details regarding Theorem 7.2, relating flat connections to

horizontal sections of the isomonodromy connection. This differs from [40] in

that the coordinate dependence is isolated here. At the end we will write down the

deformation equations.

First some generalities on the local structure of meromorphic connections in

higher dimensions. The local model is of a meromorphic connectionr = d�

e

A

on the trivial rank n vector bundle over a product D �� of the unit disc D � C

and some contractible space of parameters �. We suppose, for each t 2 � that

the restriction r
t

:= rj

D�ftg

to the corresponding disc has only one pole (of

order k) at some point a(t) 2 D and is formally equivalent to a generic diagonal

connection d

D

� A

0

(t) depending holomorphically on t. Assume the divisor

�

0

:= f(a(t); t)g � D �� is smooth. Let z
0

: D ��! C be any holomorphic

function vanishing on �

0

which restricts to a coordinate on D � ftg for each

t 2 � (only the k-jet of the Taylor expansion of z
0

along �

0

will be significant

below). Write A0

= d

D

Q+�

0

(t)d

D

z

0

=z

0

, as usual and define the ‘standard full

connection’ to be d � e

A

0 where eA0

:= dQ + �

0

(t)d(z

0

)=z

0

and d denotes the

full exterior derivative on D ��.

If we choose a compatible framing g
0

of r along �

0

then, as in Proposition

6.1, there is a unique family of formal isomorphisms bg 2 GL
n

(C [[z

0

℄℄
O(�

0

))

satisfying bgj
�

0

= g

0

and bg
t

[r

t

℄ = d

D

� A

0 for each fixed t (after possibly

permuting the entries of A0). The basic structural result is then:

Lemma A.1 (see [46]). Ifr is flat then�0 is constant and there is a diagonal

matrix valued holomorphic functionF 2 End
n

(O(�

0

)) (which is unique upto the

3This has now been proved, c.f. P.P.Boalch, math.DG/0011062
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addition of a constant diagonal matrix) such that

bg[r℄

D��

= d� (

e

A

0

+ �

�

(d

�

0

F ))

where � : D ��! �

0

is the projection along the D direction.

Proof. Let d
�

0

�B be the�
0

component of the Laurent expansion ofbg[r℄
D��

so that bg[r℄
D��

= d

D��

� (A

0

+B): This is flat becauser is. The (D -�
0

) part

of the equation for this flatness is:

d

D

B + d

�

0

A

0

= A

0

^ B +B ^ A

0

: (A.1)

SinceA0 is diagonal this equation splits into two independent pieces, the diagonal

part and the off-diagonal part. First we deduce that the off-diagonal partBod ofB is

zero: SupposeBod
6= 0 and letM=z

r

0

be its leading term,M 2 Endod
n

(


1

hol(�0

)).

Equation (A.1) implies d
D

B

od
= A

0

^ B

od
+ B

od
^ A

0

: Counting the pole

orders we deduce Bod
= 0 unless k = 1. If k = 1, say A0

= A

0

1

dz

0

=z

0

, then

considering coefficients of dz
0

=z

r+1

0

we see (�r)M = [A

0

1

;M ℄ which implies

M = 0 (and therefore Bod
= 0) since A0 is generic; the difference between

any two eigenvalues of A0

1

is never the integer �r. Thus B is diagonal, and so

(A.1) now reads d
D

B + d

�

0

A

0

= 0. This implies d
�

0

�

0

(t) = 0 since d
D

B will

have no residue term, and so e

A

0 is flat. Thus d
D

B = �d

�

0

e

A

0

= d

D

e

A

0. Hence

B =

e

A

0

�

0

+ �(t) for some diagonal matrix of one-forms � 2 End
n

(


1

hol(�0

))

where eA0

�

0

is the �
0

component of eA0. Finally the (�
0

-�
0

) part of the equation

for the flatness of d� A

0

�B implies d
�

0

B = 0. It follows that d
�

0

(�(t)) = 0

and so, since�
0

is contractible,� = d

�

0

F for some diagonalF 2 End
n

(O(�

0

))

This leads us to make the following:

Definition A.1. Ifr is flat then a compatible framing g
0

ofr along �
0

is

good if bg[r℄
D��

= d�

e

A

0 where bg is the formal series associated to g
0

.

Thus an arbitrary compatible framing g
0

can be made good by replacing it by

e

�F

g

0

where F is from Lemma A.1. It is worth saying the same thing slightly

differently. In the convention we are using, the columns of the inverse g�1
0

of the

compatible framing are a basis of sections of V j
�

0

, where V is the bundle that

r is on. Thus, since good compatible framings are determined upto a constant,

there is a flat holomorphic connectionr
0

on V j
�

0

whose horizontal sections are

the columns of g�1
0

for any good compatible framing g
0

. A direct definition is:

Definition A.2. If g
0

is any compatible framing of r along �

0

then the

induced connection along�
0

isr
0

= (r+bg

�1

�

e

A

0

�bg)

�

�

�

0

;where bg is the formal

series associated to g
0

.
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It is easy to check this definition is independent of the choice of compatible

framing and, if g
0

is good, then the columns of g�1
0

are horizontal. Moreover this

definition makes sense for non-flatr, but thenr
0

may not be flat. One may also

check thatr
0

only depends onr and the choice of k-jets of coordinates z
0

. (Also

in the logarithmic case k = 1, r
0

coincides with the usual (canonical) notion of

induced connectionrj
�

0

, provided z
0

satisfies (dz
0

=z

0

)j

�

0

= 0.) Thus one can

alternatively define good framings to be the compatible framings g
0

such that the

columns of g�1
0

are horizontal forr
0

. The reason for restricting how the framings

vary along �

0

is the following:

Lemma A.2 (see [40] Theorem 3.3). Letrbe a full flat connection as above

and let g
0

be a good compatible framing with corresponding formal series bg.

Fix any point t
0

2 �, choose a labelling of the sectors between the anti-Stokes

directions at a(t
0

) 2 D � ft

0

g, and choose log(z
0

) branches on D � ft
0

g. Let

�

0 be a neighbourhood of t
0

2 � such that the last sector at a(t
0

) deforms into

a unique sector at a(t) for all t 2 �

0 (the last sector at a(t)).

Then the canonical fundamental solution �

0

:= �

0

(bg

�1

)z

�

0

0

e

Q of rjVert on

the last sector at a(t) 2 D �ftg varies holomorphically with t 2 �

0 and �
0

(z; t)

is a local fundamental solution of the original full connection r. (Similarly on

the other sectors: just relabel.)

Proof. Write r = d �

e

A and let 
 be the � component of eA so that eA =

A +
. The aim is to show that d
�

�

0

= 
�

0

. From the definition of bg we have

A+
 = bg

�1

[

e

A

0

℄

D��

and this has� component
 = bg

�1

�

e

A

0

�

�bg�bg

�1

d

�

bg:Now

the key observation is that the equation d
�

A = �d

D


 + A ^ 
 + 
 ^ A (from

the flatness of r) implies that the matrix of one-forms d
�

�

0

� 
�

0

satisfies

the equation d
D

(d

�

�

0

� 
�

0

) = A(d

�

�

0

� 
�

0

) (also using the fact that

d

D

�

0

= A�

0

). Then if we define a matrix K := �

�1

0

(d

�

�

0

� 
�

0

) of one-

forms it follows that d
D

K = 0 so that K is constant in the D direction. Then

using the fact that the asymptotic expansion of �
0

in the last sector at a(t) is

bg

�1

z

�

0

0

e

Q, it follows that K has zero asymptotic expansion there. (This uses

the fact that the asymptotic expansions are uniform in t to see that d
�

commutes

with the operation of taking the asymptotic expansion.) It follows immediately

that K = 0 because K is constant in the D direction, and so d
�

�

0

= 
�

0

.

This is the main result needed to prove Theorem 7.2 as sketched. All that

remains is to write down the deformation equations of Jimbo, Miwa and Ueno.

Restrict the parameter space to XJMU ,!

e

X . The bundle fM� over XJMU can be

decribed explicitly: using Proposition 2.1 (and removing the G action by fixing
1

g

0

= 1) it is identified as a subbundle of the trivial bundle over XJMU with fibre

(GL

n

(C ) � g

�

k

1

)� � � � � (GL

n

(C ) � g

�

k

m

):
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When described in this way the bundle fM�

! XJMU is identified as the ‘manifold

of singularity data’ of [40]. Now suppose we have a horizontal section of the

isomonodromy connection on f

M

� over some ball � ,! XJMU. From Section 2

this determines a family of meromorphic connectionsd
P

1

�A on the trivial bundle

over P1 and compatible framings ig
0

(the principal parts ofA lie in the g

�

k

i

’s using

the coordinate choices). As above we also get (algebraically) formal isomorphisms
i

bg, connection germs d
P

1

�

i

A

0 and ‘full’ connection germs d
P

1

��

�

i

e

A

0 , where d

is the full exterior derivative onP1 ��. (The holomorphic terms in the expansion

of iA0 with respect to z
i

are defined to be zero.)

From the sketch of the proof of Theorem 7.2, d
P

1

�A is the vertical component

of a full connection r = d �

e

A, where eA = (d�)�

�1 for any local canonical

fundamental solution �(z; t) := i

�

j

(

i

bg

�1

)z

i

�

i

e

i

Q on (say) the jth sector at the ith

pole. These local definitions agree as the family d
P

1

� A is isomonodromic. Let


 denote the � component of eA, so e

A = A + 
. From the definition we know

the asymptotics of �(z; t) (uniformly) on the jth (super)sector at the ith pole and

so we can deduce the asymptotics of 
:

Æ
i

(
) =

�

i

bg

�1

�

i

e

A

0

�

�

i

bg

�

�

i

bg

�1

� d

�

(

i

bg) (A.2)

A priori this only holds on some sector at the ith pole, but choosing a different

�, we get the same expansion on every sector. It follows that 
 is meromorphic,

with Laurent expansion (A.2). First, it follows immediately from this expression

that the compatible framing i

g

0

is a good compatible framing ofr. Secondly it is

clear that the ith principal part of 
 is the principal part of ibg
�1

�

i

e

A

0

�

�

i

bg and so is

determined algebraically. Also we need a formula for the induced connectionsr
i

on the polar divisors ofr. Upon pullingr
i

down to the base �, from Definition

A.2, one finds that r
i

becomes d
�

��

i

where

�

i

=

i

g
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0
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) (A.3)

with i

bg =

i

g

0

+

i

g

1

� z

i

+O(z

2

i

) and where Const
z

i

takes the constant term in the

Laurent expansion with respect to z
i

. Since we are working in the trivialisation

determined by the first framing (1g
0

= 1), we have �
1

= 0 and so the expression

(A.3) determines the constant term in the expansion of 
 at a
1

= 1. Thus 
 is

completely determined by this constant and the principal parts:


 = Const
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1

(

1

bg
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�

1

e

A

0

�

�

1

bg) +

m

X
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PP
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i

bg
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: (A.4)

Now the flatness of the full connectionr over � � P

1 implies two equations.

Firstly d
�


 = 
 ^ 
, which says that 
 is a family of flat connections on �

depending rationally on the ‘spectral parameter’ z; a situation that often arises in



60 PHILIP BOALCH

soliton theory. Secondly

d

�

A = �d

P

1


 +A ^ 
 +
 ^ A: (A.5)

Also the ‘goodness’ of the compatible framings ig
0

implies that

d

�

(

i

g

0

) = �(

i

g

0

)�

i

: (A.6)

Note that the formulae (A.3) and (A.4) for 
 and �
i

make sense for an arbitrary

section of the bundle fM� so that the equations (A.5) and (A.6) amount to a coupled

system of nonlinear algebraic differential equations for horizontal sections s =

(g;

1

A; : : : ;

m

A) of the isomonodromy connection on f

M

� over XJMU: They are

the Jimbo-Miwa-Ueno isomonodromic deformation equations [40].

A number of examples are given in [38, 40] and in particular the cases of the

Schlesinger equations and the six Painlevé equations are explained.
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