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LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF
SUB-GAUSSIAN MATRICES

FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

Abstract: We establish large deviations estimates for the largest eigenvalue of Wigner
matrices with sub-Gaussian entries.

1. Introduction

Understanding the large deviation behavior of the largest eigenvalue of a random matrix
is a challenging question, with many applications in statistics and mobile communications
systems, e.g [10, 7]. However, it is in general a difficult question and very few results are
known. It is known since [19] that the empirical distribution of the eigenvalues of a Wigner
matrix converges to the semi-circle law provided the off-diagonal entries have a finite sec-
ond moment. Following the pioneering work of Kómlos and Fűredi [11], we know by [4]
that assuming the Wigner matrix has centered entries, the largest eigenvalue converges to
the right edge of the support of the semi-circle law if and only if the fourth moment of the
off-diagonal entries is finite. Given these two results, one can wonder what is the proba-
bility that the empirical measure or the largest eigenvalue have an unexpected behavior.
Large deviation principles were derived for the empirical distribution of the eigenvalues
and the largest eigenvalue of classical Gaussian ensembles, as the Gaussian Unitary En-
semble (GUE) and Gaussian Orthogonal Ensemble (GOE) in [6] and [5]. Indeed, in this
case, the joint law of the eigenvalues is explicit and large deviations estimates can be
derived by Laplace’s method, up to taking care of the singularity of the interaction. In
a breakthrough paper, Bordenave and Caputo [8] showed that large deviations for the
empirical measure of the eigenvalues can be estimated when the tails of the entries are
heavier than in the Gaussian case. These large deviations have a smaller speed than in the
cases of classical Gaussian Ensembles and are due to a relatively small number of entries
of order one. This phenomenon was shown to hold as well for the largest eigenvalue by
one of the authors [2].

Yet, the case of sub-Gaussian entries remained still mysterious. Last year, two of the
authors showed that if the Laplace transform of the Wigner matrix is pointwise bounded
from above by the one of the GUE or GOE, then a large deviations principle holds with the
same rate function as in the Gaussian case. This special case of Wigner matrices, which
was called with sharp sub-Gaussian tails, was shown to include matrices with Rademacher
variables and variables uniformly sampled in an interval. Yet, many Wigner matrices
with sub-Gaussian entries are not with sharp sub-Gaussian tails, as for Gaussian sparse
matrices which are obtained by multiplying entrywise a GOE matrix with an independent
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Bernoulli random variable. In this article, we investigate this general setting and derive
large deviations estimates for the largest eigenvalue of Wigner matrices with sub-Gaussian
entries. In particular, we show that the rate function of this large deviations principle is
different from the one of the GOE.

We will consider hereafter a N × N symmetric random matrix XN with independent
entries (Xij)i≤j above the diagonal so that

√
NXij has law µ for all i < j and

√
N/2Xii

has law µ for all i. In particular, the variance profile is the same as the one of the GOE.
We assume that µ is centered and has a variance equal to 1. Let

∀x ∈ R, ψ(x) = 1
x2 log

∫
extdµ(t) .

ψ(0) = 1/2 and is a continuous function on R. Assume that
A

2 := sup
x∈R

ψ(x) < +∞. (1)

The case where A = 1 is the case of sharp sub-Gaussian tails which was studied in [12].
We investigate here the case where A > 1 and we show the following result.

Theorem 1.1. Denote by λXN the largest eigenvalue of XN . Under some technical as-
sumptions, there exist a good rate function Iµ : R→ [0,+∞] and a set Oµ ⊂ R such that
(−∞, 2] ∪ [xµ,+∞) ⊂ Oµ for some xµ ≥ 2 and such that for any x ∈ Oµ,

lim
δ→0

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) = lim
δ→0

lim sup
N→+∞

1
N

logP (|λXN − x| ≤ δ) = −Iµ(x).

The rate function Iµ is infinite on (−∞, 2) and satisfies,

Iµ(x) ∼
x→+∞

1
4Ax

2.

If A ∈ (1, 2), then [2,
√
A− 1 + 1/

√
A− 1] ⊂ Oµ and Iµ coincides on this interval to the

rate function of the GOE, that is,

Iµ(x) = 1
2

∫ x

2

√
y2 − 4dy =: IGOE(x). (2)

Moreover, for all x ≥ 2, Iµ(x) ≤ IGOE(x).

The technical assumptions include the case where ψ is increasing (which holds in the
case of sparse Gaussian entries) and the case where the maximum of ψ is achieved on
R at a unique point in a neighborhood of which it is strictly concave. In the later case,
Iµ(x) only depends on A for x large enough.

1.1. Assumptions. We now describe more precisely our assumptions.

Assumption 1.1. Let µ ∈ P(R) be a symmetric probability measure with unit variance.
We denote by L its log-Laplace transform,

∀x ∈ R, L(x) = log
∫
extdµ(t),
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and ψ(x) = L(x)/x2. We assume that µ is sub-Gaussian in the sense that
A

2 := sup
x∈R

ψ(x) < +∞,

and we define B ≥ 0 by,
B

2 := lim
|x|→+∞

ψ(x).

We assume moreover that L(√.) is a Lipschitz function and that µ does not have sharp
sub-Gaussian tails, meaning that A > 1.

We describe below a few examples of probability measures µ which satisfy the above
assumptions. In each of these cases, the fact that L(√.) is Lipschitz is clear and left to
the reader.

Example 1.2. • (Combination of Gaussian and Rademacher laws). Let

µ(dx) = a
e−

1
2B x

2

√
2πB

dx+ (1− a)1
2(δ−b + δ+b)

where a, b, B are non negative real numbers such that a ∈ (0, 1) and aB+(1−a)b2 =
1. Then, for all x ∈ R,

Lµ(x) = log
(
ae

B
2 x

2 + (1− a) cosh(bx)
)
.

If B > 1 and b ∈ (0, 1) we see that our conditions are fulfilled and A = B.
• (Sparse Gaussian case). Let µ be the law of ζΓ with ζ a Bernoulli variable of
parameter p ∈ (0, 1) and Γ a centered Gaussian variable with variance 1/p. For
any x ∈ R,

Lµ(x) = log
(
pe

x2
2p + 1− p

)
so that A = B = 1

p
.

• (Combination of Rademacher laws). Let

µ =
p∑
i=1

αi
2 (δβi + δ−βi)

with αi ≥ 0 , βi ∈ R and p ∈ N so that
∑
αi = 1,

∑
αiβ

2
i = 1. Since µ is

compactly supported B = 0. The fact that µ does not have sharp sub-Gaussian
tails means that there exist some t and A > 1 such that

p∑
i=1

αi cosh(βit) ≥ eA
t2
2 .

The latter is equivalent to
p∑
i=1

αi
2 e

β2
i

2A

(
e−

A
2 (t−βi

A
)2 + e−

A
2 (t+βi

A
)2
)
≥ 1 .

This inequality holds as soon as αie
β2
i

2A ≥ 2 for some i ∈ {1, . . . , p} by taking t = βi
A
.

This can be fulfilled if βi is large enough while αiβ2
i < 1. We also see with this
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family of examples that A can be taken arbitrarily large even if B = 0 (take e.g
p = 2, A = β1, t = 1, α1 = (2β2

1)−1, eβ1/2 ≥ 4β2
1 , β

2
2 = (2− β−2

1 )−1, α2 = 1− α1).

Let HN be the set of real symmetric matrices of size N . We denote for any A ∈ HN

by λA its largest eigenvalue, ||A|| is spectral radius and by µ̂A the empirical distribution
of its eigenvalues, that is

µ̂A = 1
N

N∑
i=1

δλi ,

where λ1, . . . , λN are the eigenvalues of A. We make the following assumption of expo-
nential tightness of the spectral radius and of concentration of the empirical distribution
of the eigenvalues at the scale N .
Assumption 1.2. The spectral radius of XN , ||XN ||, is exponentially tight at the scale
N :

lim
K→+∞

lim sup
N→+∞

1
N

logP
(
||XN || > K

)
= −∞. (3)

Moreover, the empirical distribution of the eigenvalues µ̂XN concentrates at the scale N :

lim sup
N→+∞

1
N

logP
(
d(µ̂XN , σ) > N−κ

)
= −∞, (4)

for some κ > 0, where d is a distance compatible with the weak topology and σ is the
semi-circle law, defined by

σ(dx) = 1
2π
√

4− x21|x|≤2dx.

Remark 1.3. (1) From [12, Lemmas 1.8, 1.11], we know that Assumption 1.2 is ful-
filled if µ is either compactly supported, or if µ satisfies a logarithmic Sobolev
inequality in the sense that there exists c > 0 so that for any smooth function
f : R→ R, such that

∫
f 2dµ = 1,∫
f 2 log f 2dµ ≤ c

∫
‖∇f‖2

2dµ .

(2) If µ is a symmetric sub-Gaussian probability measure on R with log-concave tails
in the sense that t 7→ µ(|x| ≥ t) is a log-concave function, then the Wigner matrix
XN satisfies Assumption 1.2. In particular, if B is a Wigner matrix with Bernoulli
entries with parameter p and Γ is a GOE matrix, then the sparse Gaussian matrix
B ◦ Γ/√p, where ◦ the Hadamard product, satisfies Assumption 1.2. We refer the
reader to section 7.1 of the appendix for more details.

1.2. Statement of the results and scheme of the proof. As in [12], our approach to
derive large deviations estimates is based on a tilting of the law of the Wigner matrix XN

by spherical integrals. Let us recall the definition of spherical integrals. For any θ ≥ 0,
we define

IN(XN , θ) = Ee[eθN〈e,XNe〉]
where e is uniformly sampled on the sphere SN−1 with radius one. The asymptotics of

JN(XN , θ) = 1
N

log IN(XN , θ)
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were studied in [13] where the following result was proved.
Theorem 1.4. [13, Theorem 6] Let (EN)N∈N be a sequence of N × N real symmetric
matrices such that:

• The sequence of empirical measures µ̂EN converges weakly to a compactly supported
measure µ.
• There is a real number λE such that the sequence of largest eigenvalues λEN con-
verges to λE.
• supN ||EN || < +∞.

For any θ ≥ 0,
lim

N→+∞
JN(EN , θ) = J(µ, θ, λE)

The limit J is defined as follows. For a compactly supported probability measure
µ ∈ P(R) we define its Stieltjes transform Gµ by

∀z /∈ supp(µ), Gµ(z) :=
∫
R

1
z − t

dµ(t),

where supp(µ) is the support of µ. For any compactly supported probability measure µ,
we denote by rµ the right edge of the support of µ. Then Gµ is a bijection from (rµ,+∞)
to
(
0, Gµ(rµ)

)
where

Gµ(rµ) = lim
t↓rµ

Gµ(t).

Let Kµ be the inverse of Gµ on (0, Gµ(rµ)) and let
∀z ∈ (0, Gµ(rµ)), Rµ(z) := Kµ(z)− 1/z,

be the R-transform of µ as defined by Voiculescu in [18]. Then, the limit of spherical
integrals is defined for any θ ≥ 0 and x ≥ rµ by,

J(µ, θ, x) := θv(µ, θ, x)− 1
2

∫
log
(
1 + 2θv(µ, θ, x)− 2θy

)
dµ(y),

with

v(µ, θ, x) :=
{
Rµ(2θ) if 0 ≤ 2θ ≤ Gµ(x),
x− 1

2θ if 2θ > Gµ(x).
In the case of the semi-circle law, we have

Gσ(x) = 1
2(x−

√
x2 − 4), Rσ(x) = x.

We denote by J(λ, θ) as a short-hand for J(σ, θ, λ). In the next lemma we compute
explicitly J(x, λ), whose proof is left to the reader.
Lemma 1.5. Let θ ≥ 0 and x ≥ 2. For θ ≤ 1

2Gσ(x),
J(x, θ) = θ2.

Whereas for θ ≥ 1
2Gσ(x),

J(x, θ) = θx− 1
2 −

1
2 log 2θ − 1

2

∫
log(x− y)dσ(y).

Moreover,for any x ≥ 2, J(x, .) is continuously differentiable.
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To derive large deviations estimates using a tilt by spherical integrals, it is central to
obtain the asymptotics of the annealed spherical integral FN(θ) defined as,

FN(θ) = 1
N

logEXNEe[exp(Nθ〈e,XNe〉)] .

In the following lemma, we obtain the limit of FN as the solution of a certain variational
problem. We denote by F (θ) and F (θ) its upper and lower limits:

F (θ) = lim sup
N→+∞

FN(θ),

F (θ) = lim inf
N→+∞

FN(θ).

For any measurable subset I ⊂ R, we denote by M(I) and P(I) respectively the set of
measures and the set of probability measures supported on I.

Proposition 1.6. Assume XN satisfies Assumptions 1.1 and 1.2.
F (θ) = lim sup

δ→0,K→+∞
δK→0

sup
α1+α2+α3=1

αi≥0

lim sup
N→+∞

FNα1,α2,α3(δ,K),

F (θ) = sup
α1+α2+α3=1

αi≥0

lim inf
δ→0,K→+∞

δK→0

lim sup
N→+∞

FNα1,α2,α3(δ,K) .

FNα1,α2,α3(δ,K) is the function given by:

FNα1,α2,α3(δ,K) = θ2(α2
1 + 2α1α2 +Bα2

3
)

+ sup
ti∈I2,i≤l

|
∑
i t

2
i
−Nα2|≤δN

sup
si∈I3,i≤k

|
∑
i s

2
i
−Nα3|≤δN

{ 1
N

k∑
i=1

l∑
j=1

L
(2θsitj√

N

)
+ 1

2N

l∑
i,j=1

L
(2θtitj√

N

)

+ sup
ν1∈P(I1)∫
x2dν1(x)=α1

{ k∑
i=1

∫
L
(2θsix√

N

)
dν1(x)−H(ν1)

}
− 1

2 log(2π)− 1
2

}
,

where I1 = {x : |x| ≤ δ1/2N1/4}, I2 = {x : δ1/2N1/4 ≤ |x| ≤ K1/2N1/4}, I3 = {K1/2N1/4 ≤
|x| ≤

√
Nα3}, and

H(ν) =
∫

log dν
dx
dν(x),

if ν is absolutely continuous with respect to the Lebesgue measure, whereas H(ν) is infinite
otherwise.

Remark 1.7. Note that F and F are convex by Hölder inequality. Since the entries of
XN are sub-Gaussian, F (θ) ≤ Aθ2. In particular F , F are finite convex functions and
therefore they are continuous on R+.

The above proposition gives quite an intricate definition for the limit of the annealed
spherical integrals. Yet, for small enough θ it can be computed explicitly.

Lemma 1.8. For any θ ≤ 1
2
√
A−1 ,

F (θ) = F (θ) = θ2.



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF SUB-GAUSSIAN MATRICES 7

Note that for large θ this formula is not valid anymore when A > 1 since F grows like
Aθ2 at infinity (see the proof of Proposition 1.10).

Proof. Using the bound L(x) ≤ Ax2/2 for any x ≥ 0 and the notation of Proposition 1.6,
we have

FNα1,α2,α3(δ,K) ≤ sup
α1+α2+α3=1

{
θ2(α2

1 + 2α1α2 +Bα2
3 + 2Aα3α2 + Aα2

2 + 2Aα1α3
)

+ 1
2 logα1

}
.

Here we used the fact that the infimum

inf{H(ν1) :
∫
x2dν1 = α1, ν1 ∈ P(I1)} ≥ inf{H(ν1) :

∫
x2dν1 = α1, ν1 ∈ P(R)},

where the infimum in the right hand side is achieved at ν1(dx) = (2πα1)−1/2e
− x2

2α1 dx and
hence equals −1/2(1 + log(2πα1)).

As A ≥ 1 and B ≤ A, we have the upper bound,

F (θ) ≤ sup
α∈[0,1]

{
θ2(α2 + 2Aα(1− α) + A(1− α)2)+ 1

2 logα
}

= sup
α∈[0,1]

{
θ2(A− (A− 1)α2)+ 1

2 logα
}
.

Hence for all θ ≥ 0, (and as we could have seen directly from the uniform upper bound
L(θ) ≤ A

2 θ
2)

F (θ) ≤ Aθ2 . (5)
We see that if 2θ

√
A− 1 ≤ 1 then the function

α 7→ θ2(A− (A− 1)α2)+ 1
2 logα,

is increasing on [0, 1]. Thus the supremum is achieved at α = 1, and F (θ) ≤ θ2. Moreover,
taking α1 = 1, α2 = α3 = 0, and ν1 the standard Gaussian restricted to I1 ν1(dx) =
1I1e

−x
2

2 dx/Z we find that
F (θ) ≥ θ2. (6)

Thus, if 2θ
√
A− 1 ≤ 1, we get that F (θ) = F (θ) = θ2.

�

Although the limit of the annealed spherical integrals may not be explicit for all θ, we
can still use it to obtain large deviations upper bounds as we describe now in the following
theorem.

Theorem 1.9. Under the Assumptions 1.1 and 1.2, the law of the largest eigenvalue
λXN satisfies a large deviation upper bound with good rate function Ī which is infinite on
(−∞, 2) and otherwise given by:

∀y ≥ 2, Ī(y) = sup
θ≥0
{J(y, θ)− F (θ)} . (7)

Moreover, Ī(y) ≤ IGOE(y) for all y ≥ 2.
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Proof. From Assumption 1.2 we know that the law of the largest eigenvalue is exponen-
tially tight at the scale N . Therefore, it is sufficient to prove a weak large deviations
upper bound by [9, Lemma 1.2.18]. Let δ > 0. We have,

P(λXN < 2− δ) ≤ P(µ̂XN (f) = 0),
where f is a smooth compactly supported function with support in (2 − δ, 2). Since
supp(σ) = [−2, 2], we deduce that,

P(λXN < 2− δ) ≤ P(d(µ̂XN , σ) > ε),
for some ε > 0. As the empirical distribution of the eigenvalues concentrates at the scale
N according to (4), we conclude that

lim
N→+∞

1
N

logP(λXN < 2− δ) = −∞.

Let now x ≥ 2 and δ > 0. Recall from (6) that F (θ) ≥ θ2 for any θ ≥ 0. Therefore,
Ī(x) ≤ sup

θ≥0
{J(x, θ)− θ2}.

From [12, Section 4.1], we know that
sup
θ≥0
{J(x, θ)− θ2} = IGOE(x),

where IGOE is the rate function of the largest eigenvalue of a GOE matrix. Therefore we
have proved that

Ī(x) ≤ IGOE(x),∀x ≥ 2 .
In particular Ī(2) = 0 since IGOE(2). Therefore we only need to estimate small ball prob-
abilities around x 6= 2. As µ̂XN concentrates at the scale N , and ||XN || is exponentially
tight at the scale N by Assumption 1.2 it is enough to show that for any K > 0,

lim sup
δ→0

lim sup
N→+∞

1
N

logP(XN ∈ V K
δ,x) ≤ −Ī(x),

where V K
δ,x = {Y ∈ HN : |λY − x| < δ, d(µ̂Y , σ) < N−κ, ||Y || ≤ K}, for some κ > 0. Let

θ ≥ 0. From [16, Proposition 2.1], we know that the spherical integral is continuous, more
precisely, for N large enough and any XN ∈ Vδ,x,

|JN(XN , θ)− J(x, θ)| < g(δ),
for some function g(δ) going to 0 as δ → 0. Therefore,

P(XN ∈ V K
δ,x) = E

(
1XN∈V Kδ,x

IN(XN , θ)
IN(XN , θ)

)
≤ E[IN(XN , θ)]e−NJ(θ,x)−Ng(δ).

Taking the limsup as N → 0 and δ → 0 at the logarithmic scale, we deduce

lim sup
δ→0

lim sup
N→+∞

1
N

logP(XN ∈ V K
δ,x) ≤ F (θ)− J(θ, x).

Opimizing over θ ≥ 0, we get the claim. �

Proposition 1.10. Under Assumption 1.1, the rate function Ī defined in Theorem 1.9 is
lower semi-continuous, and growing at infinity like x2/4A. In particular, Ī is a good rate
function.
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Proof. Ī is lower semi-continuous as a supremum of continuous functions (recall here that
J(θ, .) is continuous by Lemma 1.5 and F is continuous by Remark 1.5). It remains to
show that its level sets are compact, for which it is sufficient to prove that Ī goes to
infinity at infinity. Let x > 2. Let C > 0 be a constant to be chosen later such that
Cx ≥ 1/2. We have by taking θ = Cx and using (1.9), that

Ī(x) ≥ J(Cx, x)− F (Cx)

≥ Cx2 − 1
2 −

1
2 log x

A
− 1

2 log x− AC2x2. (8)

Taking C = 1/2A, and assuming that x > A, we obtain that

Ī(x) ≥ x2

4A − o(x
2). (9)

To get the converse bound, we show that as θ goes to infinity, F goes to infinity like Aθ2.
We distinguish two cases. First, we consider the case A = B. Using Proposition 1.6, we
get the lower bound for θ ≥ 1,

F (θ) ≥ Aθ2
(

1− 1
θ2

)
− 1

4 log θ,

by taking α2 = 0, α3 = 1 − θ−2, α1 = θ−2 and ν1 the Gaussian law restricted to I1 with
variance α1. In the case A > B, we define m∗ such that ψ(m∗) = A/2. Taking α3 = 0,
α2 = 1 − θ−2, α1 = θ−2, ν2 = 2θα2

m∗
δ√m∗

2θ
, and ν1 the Gaussian law restricted to I1 with

variance α1, we obtain,
F (θ) ≥ Aθ2

(
1− 1

θ2

)
− log θ. (10)

It follows that for any ε > 0, there exists M <∞ such that for θ ≥M ,
F (θ) ≥ (1− ε)Aθ2.

Therefore

Ī(x) ≤ max
{

sup
θ≥M
{J(θ, x)− (1− ε)Aθ2}, sup

θ≤M
{J(θ, x)− F (θ)}

}
.

But from Lemma 1.5 one can see that the second term in the above right-hand side is
bounded by Mx+C where C is a numerical constant. Besides, using the same argument
as in (8), we get

sup
θ≥M
{J(θ, x)− (1− ε)Aθ2} ≥ x2

4(1− ε)A − o(x
2).

Hence, for x large enough,
Ī(x) ≤ sup

θ≥M
{J(θ, x)− (1− ε)Aθ2}.

But, for x large enough and θ ≥ 1/2, J(θ, x) ≤ θx. Thus,

sup
θ≥M
{J(θ, x)− (1− ε)Aθ2} ≤ sup

θ≥0
{θx− (1− ε)Aθ2} = x2

4(1− ε)A,

which ends the proof.
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�

Proposition 1.11. For any θ ≥ 0, J(θ, .) is a convex function. Therefore, Ī is also
convex.

Proof. Let x, y ≥ 2 and t ∈ (0, 1). Let EN be a sequence of diagonal matrices such that
||EN || ≤ 2 and such that µ̂EN converges weakly to σ. Let Ex

N and Ey
N be such that

(Ex
N)i,i = (Ey

N)i,i = (EN)i,i for any i ∈ {1, . . . , N − 1}, and

(Ex
N)N,N = x (Ey

N)N,N = y.

We have λExN = x and λEyN = y. Then, HN = tEx
N + (1− t)Ey

N is such that its empirical
distribution of eigenvalues converges to σ, and λHN = tx+(1−t)y. By Hölder’s inequality
we have,

log IN(HN , θ) ≤ t log IN(EN , θ) + (1− t) log IN(DN , θ).
Taking the limit as N → +∞, we get,

J(tx+ (1− t)y, θ) ≤ tJ(x, θ) + (1− t)J(y, θ).

Therefore, J(θ, .) is convex and I is convex as a supremum of convex functions. �

To derive the large deviation lower bound, we denote by Cµ the set of θ ∈ R+ such that

F (θ) = F (θ) =: F (θ) .

By Lemma 1.8, Cµ is not empty. We observe also that by continuity of both F and F (see
Remark 1.7), Cµ is closed. Let

∀x ≥ 2, I(x) = sup
θ∈Cµ
{J(x, θ)− F (θ)}

Theorem 1.12. For any x ≥ 2, denote by

Θx = {θ ≥ 0 : Ī(x) = J(x, θ)− F (θ)},

where Ī is defined in (7). Let x ≥ 2 such that there exists θ ∈ Θx ∩ Cµ and θ /∈ Θy for
any y 6= x. Then, I(x) = Ī(x) and

lim
δ→0

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) ≥ −I(x).

We apply this general theorem in two cases. We first investigate the case where the
function ψ is increasing, case for which we can check that our hypotheses on the sets Θx

holds for x large enough. This includes the case where µ is the sparse Gaussian law, see
Example 1.2.

Proposition 1.13. Suppose that Assumptions 1.1 and 1.2 hold. If ψ is increasing on
R+, then Cµ = R+. Moreover, there exists xµ ≥ 2 such that for any x ≥ xµ, the large
deviation lower bound holds with rate function I.

We then consider the case where µ is such that B < A. This includes any compactly
supported measure µ since then B = 0. We prove in this case the following result.
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Proposition 1.14. Suppose that Assumptions 1.1 and 1.2 hold. If µ is such that B < A
and such that the maximum of ψ is attained on R+ for a unique m∗ such that ψ′′(m∗) < 0,
then there exists a positive finite real number θ0 such that for [θ0,+∞[⊂ Cµ. Therefore,
there exists a finite constant xµ such that for x ≥ xµ, the large deviation lower bound holds
with rate function I. Furthermore on the interval [xµ,+∞) the rate function I depends
only on A.

In the case where A is sufficiently small, we can show without any additional assumption
that the large deviation lower bound holds in a vicinity of 2 and the rate function I is
equal to the one of the GOE. This contrasts with Proposition 1.10 which shows that the
rate function Ī goes to infinity like x2/4A at infinity and therefore depends on A. In other
words the “heavy tails” only kicks in above a certain threshold.

Proposition 1.15. Assume A < 2. The large deviation lower bound holds with rate
function Ī on [2, 1/

√
A− 1 +

√
A− 1]. Moreover, Ī coincides with the rate function in

the GOE case IGOE, defined in (2), on this interval. As a consequence, for all x ∈
[2, 1/

√
A− 1 +

√
A− 1]

lim
δ→0

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) = lim
δ→0

lim sup
N→+∞

1
N

logP (|λXN − x| ≤ δ) = −IGOE(x).

In the next section 2, we detail our approach to prove large deviations lower bounds.
Since Proposition 1.6 is crucial to all our results, we prove it in the next section 3. Then,
we will apply these results to prove the large deviations lower bounds close to the bulk
in section 4, that is, we give a proof of Proposition 1.15. To prove the large deviations
lower bounds for large x, we consider first the case of increasing ψ in section 5 and then
the case of B < A in section 6. Indeed, the variational formulas for the limiting annealed
spherical integrals differ in these two cases, as B = A in the first case whereas B < A in
the second.

2. A general large deviation lower bound

We first prove Theorem 1.12 and will then give more practical descriptions of the sets
Θx in order to apply it.

Proof of Theorem 1.12. By assumption, there exists θ ∈ Θx ∩ Cµ such that θ /∈ Θy for
y 6= x. In particular, it entails that I(x) = Ī(x). Introducing the spherical integral with
parameter θ ≥ 0, we have

P (|λXN − x| ≤ δ) ≥ E
(
1XN∈V Kδ,x

IN(XN , θ)
IN(XN , θ)

)
,

where V K
δ,x = {Y ∈ HN : |λY − x| ≤ δ, d(µ̂Y , σ) < N−κ, ||XN || ≤ K} for some K > 0 and

κ > 0. Using the continuity of the spherical integral (see [16, Proposition 2.1]), we get

P (|λXN − x| ≤ δ) ≥
E
(
1XN∈V Kδ,x

IN(XN , θ))
EIN(XN , θ)

eNF (θ)−NJ(x,θ)−Ng(δ)−o(N), (11)
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where g is a function such that g(δ)→ 0 as δ → 0. We claim that

lim inf
N→+∞

1
N

log
E
(
1XN∈V Kδ,x

IN(XN , θx))
EIN(XN , θx)

≥ 0.

To this end we will use our large deviation upper bound. Since µ̂XN concentrates at scales
faster than N , and ||XN || is exponentially tight at the scale N by Assumption 1.2, this
remains true under the measure tilted by the spherical integral since the logarithm of its
density grows at most like N . Hence, it suffices to prove that for all y 6= x, for δ small
enough, and K large enough,

lim sup
N

1
N

log
E[1XN∈V Kδ,yIN(XN , θ)]

EIN(XN , θ)
< 0.

By assumption, there exists θ ∈ Θx ∩ Cµ such that θ /∈ Θy for y 6= x. We introduce a new
spherical integral with argument θ′ and use again the continuity of JN to show that:

E[1XN∈V Kδ,yIN(XN , θ)]
EIN(XN , θ)

=
E[1XN∈V Kδ,y

IN (XN ,θ′)
IN (XN ,θ′)IN(XN , θ)]

EIN(XN , θ)
= e−NJ(y,θ′)−NF (θ)+NJ(y,θ)+Nε(δ)E[1XN∈V Kδ,yIN(XN , θ

′)]

≤ e−NJ(y,θ′)−NF (θ)+NJ(y,θ)+NF (θ′)+Nε(δ),

where ε(δ)→ 0 as δ → 0. We can conclude that

lim sup
N→+∞
δ→0

1
N

log
E[1XN∈V Kδ,yIN(XN , θ)]

EIN(XN , θ)
≤ − sup

θ′
{J(y, θ′)− F (θ′)}+ J(y, θ)− F (θ)

= −I(y) + J(y, θ)− F (θ) (12)
By assumption, θ /∈ Θy, and θ ∈ Cµ so that F (θ) = F (θ) hence

−I(y) + J(y, θ)− F (θ) < 0
and the conclusion follows from (12). Therefore, coming back to (11), we obtain since
θx ∈ Θx and I(x) = Ī(x),

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) ≥ −I(x).

�

In a first step, we identify a subset defined in terms of the subdifferential sets of F at
the points of non-differentiability where the large deviation lower bound holds. Let D be
the set of θ ≥ 0 such that F is differentiable at θ.

Lemma 2.1. The lower bound holds for any x > 2 such that I(x) = Ī(x) > 0 and

x /∈ E :=
⋃
θ∈Dc

( 1
2θ + ∂F (θ)

)
, (13)

where ∂F (θ) denotes the subdifferential of F at θ
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Note that since F is a convex function, its subdifferentials are well defined.

Proof. Let x > 2 such that I(x) = Ī(x) > 0 and x /∈ E. Since F (θ) ≥ θ2 for any θ ≥ 0 by
(6) and F is continuous by Remark 1.7, we deduce from Lemma 1.5 that θ 7→ J(x, θ)−F (θ)
is continuous and goes to −∞ as θ goes to +∞. Since Cµ is closed, the supremum

sup
θ∈Cµ

{
J(θ, x)− F (θ)

}
(14)

is achieved at some θ ∈ Cµ. We will show that θ ∈ D.
As Ī(x) 6= 0 we must have θ > 1

2Gσ(x). Indeed, F (θ) ≥ θ2 and J(θ, x) = θ2 for
θ ≤ 1

2Gσ(x) by Lemma 1.5 so that

sup
θ≤ 1

2Gσ(x)
{J(θ, x)− F (θ)} = 0.

Since Ī(x) = I(x), we deduce by Fermat’s rule that θ is a critical point of J(., x)−F and
therefore satisfies the condition:

0 ∈ ∂J
∂θ

(θ, x)− ∂F (θ) = x− 1
2θ − ∂F (θ) .

Since x /∈ E, we deduce that F is differentiable at θ.
According to Theorem 1.12, to prove that the lower bound holds at x, it suffices to

show that θ /∈ Θy for any y 6= x. Let us proceed by contradiction and assume that there
exists y ≥ 2 such that θ ∈ Θy. As F is differentiable at θ, it should be a critical point of
both J(y, .)− F and J(x, .)− F . Therefore, we should have

∂

∂θ
J(y, θ) = ∂

∂θ
J(x, θ).

If Gσ(y) < 2θ, then we obtain by Lemma 1.5 and the fact that Gσ(x) < 2θ that x = y. If
Gσ(y) ≥ 2θ, then we have

x− 1
2θ = 2θ.

On the other hand, 2θ ≤ Gσ(y) ≤ 1 and therefore we get the unique solution 2θ = Gσ(x).
As we assumed that 2θ > Gσ(x), we get a contradiction and conclude that θ /∈ Θy for any
Gσ(y) ≥ 2θ, which completes the proof. �

We are now ready to prove the following result:

Proposition 2.2. Assume that there exists θ0 > 0 such that [θ0,+∞[⊂ Cµ and such that
F is differentiable on (θ0,+∞). There exists xµ ≥ 2 such that for any x ≥ xµ, I(x) = Ī(x)
and the large deviation lower bound holds for any x ≥ xµ with rate function I(x).

Proof. On one hand,
sup
θ≤θ0

{J(θ, x)− F (θ)} ≤ θ0x+ C,

where C is some positive constant. Since Ī(x) ≥ x2/4A − o(x2) by (9), we deduce that
there exists xµ ≥ 2 such that for x ≥ xµ, Ī(x) > 0 and the supremum of J(., x) − F is
achieved on [θ0,+∞), in particular on Cµ. Thus, for any x ≥ xµ, Ī(x) = I(x) > 0. In
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view of Lemma 2.1, it remains to show that E, defined in (13), is a bounded set. From
our assumption that F is differentiable on (θ0,+∞) and Lemma 1.8, we deduce that

Dc ⊂
[ 1

2
√
A− 1

, θ0

]
.

We observe that since 0 ≤ F (θ) ≤ Aθ2, we have for any ζ ∈ ∂F (θ),
ζθ ≤ F (2θ)− F (θ) ≤ 4Aθ2,

and thus ζ ≤ 4Aθ. Therefore, E is a bounded set, which ends the proof.
�

3. Asymptotics of the annealed spherical integral

In this section we prove Proposition 1.6. Taking the expectation first with respect to
XN , we have

FN(θ) = 1
N

logEXNEe[exp(Nθ〈e,XNe〉)]

= 1
N

logEe exp
(
f(e)

)
,

where
f(e) =

∑
i<j

L
(
2
√
Nθeiej

)
+
∑
i

L(
√

2Nθe2
i

)
.

In a first step, we will prove the following variational representation of the upper and
lower limits of FN(θ).

Lemma 3.1. Let XN be a Wigner matrix satisfying Assumptions 1.1 and 1.2. Then for
any θ > 0,

F (θ) ≤ lim inf
N→+∞

FN(θ) ≤ lim sup
N→+∞

FN(θ) ≤ F (θ)

with
F (θ) = lim sup

δ→0,K→+∞
δK→0

sup
c=c1+c2+c3

ci≥0

lim sup
N→+∞

FN
c1,c2,c3(δ,K),

F (θ) = sup
c=c1+c2+c3

ci≥0

lim inf
δ→0,K→+∞

δK→0

lim inf
N→+∞

FN
c1,c2,c3(δ,K),

where

FN
c1,c2,c3(δ,K) = sup

si≥
√
cKN1/4

|
∑
s2
i
−c3N|≤δN

sup
√
cδ≤tiN−1/4≤

√
cK

|
∑
t2
i
−Nc2|≤δN

{θ2

c2

(
c2

1 + 2c1c2 +Bc2
3
)
− 1

2
(
c2 + c3

)
+ 1
N

∑
i,j

L
(2θsitj√

Nc

)
+ 1

2N
∑
i,j

L
(2θtitj√

Nc

)
+ sup

ν∈P(I1)∫
x2dν1(x)=c1

{
Φ(ν, s)−H(ν|γ)

}}
,

and

Φ(ν, s) =
k∑
i=1

∫
L
(2θxsi√

Nc

)
dν(x),
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with I1 = [−
√
cδN1/4,

√
cδN1/4]. Here, we have set γ to be the standard Gaussian law

and

H(ν|γ) =
∫

ln dν
dγ

(x)dν(x) .

Proof. We use the representation of the law of the vector e uniformly distributed on the
sphere as a renormalized Gaussian vector g/‖g‖2 where g is a standard Gaussian vector
in RN , to write

Ee exp
(
f(e)

)
= E [exp(Σ(g))] ,

where

Σ(g) =
∑
i<j

L
(

2
√
Nθ

gigj∑N
i=1 g

2
i

)
+
∑
i

L
(√

2Nθ g2
i∑N

i=1 g
2
i

)
.

To study the large deviation of Σ(g), we split the entries of g into three possible regime: the
regime where gi � N1/4, an intermediate regime where gi ' N1/4 and finally gi � N1/4.
Fix some K, δ > 0 and 0 < 4δ < K−1. Let c1, c2, c3 > 0 and c = c1 + c2 + c3. We assume
that 0 < K−1 ≤ c1 ≤ c ≤ K. Define I1, I2, I3 as

I1 = [0,
√
cδN

1
4 ]

I2 = [
√
cδN

1
4 ,
√
cKN

1
4 ]

I3 = [
√
cKN

1
4 ,
√
N(c+ 3δ)].

Let for i = 1, 2, 3, Ji = {j : |gj| ∈ Ii} and ĉNi =
∑

j∈Ji g
2
j/N . We will fix the empirical

variances ĉNi in a first step. We will compute the asymptotics of

FN
c1,c2,c3(θ, δ) = E[exp(Σ(g))1Aδc1,c2,c3

].

where
Aδc1,c2,c3 :=

⋂
1≤i≤3

{|ĉNi − ci| ≤ δ}.

Let

Σc(g) =
∑
i<j

L
(

2θ gigj√
Nc

)
+
∑
i

L
(√

2θ g2
i√
Nc

)
.

Using the fact the L(√.) is Lipschitz, we prove in the next lemma that on the event
Aδc1,c2,c3 , Σc(g) is a good approximation of Σ(g).

Lemma 3.2. On the event Aδc1,c2,c3,

Σ(g)− Σc(g) = NoδK(1), as δK → 0. (15)

Moreover

|J3| ≤
2
√
N

K
, |J2 ∪ J3| ≤

2
√
N

δ
.
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Proof. Note that since µ is symmetric, L(x) = L(|x|) and since we assumed L(√.) Lips-
chitz, for any x, y ∈ R, |L(x)− L(y)| ≤ L|x2 − y2| for some finite constant L. Therefore,∑
1≤i 6=j≤N

∣∣L(2
√
Nθ

gigj∑N
i=1 g

2
i

)− L
(

2θ gigj√
Nc

)∣∣ ≤ 4Lθ2

N

∑
i,j

g2
i g

2
j

∣∣∣∣ 1
(ĉN1 + ĉN2 + ĉN3 )2 −

1
c2

∣∣∣∣
≤ CNLθ2(c+ ĉN1 + ĉN2 + ĉN3 ) δ

c2 ≤ C ′NLθ2δK,

where C,C ′ are numerical constants and we used K−1 < c < K, and 4δ < K−1. We get a
similar estimate for the diagonal terms. The estimates on |J3| and |J2| are straightforward
consequences of Tchebychev’s inequality.

�

We next fix the positions of the set of indices J1, J2, J3. Using the invariance under
permutation of the coordinates of the Gaussian measure, we can write

FN
c1,c2,c3(θ, δ) =

∑
0≤k≤2

√
Nδ

0≤l≤2
√
NK

(
N

k

)(
N − k
l

)
F k,l
c1,c2,c3 ,

where
F k,l
c1,c2,c3 = E

[
exp(Σc(g))1Aδc1,c2,c3∩Ik,l

]
and

Ik,l =
{
J3 = {1, . . . , k}, J2 = {k + 1, . . . , k + l}, J1 = {k + l + 1, . . . , N}

}
.

As the number of all the possible configurations of J2 and J3 are sub-exponential in N by
Lemma 3.2, that is, for any k ≤ 2

√
N/K and l ≤ 2

√
N/δ,

max
((N

k

)
,

(
N − k
l

))
= eO(

√
N
δ

logN),

we are reduced to compute F k,l
c1,c2,c3 for fixed k, l. More precisely, we obtain the following

result.

Lemma 3.3.

logFN
c1,c2,c3(θ, δ) = max

k≤2
√
N/K

l≤2
√
N/δ

logF k,l
c1,c2,c3 +O

(√N
δ

logN
)
,

To simplify the notations, we denote for any a, b ∈ {1, 2, 3},

∀x, y ∈ RN , Σa,b(x, y) = 1
2N

∑
i∈Ja,j∈Jb

L

(
2θ xiyj√

Nc

)
,

if a 6= b, and

∀x, y ∈ RN , Σa,a(x, y) = 1
N

∑
i 6=j∈Ja

L

(
2θ xiyj√

Nc

)
+ 1
N

∑
i∈Ja

L
(√

2θ xiyi√
Nc

)
,

where now J3 = {1, . . . , k}, J2 = {k + 1, . . . , k + l}, J1 = {k + l + 1, . . . , N}.
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Next, we single out the interaction terms which involve either the quadratic behavior
of L at 0 or at +∞.

Lemma 3.4. On the event Aδc1,c2,c3,

Σ1,1(g, g) + 2Σ1,2(g, g) + Σ3,3(g, g) = θ2

c2

(
c2

1 + 2c1c2 +Bc2
3
)

+ oδK(1) + oK(1),

as δK → 0 and K → +∞.

Proof. Observe that for i ∈ J1, j ∈ J1 ∪ J2, |gigj| ≤
√
NKδc. Since L(x) ∼0 x

2/2, we get,

Σ1,1(g, g) + 2Σ1,2(g, g) = θ2 ĉ
2
1
c2 + 2θ2 ĉ1ĉ2

c2 + oδK(1), (16)

as δK → 0. Since g ∈ Aδc1,c2,c3 , we have |ĉ2
i − c2

i | = O(δc) for any i ∈ {1, 2, 3}. But
c ≥ K−1, therefore

Σ1,1(g, g) + 2Σ1,2(g, g) = θ2 c
2
1
c2 + 2θ2 c1c2

c2 + oδK(1).

For i, j ∈ J3, |gigj| ≥ K
√
cN . Since L(x) ∼+∞

B
2 x

2, we deduce similarly that

Σ3,3(g, g) =
(B

2 + oδ(1)
) θ2

N2c2

(∑
i∈J3

g2
i

)2
= Bθ2 c

2
3
c2 + oK(1), (17)

as K → +∞, which gives the claim.
�

From the Lemmas 3.2 and 3.4, we have on the event Aδc1,c2,c3 ,

Σ(g) = θ2

c2

(
c2

1 + 2c1c2 +Bc2
3
)

+ Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g) + oδK(1) + oK(1). (18)

Lemma 3.5. Let k, l ∈ N such that k + l ≤ N .

logE
(

exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2c3∩Ik,l

)
= −N2 (c2 + c3) + oδ(1) +O

(√N
δ2 log(1/δ)

)
+ max

ti∈I2
|
∑
i t

2
i
−c2N|≤δN

max
si∈I3

|
∑
i s

2
i
−c3N|≤δN

logE
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
,

where

Aδc1 =
{
|
N−k−l∑
i=1

g2
i −Nc1| ≤ Nδ, gi ∈ I1, ∀i ∈ {1, . . . , N − k − l}

}
.
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Proof. Integrating on gi, i ≤ k + l, we find

E
(

exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2c3∩Ik,l

)
≤ 1

(2π) k+l
2

∫
1{| 1

N

∑k+l
i=1 g

2
i−(c2+c3)|≤2δ}e

− 1
2
∑k+l
i=1 g

2
i

k+l∏
i=1

dgi

× max
t∈Il2

|
∑
i t

2
i
−c2N|≤δN

max
s∈Ik3

|
∑
i s

2
i
−c3N|≤δN

E
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
,

But,

1
(2π) k+l

2

∫
1{| 1

N

∑k+l
i=1 g

2
i−(c2+c3)|≤2δ}e

− 1
2
∑k+l
i=1 g

2
i

k+l∏
i=1

dgi

≤ 1
(2π) k+l

2
e−

1
2 (1−δ)(c2+c3−2δ)N

∫
e−

δ
2
∑k+l
i=1 g

2
i

k+l∏
i=1

dgi

≤ e−
N
2 (c2+c3)+(O(δ)+O(δK))N(

√
2πδ−1) k+l

2 ,

where we used the fact that c ≤ K. By Lemma 3.2 we have k+ l = O(
√
N/δ).Therefore,

logE
(

exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2,c3∩Ik,l

)
≤ −N2 (c2 + c3) +O(δ)N +O(δK)N +O

(√N
δ

log(1/δ)
)

+ max
ti∈I2

|
∑
i t

2
i
−c2N|≤δN

max
si∈I3

|
∑
i s

2
i
−c3N|≤δN

logE
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
.

To get the converse bound, we take t ∈ I l2, s ∈ Ik3 optimizing the above maximum
where δ is replaced by δ/2. We next localize the integral on the set Bδ where |gi − ti| ≤
δ/2, N − k − l ≤ i ≤ N − k, |gi − si| ≤ δ/2, N − k + 1 ≤ i ≤ N . Observe that on
Ac1 × Bδ ⊂ Aδc1,c2c3 ∩ Ik,l, because L ◦

√
. is Lipschitz,

|Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t)− (Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))| ≤ Cθ2δ

Hence
E
(

exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2c3∩Ik,l

)
≥ 1

(2π) k+l
2

∏
1≤i≤k

∫ δ/2

−δ/2
e−

1
2 (g−si)2

dg
∏

1≤i≤l

∫ δ/2

−δ/2
e−

1
2 (g−ti)2

dg

× e−CNθ2δE
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
,

≥ e−
N
2 (c2+c3)+O(δ)N( δ

(2π)) k+l
2 E
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
which completes the claim as k + l = O(

√
N/δ).
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�

Hence, we are left to estimate
ΛN

1 = E
[

exp
(
NΣ1,3(g, s)

)
1Aδc1

]
,

where s ∈ Ik3 such that |
∑

i s
2
i ≤ δN − c3N |. Let µ̂N = 1

|J1|
∑

i∈J1
δgi . We can write

Σ1,3(g, s) = |J1|
N

k∑
i=1

∫
L

(
2θxsi√
Nc

)
dµ̂N(x).

The first difficulty in estimating ΛN
1 lies in the fact that the function

x 7→
k∑
i=1

L
(2θxsi√

Nc

)
,

is not bounded so that Varadhan’s lemma (see [9, Theorem 4.3.1]) cannot be applied
directly. The second issue is that we need a large deviation estimate which is uniform in
the choice of s ∈ Ik3 such that |

∑k
i=1 s

2
i − Nc3| ≤ δN . In the next lemma, we prove a

uniform large deviation estimate of the type of Varadhan’s lemma. The proof is postponed
in the appendix 7.2.

Lemma 3.6. Let f : R → R such that f(0) = 0 and f(√.) is a L-Lipschitz function.
Let MN ,mN be sequences such that MN = o(

√
N) and mN ∼ N . Let g1, . . . , gmN be

independent Gaussian random variables conditioned to belong to [−MN ,MN ]. Let δ ∈
(0, 1) and c > 0 such that K−1 < c < K and 2δ < K−1. Then,∣∣∣ 1

N
logEe

∑mN
i=1 f

(
gi√
c

)
1|

∑mN
i=1 g

2
i−cN |≤δN

− sup
ν∈P([−MN,MN ])∫

x2dν=c

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}∣∣∣
≤ gL,K(N) + hL(δK),

where gL,K(N)→ +∞ as N → +∞ and hL(x)→ 0 as x→ 0.

Let s ∈ I l3 such that |
∑

i s
2
i −Nc3| ≤ δN . We consider the function

f : x 7→
k∑
i=1

L
(2θxsi

√
c1√

Nc

)
.

One can observe that f(√.) is 4θ2L-Lipschitz. Using the fact that
1
N

logP(gi ∈ I1,∀i ≤ N − k − l) = oN(1),

and the previous lemma, we deduce that for any c1 ≥ K−1,∣∣∣ 1
N

log ΛN
1 − sup

ν∈P(I1)∫
x2dν(x)=c1

{ k∑
i=1

∫
L
(2θxsi√

Nc

)
dν(x)−H(ν|γ)

}∣∣∣ ≤ gK(N) + hL(δK), (19)

where gK(N)→ 0 as N → +∞. Putting together (18) and (19), we obtain∣∣∣ 1
N

logE
(

exp(Σ(g))1Ac1,c2,c3∩Ik,l

)
−Ψk,l(c1, c2, c3)

∣∣∣ ≤ gL,K(N) + oδK(1) + oK(1),
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where

Ψk,l(c1, c2, c3) = Q(c1, c2, c3

)
− 1

2
(
c2 + c3

)
+ max

ti∈I2
|
∑
i t

2
i
−c2N|≤δN

max
si∈I3

|
∑
i s

2
i
−c3N|≤δN

{
Σ2,3(t, s) + Σ2,2(t, t) + sup

ν∈P(I1)∫
x2dν1(x)=c1

{Φ(ν, s)−H(ν|γ1)}
}
,

with
Q(x, y, z) = θ2x

2 + 2xy +Bz2

(x+ y + z)2 ,

and

Φ(ν, s) =
k∑
i=1

∫
L
(2θxsi√

Nc

)
dν(x).

By Lemma 3.3, we obtain as δ < K−1,∣∣∣ 1
N

logFN
c1,c2,c3(θ, δ)− max

k≤4
√
N/K

l≤4
√
N/δ

Ψk,l(c1, c2, c3)
∣∣∣ ≤ g̃K(N) + oδK(1) + oK(1), (20)

where g̃K(N)→ 0 as N → +∞.
Let c1, c2, c3 ≥ 0 such that c1 > 0. Let c = c1 + c2 + c3. There exists K > 0 such that

K−1 ≤ c1 ≤ c ≤ K. We have for any 0 < 4δ < K−1,

lim inf
N→+∞

FN(θ) ≥ lim inf
N→+∞

1
N

logFN
c1,c2,c3(θ, δ).

Therefore,

lim inf
N→+∞

FN(θ) ≥ lim inf
N→+∞

max
k≤2
√
N/K

l≤2
√
N/δ

Ψk,l(c1, c2, c3)− oδK(1)− oK(1).

To complete the proof of the lower bound of Lemma 3.5, one can observe that

Σ2,2(t, t) = 1
N

∑
i,j

L
(

2θ titj√
Nc

)
+ oN(1),

uniformly in ti ∈ I2 such that |
∑

i t
2
i − c2N | ≤ δN . Indeed, the diagonal terms are

negligible in this case since
1
N

∑
ti∈J2

t4i
Nc2 ≤ cδ−1N−1/2 1

N

∑
i∈J2

t2i = O(N−1/2).

To conclude the proof of the upper bound, we will use the exponential tightness of ||g||2
and of ||g||−2

J1
. More precisely, we claim that

lim
K→+∞

lim sup
N→+∞

1
N
P(||g||2 ≥ KN, ||g||2J1 ≤ K−1N) = −∞. (21)

Indeed, it is clear by Chernoff’s inequality that

P(||g||2 ≥ KN) ≤ Ce−CNK
2
,
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where C is a positive numerical constant. Whereas, using Lemma 3.2 and a union bound,

P(||g||2J1 ≤ K−1N) ≤
∑

m≤2
√
N/δ

(
N

m

)
P
(N−m∑

i=1

g2
i ≤ K−1N

)
.

Let Λ(ζ) = logEeθg2
1 for any ζ ∈ R. By Chernoff’s inequality, we have for any m ≤ N ,

P
(N−m∑

i=1

g2
i ≤ K−1N

)
≤ e−NΛ∗(K−1),

where Λ∗ is the Legendre transform of Λ. Since 0 is not in the support of the law g2
1,

we have Λ∗(0) = +∞. Since Λ∗ is lower semi-continuous we have Λ∗(K−1) → +∞ as
K ↓ +∞. Using the fact that for any m ≤ 2

√
N/δ,(

N

m

)
≤ eo(N),

we get the claim (21). Using that L(x) ≤ Ax2/2, we have
Σ(g) ≤ Aθ2N.

From the exponential tightness (21), we deduce that there exists δ > 0 such that,
E exp(Σ(g))1{ 1

N
||g||2≥K, 1

N
||g||2J1

≤K−1} ≤ 1. (22)

Let EK = { 1
N
||g||2 ≥ K, 1

N
||g||2J1

≤ K−1}. We have

0 ≤ lim sup
N→+∞

FN(θ) ≤ max
(

lim sup
N→+∞

1
N

logE
(
eΣ(g)1EK

)
, lim sup
N→+∞

1
N

logE
(
eΣ(g)1EcK

))
Since we took K so that (22) holds, we have

lim sup
N→+∞

FN(θ) ≤ lim sup
N→+∞

1
N

logE
(
eΣ(g)1EK

)
. (23)

Let now Cδ be a δ-net for the `∞-norm of the set
{(c1, c2, c3) ∈ R3

+ : c1 + c2 + c3 ≤ K, c1 ≥ K−1}.

As |Cδ| = O(K/δ), we have

lim sup
N→+∞

FN(θ) ≤ lim sup
N→+∞

max
(c1,c2,c3)∈Cδ

1
N

logFN
c1,c2,c3(θ, δ).

lim sup
N→+∞

FN(θ) ≤ max
(c1,c2,c3)∈Cδ

lim sup
N→+∞

1
N

logFN
c1,c2,c3(θ, δ).

From (20), we deduce
lim sup
N→+∞

FN(θ) ≤ max
c=c1+c2+c3
c1≥K−1

lim sup
N→+∞

max
k≤2
√
N/K

l≤2
√
N/δ

Ψk,l(c1, c2, c3) + oδK(1) + oK(1).

Taking now the limit as δ → 0 and K → +∞ such that δK → 0, we obtain the upper
bound of Lemma 3.1. �



22 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

We are now ready to give a proof of Proposition 1.6 . Building on Lemma 3.1, we show
that we can optimize on the total norm c in order to simplify the variational problem, and
replace the supremum over discrete measures 1

N

∑
i δti by a supremum over all measures

with a certain constraint of support and second moment.

Proof of Proposition 1.6 . We use the notation of Lemma 3.1. We make the following
changes of variables:

∀i = 1, 2, 3, αi = ci
c
, c = c1 + c2 + c3,

ν = ν1 ◦ (x 7→ x/
√
c)−1.

For any ν1 ∈ P(I1) such that
∫
x2dν1(x) = c1 we have,

H(ν1|γ) = H(ν1) + 1
2c1 + 1

2 log(2π).

Moreover, the density of ν and ν1 are linked by the relation

∀x ∈ R,
dν

dx
(x) =

√
c
dν1

dx
(
√
cx).

Therefore,

H(ν) =
∫

log dν1

dx
dν1 = H(ν1) + 1

2 log c. (24)

We obtain
F (θ) = lim sup

δ→0,K→+∞
δK→0

sup
α1+α2+α3=1

αi≥0

sup
c≥0

lim sup
N→+∞

FNα1,α2,α3,c(δ,K),

and similarly for F (θ), where

FNα1,α2,α3,c(δ,K) = sup
si∈I3

|
∑
s2
i
−Nα3|≤Nδ

sup
ti∈I2

|
∑
t2
i
−Nα2|≤Nδ

{
θ2(α2

1 + 2α1α2 +Bα2
3
)
− 1

2c+ 1
2 log c

+ 1
N

∑
i,j

L
(2θsitj√

N

)
+ 1

2N
∑
i,j

L
(2θtitj√

N

)
+ sup

ν∈P(I1)∫
x2dν1(x)=α1

{
Φ(ν, s)−H(ν)

}}
− 1

2 log(2π),

and

Φ(ν, s) =
k∑
i=1

∫
L
(2θxsi√

N

)
dν(x),

with I1 = [−
√
δN1/4,

√
δN1/4], I2 = [

√
δN1/4,

√
KN1/4] and I3 = [

√
KN1/4,

√
α3N ]. We

see that we can optimize in c, and find that the maximum is achieved at c = 1 by concavity
of the log.

�
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4. The large deviations close to the bulk

We prove in this section Proposition 1.15. By Theorem 1.12, the large deviation lower
bound holds at every x > 2 such that I(x) = Ī(x) 6= 0 so that there exists θ ∈ Θx

which does not belong to any Θy for y 6= x. In the following lemma, we prove that if
F (θ) = F (θ) = θ2 on a interval (0, b) with b > 1/2, then the large deviation lower bound
holds in a neighborhood of 2 and the rate function I is equal to the one of the GOE.

Lemma 4.1. If for θ ∈
(
0, 1

2ε

)
, for some ε ∈ (0, 1), F (θ) = F (θ) = θ2, then for any

x ∈ [2, ε+ 1
ε
),

Ī(x) = I(x) = IGOE(x).
As a consequence, ∀x > 2, Ī(x) > 0. Moreover, for x ∈ [2, ε + 1

ε
) the optimizer in I is

taken at θx = 1/2G(x) and θx /∈ Θy for all y 6= x.

Proof. As F (θ) ≥ θ2 for any θ ≥ 0, we have that

sup
θ∈[0,1/2ε)

{
J(θ, x)− θ2} ≤ I(x) ≤ Ī(x) ≤ sup

θ≥0

{
J(θ, x)− θ2}.

But if x ∈ [2, ε+ 1
ε
),

IGOE(x) = sup
θ≥0

{
J(θ, x)− θ2},

is achieved at θ = 1/2G(x) ∈ (0, 1/2ε) sinceG−1(ε) = ε+1/ε. Therefore, if x ∈ [2, 2ε+ 1
2ε),

then we obtain
I(x) = Ī(x) = IGOE(x).

In particular, I(x) > 0 for any x ∈ (2, 2ε + 1/2ε). As I is convex by Proposition 1.11
and I(2) = 0, we conclude that I(x) > 0 for any x > 2. Moreover, the optimizer in I(x)
is taken at θx = 1/2G(x) for which F (θ) = F (θ) is differentiable and clearly θx /∈ Θy for
any y 6= x as G is invertible on [2,+∞).

�

The result of Proposition 1.15 then follows from Lemma 4.1 and Lemma 1.8. We now
study the convergence of the annealed spherical integrals for large values of θ, in which
case we need to make additional assumptions on µ.

5. Case where ψ is an increasing function

In this section we make the additional assumption that ψ is non-decreasing.

Example 5.1 (Sparse Gaussian distribution). Let µ be the law of ξΓ where ξ is a Bernoulli
variable of pararmeter p ∈ (0, 1) and Γ is a standard Gaussian random variable. In that
case we have for any x ∈ R,

ψ(x) = log[(1− p) + p exp(x2/2p)]
x2 =

∫ 1

0

t exp((xt)2/2p)
(1− p) + p exp((xt)2/2p)dt.

One can observe that this last expression is indeed increasing in x.
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5.1. Simplification of the variational problem. We prove in this section that when
ψ is increasing on R+ , Cµ = R+ and we can simplify the limit F (θ) as follows.

Proposition 5.2. For any θ ≥ 0, F (θ) = F (θ) = F (θ) where

F (θ) = sup
α∈[0,1]

sup
ν∈P(R)∫
x2dν(x)=α

{
θ2α2+Bθ2(1−α)2+

∫
L(2θ

√
1− αx)dν(x)−H(ν)−1

2 log(2π)−1
2

}
,

Proof. Recall that we set for any δ,K > 0, and α1 + α2 + α3 = 1,

FNα1,α2,α3(δ,K) = sup
s∈Il2,k≥1

|
∑
t2
i
−Nα2|≤δN

sup
s∈Ik3 ,k≥1

|
∑
s2
i
−Nα3|≤δN

{
θ2(α2

1 + 2α1α2 +Bα2
3
)

+ 1
N

l∑
j=1

k∑
i=1

L
(2θsitj√

N

)
+ 1

2N

l∑
i,j=1

L
(2θtitj√

N

)

+ sup
ν1∈P(I1)∫
x2dν1(x)=α1

{ k∑
i=1

∫
L
(2θsix√

N

)
dν1(x)−H(ν1)

}
− 1

2 log(2π)− 1
2

}
,

where I1 = {x : |x| ≤
√
δN1/4}, I2 = {x :

√
δN1/4 ≤ |x| ≤

√
KN1/4}, I3 = {

√
KN1/4 ≤

|x| ≤
√
Nα3}. Since ψ is non-decreasing, we have on one hand for any s ∈ Ik3 such that

|
∑

i s
2
i − α3N | ≤ Nδ, ψ

(
2θsix√
N

)
≤ ψ

(
2θ
√

(α3 + δ)x
)
so that

k∑
i=1

∫
L
(2θsix√

N

)
dν1(x) = 4θ2

N

k∑
i=1

s2
i

∫
x2ψ

(2θsix√
N

)
dν1(x)

≤
∫
L
(

2θ
√
α3 + δx

)
dν1(x) =

∫
L
(

2θ√α3x
)
dν1(x) + oδ(1)

where we finally use that L ◦√. is Lipschitz. On the other hand, since L(x) ≤ Bx2/2 for
any x ≥ 0,

1
N

l∑
j=1

k∑
i=1

L
(2θsitj√

N

)
dν2(x) + 1

2N

l∑
i,j=1

L
(2θtitj√

N

)
≤ θ2B(α2

2 + 2α3α2) + oδ(1).

Therefore, we have the upper bound,

F (θ) ≤ sup
α1+α2+α3=1

sup
ν1∈P(R)∫
x2dν1(x)=α1

{
θ2(α2

1 + 2α1α2
)

+ θ2B(α3 + α2)2

+
∫
L(2θ√α3x)dν1(x)−H(ν1)− 1

2 log(2π)− 1
2

}
.

We can further simplify this optimization problem by showing that the assumption on
the monotonicity of ψ entails that we can take α2 = 0. Indeed, note that ψ(0) = 1/2.
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Therefore, for any x ≥ 0, ψ(x) ≥ 1/2. Hence, we deduce that

2θ2α1α2 +
∫
L(2θ√α3x)dν1(x) = 2θ2α1α2 + 4θ2α3

∫
x2ψ(2θ√α3x)dν1(x)

≤ 4θ2(α2 + α3)
∫
x2ψ(2θ

√
α2 + α3x)dν1(x).

Thus, with the change of variables α3 + α2→α3, we deduce

F (θ) ≤ sup
α1+α3=1

sup
ν1∈P(R)∫
x2dν1(x)=α1

{
θ2α2

1 + θ2Bα2
3 +

∫
L(2θ√α3x)dν1(x)−H(ν1)− 1

2 log(2π)− 1
2

}
.

To prove that F (θ) is bounded from below by the same quantity, we fix α1, α2, α3 such
that α1 + α2 + α3 = 1, α2 = 0, and ν ∈ P(R) such that

∫
x2dν(x) = α1. We take in the

definition of FNα1,α2,α3(K, δ), k = 1, s =
√
α3N , and ν1 ∈ P(I1) defined by

ν1 = 1
ν(I1)ν(. ∩ I1) ◦ h−1√

λ
,

where h√λ : x 7→
√
λx, and λ is such that

∫
x2dν1(x) = α1, that is,

1
λ

= 1
ν(I1)α1

∫
I1

x2dν(x).

We have,

FNα1,α2,α3(K, δ) ≥ θ2(α2
1 +Bα3

)
+
∫
L(2θ√α3x)dν1(x)−H(ν1)− 1

2 log(2π)− 1
2 .

We deduce by monotone convergence and using the fact that L(√.) is Lipschitz that

F (θ) ≥ θ2(α2
1 +Bα3

)
+
∫
L(2θ√α3x)dν(x)−H(ν)− 1

2 log(2π)− 1
2 .

�

We next compute the supremum over ν in the definition of F in Proposition 5.2. To
this end, we denote by G : [B/2,+∞)→ R ∪ {+∞} the function given by

∀ζ ∈ [B/2,+∞), G(ζ) = log
∫

exp(L(x)− ζx2)dx . (25)

Lemma 5.3. Let
l = − lim

ζ→B/2
G′(ζ) ∈ (0,+∞]. (26)

For any C ∈ (0, l), there exists a unique ζ ∈ (B/2,+∞) solution to the equation

G′(ζ) = −C .
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It is denoted by ζC. For C ≥ l, we set ζC = B/2. Then,

sup
ν∈P(R)∫
x2dν(x)=C

[ ∫
L(x)dν(x)−H(ν)

]
= sup

ν∈P(R)∫
x2dν(x)≤C

[BC
2 +

∫ (
L(x)− B

2 x
2
)
dν(x)−H(ν)

]
= CζC +G(ζC)

Proof. Define the function

∀ν ∈ P(R), E(ν) = H(ν) +
∫ (B

2 x
2 − L(x)

)
dν(x).

We first show that
inf

ν∈P(R)∫
x2dν(x)=C

E(ν) = inf
ν∈P(R)∫
x2dν(x)≤C

E(ν). (27)

To prove this equality, we will show that for any ν ∈ P(R) such that
∫
x2dν(x) ≤ C,

there exists νε such that
∫
x2dνε(x) = C, and

lim
ε→0

νε = ν, lim
ε→0

E(νε) = E(ν).

We set νε = (1 − ε)ν + εγε where γε is a Gaussian measure of variance 1 and mean mε,
defined by,

mε =
√
C − (1− ε)D

ε
− 1

With this choice of mε, one can check that
∫
x2dνε(x) = C. Moreover,

νε −→
ε→0+

ν,

for the weak topology. As
∫
x2dνε(x) ≤ C, we deduce that for any continuous function

f : R→ R such that f = o±∞(x2),∫
fdνε −→

ε→0+

∫
fdν.

Since B
2 x

2 − L(x) = o±∞(x2), we have

lim
ε→0+

∫ (B
2 x

2 − L(x)
)
dνε(x) =

∫ (B
2 x

2 − L(x)
)
dν(x). (28)

Besides, as H is convex,
H(νε) ≤ (1− ε)H(ν) + εH(γε).

But,
H(γε) = H(γ),

where γ is a standard Gaussian distribution. Therefore,
lim sup
ε→0+

H(νε) ≤ H(ν).

AsH is lower semi-continuous with respect to the weak topology, we can conclude together
with (28) that,

lim
ε→0+

E(νε) = E(ν),

which ends the proof of the claim (48).
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Observe that E is a lower semi-continuous function for the weak topology since H is
lower semi-continuous and x 7→ Bx2/2−L(x) is non-negative and continuous. Moreover,
the set {

ν ∈ P(R) :
∫
x2dν(x) ≤ C

}
,

is a compact subset. Thus, the supremum of E over the set above is achieved. We will
identify the maximizer. For any ζ ∈ [B/2,+∞) such that G(ζ) < +∞, we let νζ be the
probability measure given by

dνζ = exp(L(x)− ζx2)∫
exp(L(y)− ζy2)dydx.

We will show that
inf

ν∈P(R)∫
x2dν(x)≤C

E(ν) = E(νζC ). (29)

Let µ be a probability measure such that H(µ) < +∞ and
∫
x2dµ(x) ≤ C. As H(µ) <

+∞, we can write,
µ = (1 + ϕ)dνζC ,

where ϕ is some measurable function such that ϕ ≥ −1 νζC -a.s. and
∫
ϕdνζC = 0. We

have,

E(µ) = E(νζC ) +
∫ (B

2 x
2 − L(x)

)
ϕ(x)dνζC (x)

+
∫

(1 + ϕ) log(1 + ϕ)dνζC +
∫

log dνζC
dx

ϕdνζC .

By convexity of x 7→ x log x, we have∫
(1 + ϕ) log(1 + ϕ)dνζC ≥ (1 +

∫
ϕdνζC ) log(1 +

∫
ϕdνζC ) = 0.

Therefore,

E(µ) ≥ E(νζC ) +
∫ (

B

2 x
2 − L(x) + log dνζC

dx

)
ϕ(x)dνζC (x) +

(B
2 − ζC

)∫
x2ϕ(x)dνζC (x),

where we used again that
∫
ϕdνζC = 0. But,(B

2 − ζC
)∫

x2ϕ(x)dνζC (x) =
(B

2 − ζC
)(∫

x2dµ(x)−
∫
x2dνζC (x)

)
.

If C < l, then
∫
x2dνζC (x) = C. Since ζC ≤ B/2 and

∫
x2dµ(x) ≤ C we get

E(µ) ≥ E(νζC ).

If C ≥ l, then ζC = B/2, and we also get E(µ) ≥ E(νζC ). This shows that νζC achieves
the infimum in (29), and ends the proof of Lemma 5.3. �
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5.2. Differentiability of the limit of the annealed spherical integral. This section
is devoted to the proof of the following proposition.

Proposition 5.4. F is continuously differentiable on (1/
√
B − 1,+∞) except possibly at

the point θ0 such that
θ0 = inf

{
θ : F (θ) > θ2}.

Moreover, for any θ ≤ 1/2
√
B − 1,

F (θ) = θ2. (30)

The second part of the claim of the above proposition (30) is due to Proposition 1.8
and the fact that A = B. From now on, we assume that θ2(B− 1) > 1 and wish to prove
the first part of Proposition 5.4. We define for any α ∈ [0, 1], and ν ∈ P(R),

Hθ(α, ν) = θ2α2 + θ2B(1− α)2 +
∫
L(2θ

√
1− αx)dν(x)−H(ν)− 1

2 log(2π)− 1
2 . (31)

By Proposition 5.2, we have
F (θ) = sup

(α,ν)∈S
Hθ(α, ν), (32)

where
S = {(α, ν) ∈ [0, 1]× P(R) :

∫
x2dν(x) = α}.

We first show that we can can restrict the parameter α to the set [0, 1
2 ]∪{1}, as described

in the following lemma.

Lemma 5.5. If θ2(B − 1) ≥ 1, then

F (θ) = max
(

sup
(α,ν)∈S
α≤ 1

2

Hθ(α, ν), θ2
)
.

Proof. Making the change of variable which consists in replacing ν by the push-forward
of ν by the map x 7→ x/

√
α, we get

sup
(α,ν)∈S

Hθ(α, ν) = sup
α∈(0,1]∫
x2dν=1

{H̃θ(α, ν)−H(ν)},

where for any α ∈ (0, 1], and ν ∈ P(R),

H̃θ(α, ν) = θ2α2 + θ2B(1− α)2 + 1
2 logα +

∫
L(2θ

√
(1− α)αx)dν(x)− 1

2 log(2π)− 1
2 .

We claim that for any ν ∈ P(R) such that
∫
x2dν(x) = 1,

max
α∈[1/2,1]

H̃θ(α, ν) ≤ max
(
H̃θ

(1
2 , ν
)
, H̃θ(1, ν)

)
. (33)

Indeed, first notice that since ψ is increasing, for all α ∈ [0, 1] we have,∫
L(2θ

√
(1− α)αx)dν(x) = 4θ2α(1− α)

∫
x2ψ(2θ

√
α(1− α)x)dν(x)

≤ 4θ2α(1− α)
∫
x2ψ(θx)dν(x) .
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Denote by m = 2
∫
x2ψ(θx)dν(x). As ψ takes its values in [1/2, B/2] we have that

m ∈ [1, B]. For any α ∈ (0, 1],

H̃θ(α, ν) ≤ θ2α2 + θ2B(1− α)2 + 1
2 logα + 2θ2α(1− α)m− 1

2 log(2π)− 1
2 =: fθ,m(α) .

We find that

f ′θ,m

(1
2

)
= θ2(1−B) + 1, f ′′θ,m(α) = 2θ2(B + 1− 2m)− 1

2α2 .

Since f ′′θ,m is increasing and f ′′θ,m(0) = −∞, we deduce that f ′θ,m is either decreasing
or decreasing and then increasing. Since f ′θ,m(1/2) ≤ 0, we conclude that fθ,m is either
decreasing or decreasing and then increasing on [1/2, 1]. Therefore,

max
α∈[ 1

2 ,1]
fθ,m(α) = max

(
fθ,m

(1
2

)
, fθ,m(1)

)
,

which yields the claim (33) since fθ,m(α) = H̃θ(α, ν) at the two points α = 1/2 and 1. To
conclude the proof we observe that since H̃θ(1, ν) = θ2 for any ν ∈ P(R), we have

sup∫
x2dν(x)=1

{H̃θ(1, ν)−H(ν)} = θ2 + 1
2 + 1

2 log(2π)− inf∫
x2dν(x)=1

H(ν) = θ2.

�

Due to Lemma 5.3, we can further simplify the optimization problem defining F (θ) in
(32) by optimizing on ν ∈ P(R) such that

∫
x2dν(x) = α, given α ∈ (0, 1).

Corollary 5.6. Let R be the function
R : C ∈ (0,+∞) 7→ CζC +G(ζC),

where ζC is defined as in Lemma 5.3. Denote for any α ∈ (0, 1),

Kθ(α) = θ2(α2 +B(1− α)2) +R(4θ2α(1− α))− 1
2 log(1− α)− log(2θ)− 1

2 log(2π)− 1
2 ,

and Kθ(1) = θ2. Then, for any θ ≥ 1/
√
B − 1,

F (θ) = sup
α∈(0,1]

Kθ(α) .

Proof. When α < 1, we make the following change of variables which consists in replacing
ν by its pushforward by x 7→ 2θ

√
1− αx. Using (24), we find that

H(ν) =
∫

log dν
dx
dν = H(ν1)− 1

2 log(1− α)− log(2θ)

and
∫
x2dν(x) = 4α(1− α)θ2. Thus,

F (θ) = max
(
θ2, sup

(α,ν)∈S′
Kθ(α, ν)

)
, (34)

where
S ′ =

{
(α, ν) ∈ (0, 1)× P(R) :

∫
x2dν(x) = 4α(1− α)θ2},
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and for any α ∈ (0, 1), ν ∈ P(R),

Kθ(α, ν) = θ2(α2 +B(1− α)2) +
∫
L(x)dν(x)−H(ν)− 1

2 log(1− α)− log(2θ)

− 1
2 log(2π)− 1

2 .

By Lemma 5.3, we obtain for any α ∈ (0, 1),
sup∫

x2dν(x)=4α(1−α)θ2
Kθ(α, ν) = θ2(α2 +B(1− α)2) + 4θ2α(1− α)ζα,θ +G(ζα,θ)

− 1
2 log(1− α)− log(2θ)− 1

2 log(2π)− 1
2 ,

where ζα,θ = ζ4θ2α(1−α). Hence, if we set, for α ∈ (0, 1),

Kθ(α) = θ2(α2 +B(1− α)2) +R(4θ2α(1− α))− 1
2 log(1− α)− log(2θ)− 1

2 log(2π)− 1
2 ,

we deduce from (34) that

F (θ) = max
(
θ2, sup

α∈(0,1)
Kθ(α)

)
. (35)

To study the maximum of Kθ, we will need the following result on the limit of R at 0,
which will allow us to compute the limit of Kθ at 1.

Lemma 5.7. When C → 0+,

R(C) = 1
2 + 1

2 log(2πC) + o(1).

Proof. For C < l, we have
G′(ζC) = −C. (36)

Since we have,
lim

C→+∞
G′(C) = 0,

and G′ is invertible as G′′(x) > 0 on (−∞, l), we get
lim
C→0

ζC = +∞.

From the inequalities, 0 ≤ L(x) ≤ Bx2/2, we deduce that by the definition (25) of G we
have the bounds

1
2 log π

ζ
≤ G(ζ) ≤ 1

2 log π

ζ − B
2
,

which yields,
G(ζ) ∼+∞

1
2 log π

ζ
. (37)

On the other hand, inserting these bounds in the numerator and the denominator of the
derivative, we obtain √

ζ − B
2

ζ

1
2ζ ≤ −G

′(ζ) ≤
√

ζ

ζ − B
2

1
2(ζ − B

2 )
.
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We deduce, since ζC → +∞ as C → 0,

G′(ζC) = − 1
2ζC

+ o
( 1
ζC

)
.

Therefore, we get from the definition of ζC (36) that

ζC ∼0
1

2C .

Using (37), we can conclude that

R(C) = 1
2 + o(1) + 1

2 log π

1
2C + o

(
1

2C

) = 1
2 + 1

2 log(2πC) + o(1).

�

From the previous Lemma 5.7, we deduce that
lim
α→1

Kθ(α) = θ2,

so that we can continuously extend Kθ to 1. Therefore, we can write,
F (θ) = sup

α∈(0,1]
Kθ(α).

�

We now studyKθ and show that it is continuously differentiable on (0, 1). This amounts
to prove that R is continuously differentiable on (0, 1). On (0, l), it is clear that R
is continuously differentiable due to the implicit function theorem. Indeed, ζC is by
definition the unique solution of the equation

G′(ζ) = −C,
and G is strictly convex. On (l,+∞), R is an affine function, therefore it is sufficient to
prove that

lim
C→l−

R′(C) = B

2 . (38)

We have for any C < l,
R′(C) = C∂ζC + ζC + ∂ζCG

′(ζC) = ζC ,

which gives (38). We deduce that Kθ is continuously differentiable on (0, 1) and

∀α ∈ (0, 1), K ′θ(α) = 2θ2(α +B(α− 1)) + 4θ2ζα,θ(1− 2α) + 1
2(1− α) .

From Lemma 5.7, we get,
lim
α→0

Kθ(α) = −∞.

Thus, the supremum of Kθ on (0, 1] is achieved either at 1 or on (0, 1). From Lemma 5.5,
we have

F (θ) = max
(
Kθ(1), sup

α≤ 1
2

Kθ(α)
)
.
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Let us assume that the maximum of Kθ is achieved on (0, 1). We deduce that the maxi-
mum of Kθ is achieved on (0, 1

2 ] at a critical point since Kθ is differentiable. The critical
points α of Kθ satisfy the equation,

2θ2(α +B(α− 1)) + 4θ2ζα,θ(1− 2α) + 1
2(1− α) = 0, (39)

As θ2(B − 1) > 1, 1/2 does not satisfy the above equation so that the critical points of
Kθ are the α 6= 1/2, such that

ζα,θ =
2θ2(α +B(α− 1)) + 1

2(1−α)

4θ2(2α− 1) := ϕ(α). (40)

We have,

ϕ(α) = q(α)
8θ2(1− α)(2α− 1) ,

with
q(α) = −4θ2(1 +B)α2 + 4θ2(1 + 2B)α− 4θ2B + 1.

We find,

ϕ(α) ≥ B

2 ⇐⇒
{
P (α) ≥ 0 if α ≥ 1

2
P (α) ≤ 0 if α ≤ 1

2 ,

with P (α) = 4θ2(B−1)α2−4θ2(B−1)α+1. As ζα,θ ≥ B/2, we obtain that the maximum
of Kθ is achieved at α ∈ (0, 1/2) such that P (α) ≤ 0. The roots of P are

α± = 1±
√

1− [θ2(B − 1)]−1

2 . (41)

Thus, the maximum of Kθ is achieved on [α−, 1/2]. We will show that Kθ is strictly
concave on (0, 1

2). Note that,

4θ2α(1− α) ≥ l⇐⇒ α ∈ [β−, β+],
with

β± = 1±
√

1− lθ−2

2 .

For any α ∈ (β−, 1
2), we must have ζC = B/2 and therefore

Kθ(α) = θ2(α2 +B(1− α)2) + 2Bθ2α(1− α) +G
(B

2

)
− 1

2 log(1− α) + Cθ,

where Cθ is some constant depending on θ. Thus, for α ∈ (β−, 1
2),

K ′′θ (α) = 2θ2(1−B) + 1
2(1− α)2 < 2θ2(1−B) + 2 < 0.

For any α ∈ (0, β−), we have
Kθ(α) = θ2(α2 +B(1− α)2) + 4θ2α(1− α)ζα,θ +G(ζα,θ)

− 1
2 log(1− α) + Cθ,
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where ζα,θ is such that
G′(ζα,θ) = −4θ2α(1− α).

AsG is strictly convex, we deduce by the implicit function theorem that α ∈ (0, β−) 7→ ζα,θ
is differentiable, and we have

∂αζα,θG
′′(ζα,θ) = −4θ2(1− 2α).

We get that ∂αζα,θ < 0, for any α ∈ (0, β−). Therefore, for α ∈ (0, β−), we obtain

K ′′θ (α) = 2θ2(B + 1)− 8θ2ζα,θ + 4θ2∂αζα,θ(1− 2α) + 1
2(1− α)2 .

Using that ζα,θ > B/2 and that ∂αζα,θ < 0 for α ∈ (0, β−), we deduce,

∀α ∈ (0, β−), K ′′θ (α) ≤ 2θ2(B + 1)− 4θ2B + 1
2(1− α)2

< 2θ2(1−B) + 2 ≤ 0.

Thus, K ′θ is decreasing on (0, β−) and (β−, 1
2). Since K ′θ is continuous, we deduce that K ′θ

is decreasing on (0, 1
2) and Kθ is strictly concave on (0, 1

2). Therefore, the maximum is
achieved at the unique critical point ofKθ on (0, 1

2) which we denote by αθ. We distinguish
two cases.

1st case: l ≤ 1
B−1 . We have,

β− ≤ α− ≤ α+ ≤ β+.

We know that on one hand P (α−) = 0, so that

ϕ(α−) = B

2 .

On the other hand ζα−,θ = B/2 since α− ∈ [β−, β+]. We deduce by (40) that α− is a
critical point of Kθ which lies in (0, 1

2). Therefore
αθ = α−.

2nd case: l > 1
B−1 . We have,

α− < β− < β+ < α+.

Note that 0 ≤ α− <
1
2 < α+ ≤ 1. Since ϕ(α) 6= B/2 for any α ∈ [β−, β+]c, we deduce

that αθ ∈ [α−, β−), and in particular K ′′θ (αθ) < 0. We deduce by the implicit function
theorem that θ 7→ αθ is C1, and therefore θ 7→ Kθ(αθ) is continuously differentiable on
(1/
√
B − 1,+∞). In conclusion, we have shown that for any θ2(B − 1) ≥ 1, if l ≤ 1

B−1 ,

F (θ) = max
(
θ2, Kθ(α−)

)
,

where α− is defined in (41), whereas if l ≥ 1
B−1 ,

F (θ) = max
(
θ2, Kθ(αθ)

)
,

where αθ is the unique solution in (0, β−) such that
G′(ζα,θ) = −4θ2α(1− α).
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To conclude that F is continuously differentiable on (1/
√
B − 1,+∞) except at most at

one point, we show that there exists θ0 such that

∀θ ≤ θ0, F (θ) = θ2, and ∀θ > θ0, F (θ) > θ2.

Since F (θ) ≥ θ2 for any θ ≥ 0, it suffices to prove that θ 7→ F (θ)− θ2 is non-decreasing.
Recall that

F (θ) = lim
N→+∞

FN(θ),

where
FN(θ) = 1

N
logEe exp

(∑
i

L
(√

2Nθe2
i

)
+
∑
i<j

L
(
2
√
Nθeiej

))
,

and e is uniformly sampled on SN−1. Therefore,

FN(θ)−θ2 = 1
N

logEe exp
(∑

i

2Nθ2
(
ψ
(√

2Nθe2
i

)
−1

2

)
e4
i+
∑
i<j

4Nθ2
(
ψ
(
2
√
Nθeiej

)
−1

2

)
e2
i e

2
j

)
.

As ψ is increasing and ψ(0) = 1/2, θ 7→ FN(θ) − θ2 is non-decreasing, and therefore
θ 7→ F (θ)− θ2 is non-decreasing as well.

For the sake of completeness, we show the following Proposition which indicates that
it is unlikely we could prove the large deviation principle for all values of x by following
our strategy because F is in general not differentiable everywhere.

Proposition 5.8. Assume θ0 = inf{θ ∈ R+ : F (θ) > θ2} > 1/
√
B − 1. Then, F is not

differentiable at θ0.

Proof. Let θ > θ0. We know from Lemma 5.5 that

F (θ) = max∫
x2dν(x)≤α
α≤ 1

2

Hθ(α, ν),

where for any α ∈ (0, 1) and ν ∈ P(R),

Hθ(α, ν) = θ2α2 + θ2B(1− α)2 +
∫
L(2θ

√
1− αx)dν(x)−H(ν)− 1

2 log(2π)− 1
2 .

Since θ0 ≥ 1/
√
B − 1, we know from the proof of Proposition 5.4 that there exists α0 ≤ 1/2

and ν0 ∈ P(R) such that
Hθ0(α0, ν0) = F (θ0).

Define g(θ) = Hθ(α0, ν0) for any θ ≥ θ0. Let F ′+ denote the right derivatives of F . We
have as F ≥ g and F (θ0) = g(θ0),

F ′+(θ0) ≥ g′(θ0).

We find

g′(θ0) = 2θ0(α2
0 +B(1− α0)2) + 2

√
1− α0

∫
xL′(2θ0

√
1− α0x)dν0(x).
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Since ψ is increasing, we have xL′(x) ≥ 2L(x), and L(x) ≥ x2/2 for any x ≥ 0. Therefore,
xL′(x) ≥ x2 and we get

g′(θ0) ≥ 2θ0(α2
0 +B(1− α0)2) + 4θ0α0(1− α0)

≥ 2θ0 + 2θ0(1− α)2(B − 1),
which shows that g′(θ0) > 2θ0 and therefore F ′+(θ) > 2θ0. It yields that F is not differen-
tiable at θ0.

�

5.3. Proof of Proposition 1.13. By Proposition 5.4, we know that F is differentiable on
(1/
√
B − 1,+∞) except possibly at θ0. Using Proposition 2.2 we deduce that there exists

xµ such that the lower large deviation lower bound holds with rate function I(x) = I(x)
for any x ≥ xµ.

6. The case B < A

We consider the case where the following assumption holds.

Assumption 6.1. B exists and is strictly smaller than A. Moreover, we assume that ψ
achieves its maximum A at a unique point m∗ such that ψ′′(m∗) < 0.

The first condition includes in particular the case where the law of the entries have a
compact support (since in this case B = 0) and we believe the second condition is true
quite generically, as we check in the following example.

Example 6.1. Let

µ = p

2(δ−1/√p + δ1/√p) + (1− p)δ0, ψ(x) = 1
x2 log(p(cosh( x

√
p

)− 1) + 1) .

Then, we show that for p < 1/3, µ satisfies Assumption 6.1 (but for p > 1/3 µ has a
sharp-subGaussian tail). We have

∀x ≥ 0, ψ′(x) = L′(x)
x2 − 2L(x)

x3 , ψ′′(x) = L′′(x)
x2 − 4L′(x)

x3 + 6L(x)
x4 .

We claim that h : x 7→ xL′(x)− 2L(x) is increasing and then decreasing on R+. Indeed,
∀x ≥ 0, h′(x) = xL′′(x)− L′(x), h′′(x) = xL(3)(x),

and we have,

L(x) = log
(
p cosh

( x
√
p

)
+ 1− p

)
, L′(x) =

√
p sinh

(
x√
p

)
p cosh

(
x√
p

)
+ 1− p

.

L′′(x) =
p+ (1− p) cosh

(
x√
p

)
(p cosh

(
x√
p

)
+ 1− p)2 , L

(3)(x) =
(1−p)2
√
p
− 2p√p−√p(1− p) cosh

(
x√
p

)
(p cosh

(
x√
p

)
+ 1− p)3 sinh

( x
√
p

)
.

We have, for p > p∗ = 1/3
(1− p)2
√
p
− 2p√p ≥ √p(1− p).
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Therefore, L(3) is negative and therefore h′ is decreasing. Since h′(0) = 0, we deduce
that h′ is negative and ψ is decreasing. If p > p∗, we have that h′′ is positive and then
negative. Therefore, h′ is increasing on [0, x0] and then decreasing on [x0,+∞), with
x0 = √p cosh−1(1−2p−p2

p(1−p) ). But,

h′(0) = 0, lim
x→+∞

h′(x) = − 1
√
p
,

as L′(x) ∼+∞ 1/√p and L′′(x) ∼+∞ 2(1 − 1/p)e−x/
√
p. Therefore, there exists m∗ >

x0 such that h′ is positive on (0,m∗) and negative on (m∗,+∞). We deduce that ψ is
increasing on (0,m∗) and decreasing on (m∗,+∞) so that ψ achieves its unique maximum
at m∗. Moreover,

ψ′(m∗) = 0, ψ′′(m∗) = 0⇐⇒ m∗L
′(m∗) = 2L(m∗), m2

∗L
′′(m∗) = 4m∗L′(m∗)− 6L(m∗)

⇐⇒ L′(m∗) = m∗L
′′(m∗), m∗L′(m∗) = 2L(m∗).

As m∗ > x0, we have that h′(m∗) < 0 and therefore ψ′′(m∗) < 0. Note that x0/
√
p goes

to infinity when p goes to zero and that

Studying the variational problem arising from the limit of the annealed spherical integral
F (θ) and F (θ) defined in Proposition 1.6, we will show that for θ large enough we can
give an explicit formula as stated in the following proposition.

Proposition 6.2. There exists θ0 > 1/
√
A− 1 such that for any θ ≥ θ0, F (θ) = F (θ) =

F (θ) where

F (θ) = sup
α∈(0,1]

V (α),

with

∀α > 0, V (α) = θ2(A− 1)α2 + θ2 + 1
2 log(1− α).

More explicitly,

F (θ) = θ2

4 (A− 1)
(

1 +
√

1− 1
θ2(A− 1)

)2
+ θ2 + 1

2 log
(

1−
√

1− 1
θ2(A− 1)

)
− 1

2 log 2.

We prove this proposition by first showing that F (θ) ≥ F (θ) for all θ and then that,
for large θ, F (θ) ≤ F (θ).

6.1. Proof of the lower bound. Recall that by Proposition 1.6, we have the following
formulation of the limit F (θ).

F (θ) = sup
α1+α2+α3=1

αi≥0

lim inf
δ→0,K→+∞

δK→0

lim sup
N→+∞

FNα1,α2,α3(δ,K) ,



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF SUB-GAUSSIAN MATRICES 37

where
FNα1,α2,α3(δ,K) = θ2(α2

1 + 2α1α2 +Bα2
3
)

+ sup
ti∈I2,i≤l

|
∑
i t

2
i
−Nα2|≤δN

sup
si∈I3,i≤k

|
∑
i s

2
i
−Nα3|≤δN

{ 1
N

k∑
i=1

l∑
j=1

L
(2θsitj√

N

)
+ 1

2N

l∑
i,j=1

L
(2θtitj√

N

)

+ sup
ν1∈P(I1)∫
x2dν1(x)=α1

{ k∑
i=1

∫
L
(2θsix√

N

)
dν1(x)−H(ν1)

}
− 1

2 log(2π)− 1
2

}
,

Our goal is to show that we can take α3 = 0 and in the supremum defining FNα1,α2,α3(δ,K)
we can take all the ti’s equal. In fact we first prove the lower bound:

Lemma 6.3. For any θ ≥ 0,
F (θ) ≥ sup

α∈(0,1]
V (α),

where V is defined in Proposition 6.2.

Proof. Indeed, if we take α3 = 0 and tj = N1/4
√

m∗

2θ , 1 ≤ j ≤ l, α2 ∈ [lm∗/2θ
√
N −

δ, lm∗/2θ
√
N + δ], α1 = 1− α2, ν1 to be the Gaussian law restricted to I1 with variance

α1, then we get the lower bound

FNα1,α2,0(δ,K) ≥ θ2(α2
1 + 2α1α2 + α2

2A) + 1
2 logα1 = V (α2) .

Hence, to derive the lower bound it is enough to remark that we can achieve any possible
value of α2 in [0, 1] as some large N limit of lNm∗/2θ

√
N for some sequence of integer

numbers lN , which is obvious. �

6.2. Proof of the upper bound. The rest of this section is devoted to prove that the
previous lower bound is sharp when θ is big enough. To this end, recall that by Proposition
1.6, we have the following formulation of the limit F (θ).

F (θ) = sup
α1+α2+α3=1

αi≥0

lim sup
δ→0,K→+∞

δK→0

lim sup
N→+∞

FNα1,α2,α3(δ,K) .

We first reformulate the supremum in FNα1,α2,α3(δ,K) by denoting for t ∈ I l2 so that
|
∑
t2i −Nα2| ≤ δN ,

µ2 = 1
α2N

l∑
i=1

t2i δ
√

2θti
N1/4

.

µ2 is a positive measure on S2 = {x :
√

2δθ ≤ |x| ≤
√

2Kθ} whose mass belongs to
[1− δ

α2
, 1 + δ

α2
]. We also denote by S3 = {x :

√
K ≤ |x| ≤ N1/4√α3}. Then it is not hard

to see that for any θ ≥ 0,
F (θ) ≤ F̂ (θ), (42)

where F̂ (θ) is defined by
F̂ (θ) = sup

α1+α2+α3=1
αi≥0

lim sup
δ→0,K→+∞

δK→0

lim sup
N→+∞

sup
µ2∈P(S2)

sup
s∈S3

GNα1,α2,α3(δ,K, s, µ2)
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if
GNα1,α2,α3(δ,K) = θ2(α2

1 + 2α1α2 +Bα2
3
)

+ 4θ2α3α2

∫
ψ
(√

2θsx)dµ2(x) + 2θ2α2
2

∫
ψ(xy)dµ2(x)dµ2(y)

+ sup
ν1∈P(I1)∫
x2dν1(x)=α1

{
4θ2α3

∫
x2ψ

(2θsx
N

1
4

)
dν1(x)−H(ν1)

}
− 1

2 log(2π)− 1
2 .

Indeed, the upper bound proceeds in two steps: first we take the supremum over all
measures µ2 on S2 with mass in [1− δ

α2
, 1 + δ

α2
], and then restrict ourselves to probability

measures as δ goes to zero (since ψ is bounded). Then, we observe that for any µ2 ∈ P(S2),
ν1 ∈ P(I1), and s ∈ Sk3 such that |

∑
i s

2
i − α3

√
N | ≤ δ

√
N ,

α2√
N

k∑
i=1

s2
i

∫
ψ
(√

2θsix)dµ2(x) + 1√
N

k∑
i=1

s2
i

∫
x2ψ

(2θsix
N

1
4

)
dν1(x)

≤ α3

∫
ψ
(√

2θsx)dµ2(x) +
∫
x2ψ

(2θsx
N1/4

)
dν1(x) + oδ(1),

where s is a maximizer of the function

s ∈ S3 7→ α2

∫
ψ
(√

2θsx)dµ2(x) +
∫
x2ψ

(2θsx
N1/4

)
dν1(x),

which ends the proof of the claim (42). We will see that under our assumptions that
B < A and that the maximum of ψ is uniquely achieved at m∗ such that ψ′′(m∗) < 0, the
upper bound F̂ (θ) is sharp when θ is large.

The starting point of our analysis of the variational problem defining F̂ (θ) in the regime
where θ is large is the fact that F (θ) and F̂ (θ) behave like Aθ2. More precisely, we know
from (10) that there exists θ0 > 0 (depending on A) such that for all θ ≥ θ0,

F̂ (θ) ≥ F (θ) ≥ Aθ2 − κ log θ, (43)
where κ > 0 is a numerical constant.

As a consequence, we can localize the suprema over (α1, α2, α3) and µ2 in the definitions
of F̂ (θ) in some subset of the constraint set, denoted by S, and defined as follow,

S =
{

(α, µ2) ∈ [0, 1]3 × P(S2) : α1 + α2 + α3 = 1
}
.

Lemma 6.4. There exists a constant θ0 > 0 depending on A such that for any θ ≥ θ0,
the suprema defining F̂ (θ) can be restricted to the set Aθ × Bθ ⊂ S defined by,

α ∈ Aθ ⇐⇒ α2 ≥ 1− C
√

log θ
θ

, α1 ≤
C
√

log θ
θ

, α3 ≤
C
√

log θ
θ

,

and
µ2 ∈ Bθ ⇐⇒

∫ (A
2 − ψ(xy)

)
dµ2(x)dµ2(y) ≤ C log θ

θ2 .

where C is a some positive constant depending also on A.
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Proof. From (43) we deduce that we can restrict the suprema in the definitions of F̂ (θ)
to the parameters α, s, ν1, µ2 with α1 + α2 + α3 = 1, s ∈ S3,

∫
x2dµ1(x) = α1 such that,

(A− 1)(α2
1 + 2α1α2) + (A−B)α2

3 + 4α2α3

∫ (A
2 − ψ(2θsy)

)
dµ2(y)

+ 2α2
2

∫ (A
2 − ψ(2θxy)

)
dµ2(y)dµ2(x) + 4α3

∫
y2
(A

2 − ψ(2θsy)
)
dν1(y)

+ 1
θ2

(
H(ν1) + log

√
2π
)
≤ 2κ log θ

θ2 .

But
4α3

∫
y2
(A

2 − ψ(2θsy)
)
dν1(y) + 1

θ2

(
H(ν1) + log

√
2π
)
≥ 1

2 log 1
α1
≥ 0.

Therefore,

(A− 1)(α2
1 + 2α1α2) + (A−B)α2

3 + 4α2α3

∫
y2
(A

2 − ψ(2θsy)
)
dµ2(y)

+ 2α2
2

∫ (A
2 − ψ(xy)

)
dµ2(y)dµ2(x) ≤ 2κ log θ

θ2 .

Since each term is non-negative, they are all bounded by 2κ log θ/θ2. Note that this
already yields with C = 2κ/min{(A−B), A− 1},

α2
1 ≤

C log θ
θ2 , α2

3 ≤
C log θ
θ2 , α1α2 ≤

C log θ
θ2 . (44)

The two first estimates imply since α2 = 1− α1 − α3,

α2 ≥ 1− 2
√
C log θ
θ

.

�

Next, note that because ψ is bounded continuous, the function GNα1,α2,α3(δ,K, s, .) we
are optimizing over µ2 is bounded continuous in µ2 and therefore it achieves its maximal
value. We denote by µ2 such an optimizer. In the next lemma we prove that the optimizers
of GNα1,α2,α3(δ,K, s, .) are concentrated around √m∗ if ψ takes its maximum value at m∗
only.

Lemma 6.5. Assume that ψ achieves its maximum value at m∗ only and that it is strictly
concave in an open neighborhood of this point. Let µ2 be an optimizer There exists ε0 > 0
such that for any µ2 ∈ Bθ,

∀0 < ε < ε0, µ2
(
|x−

√
m∗| ≥ ε

)
≤ C
√

log θ
θε

,

where C is a positive constant depending on ψ.

Proof. Let µ2 ∈ Bθ. By Lemma 6.4 we have,∫ (A
2 − ψ(xy)

)
dµ2(x)dµ2(y) ≤ C log θ

θ2 .
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Since ψ is strictly concave in a neighborhood of m∗, and m∗ is its unique maximizer, we
deduce that there exists η0 > 0 such that for all 0 < η < η0,

∀|x−m∗| ∈ [√η,√η0], A

2 − ψ(x) ≥ η/c,

for some constant c > 0. As ψ is analytic, it admits a finite number of local maximum.
Therefore, we can find η0 > 0 such that for all 0 < η < η0,

∀|x−m∗| ≥
√
η,

A

2 − ψ(x) ≥ η/c,

Since A
2 − ψ is non-negative, we obtain

∀η < η0, µ
⊗2
2
(
|xy −m∗| ≥ √η

)
≤ C ′ log θ

ηθ2 ,

where C ′ ≥ 1 is a constant depending on ψ. For ε < √m∗/2, we have
µ2([0,√m∗ − ε])2 ≤ µ⊗2

2
(
xy ≤ m∗ −

√
m∗ε

)
.

Therefore, for ε small enough,

µ2([0,√m∗ − ε])2 ≤ C ′ log θ
m∗θ2ε2 .

On the other hand,

µ2
(
[√m∗ + ε,+∞)

)2 ≤ µ⊗2
2
(
xy ≥ m∗ + 2√m∗ε

)
.

Using a union bound, we obtain the claim. �

Using Lemma 6.5, we will show that the optimization problem over µ2 is asymptotically
solved by δ√m∗ , with an error which vanishes when K, the lower boundary point of S3,
goes to +∞.

Lemma 6.6. There exists θ0 depending on ψ such that for θ ≥ θ0, such that for any
α ∈ Aθ and s ∈ S3, if the measure µ2 that realizes the maximum:

sup
µ2∈P(S2)

{
2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y)

}
is in Bθ, then

sup
µ2∈Bθ

{
2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y)

}
= Aα2

2 + Bα3

2 + oK(1).

Proof. Letting ψ(x) = ψ(x)− B
2 , it is equivalent to show that :

sup
µ2∈Bθ

{
2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y)

}
= (A−B)α2

2 + oK(1).

Let us fix θ ≥ θ0 where θ0 is given by Lemma 6.4. Observe that since ψ is bounded
continuous,

Z : µ ∈ P(S2) 7→ 2α3

∫
ψ
(√

2θsx)dµ(x) + α2

∫
ψ(xy)dµ(x)dµ(y)
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achieves its maximum value in the closed set Bθ. Let µ2 be an optimizer, and therefore
a critical point of this function. Writing that Z(µ2) ≥ Z(µ2 + εν) for all measures ν on
S2 such that µ2 + εν is a probability measure for small ε, we deduce that there exists a
constant C > 0 such that,

∀x ∈ S2, α3ψ(
√
θsx) + α2

∫
ψ(xy)dµ2(y) ≤ C, (45)

with equality µ2-almost surely. Using Lemma 6.5, we get for any ε small enough,∫
ψ(xy)dµ2(y) = ψ(√m∗x) +

∫
[√m∗−ε,

√
m∗+ε]

(
ψ(xy)− ψ(√m∗x)

)
dµ2(x) +O

(√log θ
θε

)
.

Where we notice that our O
(√

log θ
θε

)
is a function that does not depend on δ,K or N . As L

is the log-Laplace transform of a sub-Gaussian distribution, we have that |L′| is bounded.
In particular, |ψ′| is bounded and thus ψ is Lipschitz. Therefore, for any x ≤M ,∫

ψ(xy)dµ2(y) = ψ(
√
m∗x) +O

(
εM +

√
log θ
θε

)
.

Again, the O
(
εM +

√
log θ
θε

)
does not depend on δ,K or N . We choose ε = θ−1/2 and

M = θ1/4 so that the two error term above goes to zero when θ goes to ∞, so that we
have for any x ≥ 0, ∫

ψ(xy)dµ2(y) = ψ(√m∗x) + oθ(1). (46)

In particular,

α3ψ(
√
θsx) + α2

∫
ψ(xy)dµ2(y) = ψ(√m∗x) + oθ(1).

Taking x = √m∗ in (45), we get

C ≥ A−B
2 + oθ(1), (47)

since s ≥ K and 1− α2 ≤ O(
√

log θ
θ

). The terms oθ(1) above do not depend on K, δ or N .
We claim that there exists θ0 such that for any θ ≥ θ0,

µ2([0,√m∗/2]) = 0.

Indeed, if x ≤ √m∗/2, we have by (46) and the fact that α2 goes to 1 as θ goes to infinity,

α3ψ(
√
θsx) + α2

∫
ψ(xy)dµ(y) ≤ sup

t≤√m∗/2
ψ(√m∗t) + oθ(1),

with supt≤√m∗/2 ψ(√m∗t) < (A − B)/2 since the maximum of ψ is uniquely achieved at
m∗. From (47) and the fact that equality in (45) holds µ2-a.s, we deduce that for θ large
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enough (and not depending on δ,K or N) [0,√m∗/2] ∩ supp(µ2) = ∅. Therefore,

2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y) ≤ (A−B)α2

2 + 2 sup
y≥K

√
m∗θ
2

ψ(y)

= (A−B)α2

2 + oK(1).

Thus,

sup
µ2∈Bθ

{
2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y)

}
≤ (A−B)α2

2 + oK(1).

The reverse inequality is achieved by taking µ2 = δ√m∗ , which completes the proof. �

We deduce that f

Proposition 6.7. There exists θ0 depending on ψ such that for any θ ≥ θ0, F (θ) ≤ F̂ (θ),
where

F̂ (θ) = sup
(α,s,ν)∈S′

F(α, s, ν),

with
F(α, s, ν) = θ2(α2

1 + 2α1α2
)

+ θ2Aα2
2 + θ2B(α2

3 + 2α3α2)

+ 4θ2α3

∫
x2ψ(2θs√α3x)dν(x)−H(ν)− 1

2 log(2π)− 1
2 ,

and

S ′ =
{

(α, s, ν) ∈ [0, 1]3 × [0, 1]× P(R) : α1 + α2 + α3 = 1,
∫
x2dν(x) = α1

}
.

Proof. By Lemmas 6.4 and 6.6, we know that
F̂ (θ) = sup

α∈Aθ
lim sup
δ→0,K→+∞

δK→0

lim sup
N→+∞

F̂Nα1,α2,α3(δ,K),

where

F̂Nα1,α2,α3(δ,K) = sup
s∈S3

sup
ν1∈P(I1)∫
x2dν1(x)=α1

{
4θ2α3

∫
x2ψ

(2θsx
N

1
4

)
dν1(x)−H(ν1)

}
+ θ2(α2

1 + 2α1α2
)

+ Aα2
2 +B(α2

3 + 2α2α3)− 1
2 log(2π)− 1

2 ,

S3 = [K,N1/4√α3]. Using the change of variable s 7→ sN−1/4 we have the upper bound,

F̂ (θ) ≤ sup
(α,s,ν)∈S′

F(α, s, ν).

�

We finally prove that the supremum is taken at α3 = 0.

Proposition 6.8. There exists θ0 depending on A such that for any θ ≥ θ0,
sup

(α,s,ν)∈S′
F(α, s, ν) = sup

(α1,α2,0,s,ν)∈S′
F((α1, α2, 0), s, ν).
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Proof. We claim that for any ((α1, α2, α3), s, ν) ∈ S ′ such that α2 ≥ A−1
2A−B−1 , we have

F((α1, α2, α3), s, ν) ≤ sup
ν∈P(R)

F((α1, α2 + α3, 0), ν). (48)

Note that

sup
ν∈P(R)

F((α1, α2 + α3, 0), ν) = θ2(α1 + 2α1α2 + 2α1α3) + θ2A(α2 + α3)2 + 1
2 logα1.

Now, for any ((α1, α2, α3), s, ν) ∈ S ′, using the fact that ψ(x) ≤ A/2 for any x ∈ R, we
have

F((α1, α2, α3), s, ν) ≤ θ2(α1 + 2α1α2) + θ2Aα2
2 + 2θ2Aα1α3 + θ2B(α2

3 + 2α2α3) + 1
2 logα1.

Therefore, it suffices to prove that for α2 sufficiently near 1:

(A−B)(2α2α3 + α2
3) ≥ 2(A− 1)α1α3

that is,
2(A− 1)α1 ≤ (A−B)(α3 + 2α2).

A sufficient condition for this inequality to be true is that (A− 1)(1− α2) ≤ (A−B)α2,
which ends the proof of the claim (48). By Lemma 6.4, we know that for θ ≥ θ0,

sup
(α,s,ν)∈S

F(α, s, ν) = sup
(α,s,ν)∈S

α1,α3≤C
√

log θ/θ

F(α, s, ν).

For θ such that

1− 2C
√

log θ
θ
≥ A− 1

2A−B − 1 ,

we obtain from (48) that

sup
(α,s,ν)∈S

α1,α3≤C
√

log θ/θ

F(α, s, ν) ≤ sup
((α1,α2,0),s,ν)∈S

F((α1, α2, 0), s, ν).

We deduce that for θ large enough,

sup
(α,s,ν)∈S

F(α, s, ν) ≤ sup
((α1,α2,0),s,ν)∈S

F(α1, α2, 0, s, ν),

which ends the proof. �

We can now conclude from the last two Propositions 6.7 and 6.8, that for θ ≥ θ0

F (θ) ≤ sup
((α1,α2,0),s,ν)∈S

F(α1, α2, 0, s, ν) = sup
α∈[0,1)

V (α)

where we optimized over ν (at the centered Gaussian law with covariance α1). This
completes the proof of the proof of Proposition 6.2 with Lemma 6.3.
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7. Appendix

7.1. Concentration for Wigner matrices with sub-Gaussian log-concave entries.

Proposition 7.1. [14, 1] Let µ be a symmetric probability measure on R which has log-
concave tails in the sense that t 7→ µ(x : |x| ≥ t) is concave, and which is sub-Gaussian
in the sense that (1) holds. Let XN be a symmetric random matrix of size N such that
(Xi,j)i≤j are independent random variables. Assume

√
NXi,j and

√
N/2Xi,i have law

µ for any i 6= j. There exists a numerical constant κ > 0 such that for any convex
1-Lipschitz function f : R→ R, and t ≥ 0,

P
(∣∣ 1
n

Trf(XN)− 1
n
ETrf(XN)

∣∣ > t
)
≤ 2e− κ

A
N2t2 . (49)

Moreover, for any t > 0,

P
(
|λXN − EλXN | > t

)
≤ 2e− κ

A
Nt2 . (50)

One can take κ = 1/8β2 with β = 1680e.

From these concentration inequalities, one can deduce that a Wigner matrix with entries
having sub-Gaussian and log-concave laws satisfy Assumptions 1.2.

Corollary 7.2. Assume µ satisfies the assumptions of Proposition 7.1 and has variance
1. Then the matrix XN satisfies the Assumptions 1.2.

Proof. Using the concentration inequality (50) and the convergence in expectation of the
spectral radius of XN (see [1, Theorem 2.1.22, Exercise 2.1.7]), we obtain that the spectral
radius of XN is exponentially tight at the scale N in the sense of (3).

Let K ⊂ R be a compact subset of R and denote by |K| its diameter. Let FLip,K be the
set of 1-Lipschitz functions with support in K. From the concentration inequality (49),
we can deduce by arguing as in the proof of [14, Theorem 1.3] that for any δ > 0,

P
(

sup
f∈FLip,K

∣∣ 1
N

Trf(XN)− E
1
N

Trf(XN)
∣∣ > δ

)
≤ C
|K|
δ

exp
(
− C δ

2N2

|K|2
)
. (51)

Let dK be defined by

∀ν, µ ∈ P(R), dK(µ, ν) = sup
f∈FLip,K

∣∣∣ ∫ fdν −
∫
fdµ

∣∣∣,
and let d denote the bounded-Lipschitz distance defined by

∀ν, µ ∈ P(R), d(µ, ν) = sup
f∈FLU

∣∣∣ ∫ fdν −
∫
fdµ

∣∣∣,
where FLU is the set of 1-Lipschitz functions uniformly bounded by 1. Let fix K = [−2, 2].
Since σ(K) = 1, we have

d(µXN , σ) ≤ dK(µXN , σ) + µXN (Kc).
But µXN (Kc) ≤ dK(µXN , σ) by choosing f = 1K. Therefore,

d(µXN , σ) ≤ 2dK(µXN , σ).
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From (51), we have that for any δ > 0,

P
(
d(µXN , σ) > δ + 2dK(EµXN , σ)

)
≤ 4C

δ
e−C

δ2N2
16 . (52)

But, we know by [3, Theorem 4.1] that,
dKS(EµXN , σ) = O(N−1/4),

where dKS denotes the Kolmogorov-Smirnov distance, defined by
∀ν, µ ∈ P(R), dKS(µ, ν) = sup

{∣∣µ((−∞, x]
)
− ν
(
(−∞, x]

)∣∣, x ∈ R
}
.

It is a standard fact that the Kolmogorov-Smirnov distance controls the integrals with
respect to functions with bounded variations, that is, for any ν, µ ∈ P(R),

dKS(µ, ν) = sup
{∫

fdµ−
∫
fdν : ||f ||BV ≤ 1

}
,

with ||f ||BV = sup
∑m

i=1 |f(xi+1) − f(xi)|, where the supremum holds over all families
(xi)1≤i≤m+1 with m ∈ N such that x1 < x2 < . . . < xm+1. Since for any 1-Lipschitz
function f supported on K, ||f ||BV = O(1), we deduce that

dK(EµXN , σ) = O(N−1/4).
From (52), we deduce that

lim
N→+∞

1
N

logP
(
d(µXN , σ) > N−κ

)
= −∞,

for any κ < 1/4. �

We now give a proof of Proposition 7.1. It will be a direct consequence of Klein’s lemma
(see [1, Lemma 4.4.12]) and the following concentration of convex Lipschitz functions
under µn.

Proposition 7.3. Let µ be a symmetric probability measure on R which has log-concave
tails in the sense that t 7→ µ(x : |x| ≥ t) is concave, and which is sub-Gaussian in the
sense that (1) holds. For any lower-bounded convex 1-Lipschitz function f : R→ R such
that

∫
fdµn = 0 and any t > 0,

µn
(
x : |f(x)| > t

)
≤ 2e−

t2
4β2A ,

where β is numerical constant. One can take β = 1680e.

Proof. By [17, Corollary 2.2], we know that there exists a numerical constant β such that
µn satisfies a convex infimum convolution inequality with cost function Λ∗(./β), where Λ∗
is the Legendre transfom of Λ defined by,

∀θ ∈ Rn, Λ(θ) = log
∫
e〈θ,x〉dµn(x).

Moreover, β can be taken to be 1680e. More precisely, for any convex lower-bounded
function f : R→ R, (∫

ef�Λ∗(./β)dµn
)(∫

e−fdµn
)
≤ 1, (53)
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where � denotes the infimum convolution operator, defined by

f�Λ∗(./β)(x) = inf
y∈Rn

{
f(y) + Λ∗

(y − x
β

)}
.

Since µ is sub-Gaussian in the sense of (1), for any x ∈ Rn,

Λ∗(x) ≥ 1
2A ||x||

2,

where || || denotes the Euclidean norm in Rn. Therefore,

f�Λ∗(./β)(x) ≥ inf
y∈Rn

{
f(y) + 1

2β2A
||y − x||2

}
.

Assume f is L-Lipschitz for some L > 0. Reproducing the arguments of [15, section 1.9,
p19] we have for any x ∈ Rn,

f�Λ∗(./β)(x) ≥ f(x) + inf
y∈Rn

{
− L||y − x||+ 1

2β2A
||y − x||2

}
≥ f(x)− 1

2β
2AL2.

Thus, by (53) we deduce that(∫
efdµn

)(∫
e−fdµn

)
≤ e

1
2β

2AL2
. (54)

Assume now that f is 1-Lipschitz and
∫
fdµn = 0. Using Jensen’s inequality, we get for

any λ > 0, ∫
fdµn ≤ e

1
2β

2Aλ2
.

Using Chernoff inequality we obtain that for any t > 0,

µn
(
x : f(x) ≥ t

)
≤ e

− t2
4β2A .

Using the symmetry in (54) between f and −f , we get similarly that for any t > 0,

µn
(
x : f(x) ≤ −t

)
≤ e

− t2
4β2A ,

which gives the claim. �

7.2. A Uniform Varadhan’s lemma.

Lemma 7.4. Let f : R → R such that f(0) = 0 and f(√.) is L-Lipschitz for some
L > 0. Let MN ,mN be sequences such that MN = o(

√
N) and mN ∼ N . Let g1, . . . , gmN

be independent Gaussian random variables conditioned to belong to [−MN ,MN ]. Let δ ∈
(0, 1) and c > 0 such that K−1 < c < K and 2δ < K−1. Then,∣∣∣ 1

N
logEe

∑mN
i=1 f

(
gi√
c

)
1|

∑mN
i=1 g

2
i−cN |≤δN

− sup
ν∈P([−MN,MN ])∫

x2dν=c

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}∣∣∣
≤ gL,K(N) + hL(δK),

where gL,K(N)→ +∞ as N → +∞ and hL(x)→ 0 as x→ 0.



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF SUB-GAUSSIAN MATRICES 47

Proof. Let ε = 1/N and l0 be the smallest integer such that (1 + ε)−l0 ≤ ε. Define
Il0 = [−(1 + ε)−l0 , (1 + ε)−l0 ], and Bl0 = {i : gi ∈ Il0}.

For any k > −l0, we set
Ik = {x ∈ R : (1 + ε)k−1 ≤ |x| ≤ (1 + ε)k} and Bk =

{
i : gi ∈ Ik

}
. (55)

Let µk = |Bk|/mN . Let k0 be the smallest integer such that (1 + ε)k0 ≥ MN . Since
gi ∈ [−MN ,MN ] for all i, we obtain that for any k > k0, Bk = ∅.

Lemma 7.5. On the event
{
|
∑mN

i=1 g
2
i − cN | ≤ δN

}
,∣∣∣ 1

mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣∣ ≤ gL,K(N),

where gL,K is a function such that gL,K(x)→ 0 as x→ +∞.

Proof. As f(√.) is L-Lipschitz, we have

∣∣ 1
mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣ ≤ 1
mN

k0∑
k=−l0

∑
i∈Bk

∣∣∣f( gi√
c

)
− f

((1 + ε)k√
c

)∣∣∣
≤ L

c

k0∑
k=−l0+1

µk(1 + ε)2k(1− (1 + ε)−2)
+ L

c
µ−l0(1 + ε)−2l0 .

Using the fact that (1 + ε)−l0 ≤ ε, we deduce∣∣ 1
mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣ ≤ 3εL
c

( k0∑
k=−l0+1

µk(1 + ε)2k + 1
)

But, on the other hand

1
mN

mN∑
i=1

g2
i ≥

k0∑
k=−l0+1

µk(1 + ε)2(k−1).

Thus, ∣∣ 1
mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣ ≤ 3εL
c

(
(1 + ε)2( 1

mN

mN∑
i=1

g2
i

)
+ 1
)
,

which, as mN ∼ N and K−1 < c < K, gives the claim. �

Let I = {−l0, . . . , k0} and LN be the set,

LN =
{
y ∈ RI

+ :
∑
k∈I

yk = 1, ∀k ∈ I,mNyk ∈ N
}
.

We know from [9, Lemma 2.1.6], that for any y ∈ LN ,
(mN + 1)−ne−mNH(y|γmN ) ≤ P(µk = yk, ∀k ∈ I) ≤ e−mNH(y|γmN ), (56)
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where n = |I| = l0 + k0 + 1,

H(y|γmN ) =
∑
k∈I

yk log yk
γmN (k) , with γmN (k) = γ(Ik)

γ([−MN ,MN ]) ,

and Ik = [(1 + ε)k−1, (1 + ε)k].
Let µ = (µk)k∈I . There exists a function hK (depending on c but not δ) such that for

{
c− δ − hK(ε) ≤

k0∑
k=−l0

(1 + ε)2kµk ≤ c+ δ
}

(57)

⊂
{
|
mN∑
i=1

g2
i − cN | ≤ δN

}
⊂ {c− δ ≤

k0∑
k=−l0

(1 + ε)2kµk ≤ c+ δ + hK(ε)},

and hK(ε)→ 0 as ε→ 0. We introduce the sets

A+ =
{
y ∈ LN : c− δ ≤

k0∑
k=−l0

(1 + ε)2kyk ≤ c+ δ + hK(ε)
}
,

and

A− =
{
y ∈ LN : c− δ − hK(ε) ≤

k0∑
k=−l0

(1 + ε)2kyk ≤ c+ δ
}
.

Using (56), we have for the upper bound,

EemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A+ ≤

∑
y∈A+

e
mN

∑k0
k=−l0

ykf
(

(1+ε)k√
c

)
e−mNH(y|γmN ), (58)

whereas for the lower bound,

EemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥ (mN + 1)−n

∑
y∈A−

e
mN

∑k0
k=−l0

ykf
(

(1+ε)k√
c

)
e−mNH(y|γmN ). (59)

Let y ∈ A+ and define ν ∈ P(R) by dν(x) = ϕ(x)dγ(x), where

ϕ(x) =
k0∑

k=−l0

1x∈Ik
yk

γ(Ik)
.

With this notation, we have
H(y|γmN ) = H(ν|γ)− log γ([−MN ,MN ]).

With the same argument as in Lemma 7.5, we also have as y ∈ A+,∣∣ k0∑
k=−l0

ykf
((1 + ε)k√

c

)
−
∫
f
( x√

c

)
dν(x)

∣∣ ≤ gL,K(N), (60)

and
c− δ −mK(N) ≤

∫
x2dν(x) ≤ c+ δ +mK(N),



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF SUB-GAUSSIAN MATRICES 49

where gL,K(x) and mK(x)→ 0 as x→ +∞. From (58) and Lemma 7.5, we deduce that
1
N

logEe
∑mN
i=1 f

(
gi√
c

)
1|

∑mN
i=1 g

2
i−cN |≤δN

≤ mN

N
sup

ν∈P([−MN,MN ]
|
∫
x2dν(x)−c|≤δ+mK (N)

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}
+ 1
N

log |LN |+ rL,K(N),

where rL,K(N)→ 0 as N → +∞. But, |LN | ≤ mn
N , and n = |I| ≤ C logN , where C > 0

is a numerical constant, so that
1
N

log |LN | ≤ C
(logN)2

N
.

To complete the proof of the upper bound, we show the following result.

Lemma 7.6. Let K,L, δ > 0 such that δ < 2K−1. There exists a function sL,K depending
on K and L such that for any function f : R → R such that f(0) = 0 and f(√.) is L-
Lipschitz, and any K−1 < c < K,

sup
|
∫
x2dν(x)−c|≤δ

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}
≤ sup

ν∈P([−MN,MN ]∫
x2dν(x)=c

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}
+ sL(δK),

where sL(x)→ 0 as x→ 0.

Proof. Let ν ∈ P([−MN ,MN ]) such that |
∫
x2dν(x)−c| ≤ δ. Assume first

∫
x2dν(x) ≥ c.

Define ν̃ ∈ P([−MN ,MN ]) such that for any bounded continuous function ϕ : [−MN ,MN ]→
R, ∫

ϕ
( x√

λ

)
dν(x) =

∫
ϕdν̃,

where λ ≥ 1 is such that
∫
x2dν̃(x) = c. Using the fact that f(√.) is L-Lipschitz, and

that |
∫
x2dν(x)− c| ≤ δ, we obtain on one hand,∣∣∣ ∫ f

( x√
λc

)
dν(x)−

∫
f
( x√

c

)
dν(x)

∣∣∣ ≤ L

c
δ ≤ LδK.

On the other hand, we have as
∫
x2dν̃(x) = c,

H(ν̃|γ) = H(ν̃) + 1
2c+ 1

2 log(2π). (61)

Since H(ν̃) = H(ν) + 1
2 log λ, we have that

H(ν̃|γ) = H(ν) + 1
2 log λ+ 1

2c+ 1
2 log(2π).

But c ≤
∫
x2dν(x) ≤ c+ δ and λ− 1 ≤ δK. Therefore

H(ν̃|γ) ≤ H(ν|γ) + 1
2δ + L

2 δK,

which ends the proof in the case where
∫
x2dν(x) ≥ c.
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Assume now that c− δ ≤
∫
x2dν(x) ≤ c. For N large enough, we can find t ∈ [0,MN ]

such that ∫
x2d
(
(1− δ)ν + δ1[t,t+1]dx

)
(x) = c.

Let ν̃ = (1−δ)ν+δ1[t,t+1]dx ∈ P([−MN ,MN ]). Observe that the above condition implies
that

δ

∫
[t,t+1]

x2dx ≤ c− (c− δ)(1− δ) ≤ 2Kδ.

Using the fact that f(x) ≤ Lx2 for any x ≥ 0, we deduce that,∣∣∣ ∫ f
( x√

c

)
dν̃(x)−

∫
f
( x√

c

)
dν(x)

∣∣∣ ≤ 3LδK.

On the other hand, by convexity of the entropy and the fact that H(1[t,t+1]dx) = 1, we
have,

H(ν̃) ≤ (1− δ)H(ν) + δ.

Using (61) and c− δ ≤
∫
x2dν(x) ≤ c, we deduce that

H(ν̃|γ) ≤ H(ν|γ)− δH(ν) + 3δ
2 .

But,
H(ν) ≥ −1

2c−
1
2 log(2π),

so that we can conclude that,
H(ν̃|γ) ≤ H(ν|γ) +O(δK),

which ends the proof.
�

For the lower bound, fix ν a probability measure on [−MN ,MN ] such that ν � γ. We
set ε = εN such that M2

N/mNεN → 0, and we define Ik and Bk as in (55). Define, for
k ∈ {−l0 + 1, . . . , k0},

yk = 1
mN

bmNν(Ik)c,

and y−l0 = 1−
∑k0

k=−l0+1 yk. We claim that for N large enough and independent of ν,∫
x2dν(x) = c =⇒ y ∈ A−.

Indeed, one can check that on one hand
k0∑

k=−l0

yk(1 + ε)2k ≤ (1 + ε)2
∫
x2dν(x) + ε2,

and on the other hand
k0∑

k=−l0

yk(1 + ε)2k ≥
∫
x2dν(x)− (1 + ε)2M2

N

mNε
.
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We obtain from (59),

logEemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥ (mN + 1)−nemN

∑k0
k=−l0

ykf
(

(1+ε)k√
c

)
e−mNH(y|γmN ). (62)

In the next lemma we compare H(y|γmN ) and H(ν|γ).

Lemma 7.7.
H(y|γmN ) ≤ H(ν|γ) + oN(1).

Proof. By definition we have,

H(y|γmN ) =
k0∑

k=−l0

yk log yk
γ(Ik)

+ log γ([−MN ,MN ]). (63)

Let f(x) = x log x for x > 0 and f(0) = 0. We claim that
∀0 ≤ x < y, f(x) ≤ f(y) + (y − x). (64)

Indeed, either x > e−1 and f(x) ≤ f(y) since f is increasing on [e−1,+∞). Either x < e−1

and by convexity,
f(x) ≤ f(y) + f ′(x)(x− y).

Since |f ′(x)| ≤ 1 we get the claim. Note that we have for any k > −l0,

ν(Ik)−
1
mN

< yk ≤ ν(Ik),

and
ν(I−l0) ≤ y−l0 < ν(I−l0) + k0 + l0

mN

.

Thus we deduce from (64) that

H(y|γmN ) ≤
k0∑

k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

+
k0∑

k=−l0+1

γ(Ik)
1

γ(Ik)mN

+ γ(Il0) k0 + l0
γ(I−l0)mN

+ oN(1)

≤
k0∑

k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

+ 2(k0 + l0)
mN

+ oN(1).

We have k0 = O(log(MN)/εN) and l0 = O(log(1/εN)/εN). Since M2
N/mNεN → 0, we get

H(y|γmN ) ≤
k0∑

k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

+ 2(k0 + l0)
mN

+ oN(1).

Since f : x 7→ x log x is a convex function, we have by Jensen’s inequality
k0∑

k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

=
k0∑

k=−l0

γ(Ik)f
( 1
γ(Ik)

∫
Ik

dν

dγ
dγ
)
≤

k0∑
k=−l0

∫
Ik

dν

dγ
log dν

dγ
dγ,

which ends the proof. �

Next, we claim that we can compare
∫
f(x/

√
c)dν(x) and

∑
k=−l0 ykf((1 + ε)k/

√
c).
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Lemma 7.8. ∣∣∣ ∫ f
( x√

c

)
dν(x)−

k0∑
k=−l0

ykf
((1 + ε)k√

c

)∣∣∣ ≤ gL,K(N),

where gL,K(N)→ 0 as N → +∞.

Proof. As f(√.) is L-Lipschitz, we have on one hand using the same argument as in the
proof of Lemma 7.5,∣∣∣ ∫ f

( x√
c

)
dν(x)−

k0∑
k=−l0

ν(Ik)f
((1 + ε)k√

c

)∣∣∣ ≤ 3Lε
c

(∫
x2dν(x) + 1

)
.

Therefore, ∣∣∣ ∫ f
( x√

c

)
dν(x)−

k0∑
k=−l0

ν(Ik)f
((1 + ε)k√

c

)∣∣∣ ≤ hL,K(N), (65)

where hL,K(N) → 0 as N → +∞. On the other hand, as |ν(Ik) − yk| ≤ 1/mN for any
k > −l0 and |ν(I−l0)− y−l0| ≤ (k0 + l0)/mN , we get

k0∑
k=−l0

∣∣∣(yk − ν(Ik))f
((1 + ε)k√

c

)∣∣∣ ≤ L

cmN

k0∑
k=−l0+1

(1 + ε)2k + L(k0 + l0)
cmN

(1 + ε)−2l0 ,

where we used the fact that f(0) = 0 and f(√.) is L-Lipschitz. There exists a numerical
constant κ > 0 such that

k0∑
k=−l0

|yk − ν(Ik)|f
((1 + ε)k√

c

)
≤ κL

cmN

(M2
N

εN
+ (k0 + l0)ε2

N

)
,

As M2
N/mN → 0 and k0 = O(log(MN)/εN) and l0 = O(log(1/εN)/εN), we deduce

(k0 + l0)
mN

εN = oN(1).

Since we choose εN such that M2
N/mNεN → 0, we can conclude that

k0∑
k=−l0

∣∣∣(yk − ν(Ik))f
((1 + ε)k√

c

)∣∣∣ ≤ gL,K(N),

where gL,K(N) → 0 as N → +∞. Combining the above estimate with (60), we get the
claim. �

Coming back to (62), using the results of Lemmas 7.7 and 7.8, we deduce

EemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥ (mN + 1)−nemN

∫
f( x√

c
)dν(x)−mNgL,δ(N)

e−mN (H(ν|γ)+oN (1)),

which gives at the logarithmic scale,
1
N

logEemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥

mN

N

(∫
f
( x√

c

)
dν(x)−H(ν|γ)

)
− g̃L,K(N),
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where g̃L,K(N)→ 0 as N → +∞. As this inequality is true for any ν ∈ P([−MN ,MN ]),
such that

∫
x2dν = c,

1
N

logEemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥

mN

N
sup

ν∈P([−MN,MN ])∫
x2dν=c

(∫
f
( x√

c

)
dν(x)−H(ν|γ)

)
− g̃L,K(N).

�
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