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1.  Introduction

Elastography techniques either based on magnetic resonance imaging (MRI) (Fowlkes et al 1995, Muthupillai 
et al 1995, Manduca et al 2001, Rump et al 2007) or on ultrasound (Sarvazyan et al 1998, Catheline et al 1999, 
Fatemi and Greenleaf 1999, Nightingale et al 2002, Sandrin et al 2003, Bercoff et al 2004, Song et al 2012) have 
been proposed to evaluate non-invasively the stiffness of soft tissues, in order to provide clinically relevant 
information (Glaser et al 2012, Gennisson et al 2013). Yet, these techniques are based on the same general 
principle, i.e. the generation of mechanical shear waves within the tissue by a variety of methods and the tracking 
of their propagation to assess tissue stiffness. Ultrasound based techniques present several advantages compared 
to MRI techniques, including portability and real-time capability at a lower cost. However, MRI techniques allow 
the possibility to acquire the shear wave propagation in 3D.

Shear wave elastography (SWE) has been extensively developed over the past decade since it can provide a 
quantitative mapping of soft tissues in real-time, and it has been implemented on a clinical ultrasound scanner 
(Bercoff et al 2004). This technique is based on a push-beam creation within the tissue by acoustic radiation 
force, and on ultrafast ultrasound imaging to track the induced shear wave propagation. The shear wave velocity 
is directly related to the elastic properties of the tissue, such as, the shear and Young’s modulus. Although clini-
cal SWE is commonly applied to soft tissues with isotropic elastic properties, such as the liver or the breast, the  
feasibility of SWE to non-invasively characterize tissue anisotropy was also shown in vivo in skeletal muscles (Gen-
nisson et al 2010), arteries (Shcherbakova et al 2017) and in the myocardium (Couade et al 2011, Lee et al 2012). 
SWE can indeed quantify the shear wave velocities parallel (i.e. higher shear wave velocity) and perpendicular  
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Abstract
We present herein 3D elastic tensor imaging (3D ETI), an ultrasound-based volumetric imaging 
technique to provide quantitative volumetric mapping of tissue elastic properties in weakly elastic 
anistropic media. The technique relies on (1) 4D ultrafast shear wave elastography (SWE) at 
very high volume rate (e.g.  >  8000 Hz, depending only on the imaging depth), (2) a volumetric 
estimation of shear wave velocity using the eikonal equation and (3) a generalized 3D elastic 
tensor-based approach. 3D ETI was first evaluated using numerical simulations in homogeneous 
isotropic and transverse isotropic media. Results showed that 3D ETI can accurately assess tissue 
stiffness and tissue anisotropy in weakly transversely isotropic media (elastic fractional anisotropy 
coefficient  <  0.34). Experimental feasibility was shown in vitro in a transverse isotropic phantom. 
Quantification of the elastic properties by 3D ETI was in good agreement with 2D SWE results 
performed at different orientations using a clinical ultrafast ultrasound scanner. 3D ETI has the 
potential to provide a volumetric quantitative map of tissue elastic properties in weakly transversely 
isotropic soft tissues within less than 20 ms of acquisition for the entire imaged volume.
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(i.e. lower shear wave velocity) to the tissue fibers, by setting the ultrasound probe parallel or perpendicular to the 
fibers direction, respectively.

Additionally, elastic tensor imaging (ETI) was proposed (Lee et al 2012) to generalize a tensor-based approach 
of SWE imaging. By using several SWE acquisitions along different directions, a least-squares inversion can be 
performed to estimate tissue fibers orientation and stiffness. This technique was initially based on the rotation 
of a 2D ultrasound probe to create shear waves propagating along different directions. This approach, however, 
remains challenging to perform in a clinical setting as it requires acquisition repetition during the probe rotation.

Recently these technical challenges were overcome by the development of 4D Ultrafast imaging. Provost et al 
(2014) introduced a 4D ultrafast ultrasound system that can perform volumetric imaging at 5000 Hz. Gennisson 
et al (2015) showed that 4D ultrafast shear wave elastography can be performed using a 2D matrix-array probe 
using milliseconds acquisitions. Therefore, shear wave propagation can be induced and imaged in three-dimen-
sions, and tissue stiffness can be estimated in a full volume.

In this study, we introduce 3D elastic tensor imaging (3D-ETI) to quantify non-invasively the elastic prop-
erties of weakly transversely isotropic soft tissues in three-dimensions. This technique is based on 4D ultrafast 
shear wave elastography imaging to access the elastic tensor and therefore provide a quantitative mapping of 
the anisotropic elastic properties. Using the Eikonal equation, we developed a method to quantify the elastic 
properties under the assumption of weak anisotropic and weak heterogeneous medium. The objectives of 
this study were therefore: (1) to evaluate and validate the method in isotropic and transverse isotropic media 
through numerical simulations, and (2) to demonstrate the experimental feasibility in a transverse isotropic 
model.

2.  Material and methods

2.1.  3D Elastic Tensor in isotropic and transverse isotropic media
We assume the propagation of small amplitude shear wave that can be described by the linear elasticity theory. 
The wave propagation in elastic media is governed by the wave equation, that can be solved leading to the 
Christoffel’s equation (Royer and Dieulesaint 2000):

[
Gik − ρV2δik

]
Uk = 0� (1)

where Gik is the Christoffel’s matrix given by Gik = Cijklnjni (with ni  the direction vector of the wave propagation), 
Cijkl, the elastic tensor, V  the phase wave velocity, δik, the identity matrix, ρ  the density of the medium and Uk the 
particle displacement vector.

Considering that in SWE, shear waves remotely generated by the acoustic radiation force are polarized 
along the ultrasound probe axial direction (i.e. z-direction in a Cartesian coordinate system), the particle 
displacement vector is given by Uk = [0 0 1], with k = 1, 2, 3. Also, considering an orthotropic or transverse 
isotropic medium, the representative matrix of the Christoffel stiffness tensor, using the Voigt notation, can be 
given by:

G =




µ11 µ11 − 2µ66 µ13 0 0 0

µ11 − 2µ66 µ11 µ13 0 0 0

µ13 µ13 µ33 0 0 0

0 0 0 µ44 0 0

0 0 0 0 µ44 0

0 0 0 0 0 µ66




where : µ13 =
√
µ33 (µ11 − µ66).� (2)

In shear wave propagation, considering SH-propagation, the stiffness tensor can be further simplified to:

G =

[
µ11 µ12

µ12 µ22

]
=

[
µ11 0

0 µ22

]
.� (3)

By developing equation (1), considering (3) to the SWE case in transverse isotropic media, and deriving the 
group velocity from the phase wave velocity and angle, the following relationship can be obtained:

ρV2
s =

µ11µ22

µ11sin
2β + µ22cos2β

.� (4)

Where Vs is the group velocity (usually easier to measure in SWE) and β the group velocity angle. Further 
information on linear elasticity theory and the applied mathematical developments, interested reader may refer 
to appendix.

The equation (4) is valid for any β and the stiffness tensor, G, can be solved using the least-squares method for 
N  shear wave propagation measurements. Therefore, equation (4) can be extended to:

Phys. Med. Biol. 63 (2018) 155005 (14pp)
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


1
ρV2

s1

...
1

ρV2
sN


 =



cos2β1 sin2β1

...
...

cos2βN sin2βN



[

1
µ11

1
µ22

]
= ϕ

[
1
µ11

1
µ22

]
.� (5)

The least-square solution of 
[

1
µ11

1
µ22

]T
is obtained by a pseudo-inversion operation. In an isotropic and 

transverse isotropic medium, the shear wave velocity along and across the tissue fibers, can be further retrieved 
by:

v// =

√
µ11

ρ
; v⊥ =

√
µ22

ρ
� (6)

where v// and v⊥ correspond to the shear wave propagation velocities along (i.e. parallel) and across (i.e. 
perpendicular) the fibers orientation, respectively.

In order to evaluate the degree of elastic anisotropy, we used the elastic fractional anisotropy (FA) defined in 
a 2D plane (Lee et al 2012). The fractional anisotropy (FA) is a normalized scalar value. A FA value of zero cor-
responds to an isotropic shear wave propagation (i.e. it is unrestricted in all directions), and a value of one means 
that shear wave propagation occurs along one specific direction, being completely restricted along all the others:

FA =

∥∥v// − v⊥
∥∥

√
v2
// + v2

⊥

.� (7)

To perform 3D elastic tensor imaging, shear wave elastography is used to induce, track and estimate the shear 
wave velocities parallel and perpendicular to the tissue fibers alignment in three-dimensions.

2.2.  4D ultrafast shear wave elastography
4D ultrafast shear wave elastography relies on the following steps: (1) a spherical delay law was applied in all 
ultrasound probe transducers to create a push-beam with a cylindrical shape at the focal spot; (2) 4D ultrafast 
imaging was used to track the shear wave propagation through 3D plane-wave coherent compounding (Provost 
et al 2014), (figure 1); (3) the Kasai et al autocorrelation method (Kasai et al 1985) was then applied to obtain 
shear wave propagation cine-loop; (5) a 3D directional filtering approach was proposed to filter the artifacts 
coming from reflected shear waves; (6) the shear wave velocity was estimated in a full volume through the Eikonal 
equation application. For more details please refer to Gennisson et al (2015).

The 3D directional filtering approach was proposed, as the extension of the method proposed by Deffieux 
et al (2012) to the case of 3D cylindrical waves. The method consisted in: (1) converting the shear wave propaga-
tion cine-loop from the Cartesian (x, y, z, t) to the cylindrical (r, θ, z, t) coordinates system with the center fixed 
at the push-beam location; (2) applying a Fourier transform along the radius (r) and time (t); (3) keeping, for 
each θ direction, the two quadrants of the Fourier space that show kr  and ω  with opposite signs; (4) applying the 
inverse Fourier Transform; and (5) reconverting the cylindrical to the Cartesian coordinate system.

The Eikonal equation was used to assess the local shear wave velocity by linking the medium phase velocity to 
the wave phase gradient, and assuming a high-frequency wave propagating in weakly heterogeneous and linear 
isotropic media. In addition, we assumed that the group velocity and the phase velocity are almost equal under 
the assumption of low anisotropy and non-dispersive medium. Under these assumptions, the Eikonal equa-
tion can be written as (Slawinski 2010):

1

Vs(x, y, z)2 −

((
dT

dx

)2

+

(
dT

dy

)2

+

(
dT

dz

)2
)

= 0.� (8)

Equation (8) allows then for the estimation of the shear wave velocity without prior knowledge of the propagation 
direction, by calculating the time delays along the Cartesian coordinate system axis. For each direction, the time 
delays are calculated by the conventional cross-correlation applied on the shear wave profiles for points at a given 
distance (dr) and centered on the voxel-of-interest. A Parabolic interpolation and a multiscale approach are also 
used, by varying the distance between the correlated waveforms within a fixed kernel size, in order to minimize 
the variance of the time delay estimation.

In order to recover a full volume information of the shear wave propagation pattern in a region-of-interest, N 
push-beams at a fixed depth were induced in different lateral locations.

To evaluate the performance of 3D ETI we performed the following: (1) numerical simulations of the shear wave 
propagation using the Green’s formalism (Aki and Richards 1980) on isotropic, transverse isotropic (as 1st order 
approximation), elastic, homogeneous media, and (2) in vitro measurements on transverse isotropic phantom.

To summarize 3D ETI technique, a methodology workflow is presented in figure 2.

Phys. Med. Biol. 63 (2018) 155005 (14pp)
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2.3.  Numerical simulation methods
The numerical simulations of the shear wave propagation field, based on temporal Green functions formalism 
(Aki and Richards 1980), were performed in isotropic and transverse isotropic media (Gennisson et al 2003, 
Chatelin et al 2015).

2.3.1.  Radiation force field simulation
The shear wave propagation field was based on a Green’s function formalism (Aki and Richards 1980, 2001). The 
simulated medium was assumed to be semi-infinite, isotropic or transverse isotropic, elastic and homogeneous. 
For all the details in Green’s function formalism, interested reader may refer to the appendix.

The radiation force field was calculated using the Field II ultrasound software (Jensen and Svendsen 1992, 
Jensen 1996). The matrix-array transducer used to simulate fived push-beams was designed numerically with 
the parameters: 32  ×  32 transducer elements, 9.6 mm2 size, 0.3 mm pitch, 5 MHz central-frequency. Push-beams 
were simulated at five different lateral and elevational locations (i.e. at the x- and y-directions parallel to the sur-
face of the matrix-array probe): at (0, 0) mm, i.e. the center, (3, 3) mm, (−3, 3) mm, (3, −3) mm and (−3, −3) 
mm, i.e. the four corners of the numerical matrix-array probe. The beam was perpendicular to the probe surface 
for the central push. The beam was tilted by 9.6° for all the other pushes. For all the five push-beams, the depth 
focus was fixed at 25 mm (i.e. z-direction and axial direction) and the duration was 125 µs.

Figure 2.  Methods workflow.

Figure 1.  4D ultrafast shear wave elastography concept using 2D plane-wave transmission. Push-beam definition (A) and Shear 
wave creation and 4D ultrafast plane-wave imaging (B).

Phys. Med. Biol. 63 (2018) 155005 (14pp)



5

M Correia et al

Using the described parameters, the radiation force field generated was simulated following the methodology 
described in Chatelin et al (2015).

2.3.2.  Shear wave propagation velocity field
For each push-beam (i.e. five in total, different x- and y-locations), the displacement vector was calculated. 
A displacement field-of-view of (9.6  ×  9.6  ×  30) mm, a density of 1038 kg m−3 and Poisson ratio 0.49 were 
considered as parameters. The displacement velocity vector was then calculated by the first-derivative of the 
described displacement field, considering an imaging volume rate of 8 KHz and step time of 125 µs.

In our study, the shear wave propagation velocity fields were computed for different stiffness and fractional 
anisotropy coefficients to evaluate the performance of the 3D ETI technique on different media. A summary of 
the stiffness and fractional anisotropy parameters used is presented in table 1.

2.4.  Experimental methods
2.4.1.  Transverse isotropic phantom experiments
Millon et al (2006) introduced an approach to develop orthotropic hydrogel mimicking soft tissues that were 
found suitable for elastography in anisotropic medium (Chatelin et  al 2014). In this method, mechanical 
anisotropy is induced by stretching the physical crosslinks of polyvinyl alcohol (PVA) cryogel during freezing/
thaw cycles along a preferential direction. Based on this approach, we developed a new sample constituted by 5% 
PVA solution (molecular weight 89 000–98 000, 99+% hydrolyzed, Sigma-Aldrich, St Louis, US), 1% cellulose 
(20 µm in diameter, S3504 Sigmacell, Sigma-Aldrich, St Louis, US) and 94% distilled water. First, the sample was 
transferred into a parallelepiped PVC mold (100  ×  60  ×  50 mm3) and then underwent two isotropic freezing/
thaw cycles (i.e. approximately 20 °C during 12 h followed by  −18 °C during 12 h) followed by one anisotropic 
freezing/thaw cycle (i.e. stretching the sample to 80% of the initial length through a customized static tensile-test 
apparatus). The cross-link was subsequently induced in the polymer along the stretching direction. The in vitro 
setup, including the transverse isotropic phantom developed, is presented in figure 3(A).

In order to assess the transverse isotropic phantom stiffness and compare the results with the ones obtained 
by 3D ETI technique, experiments using a 2D ultrafast ultrasound scanner (Aixplorer scanner, Supersonic Imag-
ine, Aix-en-Provence, France) were performed, using a clinical shear wave elastography mode, with a 1D linear 
array (SL10-2, 6 MHz central frequency, Supersonic Imagine, Aix-en-Provence, France). In this case, the shear 
wave velocity was assessed in two orientations, i.e. parallel and perpendicular to the fibers orientations of the 
transverse isotropic phantom.

2.4.2.  4D ultrafast imaging hardware
A customized, programmable, 1024-channel ultrafast ultrasound system (Provost et al 2014) was used to drive a 
32-by-32 matrix-array probe centered at 8 MHz with a 90% bandwidth at  −6 dB, a 0.3 mm pitch and a 0.3 mm 
element size (Vermon, Tours, France), (figure 3(A)). The system was composed of four Aixplorer systems 
(Supersonic Imagine, Aix-en-Provence, France), each one with 256-transmit and 128-receive channels units. 
The four systems were assembled and synchronized, defining a device containing 1024-channels in transmission 
and 512-channels in receive. Since in receive the channels were multiplexed to 1 of 2 transducers elements, each 
emission was repeated twice to synthetize 1024-channels. Specifically, data from two consecutive emissions were 
concatenated to create synthetically one RF data set, corresponding approximately to an acquisition in which all 
transducers have received simultaneously. Consequently, the effective volume rate is half the pulse-repetition 
frequency (PRF).

2.4.3.  4D ultrafast shear wave elastography imaging sequence
The sequence consisted of a push-beam followed by 4D ultrafast plane-wave imaging. To perform a push-beam 
by acoustic radiation force, a spherical law was programmed in transmission using 784 transducer elements 
located in the center of the matrix-array probe at 5 MHz, at 25 mm depth and during 100 µs.

Table 1.  Parameters used in the numerical simulations.

Mediuma 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shear wave  

velocity parallel  

to fibers (m s−1)

5.0 5.0 5.0 5.0 5.0 3.5 3.5 3.5 3.5 3.5 2.0 2.0 2.0 2.0 2.0

FA coefficient 0.000 0.074 0.156 0.246 0.343 0.000 0.074 0.156 0.246 0.343 0.000 0.074 0.156 0.246 0.343

a Each Medium is composed of five different simulations, where the push-beams were simulated at different x- and y-locations (i.e. 

central and four corners of the matrix-array simulated probe).

Phys. Med. Biol. 63 (2018) 155005 (14pp)
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As shown by Bercoff et al (2004) and Gennisson et al (2015), the shear wave propagation information cannot 
be assessed in the immediate region around the push-beam location. To access a full elastic map of the region-of-
interest in the media, we can however rely on another push-beam performed at a different location. In our study, 
five push-beams were transmitted at different locations (i.e. at the x- and y-directions of the matrix-array probe), 
(see figure 3(B)). Specifically, the push-beams were arbitrarily performed at (0, 0) mm, i.e. the center, (3, 3) mm, 
(−3, 3) mm, (3, −3) mm and (−3, −3) mm, i.e. the four corners of the matrix-array probe.

Followed by each push-beam, 4D ultrafast imaging using 2D plane-wave insonification was performed 
to track the consequent shear wave propagation. Each plane-wave was defined by a pair of angles between the 
normal vector of the plane wave and the x- and y-directions of the matrix-array probe., In this study, only one 
2D plane wave was used, with a (0°, 0°) angles. This choice was made to achieve the largest possible field of 
view (i.e. 9.6  ×  9.6 mm2), in which the 2D plane wave propagates, and the highest possible volume rate fre-
quency (i.e. PRF divided by N). The effective PRF and the volume rate were both equal to 8050 Hz for a 25 mm 
imaging depth.

Each acquisition consisting in one push-beam followed by the acquisition of 40 ultrafast imaging volumes 
lasted 5.1 ms. For each push-beam location, four consecutive acquisitions were performed that were temporally 
averaged, in order to improve the signal-to-noise ratio of the tracked shear wave propagation. The total acquisi-
tion time (i.e five push-beams and ultrafast imaging, each repeated four times) was then 102 ms.

2.4.4.  Post-processing analysis
A 3D delay-and-sum beamforming using spatial coherent compounding was performed, as described by Provost 
et al (2014), to reconstruct the ultrasound volumes (i.e. beamformed IQ demodulated data). In in vitro and in 
vivo results, volumes of (9.6  ×  9.6  ×  25) mm3 and (19.2  ×  19.2  ×  25) mm3 were reconstructed, respectively.

Tissue velocity estimates were obtained through the Kasai autocorrelation method (Kasai et al 1985). Prior 
to phase estimation and the 3D directional filtering, the data was filtered using a spatiotemporal clutter filter 
(Demene et al 2015). The final tissue velocity movie was then composed of 38 imaging volumes of (9.6  ×  9.6) 
mm2 and 25 mm depth. Tensor estimation was then performed using the method described in section 2.2.

Finally, the 3D volume rendering of the shear wave propagation and a tissue fiber tractography represen-
tation (i.e. the 3D elastic tensor representation) were performed using the volren and illuminated streamlines 
functions of the Amira software (Visualization Sciences Group, USA), respectively.

All beamforming and elastic tensor assessment processing were performed offline using a graphical  
processing unit (Tesla K40, NVidia, USA) within a Matlab (2014b, The MathWorks Inc., USA) interface. The 
post-processing time was approximately 10 min. This duration included all 4D ultrafast data transfers and 
calculations, i.e. the beamforming, directional filtering, shear wave velocity vector components estimation, fiber 
tractography.

3.  Results

3.1.  Numerical simulations
Figure 4 presents the shear velocities estimated from the numerical simulations data.

The averaged estimated parallel shear wave velocities (i.e. parallel to the medium fibers, figure 4(A)) were in 
good agreement with the theoretical velocities (i.e. 5.0, 3.5 and 2.0 m s−1).

Perpendicular shear wave velocities (i.e. perpendicular to the medium fibers, figure 4(B)) were also in a very 
good agreement with the theoretical values, but only for weak anisotropy (FA  <  0.15). In contrast, for higher 
fractional anisotropy, the estimation errors increased up to 20% (FA  =  0.34).

Figure 3.  The experimental setup with transverse isotropic phantom and 2D matrix-array probe (A) and push-beam locations 
scheme (B).

Phys. Med. Biol. 63 (2018) 155005 (14pp)



7

M Correia et al

Figures 4(C) and (D) present the correlation and Bland-Altman analysis between the theoretical and  
estimated shear wave velocities parallel to the fibers alignment. The strong correlation corroborated by the 
Bland-Altman plot, showed that parallel shear velocities were well estimated.

Figures 4(E) and (F) present the correlation and Bland-Altman analysis between the theoretical and esti-
mated shear wave velocities perpendicular to the fibers alignment. It shows, that most of the perpendicular shear 
velocities were well estimated, but highest errors were found in moderately anisotropic medium.

The fiber orientation was also evaluated and the respective standard-deviation estimation is also presented. 
These results are presented in table 2 and a 3D ETI fiber tractography case is presented in figure 5.

3.2.  In vitro experiments: transverse isotropic media
The shear wave propagation results are presented in figure 6 in a top and side views. Five pushes were induced at 
different spatial locations (i.e. different locations in the x- and y-directions of the matrix array probe). The shear 
waves showed an elliptical propagation pattern, demonstrating an anisotropic behavior that is directly relate d to 
the fibers alignment orientation.

The 3D elastic tensor was reconstructed in a region of interest of 2.0  ×  2.0  ×  5 mm3 in the center of the imag-
ing volume by using the information of the 4 shear waves propagating from the corners (i.e. pushes located at 
2, 3, 4 and 5 in figure 6). The reconstruction included: the 3D directional filtering, the 3D time-of-flight calcul
ation, and the 3D elastic tensor estimation algorithms. The averaged parallel shear wave velocity calculated was 
3.35 ± 0.34 m s−1, the averaged perpendicular shear wave velocity calculated was 1.90 ± 0.17 m s−1, and the 
averaged orientation of the fibers estimated was 170.7 ± 10.3◦. The elliptical orientation of shear wave propaga-

Figure 4.  Numerical simulation results of the application of 3D ETI to estimate shear wave velocities parallel and perpendicular 
to the fibers media. In (A) the estimated parallel shear wave propagation velocities (i.e. parallel to the medium fibers) compared to 
the theoretical velocities (i.e. 5.0, 3.5 and 2.0 m s−1) and in function of the fractional anisotropic coefficients. In (B) the estimated 
perpendicular shear wave propagation velocities (i.e. perpendicular to the medium fibers) for the parallel shear wave propagation 
velocities of 5.0, 3.5 and 2.0 m s−1, and in function of the fractional anisotropic coefficients. In (C) and (D) the correlation and 
Bland–Altman plots between the theoretical and estimated parallel shear wave velocities. In (E) and (F) the correlation and Bland–
Altman plots between the theoretical and estimated perpendicular shear wave velocities.
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tion of the central push (i.e. push 1 of figure 6) was also assessed and was found as 163 ± 5◦. The fractional aniso
tropy coefficient was calculated and it was FA3D ETI = 0.38 ± 0.08.

The shear wave velocities in two orthogonal 2D imaging planes, i.e. parallel and perpendicular to the fibers 
alignment, were also assessed by the Aixplorer ultrasound scanner. These results are presented in figure 7. In a 
region of interest of (9  ×  9) mm2 and we found 3.10 ± 0.10 m s−1 parallel to fibers and 2.20 ± 0.10 m s−1 perpend
icular to the fibers. The fractional anisotropy coefficient was calculated and it was FA2D SWE = 0.24 ± 0.05.

Finally, the elastic fiber tractography approach was also applied and the results are shown in figure 8. Through 
this representation approach, it could be noted that the fibers are mainly orientated in the same direction and 
orientation.

Figure 5.  3D-ETI fiber tractography results on numerical simulations of medium #8.

Figure 6.  Shear wave propagation results in the transverse isotropic phantom for the five different pushes in a specific time-frame. 
The first row corresponds to the shear wave propagation view seen from the top (parallel to the matrix-array plane). The second row 
corresponds to a lateral shear wave propagation view.

Table 2.  Fiber alignment orientation results.

Medium 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shear wave velocity  

parallel to fibers  

(m s−1)

5.0 5.0 5.0 5.0 5.0 3.5 3.5 3.5 3.5 3.5 2.0 2.0 2.0 2.0 2.0

Estimated angle  

 +  stda (°)

— 177.9  ±   

23.9

175.9  ±   

26.5

172.7  ±   

28.2

169.6  ±   

36.3

— 178.7  ±   

11.6

174.7  ±   

12.2

173.4  ±   

10.9

172.6  ±   

19.5

— 181.8  ±   

6.6

182.5  ±   

5.6

182.7  ±   

6.2

183.5  ±   

6.3

a Std stands for the standard-deviation of the spatial-averaged orientation estimation.
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4.  Discussion

In this study, we have developed a new approach, 3D elastic tensor imaging, for the assessment of the Elastic 
Tensor in three-dimensions that is based on 4D ultrafast shear wave elastography imaging. This technique was 
first evaluated in a numerical study and in an in vitro study, i.e. in a transverse isotropic phantom.

Our method was first evaluated using synthetic data of shear wave propagation in transverse isotropic 
medium generated by a numerical model. The technique was therefore evaluated in isotropic and transverse 
isotropic media with different stiffness (i.e. different shear wave propagation velocities) and different anisotropy 
degrees (i.e. different fractional anisotropy coefficients). These results showed, that 3D ETI technique could 
accurately estimate the shear wave velocities parallel to the fibers alignment. Likewise, 3D ETI technique could 
accurately estimate shear wave velocities perpendicular to the fibers alignment, with estimation error increasing 
for higher FA coefficients (i.e. up to 20% error for 5 m s−1 and up to 13.7% for 3.5 m s−1). Also, the standard-
deviation of the estimation shear wave velocities values increased up 1.3 m s−1. These numerical results demon-
strated that 3D ETI can accurately estimate anisotropic shear wave velocities in weak transversely isotropic media 
(FA  <  0.35), but may provide inaccurate measurements at higher FA (i.e. estimation errors higher than 20%). 
This was however expected since the time-of-flight algorithm based on the Eikonal equation (8), which was used 
to compute the shear velocity, assumes low anisotropy and low heterogeneity. In what concerns the fibers angle 
estimations, results have shown that 3D ETI can accurately access the fibers angles direction in weak transversely 
isotropic media. The angle direction error was found to be  ±  6° (i.e. for FA  =  0.34 and shear wave velocities par-
allel to the fibers of 2 m s−1), and increased up to 36° (i.e. for FA  =  0.34 and shear wave velocities parallel to the 
fibers of 5 m s−1).

Based on previous 2D ultrafast shear wave elastography studies (Gennisson et al 2010), 5 push-beams were 
expected to be enough to sample the entire field-of-view in 3D. Indeed, three pushes were used in 2D to cover 
an imaging field-of-view of 20 mm, with a distance between those pushes of 6.7 mm. In this study, the distance 
between the pushes was smaller (i.e. 4.2 mm between the central and the corner pushes, and 6 mm between the 
corner pushes). Moreover, these settings were used (Gennisson et al 2015) to perform 3D shear wave elastogra-
phy in vivo in the breast, and 5 pushes were sufficient to reconstruct a similar volume.

Figure 7.  Aixplorer measurements results in two different planes of the transverse isotropic phantom. In (A) the results in a 
region-of-interest parallel to the medium fiber direction. In (B) the results in a region-of-interest perpendicular to the medium fiber 
direction.

Figure 8.  3D-ETI fiber tractography results of transverse isotropic phantom.
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3D elastic tensor imaging was also evaluated in vitro in a transverse isotropic phantom. The shear wave veloc-
ity vector was assessed in three dimensions and the fiber tractography representation was implemented. The results 
showed a good agreement between 3D ETI and the control measurements performed using a conventional and clini-
cal SWE ultrafast ultrasound scanner results. Since, the control measurement was within the numerical simulation 
estimations range limits, we considered that the in vitro 3D ETI allowed to accurately estimate the tissue stiffness and 
elastic anisotropy (i.e. estimation error approximately 20%). Also, the fiber tractography representation showed that 
the estimated fibers alignment orientation was as expected, with approximately 11% of estimation error.

The matrix probe offers the possibility to generate complex push beams, however the quantification of the 
anisotropy requires to generate isotropic push beams. In this study we created isotropic push beams by transmit-
ting the push on a circular window (f/D ratio equal to 3, with a 5 MHz transmission).These parameters were cho-
sen as a compromise between the transmitted energy and frequency, and the isotropy of the spherical push beam.

In terms of imaging parameters, we used one 2D plane-wave transmission, at 0° angle, to achieve the larg-
est field of view and the highest possible volume rate. This choice was yielded to effectively track the shear wave 
propagation in our field of view (i.e. (9.6  ×  9.6  ×  25) mm3). A higher number and tilt angles could have been 
used to increase the imaging quality by coherently compounding the receive signals (Provost et al 2014), but the 
volume rate would have been reduced (i.e. the volume rate is defined by the effective PRF divided by the number 
of transmitted 2D plane-waves). Moreover, the choice of the angle set may affect the imaging isotropy. Therefore, 
in order to maintain it at least three independent angles should be used for the coherent compounding. With the 
current setup this would result in 2500 volumes s−1 which is quite low to perform shear wave imaging. Neverthe-
less, using electronics with 1024 channel in receive instead of 512 would allow to reach 5000 volumes s−1 even 
with 3 angles which should be enough to perform SWE.

One limitation of the technique, is the use of 2D plane-wave insonification which limits the field of view. 
By using 2D plane-waves transmission, the imaging field of view is reduced to a portion of a parallelepiped that 
is equal to the matrix-array size. Therefore, to track shear wave propagation in stiff tissues in vivo (i.e. shear 
wave velocities higher than 4 m s−1) a higher volume rate or higher field of view should be achieved. This last 
restriction could be overcome by the use of 2D diverging-waves or with higher number of electronic channels. 
Though, in 2D diverging-wave imaging, the transmitted ultrasound energy is considerable lower compared with 
the plane-wave approach, and in this case the energy decreases with the inverse of the depth square-root (Papa-
dacci et al 2014). Thus, the 3D shear wave elastography implementation using 2D diverging-waves may be more 
challenging. Concerning the number of electronic channels, in our study we used a custom made prototype of 
3D ultrafast imaging scanner with 1024 electronic channels. To the best of our knowledge, only three research 
systems in the world have currently such a high channel count (Jensen et al 2013, Provost et al 2014, Petrusca et al 
2018). We can envision however, that such systems will be increasingly available at the best cost in the near future, 
with the recent development of high channel count electronics commercially available.

Another limitation of the method, is the assumption of weak heterogeneity in the eikonal equation which 
implies that the velocity varies spatially at a larger scale than the wavelength. As typical shear wavelength are in the 
range of a few millimeters to centimeters, our method is not valid for medium with strong heterogeneities such 
as small nodules. Moreover, we assumed that the anisotropy was weak. We validated our method for fractional 
anisotropy lower than FA ∼ 0.3 which is in the range of typical FA in passive skeletal muscles or in the myocar-
dium. At higher fractional anisotropy, e.g. active muscles, however, a more complex derivation will be required to 
quantify accurately the elastic properties. Finally, we measured fibers orientation only in the x- and y-direction, 
parallel to the matrix array probe, when in fact the fibers direction could be also in the z-direction. This limits the 
application of the technique to imaging settings where the ultrasound beam can be positioned perpendicularly 
to the fiber direction, e.g. skeletal muscles (Gennisson et al 2010) and myocardium (e.g. in short- and long-axis 
echographic views), (Villemain et al 2018). In order to overcome this limitation, an approach with steered plane 
wave could be consider to estimate vector tissue velocities.

3D ETI could indeed be applied in medicine by characterizing non-invasively the elastic properties of skeletal 
muscles at rest or at low load, such as brachii biceps. Shear wave elastography has been shown to provide impor-
tant clinical diagnostic information on the musculoskeletal system (Shinohara et al 2010, Koo et al 2014). The 
precise measurement of the shear modulus in muscles is challenging to perform due to the muscle anisotropy. 
The probe must be positioned accurately along the fibers direction, which is difficult to ensure during muscle 
contraction. Reproducibility of the measurement is therefore a real challenge. 3D ETI could potentially offer a 
solution to improve reproducibility and accuracy of shear wave velocity measurements and provide new diag
nostic biomarkers.

Likewise in cardiology, we have shown recently (Villemain et al 2018) that 2D SWE can be performed non-
invasively in the passive myocardium (i.e. during diastole) and at two orientations (e.g. in short- and long- axis 
echographic views). The fractional anisotropy coefficient was then accessed, and it was found to be altered in 
hypertrophic cardiomyopathy patients. However, the FA quantification was limited by the low number of probe 
orientations available (i.e. two echographic views). Thus, 3D ETI could potentially be upgraded for cardiology to 
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access simultaneously and accurately the diastolic myocardial stiffness in all directions and to quantify the frac-
tional anisotropy for the diagnostic of cardiomyopathies.

5.  Conclusion

3D elastic tensor imaging, a 4D ultrafast shear wave elastography imaging based technique can assess elastic tissue 
stiffness and anisotropy simultaneously, in three-dimensions, at high volume rate (e.g.  >8000 Hz) and in a few 
minutes of post-processing. The accuracy of the technique was evaluated numerically in simulated isotropic and 
transverse isotropic model with different degrees of stiffness and anisotropy. Results showed that 3D ETI can 
accurately assess tissue stiffness and tissue anisotropy in weakly transversely isotropic media (elastic fractional 
anisotropy coefficient  <0.34). The in vitro feasibility was also assessed in a transverse isotropic phantom. 3D elastic 
tensor imaging shows a big potential for in vivo application to assess tissue stiffness and weak elastic anisotropy.
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Appendix

A.1.  Linear elasticity theory in transverse isotropic media: phase and group velocities
We assume the propagation of small amplitude shear wave that can be described by the linear elasticity theory. 
The wave propagation in an elastic media is governed by the wave equation:

ρ
∂2ui

∂t2
− Cijkl

∂2uk

∂xj∂xl
= 0� (A.1)

Here, ρ  is the density of the medium, ui  is the displacement vector, t  is the time, xi are the spatial coordinates, 
and Cijkl is the stiffness tensor, a fourth-rank tensor. Considering a harmonic plane-wave, equation (A.1) can be 
solved leading to the Christoffel’s equation (Royer and Dieulesaint 2000):

[
Gik − ρV2δik

]
Uk = 0� (A.2)

where Gik is the Christoffel’s matrix given by Gik = Cijklnjni (with ni  the direction vector of the wave propagation), 
V  the phase wave velocity, δik, the identity matrix. The Christoffel’s equation has three independent solutions, 
corresponding to three different wave-modes. The direction of the particle displacement vector U , or the 
polarization of each wave-mode, corresponds to an eigenvector of the Christoffel’s matrix, while the phase 
velocity V  can be deduced from the associated eigenvalue.

Considering that in SWE, shear waves remotely generated by the acoustic radiation force are polarized along 
the ultrasound probe axial direction (i.e. z-direction in a Cartesian coordinate system), the particle displacement 
vector is given by Uk = [0 0 1], with k = 1, 2, 3. Simultaneously, shear waves propagate in the transverse and 
longitudinal planes (i.e. x- and y-directions in a Cartesian coordinate system) which correspond to a direction 
vector given by ni = [n1 n2 0], with i = 1, 2, 3. Thus, the equation (A.2) can be developed into:

C3j3lnjni − ρV2 = 0� (A.3)

with C3111 = 0; C3112 = C3121 = 0; C3211 = 0; C3212 = C3221 = 0; C3122 = 0; C3222 = 0. These six independent 
components demonstrate that the media can present orthotropic, tetragonal, hexagonal, cubic or isotropic 
symmetry. Shear wave propagation in equation (A.3) can be rewritten as (Dellinger 1991, Lee et al 2012, Wang 
et al 2013):

C3131n2
1 + C3223n2

2 + 2C3123n1n2 = ρV2� (A.4)

C3131cos
2α+ C3223sin

2α+ 2C3123 cosα sinα = ρV2� (A.5)

with α the phase velocity angle with respect to the fibers in the propagation plane.
In a nondispersive isotropic medium, the phase and group velocity are equal, but in an anisotropic medium 

they can differ (figure A1). As a matter of fact, the group velocity can exhibit different values depending on the 
observation point, while the phase velocity is always a single value dependent on the direction of the transmitted 
plane-wave (Wang et al 2013). The differences between these two velocities are then dependent of the properties 
of the medium, such as, viscosity and anisotropy. In SWE, the group velocity (Vs) is usually easier to measure, 
which can be derived from the phase velocity using equation (A.6), (Dellinger 1991, Wang et al 2013), as:
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Figure A1.  Phase (V) and group velocity (Vs) for a plane-wave transmitted in a nondispersive anisotropic medium.

V2
s = V2 +

(
dV

dα

)2

.� (A.6)

The group velocity angle can also be derived from the phase velocity and the phase velocity angle, as given by 
equation (A.7):

β − α = arctan

(
1

V

dV

dα

)
.� (A.7)

Assuming an orthotropic or transverse isotropic medium, the stiffness tensor is then reduced to:

G =

[
µ11 µ12

µ12 µ22

]
=

[
µ11 0

0 µ22

]
.� (A.8)

And, equations (A.4) and (A.5) can be rewritten as:

µ11cos
2α+ µ22sin

2α = ρV2.� (A.9)

By developing (A.6), (A.7) and (A.9), the following relationship can be obtained:

ρV2
s =

µ11µ22

µ11sin
2β + µ22cos2β

.� (A.10)

A.2.  The elastic Green’s function in a transversely isotropic medium
The shear wave propagation field was based on a Green’s function formalism (Aki and Richards 1980, 2001). The 
simulated medium was assumed to be semi-infinite, isotropic or transverse isotropic, elastic and homogeneous.

Generally, the stiffness tensor C links the stress and strain tensors, σ and ε, via the via the generalized Hooke’s 
law, given by:

σ = Cε.� (A.11)

In the specific case of transverse isotropy, the representative matrix of the Christoffel stiffness tensor was further 
simplified by using the Voigt notation as followed:

G =




µ11 µ11 − 2µ66 µ13 0 0 0

µ11 − 2µ66 µ11 µ13 0 0 0

µ13 µ13 µ33 0 0 0

0 0 0 µ44 0 0

0 0 0 0 µ44 0

0 0 0 0 0 µ66




where : µ13 =
√
µ33 (µ11 − µ66).� (A.12)

The calculation of the displacement vector from one point source in the temporal domain was expressed using 

the transversely isotropic elastic Green’s formalism of equation (A.11). The terms G(P)
kl , G(SV)

kl , G(SH)
kl , G(SV−SH)

kl  

and G(P−SV)
kl  corresponded to the contribution of the P-wave, SV-wave, SH-wave, near-field term between 

P-wave and SV-wave and near-field term between P-wave and SH-wave, respectively (Vavryčuk 2001, Gennisson 
et al 2003, Chatelin et al 2015).

Uk (x, t) =
∑

l

Fl

4πρ

{
G(P)

kl (x, t) + G(SV)
kl (x, t) + G(SH)

kl (x, t) + G(SV−SH)
kl (x, t) + G(P−SV)

kl (x, t)
}

� (A.13)

where t  is the time, x = (x, y, z) the Cartesian coordinates of specific observation point, Fl the radiation force 
amplitude along the direction of propagation (as described in section 2.3.1), ρ  the density and (k, l) the direction 
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index numbers of the displacement and the source, respectively. The other parameters of the exact formula for 
the Green’s function are:

G(P)
kl (x, t) =

g(1)
k g(1)

l

τ (1)
√

c3
11

δ
(
t − τ (1)

)
,

G(SV)
kl (x, t) =

g(2)
k g(2)

l

τ (2)
√

c3
44

δ
(
t − τ (2)

)
,

G(SH)
kl (x, t) =

g(3)
k g(3)

l

τ (3)c66
√

c44
δ
(
t − τ (3)

)
,

G(SV−SH)
kl (x, t) = 1√

c44

g(3)⊥
k g(3)⊥

l −g(3)
k g(3)

l
R2

´ τ (3)

τ (2) δ (t − τ)dτ ,

G(P−SV)
kl (x, t) =

3g(1)
k g(1)

l −δkl

r3

´ τ (2)

τ (1) rδ (t − τ)dτ .

� (A.14)

The travel times of the compressional P-, shear SV- (i.e. parallel to the fibers) and shear SH- (i.e. orthogonal to the 
fibers) wave were respectively defined by:

τ (1) =
r

√
µ11

, τ (2) =
r

√
µ44

, τ (3) =
r

√
µ66

√
N2

1 + N2
2 +

µ66

µ44
N2

3 .� (A.15)

The polarization vectors were defined by:

g(1) =




N1

N2

N3


 , g(2) =

1√
N2

1 + N2
2



−N1N3

−N2N3

N2
1 + N2

2


 , g(3) =

1√
N2

1 + N2
2




N2

−N1

0


 , g(3)⊥ =

1√
N2

1 + N2
2




N1

N2

0


 .

�
(A.16)

where r =
√

x2
1 + x2

2 + x2
3  and R =

√
x2

1 + x2
2 are the distance from the source point to the observation point 

and the distance from the focal axis to the observation point, respectively. Nm = xm/r is the unit direction vector 

from the source point to the observation point. c11 = ρv2
P, c44 = ρv2

‖ and c66 = ρv2
⊥ are the coefficients of the 

Christoffel stiffness tensor C (vP, v2
‖. and v2

⊥ correspond to the velocity of the P-wave, SV-wave and SH-wave, 

respectively).
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