N

N

Large Deviations for the Largest Eigenvalue of
Sub-Gaussian Matrices

Fanny Augeri, Alice Guionnet, Jonathan Husson

» To cite this version:

Fanny Augeri, Alice Guionnet, Jonathan Husson. Large Deviations for the Largest Eigenvalue of
Sub-Gaussian Matrices. Communications in Mathematical Physics, 2021, 383 (2), pp.997-1050.
10.1007/s00220-021-04027-9 . hal-02376231

HAL Id: hal-02376231
https://hal.science/hal-02376231v1

Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02376231v1
https://hal.archives-ouvertes.fr

LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF
SUB-GAUSSIAN MATRICES

FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

Abstract: We establish large deviations estimates for the largest eigenvalue of Wigner
matrices with sub-Gaussian entries.

1. INTRODUCTION

Understanding the large deviation behavior of the largest eigenvalue of a random matrix
is a challenging question, with many applications in statistics and mobile communications
systems, e.g [10, [7]. However, it is in general a difficult question and very few results are
known. It is known since [19] that the empirical distribution of the eigenvalues of a Wigner
matrix converges to the semi-circle law provided the off-diagonal entries have a finite sec-
ond moment. Following the pioneering work of Kémlos and Fiiredi [I1], we know by [4]
that assuming the Wigner matrix has centered entries, the largest eigenvalue converges to
the right edge of the support of the semi-circle law if and only if the fourth moment of the
off-diagonal entries is finite. Given these two results, one can wonder what is the proba-
bility that the empirical measure or the largest eigenvalue have an unexpected behavior.
Large deviation principles were derived for the empirical distribution of the eigenvalues
and the largest eigenvalue of classical Gaussian ensembles, as the Gaussian Unitary En-
semble (GUE) and Gaussian Orthogonal Ensemble (GOE) in [6] and [5]. Indeed, in this
case, the joint law of the eigenvalues is explicit and large deviations estimates can be
derived by Laplace’s method, up to taking care of the singularity of the interaction. In
a breakthrough paper, Bordenave and Caputo [§] showed that large deviations for the
empirical measure of the eigenvalues can be estimated when the tails of the entries are
heavier than in the Gaussian case. These large deviations have a smaller speed than in the
cases of classical Gaussian Ensembles and are due to a relatively small number of entries
of order one. This phenomenon was shown to hold as well for the largest eigenvalue by
one of the authors [2].

Yet, the case of sub-Gaussian entries remained still mysterious. Last year, two of the
authors showed that if the Laplace transform of the Wigner matrix is pointwise bounded
from above by the one of the GUE or GOE, then a large deviations principle holds with the
same rate function as in the Gaussian case. This special case of Wigner matrices, which
was called with sharp sub-Gaussian tails, was shown to include matrices with Rademacher
variables and variables uniformly sampled in an interval. Yet, many Wigner matrices
with sub-Gaussian entries are not with sharp sub-Gaussian tails, as for Gaussian sparse
matrices which are obtained by multiplying entrywise a GOE matrix with an independent

This project was partially supported by Labex MILYON and has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 692452).

1



2 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

Bernoulli random variable. In this article, we investigate this general setting and derive
large deviations estimates for the largest eigenvalue of Wigner matrices with sub-Gaussian
entries. In particular, we show that the rate function of this large deviations principle is
different from the one of the GOE.

We will consider hereafter a N x N symmetric random matrix X with independent
entries (X;;)i<; above the diagonal so that \/NXU has law p for all i < j and \/N/2X};
has law p for all 7. In particular, the variance profile is the same as the one of the GOE.
We assume that o is centered and has a variance equal to 1. Let

1
Ve € R, ¢(z) = ﬁlog/e“d,u(t).
¥(0) = 1/2 and is a continuous function on R. Assume that
A
— =supy(x) < +o0. (1)
2 Tz€R

The case where A = 1 is the case of sharp sub-Gaussian tails which was studied in [12].
We investigate here the case where A > 1 and we show the following result.

Theorem 1.1. Denote by A\x, the largest eigenvalue of Xy. Under some technical as-
sumptions, there exist a good rate function I, : R — [0, +o0] and a set O, C R such that
(—00,2] U [z, +00) C O, for some x,, > 2 and such that for any x € O,

lim llmlnfﬁlogPﬂ/\XN —z| <§) = hmhmsupﬁlogP(L\XN —z| <6) =—1,(x).

6—0 N—+o0 =0 N—4o00
The rate function I, is infinite on (—o0,2) and satisfies,
L,
() oo ﬂx

If Ae (1,2), then 2,VA—1+1/VA—1] C O, and I, coincides on this interval to the
rate function of the GOE, that is,

1 x
= 5/ VY2 —A4dy =: Igop(x). (2)
2
Moreover, for all x > 2, I,(x) < Icop(z).

The technical assumptions include the case where 1 is increasing (which holds in the
case of sparse Gaussian entries) and the case where the maximum of ¢ is achieved on
R at a unique point in a neighborhood of which it is strictly concave. In the later case,
I,,(z) only depends on A for x large enough.

1.1. Assumptions. We now describe more precisely our assumptions.

Assumption 1.1. Let u € P(R) be a symmetric probability measure with unit variance.
We denote by L its log-Laplace transform,

Ve eR, L(z) = log/e"""tdu(t),
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and ¥(x) = L(z)/z*. We assume that p is sub-Gaussian in the sense that

— =sup¥(x) < +oo,
2 z€eR

and we define B > 0 by,

— = i .

We assume moreover that L(\/') is a Lipschitz function and that p does not have sharp
sub-Gaussian tails, meaning that A > 1.

We describe below a few examples of probability measures p which satisfy the above
assumptions. In each of these cases, the fact that L(\/') is Lipschitz is clear and left to
the reader.

Example 1.2. o (Combination of Gaussian and Rademacher laws). Let

_ 1.2
5

e 1
amd:ﬂ +(1- a)§(5_b + 04p)
2

where a,b, B are non negative real numbers such that a € (0,1) and aB+(1—a)b* =
1. Then, for all x € R,

L,(z) =log (ae%‘;2 +(1—a) cosh(bx)) :

If B>1andb e (0,1) we see that our conditions are fulfilled and A = B.
(Sparse Gaussian case). Let p be the law of (I with ( a Bernoulli variable of
parameter p € (0,1) and I a centered Gaussian variable with variance 1/p. For
any v € R,

p(dz) =

22
L,(x)=log (peﬂ +1— p)
so that A= B = .
(Combination of Rademacher laws). Let

p= Z (0, +0-5,)

with a; > 0, B € R and p € N so that Y. oy = 1,> ;82 = 1. Since u is
compactly supported B = 0. The fact that p does not have sharp sub-Gaussian
tails means that there exist some t and A > 1 such that

Zozzcosh pit) > e %.

The latter is equivalent to
p

. B2
Z%e% (e 2(t_*) +€ %(H‘ﬁl) > 2 1
=1 2
2

This inequality holds as soon as aie% > 2 for somei € {1,...,p} by taking t = %.
This can be fulfilled if B; is large enough while o;3? < 1. We also see with this
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family of examples that A can be taken arbitrarily large even if B = 0 (take e.g
b= 2; A= 517t = 1,0[1 = (2612)_17 6/81/2 Z 46%7ﬁ2Q = (2 - 6;2)_17052 =1- al)-

Let Hy be the set of real symmetric matrices of size N. We denote for any A € Hy
by A4 its largest eigenvalue, ||A|| is spectral radius and by fi4 the empirical distribution

of its eigenvalues, that is
| XN
Ha = N Zl 5/\1'7

where Aq,..., Ay are the eigenvalues of A. We make the following assumption of expo-
nential tightness of the spectral radius and of concentration of the empirical distribution
of the eigenvalues at the scale N.

Assumption 1.2. The spectral radius of Xy, ||Xn||, is exponentially tight at the scale
N:
1
lim i —logP(||Xn|| > K) = —o0. 3
i limsup o log P (| X x| > K) = —oco (3)
Moreover, the empirical distribution of the eigenvalues fix, concentrates at the scale N :

1

limsup — log P (d(fix,,0) > N") = —o0, (4)
N—+o0 N

for some k > 0, where d is a distance compatible with the weak topology and o is the

semi-circle law, defined by

1
o(dx) = 2—\/4 — 221y <odw.
- <

Remark 1.3. (1) From [12, Lemmas 1.8, 1.11], we know that Assumptz'on is ful-
filled if v is either compactly supported, or if j satisfies a logarithmic Sobolev

inequality in the sense that there exists ¢ > 0 so that for any smooth function
[ R =R, such that [ f*dp =1,

[ s stan < [ 195130

(2) If u is a symmetric sub-Gaussian probability measure on R with log-concave tails
in the sense that t — u(|z| > t) is a log-concave function, then the Wigner matriz
Xn satisfies Assumption[1.4 In particular, if B is a Wigner matriz with Bernoulli
entries with parameter p and I' is a GOFE matriz, then the sparse Gaussian matriz
Bol/\/p, where o the Hadamard product, satisfies Assumption . We refer the
reader to section of the appendiz for more details.

1.2. Statement of the results and scheme of the proof. Asin [I12], our approach to
derive large deviations estimates is based on a tilting of the law of the Wigner matrix Xy
by spherical integrals. Let us recall the definition of spherical integrals. For any 6 > 0,
we define

]N(XNa 0) _ Ee[eGN(e,XNe)]

SNfl

where e is uniformly sampled on the sphere with radius one. The asymptotics of

1
JN(XN> 9) = N log IN(XNa 9)
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were studied in [I3] where the following result was proved.

Theorem 1.4. [I3, Theorem 6] Let (En)nen be a sequence of N x N real symmetric
matrices such that:

o The sequence of empirical measures fig, converges weakly to a compactly supported
measure [i.
o There is a real number \g such that the sequence of largest eigenvalues \g,, con-
verges to \g.
o supy ||En|| < +o0.
For any 6 > 0,
lim JN(EN, 0) = J(M, 0, /\E)

N—+o0

The limit J is defined as follows. For a compactly supported probability measure
i € P(R) we define its Stieltjes transform G, by

Vz ¢ supp(p), Gu(z) := /

RZ—1

dp(t),

where supp(u) is the support of . For any compactly supported probability measure pu,
we denote by r, the right edge of the support of . Then G, is a bijection from (r,, +00)
to (0,G,(r,)) where

Gu(r,) =1lmG,(1).

tiry

Let K, be the inverse of G, on (0,G(r,)) and let
Vz € (0,Gulry)), Ru(z) = Kyu(z) —1/z,

be the R-transform of p as defined by Voiculescu in [I§]. Then, the limit of spherical
integrals is defined for any 6 > 0 and z > r,, by,

J(p, 0, ) == 0v(p,0,x) — % /10g (1+20v(p, 0, 2) — 20y)dpu(y),
with
i < <
(1,0, = RM(QIH) %f 0 <20 <Gpu(x),
r— 55 if20>G,(x).

In the case of the semi-circle law, we have
1
Gy (z) = 5(1: — Va2 —4), Ry(z)==x.

We denote by J(A,0) as a short-hand for J(c,60,\). In the next lemma we compute
explicitly J(x, \), whose proof is left to the reader.
Lemma 1.5. Let 0 > 0 and x > 2. For 0 < %Gg(sc),

J(x,0) = 6°.
Whereas for 0 > G, (x),

1 1 1
J(x,0) =0z — 5 §log 20 — 5 /log(x —y)do(y).

Moreover,for any x > 2, J(z,.) is continuously differentiable.
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To derive large deviations estimates using a tilt by spherical integrals, it is central to
obtain the asymptotics of the annealed spherical integral Fy(6) defined as,
1
Fn(0) = N log Ex, E.[exp(N6(e, Xne))].
In the following lemma, we obtain the limit of Fy as the solution of a certain variational

problem. We denote by F(0) and F(6) its upper and lower limits:
F(6) = limsup Fy(6),

N—+o00
F(0) = %Igfg Fn ().

For any measurable subset I C R, we denote by M(I) and P(I) respectively the set of
measures and the set of probability measures supported on I.

Proposition 1.6. Assume Xy satisfies Assumptions[I.1] and[1.5
F(0) = limsup sup limsup FY (0, K),

a1,02,03
6—0,K—+oo ajtagtagz=1 N—>+OO
§K—0 a; >0

_ N
F(0) = sup 6_1}()II}(L11+fm m sup )y 05 (0, K) -
a1+a2;g3 1 5K 0 N—+o00

fé\i’az s (0, K) is the function given by:
]:o]a\i az,o3 (5a K) = 67 (C“% + 20100 + BO&%)
k l 1
1 20s;t; 1 20t .t
L( ) L< ity )
i tis};gg sZESIle)Sk {N Z Z IN Z N

|32 12=Nag|<6N | 3; s2-Nag|<6N =1 j=1 65=1

: 20s;x 1 ]
o (3 HCR e ) - euen 3}

where I = {x : |z| < §Y2NYAY Iy = {x: §2NVA < |o| < KY2NY4Y [ = {KY2NV/4 <
lz| <V Nas}, and

H(v) = /log %du(m),

if v is absolutely continuous with respect to the Lebesgue measure, whereas H(v) is infinite
otherwise.

Remark 1.7. Note that F and F are convex by Holder inequality. Since the entries of
Xy are sub-Gaussian, F(0) < A0*. In particular F,F are finite convex functions and
therefore they are continuous on R, .

The above proposition gives quite an intricate definition for the limit of the annealed
spherical integrals. Yet, for small enough 6 it can be computed explicitly.

Lemma 1.8. For any 0 < \/ﬁ’
E(0) = F(9) = 6>
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Note that for large 6 this formula is not valid anymore when A > 1 since F grows like
Af? at infinity (see the proof of Proposition [1.10)).

Proof. Using the bound L(z) < Ax?/2 for any > 0 and the notation of Proposition [L.6]
we have

1
f(ﬁ@%%(é, K) < sup {92 (a% + 201009 + Ba% + 2Aas09 + Aag + 2Aa1a3) + 2 log al} .
a1 +as+az=1

Here we used the fact that the infimum

inf{H (1) : /deyl =ay, 1 € P(I1)} > inf{H(n) : /xQdyl =, € P(R)},

2
_x
—1/2¢7 201 dg and

where the infimum in the right hand side is achieved at v;(dz) = (2way)
hence equals —1/2(1 + log(2may)).
As A>1and B < A, we have the upper bound,

F(#) < sup {92(a2 +2A0(1 — o) + A(1 — @)?) + % loga}

«€(0,1]
1
= sup {92 (A—(A-1)a”) + - log a} .
a€l0,1] 2
Hence for all # > 0, (and as we could have seen directly from the uniform upper bound
L(9) < 46°)
F(0) < A#* . (5)
We see that if 260/ A — 1 < 1 then the function

1
a ?(A—(A-1)a%) + §loga,

is increasing on [0, 1]. Thus the supremum is achieved at a = 1, and F(8) < 2. Moreover,
taking oy = 1,9 = a3 = 0, and v, the standard Gaussian restricted to I v(dz) =
lllle’édx/Z we find that
E6) > 6*. (6)
Thus, if 20v/A —1 < 1, we get that F(0) = F(0) = 6°.
]

Although the limit of the annealed spherical integrals may not be explicit for all 6§, we
can still use it to obtain large deviations upper bounds as we describe now in the following
theorem.

Theorem 1.9. Under the Assumptions and the law of the largest eigenvalue
Ax, satisfies a large deviation upper bound with good rate function I which is infinite on
(—00,2) and otherwise given by:

vy > 2, I(y) =sup{J(y,0) — F(0)}. (7)

0>0

Moreover, 1(y) < Iqor(y) for all y > 2.
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Proof. From Assumption [I.2] we know that the law of the largest eigenvalue is exponen-
tially tight at the scale N. Therefore, it is sufficient to prove a weak large deviations
upper bound by [9, Lemma 1.2.18]. Let § > 0. We have,

]P()\XN <2- 6) < P(ﬂXN(f) - 0)7
where f is a smooth compactly supported function with support in (2 — §,2). Since
supp(o) = [—2,2], we deduce that,
]P)()\XN <2- 6) < ]P)(dulXN’ U) > 5)7

for some € > 0. As the empirical distribution of the eigenvalues concentrates at the scale
N according to (4]), we conclude that

) 1
Nl_l)rfoo N logP(A\x, <2—90)=—o0.

Let now z > 2 and 6 > 0. Recall from @ that F(0) > 62 for any 6 > 0. Therefore,
I(w) < sup{J(x,0) — 6%}.

6>0
From [12, Section 4.1], we know that

sup{J(z,0) — 82} = Icop(x),
0>0

where Igog is the rate function of the largest eigenvalue of a GOE matrix. Therefore we
have proved that -

In particular I(2) = 0 since Igog(2). Therefore we only need to estimate small ball prob-
abilities around = # 2. As [ix, concentrates at the scale N, and || Xy|| is exponentially

tight at the scale N by Assumption [1.2]it is enough to show that for any K > 0,

1 _
lim sup lim sup — log P(Xy € V&) < —I(2),
550 Nortoo IV ’

where V% = {Y € Hy : |A\y — 2| < 6,d(fiy,0) < N7%,|[Y]| < K}, for some s > 0. Let
6 > 0. From [I6] Proposition 2.1], we know that the spherical integral is continuous, more
precisely, for N large enough and any Xy € Vs,

|JN(XN7 0) - J(.I, 6)| < 9(5)7
for some function g(d) going to 0 as § — 0. Therefore,

In(Xy,0)
P(Xy € V%) = E(1 AN 2

Taking the limsup as N — 0 and § — 0 at the logarithmic scale, we deduce

) < Elly(Xy, )] 00-N40),

1 —
lim sup lim sup N log P(Xy € Vis) < F(6) — J(0, ).

6—0 N—+oo
Opimizing over # > 0, we get the claim. OJ
Proposition 1.10. Under Assumption the rate function I defined in _Theorem is

lower semi-continuous, and growing at infinity like x*/4A. In particular, I is a good rate
function.
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Proof. I is lower semi-continuous as a supremum of continuous functions (recall here that
J(6,.) is continuous by Lemma and F is continuous by Remark . It remains to
show that its level sets are compact, for which it is sufficient to prove that I goes to
infinity at infinity. Let x > 2. Let C' > 0 be a constant to be chosen later such that
Cz > 1/2. We have by taking § = Cz and using (1.9)), that

I(z) > J(Cz,x) — F(Cx)

1 1 1
203:2—§—§log%—§10g:v—/402x2. (8)
Taking C' = 1/2A, and assuming that x > A, we obtain that
- 2
I(a) > 7 = ola”). (9)

To get the converse bound, we show that as 6 goes to infinity, F goes to infinity like A§%.
We distinguish two cases. First, we consider the case A = B. Using Proposition [I.0] we
get the lower bound for 6 > 1,
1 1
F(0) > A92<1 - ﬁ) — logd,
by taking as = 0, a5 = 1 — 072, oy = 072 and v, the Gaussian law restricted to I; with
variance «q. In the case A > B, we define m, such that ¥(m,) = A/2. Taking az = 0,

ay=1—-0"2 a; =02 vy, = anﬂé\/@, and v; the Gaussian law restricted to I; with
* 20

variance «q, we obtain,

F(0) > A (1~ 91_2) ~log . (10)
It follows that for any € > 0, there exists M < oo such that for 8 > M,
F(6) > (1—¢)A6*.
Therefore
I(r) < max {sup{J(Q,x) — (1 —¢)A0*}, sup{J (0, 7) — F(Q)}} .
0>M 0<M

But from Lemma [1.5| one can see that the second term in the above right-hand side is
bounded by Mz + C where C'is a numerical constant. Besides, using the same argument

as in , we get
2
x
sup{J(0,z) — (1 —e)AO*} > ———— — o(2?).
sup{(J(0,2) — (1= )46} > o —o(a?)
Hence, for x large enough,

I(z) < sup{J(0,z) — (1 —c)Ab?}.

0>M

But, for x large enough and 0 > 1/2, J(0,z) < 6z. Thus,

HSSA%{J(Q,:E) — (1—e)Af%} < 312110){9:6 — (1 —¢)A6%} = —9A

which ends the proof.



10 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON
0

Proposition 1.11. For any 6 > 0, J(0,.) is a convex function. Therefore, I is also
convez.

Proof. Let z,y > 2 and t € (0,1). Let En be a sequence of diagonal matrices such that
||En|| < 2 and such that fig, converges weakly to o. Let E% and EY be such that
(E%)l,z = (E]y\/%ﬂ = (EN)l,’L for any 1 E {1, Ce ,N — 1}, and

(EX)vy =2 (EX)nw = .

We have Apg = x and Agy =y. Then, Hy = tEf + (1 — t)E} is such that its empirical
distribution of eigenvalues converges to o, and Ay, = tx+(1—t)y. By Holder’s inequality
we have,

log In(Hn,0) < tlogIy(En,0)+ (1 —t)logIn(Dn,0).
Taking the limit as N — 400, we get,
J(tx + (1 —1t)y,0) <tJ(z,0)+ (1 —t)J(y,0).
Therefore, J(0,.) is convex and [ is convex as a supremum of convex functions. O

To derive the large deviation lower bound, we denote by C, the set of # € RT such that
F(6) = F(6) = F(0).

By Lemma C, is not empty. We observe also that by continuity of both £’ and F (see
Remark |1.7)), C, is closed. Let

Ve > 2, I(z) = sup{J(x,0) — F(0)}

e,
Theorem 1.12. For any x > 2, denote by
0, =1{0>0:1(x)=J(x,0)— F(6)},

where I is defined in . Let © > 2 such that there exists § € ©, NC, and 0 ¢ ©, for
anyy # x. Then, I(x) = I(x) and

1
lim lim inf — log P —x| <6 > —I(z).
lim lim inf — log P (|Axy — 2| < 0) 2 ~I(z)

We apply this general theorem in two cases. We first investigate the case where the
function 1 is increasing, case for which we can check that our hypotheses on the sets O,
holds for x large enough. This includes the case where p is the sparse Gaussian law, see
Example [1.2]

Proposition 1.13. Suppose that Assumptions and [1.9 hold. If ¢ is increasing on
R, then C, = R*. Moreover, there exists x, > 2 such that for any v > x,, the large
deviation lower bound holds with rate function I.

We then consider the case where p is such that B < A. This includes any compactly
supported measure p since then B = 0. We prove in this case the following result.
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Proposition 1.14. Suppose that Assumptions and [I.9 hold. If y is such that B < A
and such that the maximum of ¢ is attained on R for a unique m, such that " (m,) < 0,
then there exists a positive finite real number 6y such that for [0y, +oo[C C,. Therefore,
there exists a finite constant x,, such that for x > x,,, the large deviation lower bound holds
with rate function I. Furthermore on the interval [x,,+00) the rate function I depends
only on A.

In the case where A is sufficiently small, we can show without any additional assumption
that the large deviation lower bound holds in a vicinity of 2 and the rate function I is
equal to the one of the GOE. This contrasts with Proposition [1.10] which shows that the
rate function I goes to infinity like 22/4A at infinity and therefore depends on A. In other
words the “heavy tails” only kicks in above a certain threshold.

Proposition 1.15. Assume A < 2. The large deviation lower bound holds with rate
function T on [2,1//A—1+ A —1]. Moreover, I coincides with the rate function in
the GOFE case Igop, defined in (2), on this interval. As a consequence, for all x €
2,1/VA—1++VA—1]

1 1
%%%%Egﬁlogp(p‘va —z| <9) = %%l;vriilif N logP (|Axy — x| <0) = —Igor(z).

In the next section [2, we detail our approach to prove large deviations lower bounds.
Since Proposition [1.0] is crucial to all our results, we prove it in the next section [3 Then,
we will apply these results to prove the large deviations lower bounds close to the bulk
in section [4 that is, we give a proof of Proposition [[.15] To prove the large deviations
lower bounds for large z, we consider first the case of increasing v in section [5| and then
the case of B < A in section [0l Indeed, the variational formulas for the limiting annealed
spherical integrals differ in these two cases, as B = A in the first case whereas B < A in
the second.

2. A GENERAL LARGE DEVIATION LOWER BOUND

We first prove Theorem and will then give more practical descriptions of the sets
O, in order to apply it.

Proof of Theorem[1.19. By assumption, there exists § € ©, N C, such that 6 ¢ ©, for
y # . In particular, it entails that I(x) = I(x). Introducing the spherical integral with
parameter 6 > 0, we have

In(Xn,0)
]P)(|>\XN - $| < 5) > E(ﬂxNeV({;m)?

where V% ={Y € "y : [A\y — 2| < 6,d(fiy,0) < N7%,||Xy|| < K} for some K > 0 and
k> 0. Using the continuity of the spherical integral (see [16, Proposition 2.1]), we get

E(]IXNGVL;I; In(Xy,0)) oNE(0)=NJ(2,0)~Ng(6)—o(N) (11)
Eln(Xn,0) ’

P(dxy —2l <0) =
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where g is a function such that ¢g(0) — 0 as § — 0. We claim that

lim inf 1 1 E(]IXNEV(;{;IN(XNvex)) >0
Notee N % T Eln(Xw,6.) =

To this end we will use our large deviation upper bound. Since fix, concentrates at scales
faster than N, and || Xy|| is exponentially tight at the scale N by Assumption [1.2] this
remains true under the measure tilted by the spherical integral since the logarithm of its
density grows at most like N. Hence, it suffices to prove that for all y # x, for § small
enough, and K large enough,

1 Bllgep Xt
PN 8 T R (X, 0) :

By assumption, there exists § € ©,NC, such that § ¢ ©, for y # x. We introduce a new

spherical integral with argument #" and use again the continuity of Jy to show that:

E[]IXNEV(;{;IN(XNa 6)] o ]E[]IXNEVK ﬁx iz Z/) [N(XN7 '9)]
Eln(Xy,0) B Ely(Xy,0)

— e*NJ(y,Q )7NE(9)+NJ(y,0)+N€(5)E[1XNEV5[§J [N (XN, 9/)]

< o= NJ(.6)—NE(@O)+NJ(y0)+NF(8')+Ne(5)

)

where (0) — 0 as 6 — 0. We can conclude that
! 1 | E[]IXNEV({Z]N(XN70)]
im sup — log Eln(Xn.0)

IN

Nosros N —sup{J(y,¢) - F(#)}+ J(y.0) — E(0)

— T(y)+ J(y,0) - F(0) (12)
By assumption, § ¢ ©,, and 0 € C, so that F(f) = F(0) hence
—I(y)+ J(y,0) — F(0) <0
and the conclusion follows from ([12). Therefore, coming back to , we obtain since
0, € ©, and I(x) = I(z),
liminf log B (|Ax, ] <) > ~I(x).
OJ

In a first step, we identify a subset defined in terms of the subdifferential sets of F' at
the points of non-differentiability where the large deviation lower bound holds. Let D be
the set of 8 > 0 such that F' is differentiable at 6.

Lemma 2.1. The lower bound holds for any x > 2 such that I(z) = I(z) > 0 and

v¢E= | (28+8F(9)) (13)

0eDe
where OF (0) denotes the subdifferential of F at 0
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Note that since F is a convex function, its subdifferentials are well defined.

Proof. Let x > 2 such that I(z) = I(x) >0and x ¢ E. Since F() > 6 for any 0 > 0 by
(6) and F is continuous by Remark we deduce from Lemmal|l.5that 0 — J(z,0)—F(0)
is continuous and goes to —oo as ¢ goes to +oo. Since C, is closed, the supremum

sup {J(6,2) = F(0)} (14)

is achieved at some ¢ € C,. We will show that 6 € D.
As I(z) # 0 we must have § > 1G,(z). Indeed, F(#) > 6? and J(6,z) = 6° for
0 < 1G,(x) by Lemma [1.5/so that

sup {J(0,z) — F(6)} = 0.

OS%GU(CC)

Since I(z) = I(x), we deduce by Fermat’s rule that 6 is a critical point of J(.,z) — F and
therefore satisfies the condition:

oJ — 1 —
— —0F(0)=x— — —0F(0).
0e a9(9,95) OF(0) =x 59 OF(0)
Since z ¢ F, we deduce that F is differentiable at 6.

According to Theorem [1.12] to prove that the lower bound holds at z, it suffices to
show that 6 ¢ ©, for any y # x. Let us proceed by contradiction and assume that there
exists y > 2 such that § € ©,. As F is differentiable at 6, it should be a critical point of
both J(y,.) — F and J(z,.) — F. Therefore, we should have

0 0

597 W 0) = 557(,9).
If G, (y) < 26, then we obtain by Lemma [1.5]and the fact that G, (z) < 26 that x = y. If
G,(y) > 26, then we have

1
r — % =

On the other hand, 20 < G,(y) < 1 and therefore we get the unique solution 20 = G, (x).
As we assumed that 20 > G,(x), we get a contradiction and conclude that § ¢ ©, for any
G,(y) > 260, which completes the proof. O

20.

We are now ready to prove the following result:

Proposition 2.2. Assume that there exists 6y > 0 such that [0y, +00[C C,, and such that
F is differentiable on (6, +00). There exists z,, > 2 such that for any x > z,,, I(z) = I(z)
and the large deviation lower bound holds for any x > x, with rate function I(z).

Proof. On one hand,
sup{J (0, 2) — F(0)} < oz + C,

0<6g

where C' is some positive constant. Since I(z) > x%/4A — o(2?) by (9)), we deduce that

there exists z, > 2 such that for z > z,,, I(x) > 0 and the supremum of J(.,z) — F is
achieved on [0y, +00), in particular on C,. Thus, for any z > z,, I(z) = I(z) > 0. In
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view of Lemma , it remains to show that FE, defined in , is a bounded set. From
our assumption that F is differentiable on (y, +00) and Lemma , we deduce that

1
D C [ﬁ,%]
We observe that since 0 < F(f) < Af?, we have for any ¢ € 9F(0),
(O < F(20) — F(0) < 4A0%
and thus ¢ < 4A6. Therefore, E is a bounded set, which ends the proof.

3. ASYMPTOTICS OF THE ANNEALED SPHERICAL INTEGRAL

In this section we prove Proposition [1.6, Taking the expectation first with respect to
Xy, we have

Fy(8) = % log Ex Eclexp(N6(e, Xne))]

1
= 5 log E. exp (f(e))v

where

ZL 2\/_962(3] +ZL\/ (96

1<J
In a first step, we will prove the following Varlatlonal representation of the upper and
lower limits of Fy(6).

Lemma 3.1. Let Xy be a Wigner matriz satisfying Assumptions[1.1] and[1.2. Then for
any 6 > 0,
F(0) <liminf Fy(0) < limsup Fx(0) < F(0)

N—+o0 N—+o00
with
F(f) = limsup sup limsupFY . (6, K),
6—0,K—+oo0 c=cy+tco+cg3 N—=+o0
§K—0 ¢;>0
_ N
EO)= s, st mind (0,10,
;>0 6K —0
where
62 1
ElY e (6,K) = sup sup { (¢} + 2c100 + Ba3) — 5((32 + ¢3)
s;>VeR N4 es<t,N—l/4</eK
|2527C3N\<6N \ZtQ Neg|<6N
20s; t; 20t; t;
— L( > L< ) su d(v,s) — H(v },
Z N Z s (B s) — H(k)}
fodul(x):cl
and

(v, 5) Z / 20x32 dv(z),
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with I, = [—VedNY* \/eSNYY). Here, we have set ~ to be the standard Gaussian law
and

Hk) = [ @),

Proof. We use the representation of the law of the vector e uniformly distributed on the
sphere as a renormalized Gaussian vector g/||g|l2 where ¢ is a standard Gaussian vector
in RV, to write

Ecexp (f(e)) = E [exp(S(g))]

where

Sg)=Y L (2x/_929“%

1<j =1 9;

2) +;L(\/W9]€—Z’22>.

Zi:l g;

To study the large deviation of ¥(g), we split the entries of g into three possible regime: the
regime where g; < N4 an intermediate regime where g; ~ N/ and finally ¢; > N'/4.
Fix some K,0 >0 and 0 < 40 < K~!. Let ¢, c,¢3 > 0 and ¢ = ¢; + ¢ + c5. We assume
that 0 < K~! < ¢; <c¢ < K. Define I, I1, I3 as

Let for i = 1,2,3, J; = {j : |g;| € L} and &Y = 3., g5/N. We will fix the empirical

variances ¢ in a first step. We will compute the asymptotics of

c1 c2,c3 (9 5) [eXp(Z(g»]l.A ]

€1,€2,€3
where

Agl c2,c3 = ﬂ {|éfv - Ci| S 5}

1<:<3

Let

_;L< 2999 ) ;L<\/_9\/_C)

Using the fact the L(\[) is Lipschitz, we prove in the next lemma that on the event
A? Y.(g) is a good approximation of (g).

c1,c2,C37

Lemma 3.2. On the event A‘s

X(g) — Ec(g) = Nosk(1), asdK — 0. (15)

Moreover

2/ N 2\/_

< — </
| J5] 7 | Jo U J5] 5
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Proof. Note that since u is symmetric, L(x) = L(|z|) and since we assumed L(,/-) Lips-
chitz, for any z,y € R, |L(x) — L(y)| < L|z* — y?| for some finite constant L. Therefore,

5 }L<2\/—9299J - L@j@) ALY 29 1 1

7
AN ~N ~N\2 2
1§’L;ﬁ]§N i=1 g C + CQ + CS ) C

B
< CONLOP*(c+ &) +é) + )= < C'NLO*K,
C

where C, C" are numerical constants and we used K~! < ¢ < K, and 46 < K~'. We get a
similar estimate for the diagonal terms. The estimates on |.J5| and |.J5| are straightforward

consequences of Tchebychev’s inequality.
OJ

We next fix the positions of the set of indices .Ji, Jo, J3. Using the invariance under
permutation of the coordinates of the Gaussian measure, we can write

N\ /N —k
cl c2,C3 (9 5) Z (k’) ( l )Fcl?,lcz,w’

0<k<2VNS
0<I<2vVNK
where
Fckl lCQ c3 E[exp<20(g>>1A21762Y630L€,l}
and

Tou={Js={l,.. kL o={k+1,. . k+1}, s ={k+1+1,...,N}}.

As the number of all the possible configurations of J; and J3 are sub-exponential in N by

Lemma , that is, for any k < 2¢/N/K and | < 2v/N /6,

N N—Fk _ _O(¥N 1og N)
m((k)( l ))_e Flog )

we are reduced to compute F ckl lcz o for fixed k,l. More precisely, we obtain the following
result.

Lemma 3.3.

VN
log FC]YCZ c3((9, J) = kgl%}( log Fc’j 102 et O(T log N) ,
1<2vV/N/§

To simplify the notations, we denote for any a,b € {1,2, 3},

1 TiY;
v RY, %, =~ Y L2202
z,y € ) ,b(l"?y) IN ( /—NC) )

1€Jq,7€ T
if a # b, and
1 Yy iYi
Vo, y e RN, B, .(z, :—E:L(ZG =’>+ }: L(v26 :
* y ’ (x y) N \/_C ( \/_C>

i#j€Ja i€Ja

where now Jy = {1,...,k}, o={k+1,...;k+1}, 1 ={k+1+1,...,N}.
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Next, we single out the interaction terms which involve either the quadratic behavior
of L at 0 or at 400.

Lemma 3.4. On the event A°

C1,C2,C37

92
Y11(9,9) +2X12(9,9) +333(9,9) = C—Q(C% + 2c1¢0 + Be3) + 05k (1) + 0k (1)
as 0K — 0 and K — +o00.

Proof. Observe that for i € Jy, j € J1 U Ja, |g:9;] < VNKdc. Since L(z) ~¢ 22/2, we get,

¢1¢
Y11(9,9) +2%:12(9,9) = 92 ‘i —|—292 172

— + 06K(1) (16)
as 0K — 0. Since g € A2 .., we have |¢] — ¢}| = O(dc) for any i € {1,2,3}. But
¢ > K=, therefore

cic
X11(9,9) +2%12(9,9) = 92 4 ; 292& + 05k (1).
For i,j € Js, |gig;] > KvcN. Since L(z) ~4o0 222, we deduce similarly that
B 2 C3
¥33(9,9) = (5 + os(1 )NQ 5 (Z%) = B0"— +ox(1), (17)
as K — +o00, which gives the claim.
0

From the Lemmas [3.2| and |3 . we have on the event A%

c1,C2,C3")
92
(g) = (Cl +2c100 4 Ba3) + X13(9,9) +2823(9, 9) + S2.2(9, 9) + 05k (1) + 0 (1). (18)

Lemma 3.5. Let k,l € N such that k+1 < N.

log E((exp { N(S13(9,.9) +255,(9,9) + 2200, 9)) } Lag, ..z, )

= Nes )+ os(1) + (S 10g(1/0))

+  max max logE(eXp {N(El,a(g, s) + 2X523(t, 5) + Baa(l, t))}hgl),
13 t?i622N|§(SN 1>, 51215331\]\91\7

where

A =1 - Ne|<N§ gel, Vie{l,....N—k—1U}}.
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Proof. Integrating on g;,7 < k + [, we find

E(eXp {N(&,g(g, g) +2%3(g,9) + X22(g, g))}]lAcl %mzk,l)

ket
1

: (2m)5" Ly o g @renisan© iHllg?l_[dg
X Itrﬁg( rsrggc E(eXp {N(Em(g, s) + 2353(t, s) + Lo a(t, t))}ILA21>,
|34 t2—coN|<SN |3, s2—cgN|<SN
But,
RN ST T o
(27)’“2”/ (1% SH 7 —(eates)| <26} 11 9i

k41

(2m) "
67%(02+03)+(O( )+O(SK) )N( /9 15 )’“H

1 5 kil 2 o
S e—é(l—d)(cz+c3—25)N/6—22i+1 QEHd‘gl

IN

where we used the fact that ¢ < K. By Lemma 3.2 we have k + 1 = O(v/N /). Therefore,

logE(eXp {N(El,s(g, 9) +2523(9,9) + X222(g, 9))}]1/181 o Cgmzk,l>

< —g(@ +e3) + O(B)N + O(SK)N + 0(@ 1og(1/5))

+ max max logE(eXp {N(ELg(g, s) +2¥53(t, s) + Xao(t, t))}]lA‘El)'

t;€ly s; €13
I3 t2—caN|<SN | 3o s2—cgN|<ON

To get the converse bound, we take t € I} s € I¥ optimizing the above maximum
where ¢ is replaced by /2. We next localize the integral on the set Bs where |g; — t;| <
0/2N —k -1 < i< N-—k|g —si| <0/2N—k+1 < i< N. Observe that on
A, x Bs € AS M Zy1, because L o /- is Lipschitz,

C1,C2C3

1313(9, 8) + 2293(t, 8) + Daa(t, t) — (X13(9,9) + 2523(9, 9) + Xa2(g,9))| < CH*S

Hence

E(e {N<213<g 9)+2525(9.9) + Da2(0.9)) L, 03, )

(g 31 _l(g_ti)Q
II e 2 dg II / e 2 dg
(2m) k;l /5/2

1<i<k 1<i<1” —9/2

x N (exp { N (S1(g,5) + 2505t ) + Taa(t,0) g, ),
5
> ¢ H eI OON( ) FE (exp {N(Z15(9: ) + aalt5) + Dol 1) L)
T €1
which completes the claim as k+ 1 = O(VN/0).
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Hence, we are left to estimate
AY =E[exp (NZi5(g, 3))]1A21]a
where s € I} such that | Y, s? <IN — ¢3N|. Let fiy = ﬁ > ics, Og;- We can write

13(g,5) = 1'2/ (%ISZ)dﬂN(:@).

The first difficulty in estimating AY lies in the fact that the function

. Z (29:1532)

is not bounded so that Varadhan’s lemma (see |9, Theorem 4.3.1]) cannot be applied
directly. The second issue is that we need a large deviation estimate which is uniform in
the choice of s € I} such that | S5, s — Neg| < 6N. In the next lemma, we prove a
uniform large dev1at10n estimate of the type of Varadhan’s lemma. The proof is postponed

in the appendix [7.2]

Lemma 3.6. Let f : R — R such that f(0) = 0 and f(,/-) is a L-Lipschitz function.

Let My, my be sequences such that My = o(v/N) and my ~ N. Let g1y -y Gmy be
independent Gaussian random variables conditioned to belong to [—My, My]. Let § €
(0,1) and ¢ > 0 such that K~' < ¢ < K and 26 < K~'. Then,

g B = s F(Je)avta) — HOh) |

UE’P([—MN,]\JN])
z2dv=c

< 9r,x(N) + hr(6K),
where gr k(N) — 400 as N — 400 and hr(z) — 0 as x — 0.

Let s € I) such that | >, s? — Neg| < N. We consider the function

Iy xl—>i (2«91’31 )

One can observe that f(\/') is 402L—L1psch1tz. Using the fact that

1
NlogP(gi € [,Vi<N-—k—1)=on(1),

and the previous lemma, we deduce that for any ¢; > K1,

1 29xs
gAY~ sup Z LR @) = HEMY| < gk (V) + h6K). - (19)

f w2du(x)=cl

where g (N) — 0 as N — 4o00. Putting together and (19), we obtain

1
| 108 E (XD Lty gz ) = Praler, e2,63)| < grac(N) + 051c(1) + 0c(1),
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where
1
Wy (e, e, ¢3) = Qe e, Cs) - 5(62 + 03)
+  max max {2273(15, S)+ oot t)+ sup  {P(v,s) —
ti€l s;€l3 veP(Iy)
|32 t2—caNI<SN |30, s2—c3N|<oN [ 22dvy (w)=c1
with
2?2 + 2xy + B2?
Q(‘/'E? y? ) = 02 ?
@ry+ep
and

k
20xs;
P(v,s) = L( Z>dV x).
(v.5) ;;/ ()
By Lemma [3.3] we obtain as § < K1,

‘— log FY ., ..(6,6) — Jnax Upi(er, co, 03)’ < gx(N) + o5k (1) + ok (1),  (20)
1<4V'N/$§

where gx(N) — 0 as N — +oo.
Let ¢q, o, c3 > 0 such that ¢; > 0. Let ¢ = ¢; + ¢o + ¢3. There exists K > 0 such that
K1 <e¢ <e< K. Wehave for any 0 < 40 < K71,

it Fe(0) > it L
i Ex(0) > i 108 o 010)

Therefore,

lim inf F >1 f v - 1) —ok(1).
WS v (0) 2 Rl g, Wealen eares) — osk1) — ox (1)
1<2V/N/s

To complete the proof of the lower bound of Lemma [3.5 one can observe that

Soa(t,t) = NZ ( >+0N()

uniformly in ¢; € I such that | >, #? — ¢aN| < JN. Indeed, the diagonal terms are
negligible in this case since

< cd‘lN_W% » #=0(N'2).

t,€Ja 1€J2

To conclude the proof of the upper bound, we will use the exponential tightness of ||g||*
and of ||g||7. More precisely, we claim that

1 2 -1
— > < —00.
i tim sup SP({lgl]” = KN, l9ll5, < K7'N) = (21)

Indeed, it is clear by Chernoff’s inequality that
P(|[g]]* > KN) < Ce N,

H(vin)}},
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where C'is a positive numerical constant. Whereas, using Lemma |3.2|and a union bound,

N—-m
_ N _
Pl <N < 3 (D) gt < k)
m<2v/N/é i=1
Let A(¢) = logEe?" for any ¢ € R. By Chernoff’s inequality, we have for any m < N,
N—m
B(Y. o < K7IN) < M0,
i=1
where A* is the Legendre transform of A. Since 0 is not in the support of the law g7,
we have A*(0) = +oo. Since A* is lower semi-continuous we have A*(K~') — +oo as
K | +00. Using the fact that for any m < 2\/N/5,

Ny < o)
m —_ )

we get the claim (21I). Using that L(z) < Az?/2, we have

Y(g) < A9’°N
From the exponential tightness , we deduce that there exists d > 0 such that,
Eexp(B(9) it gipzx, k913, <51y < 1 (22)

Let &x = {&llgll? = &, %llgll3, < K~1}. We have

1 1
0 < limsup Fy(f) < max (hmsup —logE( E(9)]151,() lim sup —logE( 201 ))
N—+o00 N—+o00 N N—+o00 N

Since we took K so that holds, we have

1
lim sup Fiv(f) < limsup N log E(ez(g)]ng). (23)

N—+oc0 N—+o00

Let now Cs be a d-net for the />°-norm of the set
{(c1,c0,c3) ERS ter+ a3 < K,ep > K '}
As |Cs| = O(K/9), we have

lim sup Fx(0) < limsu max —10 0,6

N—>+o<13 N( ) = N—>+o£ (c1,02,3)€Cs N g cl ca, 63( )
1

limsup Fy(f) < max limsup —log F,\ . . (6,0).

N—+o00 (c1,c2,3)€Cs N—do00
From (20), we deduce

limsup Fiy(f) < max limsup max Wy ;(c1,c,c3) + 05k (1) + 0k (1).
N—4o00 e=citeates N4 oo k<2VN/K
e >K~1 1<2V/N /6

Taking now the limit as 6 — 0 and K — 400 such that 0 K' — 0, we obtain the upper
bound of Lemma [3.1] O
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We are now ready to give a proof of Proposition |1.6|. Building on Lemma |3.1] we show
that we can optimize on the total norm ¢ in order to simplify the variational problem, and
replace the supremum over discrete measures + >, d;, by a supremum over all measures
with a certain constraint of support and second moment.

Proof of Proposition[1.6 . We use the notation of Lemma We make the following
changes of variables:

. Ci
Vi=1,2,3, O"':Z’ c=c1+ cy+ cs,

v=u0(xr x/\/c) .

For any vy € P(I;) such that [ 2?dvy(z) = ¢; we have,

1 1
H(wnly) = H(n) + Jatsg log(27).

Moreover, the density of v and v, are linked by the relation

Vo € R, Z—Z(:v) = \/E%(\/Ea:)
Therefore,
H(v) = /log %dyl = H(n) + 1log c. (24)
dz 2
We obtain
FO= 1o p o RISE Fornenc 61O
K0 ;>0
and similarly for (), where
Fojxﬂm%c(é, K) = sup sup {02 (oz% + 20009 + Bag) — %c + %logc

s; €13 t;€1g
2_ 2_
\Zsi Nag|<N§ |Zti Nag|<N§

1 20s;t; 1 20t.t: 1

— L( z]> L L( ilj O(v,s)— H }__1 o).

AT AT o)
’ ’ [ 22dvy ()=

and

O(v,s) = i/L<2\g/a§i>du(x),

with I} = [—VONY4 VONY4), I, = [VONY* /KN4 and I3 = [VKNY* /asN]. We
see that we can optimize in ¢, and find that the maximum is achieved at ¢ = 1 by concavity
of the log.

OJ
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4. THE LARGE DEVIATIONS CLOSE TO THE BULK

We prove in this section Proposition [1.15 By Theorem the large deviation lower
bound holds at every x > 2 such that I(z) = I(x) # 0 so that there exists § € O,
which does not belong to any ©, for y # z. In the following lemma, we prove that if
F(0) = F(f) = 6% on a interval (0,b) with b > 1/2, then the large deviation lower bound
holds in a neighborhood of 2 and the rate function I is equal to the one of the GOE.

Lemma 4.1. If for 6 € (0,2), for some ¢ € (0,1), F() = F(#) = 6°, then for any
r€2e+1),

I(x) = I(x) = Igop(x).
As a consequence, Yo > 2,1(z) > 0. Moreover, for x € [2,& + %) the optimizer in I is
taken at 0, = 1/2G(x) and 0, ¢ ©, for all y # x.
Proof. As F(0) > 62 for any 6 > 0, we have that

sup {J(0,z) — 0*} < I(z) < I(z) <sup{J(0,z)—6*}.
0€[0,1/2¢) 6>0

But if z € [2,e 4+ 1),
Igop(T) = sup {J(@,x) - 92},

6>0
is achieved at § = 1/2G(z) € (0,1/2¢) since G™'(¢) = e+1/e. Therefore, if z € [2,2e+-),
then we obtain
I(x) = I(z) = Igop().

In particular, I(z) > 0 for any = € (2,2¢ + 1/2¢). As [ is convex by Proposition [L.11]
and I(2) = 0, we conclude that I(x) > 0 for any = > 2. Moreover, the optimizer in I(x)
is taken at 0, = 1/2G(z) for which F(0) = F(0) is differentiable and clearly 6, ¢ ©,, for
any y # « as G is invertible on [2, +00).

0

The result of Proposition then follows from Lemma and Lemma We now
study the convergence of the annealed spherical integrals for large values of 6, in which
case we need to make additional assumptions on .

5. CASE WHERE 1) IS AN INCREASING FUNCTION

In this section we make the additional assumption that v is non-decreasing.

Example 5.1 (Sparse Gaussian distribution). Let i be the law of £T" where € is a Bernoulli
variable of pararmeter p € (0,1) and I is a standard Gaussian random variable. In that
case we have for any v € R,

_ log|(1 —p) + pexp(z?/2p)] _/1 texp((t)*/2p)
a? o (1—p)+pexp((xt)?/2p)

One can observe that this last expression is indeed increasing in x.

Y(x) dt.
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5.1. Simplification of the variational problem. We prove in this section that when
1 is increasing on R* | C, = R™ and we can simplify the limit F'(¢) as follows.

Proposition 5.2. For any 6 >0, F(0) = F(0) = F(0) where
F() = sup sup {02a2+392(1—a)2+/ L(20v1 — Oz:c)du(ac)—H(V)—%log(27r)—%}7

a€l0,1]  veP(R)
jz2du(z):a

Proof. Recall that we set for any d, K > 0, and a1 + as + ag =1,

N _ 2 2 2
F oy cmas (0, K) = sup sup {9 (of 4+ 20002 + Baj)
sEIé,kzl sel§,k21
| > t2-Nag|<6N | Y s2-Nag|<sN

SR v )

o e {3 [t ) - o) - )

f z2dvy (z)=aq

where I} = {z : |z| < VONY4}, I, = {z : VONY* < |z| < VKNV, I3 = {VKN'/* <
|z] < v/Naz}. Since 1 is non-decreasing, we have on one hand for any s € I¥ such that

| 3287 —azN| < N, ¢<2\9/%x> < ¢(29\/mx> so that

Z/ 26’sx dm 49 Z / 29393 d}ﬂ@)
< /L(QQ\/mx)dul(x) = /L<20\/O[_3ZE>dV1(fL') + 0s(1)

where we finally use that Lo /- is Lipschitz. On the other hand, since L(z) < Bx?/2 for
any x > 0,

l

331 () 5 3 1) < B )+ ),

j:l =1 1,)= 1

Therefore, we have the upper bound,

(0) < sup sup {92 (af 4 20102) + 6°B(as + a)?
ar1toaztaz=1 ; 2!/;67?(11?)
x vi(z)=a1

n / L(20\/azz)dv () — H(n) — %log(%r) - %}

We can further simplify this optimization problem by showing that the assumption on
the monotonicity of ¢ entails that we can take ap = 0. Indeed, note that 1(0) = 1/2.
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Therefore, for any « > 0, 1(x) > 1/2. Hence, we deduce that
20%0 iy + /L(?Q\/Oz_gx)dl/l (z) = 20%a1a + 402a3/:v2¢(2«9\/a_3.1:)dyl (x)
< 460* (g + a) /wa(QH\/ag + azx)dr(x).

Thus, with the change of variables a3 + as—a3, we deduce

1 1
F(6) < sup sup {0204% + 6?Bas + /L(Zﬁx/agx)dul(x) — H(»n) — = log(2m) — —}.
a1 +taz=1 v1 €P(R) 2 2
fz2dl/1 (z)=aq
To prove that F'() is bounded from below by the same quantity, we fix aj, asg, ag such
that ay + as + a3 = 1,a2 = 0, and v € P(R) such that [ z2dv(z) = ;. We take in the
definition of FY (K,0), k=1, s=+/azN, and v, € P(I;) defined by

1,002,003

1
=—v(.NI
1%} V<[1>V( N 1)Oh

where h 55 : x — VAz, and X is such that [ z%dv(z) = a;, that is,

1 1 )
- = d .
)\ l/(ll)(l/l /Il T V(x)

-1
VA

We have,
fN

a1,02,03

(K,8) > 6*(af + Bas)
+ /L(QQ\/a—gm)dl/l(x) — H(n) — %log(Zw) - %

We deduce by monotone convergence and using the fact that L(\/') is Lipschitz that

F(6) > 6*(a? + Bas) + / L(26\/azz)dv(z) — H(v) — %log(Zﬂ) _ %

0

We next compute the supremum over v in the definition of F' in Proposition [5.2 To
this end, we denote by G : [B/2,+00) = R U {+o0} the function given by

V¢ € [B/2,+0), G(¢) = 1og/exp(L(x) — (2?)dz . (25)
Lemma 5.3. Let
[ = —nglﬂ G'(¢) € (0, +o0]. (26)

For any C € (0,1), there exists a unique ¢ € (B/2,+00) solution to the equation
G(Q) = —C,
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It is denoted by (c. For C > 1, we set (¢ = B/2. Then,

BC
sup [/L(m)du(m) — H(y)] = sup [T + / (L(a:) — —a72>dy(x) — H(v)
veP(R) veP(R)
fa:2dl/(x):C fodu(:c)SC

= CCc + G(Cc)
Proof. Define the function

¥ € P(R), B(v) = H(v) + / (gﬁ ~ L)) dv(a).
We first show that

Jof  E) = mf E(). (27)
f.'1:2du(m)=C' f.'1:2du(m)§C

To prove this equality, we will show that for any v € P(R) such that [z*dv(z) < C,
there exists v, such that [2%dv.(z) = C, and

lli% Ve =, lli%E(ug) = E(v).

We set v. = (1 — ¢)v + 7. where 7. is a Gaussian measure of variance 1 and mean m.,

defined by,
—(1—¢)D
_— \/ C-(-eD
€
With this choice of m., one can check that [ z%dv.(z) = C. Moreover,
V. — v,
e—0*t

for the weak topology. As [z2dv.(z) < C, we deduce that for any continuous function
f iR — R such that f = o4.(z?),

/ fdve — | fdv.
e—0t

Since Zz% — L(z) = 0100(x?), we have
al—i>rtl)1+ (gﬁ - L(:U))dl/a(:r) = / (ng - L(x))du(x). (28)

Besides, as H is convex,
H(v.) <(1—¢e)H(v)+eH(7.).

But,
H(v:) = H(v),

where v is a standard Gaussian distribution. Therefore,
limsup H(v.) < H(v).
e—=0t
As H is lower semi-continuous with respect to the weak topology, we can conclude together
with that,
lim E(v.) = E(v),

e—0t

which ends the proof of the claim (48]).
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Observe that E is a lower semi-continuous function for the weak topology since H is
lower semi-continuous and x — Bx?/2 — L(x) is non-negative and continuous. Moreover,
the set

{vePR): /dey(x) < C},

is a compact subset. Thus, the supremum of E over the set above is achieved. We will
identify the maximizer. For any ¢ € [B/2,400) such that G(¢) < 400, we let v be the
probability measure given by

exp(L(x) — ¢z?)

Texp(Lly) — C)dy ™"

dl/g =

We will show that
inf  E(v) = E(v.). (29)

veP(R)
f z2dv(z)<C

Let p be a probability measure such that H(u) < +oco and [ 2?du(z) < C. As H(u) <
+00, we can write,

p=(1+p)dr,
where ¢ is some measurable function such that ¢ > —1 v -a.s. and [ pdye, = 0. We

have,

B(w) = Blvee) + [ (57 - L)) pladdizc (@)

d
+ /(1 + @) log(1 + ¢)dve, + /log ;;C dve,,.

By convexity of z +— xlogx, we have

Jas oo+ v, = (14 [ v tog(1 + [ pvee) =0,

Therefore,

B

Bu) 2 Bl + [ (522~ ) +10s 5 ) ploddee(o) + (5 - o) [ et )

where we used again that [ ¢dv., = 0. But,

(5 ) [ #o@ine@) = (5 - o) ([ Pauta) - [ 2dveta)

If C <, then [2?dy..(z) = C. Since (¢ < B/2 and [ 2?du(z) < C we get

E(M) > E(”CC)'

If C > 1, then (¢ = B/2, and we also get E(p) > E(v¢.). This shows that v, achieves
the infimum in , and ends the proof of Lemma . O
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5.2. Differentiability of the limit of the annealed spherical integral. This section
is devoted to the proof of the following proposition.

Proposition 5.4. F is continuously differentiable on (1//B — 1, +00) except possibly at
the point 0y such that
0o = inf {0 : F(0) > 6°}.
Moreover, for any 0 < 1/2v/B —1,
F(0) = 6°. (30)
The second part of the claim of the above proposition is due to Proposition

and the fact that A = B. From now on, we assume that 6?(B — 1) > 1 and wish to prove
the first part of Proposition [5.4, We define for any a € [0,1], and v € P(R),

1 1
Hy(a,v) = 0% + 0*°B(1 — a)* + /L(ZQ\/l —azx)dv(z) — H(v) — 5 log(27) — 3 (31)

By Proposition [5.2, we have

F<8) = sup Hg(Oé,I/), (32)
(a,v)€S

where

S = {(a,v) €[0,1] x P(R) : /x2d1/(:v) ~a}.

We first show that we can can restrict the parameter a to the set [0, 3]U{1}, as described
in the following lemma.

Lemma 5.5. If (B —1) > 1, then
F(0) = max ( sup Hy(a,v), 92).

(a,v)€S

1
QSQ

Proof. Making the change of variable which consists in replacing v by the push-forward
of v by the map x — z/\/a, we get
sup H@(O[,V) = Sup {f{g(a,l/) _H(V)}v
(a,v)es ac(0,1]
foduzl
where for any o € (0,1], and v € P(R),

. 1 1 1
Hy(o,v) = 0% + 0*°B(1 — a)* + 5 loga + /L(Z@x/ (1 — a)ax)dv(x) — 5 log(27) — 5

We claim that for any v € P(R) such that [ zdv(z) =1,
~ - 71 ~
aén[lz}gfl] Hy(a,v) < max <H9 (5, V),Hg(]_, y)) (33)
Indeed, first notice that since 1) is increasing, for all « € [0, 1] we have,

/L(29\/ (1—a)ax)dv(z) = 46%a(l —a) /z2¢(29\/a(1 —a)z)dv(z)
< 46%a(l1 — ) /xZw(Hx)dl/(:c).
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Denote by m = 2 [ z*¢(0z)dv(x). As 1 takes its values in [1/2, B/2] we have that
m € [1, B]. For any « € (0, 1],

. 1 1 1
Hy(a,v) < 0*a® +0*°B(1 — a)* + 3 log a + 260%a(1 — a)m — 3 log(2m) — 5= Jom(a).

We find that
1 2 2 1
fé,m<5)26<1—8>+1, éim(a):20 (B+1_2m)_@'
Since fé{m is increasing and féfm(O) — —00, we deduce that fé,m is either decreasing

or decreasing and then increasing. Since f;,.(1/2) < 0, we conclude that fj,, is either
decreasing or decreasing and then increasing on [1/2,1]. Therefore,

1
max fpm,(a) = max (f(;’m (—),fg’m(1)> :
ae[%,l] 2
which yields the claim (33) since fy (o) = Hy(a,v) at the two points & = 1/2 and 1. To
conclude the proof we observe that since Hy(1,v) = 62 for any v € P(R), we have
N 1 1
sup Hy(l,v) —H(W)} = 6>+ = + =log(2n) — inf H(v) =6
Lo (L) = H@) =4 5 b Slos(on) = inf
U

Due to Lemma , we can further simplify the optimization problem defining F'(#) in
by optimizing on v € P(R) such that [ zdv(z) = «, given « € (0,1).

Corollary 5.6. Let R be the function
R:C € (0,400) —= Clc + G(Co),

where (¢ is defined as in Lemma . Denote for any o € (0,1),

1 1 1
Ko(a) = 0%(a* + B(1 — o)) + R(40%a(1 — o)) — 3 log(1 — ) — log(26) — 5 log(2m) — Y
and Ky(1) = 6%. Then, for any 0 > 1//B —1,

F(0) = sup Ky(a).

a€(0,1]

Proof. When a < 1, we make the following change of variables which consists in replacing
v by its pushforward by = +— 201/1 — ax. Using , we find that

H(v) = /log %dl/ = H(n) — %log(l —a) — log(26)
and [ 2?dv(z) = 4a(1 — «)#?. Thus,
F(6) = max (92,( sup Ky(a, 1/)), (34)

a,v)es’

where

S'={(ar) € (0.1) x PR) s [ w*dv(a) = da(1 - a)f?},
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and for any a € (0,1),v € P(R),

Ko(a,v) = 0*(a* + B(1 — a)?) + /L(x)dy(q;) — H(v) — %log(l —a) — log(26)
1 1
~3 log(27) — 7
By Lemma we obtain for any a € (0,1),
sup Ky(a,v) = 0*(a* + B(1 — a)?) + 40*a(1 — a)Cap + G(Can)

J 22dv(z)=4a(1—a)6?

1 1 1
~ 3 log(1 — a) — log(260) — 5 log(27) — 2
where (o9 = Cap2a(1-a)- Hence, if we set, for o € (0, 1),

1 1

Ko(a) = 62(a® + B(1 — 0)?) + R(40%a(1 — a)) — %log(l ~ ) ~ log(26) — log(2m)
we deduce from that

F(f) = max (92, sup Kg(&)). (35)

a€e(0,1)

To study the maximum of Ky, we will need the following result on the limit of R at 0,
which will allow us to compute the limit of Ky at 1.

Lemma 5.7. When C — 0,

R(C) = % + %log(QWC’) + o(1).

Proof. For C' < [, we have
G'(Cc) = =C. (36)
Since we have,

lim G'(C) =0,

C—+o00
and G’ is invertible as G”(z) > 0 on (—o0, 1), we get
fm e = 40
From the inequalities, 0 < L(z) < Bx?/2, we deduce that by the definition of G we
have the bounds

which yields,
—log —. (37)

On the other hand, inserting these bounds in the numerator and the denominator of the
derivative, we obtain
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We deduce, since (¢ — +o00 as C' — 0,

1 1
G'((e) = ——+0<—>.
(e) 2c Cc
Therefore, we get from the definition of (¢ that
1
Cc ~o 20
Using , we can conclude that
1 1 1 1
R(C) = - +o0o(1) + - log =4 log(27C') + o(1).
2 2 1 O( 1 ) 2 2
2C 2C
O
From the previous Lemma [5.7] we deduce that
lim Ky(a) = 62,
a—1
so that we can continuously extend Ky to 1. Therefore, we can write,
F(0) = sup Ky(a).
a€(0,1]
O

We now study Ky and show that it is continuously differentiable on (0, 1). This amounts
to prove that R is continuously differentiable on (0,1). On (0,1), it is clear that R
is continuously differentiable due to the implicit function theorem. Indeed, (¢ is by
definition the unique solution of the equation

G'(¢) = —C,

and G is strictly convex. On (I,400), R is an affine function, therefore it is sufficient to
prove that

lim R'(C) = —. (38)
We have for any C' < [,

R'(C) = CI¢e + (o + 096G’ (Co) = Go,
which gives . We deduce that Ky is continuously differentiable on (0, 1) and
Va € (0,1), Kj(a) =20*(a + B(a— 1)) +46°C,0(1 — 2a) + 5T —a)
-«
From Lemma [5.7, we get,

ilg}) Ky(a) = —o0.

Thus, the supremum of Ky on (0, 1] is achieved either at 1 or on (0,1). From Lemmal5.5]
we have

F(0) = max (Kp(1), sup Ko(c)).

1
a<s;
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Let us assume that the maximum of Kj is achieved on (0,1). We deduce that the maxi-
mum of Ky is achieved on (0, %] at a critical point since Ky is differentiable. The critical
points « of Ky satisfy the equation,

1
2(1 — )

As 0*(B — 1) > 1, 1/2 does not satisfy the above equation so that the critical points of
Ky are the a # 1/2, such that

200+ Bla— 1)) + 5

20%(a + B(a — 1)) + 46%Co (1 — 20) + =0, (39)

ot = 146?20 — 1) = (). (40)
We have,
(0
@) = Gt —q(Ez)()Zoz —1y
with
q(a) = —46*(1 + B)a® + 46*(1 + 2B)a — 46°B + 1.
We find,

Pla) <0 ifa<
with P(a) = 46*(B—1)a?—460*(B—1)a+1. As (.9 > B/2, we obtain that the maximum
of Ky is achieved at a € (0,1/2) such that P(a) < 0. The roots of P are
1+ /1-[?(B-1)!
= 5 .

Thus, the maximum of K, is achieved on [a_,1/2]. We will show that K, is strictly
concave on (0, ). Note that,

10Pa(l —a) >l <= a €[5, B4],

QD(Q)Z§<:>{P(Q)ZO if a >

N N

(41)

ot

with

1+£v1—-16-2
fa—

For any o € (8-, 1), we must have (¢ = B/2 and therefore

B
Ko(a) = 62(a® + B(1 — )?) + 2B62a(1 — a) + G<§) -
where Cy is some constant depending on . Thus, for « € (5_,

Kj(a) = 20*(1 — B) + - <20*(1-B)+2<0.

2(1 — )
For any a € (0, 5_), we have
Ky(a) = 0*(a* + B(1 — a)?) + 40*a(1 — a)Cap + G(Cap)

1
b log(1 — a) + Cp,
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where (, ¢ is such that
G'(Cop) = —460%a(1 — ).

As G is strictly convex, we deduce by the implicit function theorem that o € (0, 8-) — (ap
is differentiable, and we have

8a§a,9G”(Ca,9) = —492(1 — 20().
We get that 0,(a < 0, for any a € (0, 5_). Therefore, for a € (0, 3_), we obtain
b
2(1 —a)?
Using that (,9 > B/2 and that 0,(, ¢ < 0 for o € (0, 5_), we deduce,

Kj(a) =20%(B +1) — 80*Cap + 40°00Cap(1 — 20) +

" < 2 o 2 -
Va € (0,6-), Ky(o) <20°(B+1) —46°B + 21 — a)?

<20*(1-B)+2<0.
Thus, K} is decreasing on (0, f_) and ((_, %) Since K} is continuous, we deduce that K
is decreasing on (0, 5) and Kj is strictly concave on (0,3). Therefore, the maximum is

achieved at the unique critical point of Ky on (0, %) which we denote by ay. We distinguish
two cases.

1% case: [ < ﬁ. We have,
B <a- <ay < f.
We know that on one hand P(a_) = 0, so that

pla-) =

On the other hand (, g = B/2 since a_ € [f_,3+]. We deduce by that a_ is a
critical point of Ky which lies in (0, 3). Therefore

B
5

Qg = O_.

2" case: | > ﬁ. We have,

a- < fo < By < ay.
Note that 0 < a_ < 1 < a; < 1. Since (o) # B/2 for any a € [B_, 54]¢, we deduce
that ay € [a_, 5-), and in particular K} (ap) < 0. We deduce by the implicit function
theorem that 6 — «p is C*, and therefore 6 — Ky(cy) is continuously differentiable on
(1/v/B —1,+00). In conclusion, we have shown that for any §*(B — 1) > 1,if | < s~

B—1>
F(9) = max (6%, Ky(a_)),

where a_ is defined in (41]), whereas if | > £,
F(f) = max (92, Ko(aw)),

where oy is the unique solution in (0, 5_) such that

G'(Cop) = —460%a(1 — ).
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To conclude that F' is continuously differentiable on (1/4/B — 1, +00) except at most at
one point, we show that there exists 6, such that

VO < 6y, F(0) = 0% and V0 > 0y, F(0) > 0>
Since F(0) > 62 for any § > 0, it suffices to prove that 6 — F(0) — 6? is non-decreasing.
Recall that
F0)= lim Fy(0),

N—+o0
where
Fn (6):%log]E exp(ZL V2Nbe?) —l—ZL 2\/_9€€])>
1<J
and e is uniformly sampled on S¥~!. Therefore,
1
Fn(0)—6% = Nlog]Ee exp <22N92< (V2N0e; ——>e +Z 4N92< 2\/_96 €;)— )efe?).

1<J

As 1 is increasing and (0) = 1/2, 6§ — Fy(0) — 6? is non-decreasing, and therefore
0 — F() — 07 is non-decreasing as well.

For the sake of completeness, we show the following Proposition which indicates that
it is unlikely we could prove the large deviation principle for all values of x by following
our strategy because F'is in general not differentiable everywhere.

Proposition 5.8. Assume 0y = inf{ € R* : F(0) > 6*} > 1//B — 1. Then, F is not
differentiable at 0.

Proof. Let 6 > 6,. We know from Lemma [5.5 that
F(0) = max Hy(a,v),

f z2dv(z)<a

1
asym

where for any o € (0,1) and v € P(R),
1 1

Hy(a,v) = 0*® +0°B(1 — a)* + /L(Q@vl —ax)dv(z) — H(v) — 3 log(27) — 3

Since 0y > 1/v/B — 1, we know from the proof of Propositionthat there exists ap < 1/2
and vy € P(R) such that

H90 (O[(), 1/0) = F(Go)

Define g(0) = Hg(ap, 1) for any 6 > 6,. Let F’. denote the right derivatives of F. We
have as F' > g and F(6y) = g(6y),

Fi(60) = g'(6o).
We find

§(00) = 200(02 + B(1 — ap)?) + 2vT —ag / 2L (2007/T = ) dvo(x).
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Since v is increasing, we have zL'(z) > 2L(x), and L(x) > x?/2 for any x > 0. Therefore,
xL/(z) > x? and we get

g/(90> Z 290(0&3 + B(l — 040)2) + 490@0(1 — CKQ)
> 20y + 20p(1 — a)*(B — 1),

which shows that ¢'(6y) > 26, and therefore F' (0) > 26,. It yields that F is not differen-
tiable at 6.
0

5.3. Proof of Proposition[1.13] By Proposition[5.4] we know that F is differentiable on
(1/v/B — 1,400) except possibly at 6. Using Proposition [2.2| we deduce that there exists
z,, such that the lower large deviation lower bound holds with rate function I(z) = I(x)
for any z > xz,.

6. THE CASE B< A
We consider the case where the following assumption holds.

Assumption 6.1. B exists and is strictly smaller than A. Moreover, we assume that 1)
achieves its mazximum A at a unique point m* such that " (m.) < 0.

The first condition includes in particular the case where the law of the entries have a
compact support (since in this case B = 0) and we believe the second condition is true
quite generically, as we check in the following example.

Example 6.1. Let
P 1 T
p=500-1p + o1/yp) + (1 —=p)do,  Y(x) = e log(p(COSh(%) -1)+1).

Then, we show that for p < 1/3, u satisfies Assumption (but for p > 1/3 p has a
sharp-subGaussian tail). We have
_ L(xz) 2L(x)

12

_ L'(z) 4L(z) N 6L(m)'

2 4

vz >0, ¢/ (z) , " (x)

3 x 3 T

We claim that h : x — xL'(x) — 2L(x) is increasing and then decreasing on R,.. Indeed,
Vo >0, W(z)=zL"(z)— L'(z), h'(z) = 2L® (),
and we have,
\/psinh (\/iﬁ)
p cosh (\%) +1—p

L(z) = log (p cosh (%) +1-p), L'(z) =

sinh (%).

x 1—p)2 .
L(z) = p+ (1 — p) cosh (717) (3)(x) _ a \/Ig)_ —2py/p — /P(1 — p) cosh (713)
(p cosh (\/Lﬁ) +1-p)* (p cosh (%) +1—p)3
We have, for p > p, =1/3
(1 -p)?

T 2p\/p = \/p(1 —p).
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Therefore, L3 is negative and therefore h' is decreasing. Since R'(0) = 0, we deduce
that h' is negative and 1) is decreasing. If p > p., we have that h" is positive and then
negative Therefore, h' is increasing on [0,xo] and then decreasing on [xg,~+00), with

= /pcosh™ (1 20-17) Byt

(1-p)

/ _ : / o
h'(0) =0, zl_lglooh(x) =~

as L'(x) ~joo 1/\/p and L"(x) ~ico 2(1 — 1/p)e "/VP. Therefore, there exists m, >
xo such that h' is positive on (0,m,) and negative on (m.,+00). We deduce that v is
increasing on (0,m,) and decreasing on (m,, +00) so that i achieves its unique mazimum
at m,. Moreover,

Y'(m,) =0,¢"(m,) =0 <= m,L'(m,) = 2L(m,), m2L"(m,) = 4m,L'(m,) — 6L(m,)
< L'(m,) = m,L"(m.), m,L'(m,) =2L(m,).

As m, > x9, we have that W' (m.) < 0 and therefore " (m,) < 0. Note that xo//D goes
to infinity when p goes to zero and that

_ Studying the variational problem arising from the limit of the annealed spherical integral
F(0) and F(6) defined in Proposition , we will show that for 6 large enough we can
give an explicit formula as stated in the following proposition.

Proposition 6.2. There exists 6 > 1//A — 1 such that for any 0 > 6y, F(0) = F(0) =
F(6) where

F(0) = sup V(a),

ae(0,1]
with
1
Va >0, V(a) = 0*(A—1)a* + 6% + 5 log(1 — «).

More explicitly,

F(@):%Q(A—1)<1+\/1—92(A—1_1)>2+92 log \/1 >—%10g2.

We prove this proposition by first showing that F(6) > F(0) for all § and then that,
for large 6, F(0) < F(0).

6.1. Proof of the lower bound. Recall that by Proposition [1.6] we have the following
formulation of the limit £'(9).

_ N
F(#)= sup ékgr}{gifm lim sup F3) 4y 0 (0, K)
altagtoaz=l N—+o00

;>0 SK—0
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where
‘F‘Ojé\ioéz,ag(é‘? K) = 92 (Oé% + 20[10&2 + BO&%)
kool l
1 20s;t ; 1 20t.t
-+ {_ L( ? J) N L( ? ])
tig};gﬁl SZES};-I?SIC N Z Z VN 2 Z VN
| t2=Nag|<6N | 3; s2—Nag|<sN i=1 j=1 i,j=1
k
20s;x 1 1
+  su { /L( Z)dl/ZIZ—HV }——lo 27r——},
1/167’81) Zl \/N 1( ) ( 1) 2 g( ) 2
[a2dvy(@)=a; T
Our goal is to show that we can take as = 0 and in the supremum defining 7Y . ,.(6, K)

we can take all the ¢;’s equal. In fact we first prove the lower bound:

Lemma 6.3. For any 6 > 0,
F(6) > sup V(a),

ae(0,1]
where V is defined in Proposition[6.3
Proof. Indeed, if we take az = 0 and ¢; = N4, /21 < j < I, ay € [Im*/20V/N —
0, lm*/26\/N + 4], a3 = 1 — a, 11 to be the Gaussian law restricted to I; with variance
a1, then we get the lower bound

a,a2,0

1
FN o0, K) > 0%(a? + 20100 + a2 A) + 3 loga; = V(az).

Hence, to derive the lower bound it is enough to remark that we can achieve any possible
value of ay in [0, 1] as some large N limit of {ym*/20+/ N for some sequence of integer
numbers [y, which is obvious. O

6.2. Proof of the upper bound. The rest of this section is devoted to prove that the
previous lower bound is sharp when 6 is big enough. To this end, recall that by Proposition
m, we have the following formulation of the limit £'(9).

F@)= sup limsup limsupF, . . (6,K).
ajtag+az=1 §—-0,K—+oco N—+oo ’ ’
a; >0 SK—0

We first reformulate the supremum in F2 . . (6, K) by denoting for ¢ € I so that
|Zt12_Na2| §5N7

V2K60} whose mass belongs to
< NV /az}. Then it is not hard

11— %,1%—0‘%]. We also denote by S5 = {2 : VK < |z
to see that for any 8 > 0,

{2 is a positive measure on Sy = {x : V200 < |z|
|

— IA

F0) < E(

S

), (42)
where F(0) is defined by

F(@) = sup limsup limsup sup sup G~ (0, K, s, j12)

1,002,003
a1tagtaz=1l §—0,K—+o0 N-—-+o00 HQGP(SQ) sSES3
;>0 S§K—0
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if
N 2( 2 2
Gorazas (0, K) =0 (041 + 20100 + Ba3)

+ 460 agag/@/z \/_sx )z () + 20%a /@/) zy)dps(v)dps(y)

2 1

+  sup {46’2a3/x ¢( 98$>dy1( ) — H(V1>} - —10g(27r) ——.

; V1 EP(IY) 2 2
z2dvy (z)=ay

Indeed, the upper bound proceeds in two steps: first we take the supremum over all
measures fiz on Se with mass in [1 — O%, 1+ a%], and then restrict ourselves to probability
measures as ¢ goes to zero (since 1 is bounded). Then, we observe that for any us € P(S2),

v € P(I)), and s € S§ such that | Y, s? — azV/N| < §V/N,
22 i52/¢<@3'$)dﬂ2 Z / 295 ;1: V1(ZE)
VNS

< ag/w(\/@sx)dm(:c) + /xZw(?\ffZ)dyl(az) + 0s(1),

where s is a maximizer of the function

5 € 83— ay /w(@sx)dug(x) + /:B%b(iffi)dvl(.r),

which ends the proof of the claim . We will see that under our assumptions that
B < A and that the maximum of ¢ is uniquely achieved at m* such that ¢"(m*) < 0, the
upper bound F (0) is sharp when @ is large.

The starting point of our analysis of the variational problem defining F'(6) in the regime

where 6 is large is the fact that F() and £'(0) behave like A9%. More precisely, we know
from that there exists 6y > 0 (depending on A) such that for all 6 > 6,

F(6) = F(6) > A6” — klog¥, (43)

where k > 0 is a numerical constant.
As a consequence, we can localize the suprema over (aq, as, a3) and ps in the definitions
of F(#) in some subset of the constraint set, denoted by S, and defined as follow,

S = {(g,,ug) S [0,1]3 X 7)(52) Toq + g+ ag = 1}

Lemma 6.4. There exists a constant 6y > 0 depending on A such that for any 60 > 6,
the suprema defining F'(0) can be restricted to the set Ag X By C S defined by,

Cy/logb C+/log @ C+/log 0

Q€A0<:>04221—T,041§T7a3§ N

and
A C'log6
o € By < / (5 - w(xy)>du2(l‘)du2(y) < Qng-

where C' is a some positive constant depending also on A.
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Proof. From (#3)) we deduce that we can restrict the suprema in the definitions of F'(6)
to the parameters a, s, v1, 1o with a; + as + az =1, s € Ss, [ 2dp(z) = oy such that,

(A —1)(a? + 2a100) + (A — B)a3 + 4a2a3/ (g - w(29$y)>du2(y)

+ 202 [ (5 — 00200 ) dalw)pa(2) + 40 [ 47(5 = v(2050) ) i)

1 2k log 6
"—@(H(Vl)—i—lOngﬂ') < 02 .
But y
1 1 1
2
4a3/y (5 — ¢(203y)>dl/1(y) + E(H(m) + log v2r) > 3 log o > ().
Therefore,

(A= 1)(af + 20102) + (A = B)aj + dagas / ?/2<§ - ¢(2939)>dﬂ2(?/)

A 2k log 6
4203 [ (5 = vlaw))dia(o)diae) < 2 2E

Since each term is non-negative, they are all bounded by 2k log#/6%. Note that this
already yields with C' = 2x/ min{(A — B), A — 1},

C'log6 Clogt Clogt

CY% S 0—2g’ O[% S Q—Qg’ 0510[2 S 92g . (44)

The two first estimates imply since a, =1 — a3 — as,

V/Clogf

ap>1- oY 87

0

[
Next, note that because v is bounded continuous, the function g£7a27a3(6, K,s,.) we

are optimizing over us is bounded continuous in ps and therefore it achieves its maximal
value. We denote by ps such an optimizer. In the next lemma we prove that the optimizers
of QO]X a0y (0, K, 5,.) are concentrated around /m, if ¢ takes its maximum value at m*

only.

Lemma 6.5. Assume that 1 achieves its maximum value at m* only and that it is strictly
concave in an open neighborhood of this point. Let ps be an optimizer There exists e > 0
such that for any us € By,

C+/logh
V0 < € < g, ,u2(|x —Vvm*| > s) < Tog)

where C' is a positive constant depending on 1.
Proof. Let s € By. By Lemma we have,

[ (5 = vton)dma(orduats) < G
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Since ) is strictly concave in a neighborhood of m,, and m, is its unique maximizer, we
deduce that there exists 7y > 0 such that for all 0 < n < nq,

Vi = m| € Wi vl 5~ vla) 2 ufe

for some constant ¢ > 0. As 1 is analytic, it admits a finite number of local maximum.
Therefore, we can find 7y > 0 such that for all 0 < n < nqg,

A
Vie—m| > Vi, 5 —¥(@) 2 /e

4 1) is non-negative, we obtain

Since 5=
C'log 6

no* -
where C’ > 1 is a constant depending on 1. For ¢ < \/m, /2, we have

p2([0, v/ —e])? < ps? (zry < m. — /mae).

Therefore, for € small enough,

pa([0, v/ms —e])* <

Vi < no, s (ley —m*| > /) <

C"log 6
m,02e2’
On the other hand,
pa ([ +e,4+00))” < p5? (wy > ma + 2y/mie).
Using a union bound, we obtain the claim. O
Using Lemmal6.5] we will show that the optimization problem over ps is asymptotically

solved by 0 /my;, with an error which vanishes when K, the lower boundary point of Ss,
goes to +00.

Lemma 6.6. There exists 0y depending on 1 such that for 6 > 60y, such that for any
a € Ay and s € Ss, if the measure ps that realizes the mazimums:

sup {20 [ w(VBBsr)diae) + 0 [ wlr)da(@naty)

12 €P(S2

is in By, then

#Szlelge {2&3/¢(@S$)dﬂ2($) + s /Q/J(xy)dm(x)dug(y)} = % + % + ok (1).
Proof. Letting ¢ (z) = ¢(x) — %, it is equivalent to show that :
sup {20 [F(VEsa(o) +0n [ Tandiatodiat)} = )

Let us fix 6 > 6y where 6, is given by Lemma [6.4] Observe that since ¢ is bounded
continuous,

Z € P(S2) — 203 /E(\/Q_Qsai)dﬂ(x) + s /@(:cy)d,u(:c)du(y)
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achieves its maximum value in the closed set By. Let s be an optimizer, and therefore
a critical point of this function. Writing that Z(us) > Z(ug + cv) for all measures v on
Sy such that ps + v is a probability measure for small €, we deduce that there exists a
constant C' > 0 such that,

Vo € .5,, OZgE(\/ESZL‘) + oy /E(xy)dm(y) < C, (45)

with equality po-almost surely. Using Lemma [6.5] we get for any € small enough,

(Fley) ~ /) da(e) + O(VoE).

[ Sty = ot + [
[\/7Tis —e /T +e]
Where we notice that our O (—”15359> is a function that does not depend on 9, K or N. As L

is the log-Laplace transform of a sub-Gaussian distribution, we have that |L’| is bounded.
In particular, |¢'| is bounded and thus 1) is Lipschitz. Therefore, for any x < M,

Viogd
Oc >

/ O(zy)dps(y) = O(Vmrz) + O(sM +

Again, the O(SM + —Vleoage> does not depend on 8§, K or N. We choose ¢ = §~/2 and

M = 6'* so that the two error term above goes to zero when # goes to oo, so that we
have for any x > 0,

[ Ben)duaty) = 5(im) + o). (46)
In particular,
aii(VBse) + as [ Glen)diay) = 5(ima) + o).
Taking x = \/m, in ([45]), we get

C’ZA_B

+ 0p(1), (47)

since s > K and 1 —ap < O(—”;FG). The terms 04(1) above do not depend on K, 4§ or N.
We claim that there exists 6y such that for any 6 > 6,

M2([O, Vv m*/Z]) =0.
Indeed, if z < \/m, /2, we have by and the fact that as goes to 1 as 6 goes to infinity,

asb(VBsz) + o / Pn)du(y) < sup T +ou(1),

with sup,< /2 ¥(y/mst) < (A — B)/2 since the maximum of 1 is uniquely achieved at
my. From and the fact that equality in holds ps-a.s, we deduce that for 8 large
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enough (and not depending on 0, K or N) [0, /m./2] Nsupp(uz) = 0. Therefore,

P(VEs)pa(o) + s [ Tepdm@det) < CD% 40 s )
yZK@
_ (A= Bl _23)0‘2 + o (1).
Thus,
us;ége {2a3 /E(@saz)dug(.ﬁ) + ay /E(xy)dug(x)dug(y)} < (A——fm + ok (1).

The reverse inequality is achieved by taking up = d sy, which completes the proof. [
We deduce that f

Proposition 6.7. There exists 0y depending on ¢ such that for any 0 > 0y, F(0) < F(0),

where A
F#)= sup Fla,s,v),
(a,8,v)ES’
with
Fla,s,v) =0°(ai + 2a1a0) + 07Acj + 0°B(aj + 2a302)
1 1
+ 46’20z3/x2¢(298\/0z3x)d1/(x) —H(v)— 5 log(27) — 3
and

S = {(g,s,u) €[0,1)* x [0,1] x P(R) : ay + ap + a3 = 1,/x2dy(1’) = 041}.

Proof. By Lemmas [6.4] and [6.6] we know that
F(0) = sup limsup limsup FY (0, K),

1,002,003
a€Ay 6—-0,K—+00 N—+00
SK—0

where

. 260
‘/—-.o]c\i asg,o3 (6a K) = sup sup {4020-/3 /I‘%ﬁ( Slx> dVl ({L‘) — H(l/l)}
2, SES3 ; ;1(1679((1)12 N1

1 1
+ 92 (a% =+ 20&10[2) -+ AOég -+ B(ag + 2062063) — 5 10g(27’l') — 5,

Ss = [K, NY*,/az]. Using the change of variable s —+ sN~'/4 we have the upper bound,
F()< sup Fla,s,v).

(a,s,v)€S’

We finally prove that the supremum is taken at az = 0.

Proposition 6.8. There exists 0y depending on A such that for any 60 > 6y,
sup F(a,s,v)= sup F((aq, a0,0),s,v).

(gvs’y)esl (&1,&270,8,1/)68,



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF SUB-GAUSSIAN MATRICES 43
Proof. We claim that for any ((aq, asz, a3),s,v) € 8’ such that ay > %, we have

F((ar, az,a3),8,v) < sup F((ou, s + as,0),v). (48)
veP(R)

Note that

1
sup F((an, ag + a3,0),v) = 0*(ay + 20100 + 20qa3) + 02 A + as)® + 3 log ;.
veP(R)

Now, for any ((aq, a9, a3),s,v) € &, using the fact that ¢(z) < A/2 for any = € R, we
have

1
Fl(an, ag,a3),5,v) < 0* (a1 + 2a100) + 02 A + 20> Aayas + 02 B(a3 + 200a3) + 3 log vy .
Therefore, it suffices to prove that for as sufficiently near 1:
(A — B)(2C¥20[3 + Oé§> > 2(A — 1)(1/1063

that is,
2(A — 1)0&1 S (A — B)(Ofg + 2042).

A sufficient condition for this inequality to be true is that (A — 1)(1 — an) < (A — B)as,
which ends the proof of the claim . By Lemma we know that for 6 > 6,

sup Fla,s,v) = sup Fla,s,v).
(a,s,v)ES (a,s,v)€ES
ay,a3<C+/log6/0

For 6 such that
Vl1og 6 S A-1

=20 6 “24—B-1'

we obtain from that

sup ]—"(g,s,y) < sup ‘F((alaa270)787 V)'
(a,s,v)€S ((a1,002,0),8,0)ES

a1,a3<C/log6/6
We deduce that for 8 large enough,

sup F(a,s,v) < sup F(ag, 9,0, s,v),
(a,s,v)eS ((a1,02,0),s,0)€S

which ends the proof. O
We can now conclude from the last two Propositions [6.7] and [6.8], that for 6 > 6,

F<0) S sup f(ah Qg, 07 S, V) = Ssup V(Oé)
((a1,a2,0),s,0)ES a€gl0,1)

where we optimized over v (at the centered Gaussian law with covariance o). This
completes the proof of the proof of Proposition [6.2] with Lemma [6.3]
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7. APPENDIX
7.1. Concentration for Wigner matrices with sub-Gaussian log-concave entries.

Proposition 7.1. [14, [I] Let p be a symmetric probability measure on R which has log-
concave tails in the sense that t — p(x @ |z| > t) is concave, and which is sub-Gaussian
in the sense that holds. Let Xy be a symmetric random matriz of size N such that
(Xi,)i<j are independent random variables. Assume \/NXZ-,J- and \/N/2X;; have law
i for any i # j. There exists a numerical constant k > 0 such that for any convex
1-Lipschitz function f : R — R, and t > 0,

1 1 "
]P)(|5Trf(XN) - —ETrf(Xy)| > t) < 2~ EN, (49)
Moreover, for any t > 0,
P(|Axy — Edxy| > t) < 2e7 5N, (50)

One can take k = 1/83% with B = 1680e.

From these concentration inequalities, one can deduce that a Wigner matrix with entries
having sub-Gaussian and log-concave laws satisfy Assumptions [1.2]

Corollary 7.2. Assume p satisfies the assumptions of Proposition and has variance
1. Then the matriz Xx satisfies the Assumptions[1.3

Proof. Using the concentration inequality and the convergence in expectation of the
spectral radius of Xy (see [I, Theorem 2.1.22, Exercise 2.1.7]), we obtain that the spectral
radius of Xy is exponentially tight at the scale NV in the sense of .

Let K C R be a compact subset of R and denote by |K| its diameter. Let Fi;, ¢ be the
set of 1-Lipschitz functions with support in K. From the concentration inequality ,
we can deduce by arguing as in the proof of [14, Theorem 1.3| that for any § > 0,

IP’( sup ‘%Trf(XN) —E%Trf(XN)} >5) SC@eXp(—C(S N ) (51)

fe}—Lip,)C 5 "C|2
Let di be defined by

Vv, € P(R), di(p,v) = sup /fdv—/fdu),
fE-FLip,)C

and let d denote the bounded-Lipschitz distance defined by
Vv, € P(R), d(u,v) = sup

feFiy /fdy_/fdu"

where Fpp is the set of 1-Lipschitz functions uniformly bounded by 1. Let fix K = [-2, 2].
Since () = 1, we have

d(:U’XNa 0) < dlC(:quw U) + bxy (ICC)
But px, (K¢ < di(pxy,o) by choosing f = 1x. Therefore,

d(/’LXN’ U) < QdK(luXN7 0)‘
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From (1)), we have that for any § > 0,

4 2N2
P(d(jixy, o) > 6 + 2dx (Epixy, o) < 706—05 = (52)

But, we know by [3, Theorem 4.1] that,
dKS<E:uXN7 0) = O<N_1/4>’
where dxg denotes the Kolmogorov-Smirnov distance, defined by
Vv, 11 € P(R), dis(p,v) = sup {|u((—o0,z]) — v((—o0,2])|,z € R}.

It is a standard fact that the Kolmogorov-Smirnov distance controls the integrals with
respect to functions with bounded variations, that is, for any v, u € P(R),

dcstor) =sup{ [ fdu— [ fav 1w < 1}

with ||f|lgy = sup > i, |f(@is1) — f(z;)|, where the supremum holds over all families
(i) 1<i<m+1 with m € N such that z; < 9 < ... < Zy41. Since for any 1-Lipschitz
function f supported on K, || f||zv = O(1), we deduce that

d(Epixy,0) = O(N"1),

From , we deduce that

1 .
N1—1>I—I|-100 Nlogp(d(MXN7U) >N ) = —00,

for any k < 1/4. O

We now give a proof of Proposition[7.1] It will be a direct consequence of Klein’s lemma
(see [I, Lemma 4.4.12]) and the following concentration of convex Lipschitz functions
under p".

Proposition 7.3. Let i be a symmetric probability measure on R which has log-concave
tails in the sense that t — p(x : |x| > t) is concave, and which is sub-Gaussian in the
sense that holds. For any lower-bounded convex 1-Lipschitz function f : R — R such
that [ fdu™ =0 and any t > 0,

2
p (s | fo)] > 1) < 2¢7 5,
where 3 is numerical constant. One can take 5 = 1680e.

Proof. By [17), Corollary 2.2], we know that there exists a numerical constant 8 such that
p" satisfies a convex infimum convolution inequality with cost function A*(./3), where A*
is the Legendre transfom of A defined by,

Vo e R, A(f) = 10g/e<9’w>du"(:c).

Moreover, 3 can be taken to be 1680e. More precisely, for any convex lower-bounded

function f: R — R,
(/efDA*('/ﬁ)du")(/efdu"> <1, (53)
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where [J denotes the infimum convolution operator, defined by

FON(/B)() = inf {f) +A°(F57)

Since p is sub-Gaussian in the sense of , for any x € R",

1
(2) 2 Izl

where || || denotes the Euclidean norm in R™. Therefore,

FON(/B)(@) = inf {F)+ 55 lly = all}

yeR”

Assume f is L-Lipschitz for some L > 0. Reproducing the arguments of [15 section 1.9,
p19] we have for any © € R",

. . 1 2
JON(/B)(x) = f(x) + inf {—Llly— 2| + Qﬁ—QAHy — x|’}
> f(r) ~ G PAL
Thus, by we deduce that

(o) f o) <o

Assume now that f is 1-Lipschitz and [ fdu™ = 0. Using Jensen’s inequality, we get for
any A > 0,

/fd,u" < e2f?AN
Using Chernoff inequality we obtain that for any ¢ > 0,

+2
pt(x f(z) > t) <e A,
Using the symmetry in between f and —f, we get similarly that for any ¢ > 0,

2

(s flo) < 1) < e B,
which gives the claim. ([l

7.2. A Uniform Varadhan’s lemma.

Lemma 7.4. Let f : R — R such that f(0) = 0 and f(,/.) is L-Lipschitz for some

L > 0. Let My, my be sequences such that My = o(m) and my ~ N. Let g1, ..., Gmy
be independent Gaussian random variables conditioned to belong to [—My, My]|. Let 6 €
(0,1) and ¢ > 0 such that K~' < ¢ < K and 20 < K~'. Then,

1 =y (%) / z

log Bexi=t F\VE) 1 comy _ s { ( )dm;_ ”H

N %8 Sy g-enjzoy = sup [z dvie) = Hv)
fz2dl/:c

< gL,K(N) + hL(éK)a

where gr k(N) — 400 as N — 400 and hr(z) — 0 as x — 0.
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Proof. Let ¢ = 1/N and [y be the smallest integer such that (1 4+ ¢)~% < e. Define
I, =[-(1+e) (1+e)™], and By, = {i:g; € I, }.
For any k > —l,, we set
Li={zeR:(1+e)" ' <|z|<(1+¢)}and By = {i: g, € I }. (55)

Let px = |Bi|/mn. Let ky be the smallest integer such that (1 4 &)* > My. Since
gi € [—My, My] for all i, we obtain that for any k > ko, By = 0.

Lemma 7.5. On the event {| > 1"y g? — cN| < 0N},

miN:nZt:f<g7lc> - f: Mkf((l j;g)k)‘ < grLx(N),

where gy, i is a function such that gr x(x) — 0 as v — +oo.

Proof. As f(,/-) is L-Lipschitz, we have

()= Y =k 3 i) ()

=—I l ZGBk

ko

ST me*(1-(49)Y)

k=—lp+1
L -
* E/“L—%(l +e)7h.
Using the fact that (1 + z—:)*lo < e, we deduce

;miﬁf(%)— > (T2 < S5 1+ 1)

C
k=—1o k=—lp+1

But, on the other hand

1 my ko
- 2> 2(k—1)
mNZgZ > Y m(l+e)
i=1 k=—Ilp+1
Thus,
1 X <g~ > o ((1 +€)k> 3eL 1 X
— L) — < (1+52— ?+1>,

which, as my ~ N and K~! < ¢ < K, gives the claim. O

Let I = {—ly,...,ko} and Ly be the set,
Ly = {yGRi : Zyk: 1, VE € I, myyy EN}.

kel
We know from [9, Lemma 2.1.6], that for any y € Ly,

(my + 1) e VWP ) <Py, = gy, VR € 1) < e HWhmy), (56)
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where n = |I| =y + ko + 1,

H(ylvmy) = D v log =5 ),
kel

and [, = [(1 4+ )", (1 +¢)k].
Let i = (ux)rer- There exists a function hy (depending on ¢ but not ¢) such that for

v(Ix)

with v, (k) = Y([—My, My])’

ko

{e=6—hk(e) <D (1+e)*u <c+4} (57)

C{I) g —cN|<ON}C{c—0< Y (L+e)*u <c+6+hg(e)},

i=1 k=—Io

and hg(e) — 0 as € — 0. We introduce the sets

ko
Ar={yeLly:c—6< Z (L4¢e)*yx <c+ 6+ hr(e)},
k=—lo
and
ko
A-={yeLln:c—0—hkle) < ) (1+e)*y <c+d}.
k=—lo

Using , we have for the upper bound,

£ k £ k
Ee™v Zkf—lo ((H\-/E) )]IMGA+ < Z PO Zzoz,lo ykf((l-'\—/g) )emeH(yth)’ (58)
yeEAL
whereas for the lower bound,
e k
Ee™N Zkf—lo ((D\F/E) )]IMGA > mN+1 Z MmN Zkfflo ykf( ) meH(y\'ymN)' (59)
yeA_
Let y € A, and define v € P(R) by dv(z) = ¢(x)dy(x), where
ko y
k
o(x) = loer, ——.
k:ZlO © "y (Ix)

With this notation, we have

H(y|ymy) = H(v|y) = logy([= My, My]).
With the same argument as in Lemma [7.5 we also have as y € A4,

5> ws (E0) = [ (5wt < onv) (60)

k=—lo

and
c—d—mg(N) < /a;’QdV(a:) <c+0+mg(N),
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where g, x(x) and mK(x) — 0 as ¢ — 4o00. From (58)) and Lemma (7.5 - we deduce that

log Ee~= =1 F( % ve/ N < u —H
N &€ | S g2—cN|<6N = N ue?(SMIz)v Mp] { (Vh/)}
|fa:2du(z) c|<é+mp (N)

1
+ Nlog |ILn|+ 7L (N),

where 7, k(N) — 0 as N — +oo. But, |[Ly| < m}, and n = |I| < Clog N, where C' > 0
is a numerical constant, so that

(log N)*
— <
N log |ILy| < C——— ~

To complete the proof of the upper bound, we show the following result.

Lemma 7.6. Let K, L, > 0 such that 6 < 2K~'. There exists a function sy, i depending
on K and L such that for any function f : R — R such that f(0) = 0 and f(,/7) is L-
Lipschitz, and any K~! < ¢ < K,

s { [1(52)wvto) - 1)}

| [ z2dv(z)—c|<6

x
< VeP(Elz'\l/f]?v,MN] {/f(%>du($) — Hw|y)} + sL(6K),
J 22dv(z)=c

where sp(x) — 0 as © — 0.

Proof. Let v € P([—My, My]) such that | [ 2?dv(z) —c| < 6. Assume first [ 22dv(z) > c.
Define 7 € P([—My, My]) such that for any bounded continuous function ¢ : [—-My, My] —

R
/@(%)dV(I) = /wdﬂ,

where A > 1 is such that [2*dv(z) = c¢. Using the fact that f(,/)) is L-Lipschitz, and
that | [ @?dv(z) — ¢| < &, we obtain on one hand,

| [1(c=)tvtor - [ 1()avto)| < Zo < Lok

On the other hand, we have as [ 2?dv(x) = ¢,

Y

H(oly) = H(5) + %c + %log@ﬂ). (61)
Since H() = H(v) + 5 log A, we have that
H(p|ly)=H(v)+ log)\+ 1c+ log(27r)
But ¢ < [2%dv(z) <c+dand A —1< 6K. Therefore
H(o) < H(vky) + 55+ 20K,

which ends the proof in the case where [ 2?dv(z) > c.
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Assume now that ¢ — § < [ z2dv(z) < ¢. For N large enough, we can find ¢ € [0, My]
such that

/xQd((l — 8)v + 614y da) (z) = c.
Let 7 = (1—=6)v+ 01y 41de € P([— My, My]). Observe that the above condition implies
that
) idr < c—(c—6)(1—0) < 2K0.

[t,t+1]
Using the fact that f(z) < La? for any z > 0, we deduce that,

x x
 Vdp - - < .
‘ /f<ﬁ>dy(x) /f(\/E>dV(x)’ <3L0K
On the other hand, by convexity of the entropy and the fact that H(Lyqde) = 1, we
have,
H@) < (1-96§)H(v)+4.
Using and ¢ — § < [ 2?dv(z) < ¢, we deduce that

) 35
H(o) < Hvh) - 01 () + 2
But,
H(v) > —2c — T1og(2m)
=75 9 gl4m),

so that we can conclude that,
H(v|y) < H(v|y) + O(0K),

which ends the proof.
O

For the lower bound, fix v a probability measure on [—My, My]| such that v < v. We
set ¢ = ex such that Mf\,/mNeN — 0, and we define [, and By as in . Define, for
ke{-lo+1,... Kk},

1

Y = m—NLmNV(Ik)J,

and y_;, =1 — ZIZ(’:_IO 41 Yk We claim that for N large enough and independent of v,
/x2dy(x) =c=ycA.

Indeed, one can check that on one hand

ZO: ye(1+¢)% < <1+e>2/x2dv<x) +é?,

k=—1lo
and on the other hand
ko 21 12
1 M
g yk<1 + 5)2k Z /xQdV(I> _ w
myée

k=—lo
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We obtain from ([59)),
)k

T/Eg )emeH(yl’YmN). (62)

log Ee™ Z:Llo ka((lir;) )]lueA > (mN + 1) e Z’“**lo y’“f((l
In the next lemma we compare H(y|Vm, ) and H(v|7y).

Lemma 7.7.
H(y|Ymy) < H(v|y) + on(1).

Proof. By definition we have,

H(y|Ymy) = Z yi log -

k=—lo
Let f(z) = xlogx for x > 0 and f(0) = 0. We claim that
VO <z <y, flx) < fly)+(y—2) (64)

Indeed, either z > e~ and f(x) < f(y) since f is increasing on [e™!, +00). Either z < e™!

and by convexity,
fl@) < fly) + f(@)(z —y).
Since | f'(z)| < 1 we get the claim. Note that we have for any k > —l,

+10g7([ My, My]). (63)

1
v(1ly) — o <yr < v(ly),

N
and N l
_|_
V(I—lo) < Y-y < V(]—lo) + : 0'
my
Thus we deduce from that
ko
V(Ik k() -+ lo
H(ylymy) < v(I,)log + —————— +y(I})) ———— + on(1)
"’ k;O v(Ux) k_zlgﬂ my V(I )mn
ko
l/(]k) 2(]6’0 + lo)
< v(li)lo + + on(1).
2 syt T o)

We have ky = O(log(My)/en) and Iy = O(log(1/ey)/en). Since M3 /myen — 0, we get

H(yhimy) < Y v(Ii)log :g’;; N 2(]{:;1; lo)

+ ON(l).

Since f : x — xlogx is a convex function, we have by Jensen’s inequality

ko v(lp) & 1
v(I;)lo = 1, / / —10 —d ,
k; () log —79 k; ol k)f<,y(lk) g —dy
0 0
which ends the proof. 0

Next, we claim that we can compare [ f(z//c)dv(z) and 32, yrf((1+¢)*/\/c).
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Lemma 7.8.

‘/f(%)du(rﬂ) - kzo ykf<(1 \—;Eg)kﬂ < gr,x(N),

k=—1o
where gr, k(N) = 0 as N — +o0.

Proof. As f (\/') is L-Lipschitz, we have on one hand using the same argument as in the
proof of Lemma [7.5]
ko

[ 35 waas(52)] <22 f e 1)

k=—lo

Therefore,

[ (vt - 5 u(@)f((”fj)k)) < huu(N), (63)

where hy x(N) — 0 as N — +oo. On the other hand, as |v(I;) — yi| < 1/my for any
k> —lgand |v(1_;)) —y_i,| < (ko +1o)/my, we get

3 s 2 e 35 ey Bl

cm cm
N = "l+1 N

where we used the fact that f(0) = 0 and f(,/7) is L-Lipschitz. There exists a numerical
constant x > 0 such that

5™ sl (L) < 2 (MR ),

et Ve cmy \ En
As M%/my — 0 and ko = O(log(My)/en) and Iy = O(log(1/ey)/en), we deduce

—(ko i lo)aN = on(1).

my
Since we choose ey such that M3 /myey — 0, we can conclude that

_kzo )(Z/k — V<[I~c))f<<1 j;;)kﬂ < gr.x(N),

where gr, (N) — 0 as N = +oo0. Combining the above estimate with (60)), we get the
claim. =

Coming back to (62)), using the results of Lemmas and , we deduce

(1+s>

EemNZk—_lo Mkf( )]l P (mN+1) n mef Z)dv(z)—mngr,s(N) o—mn(H (u|7)+oN(1))7

which gives at the logarithmic scale,

1 my S a+of _
NlogEe NZki_zoukf< NG )1ueA > %(/f(%)du(x)—H(Vh/)) — gk (N),
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where g x(N) — 0 as N — +oo. As this inequality is true for any v € P([—My, My]),
such that [ 22dv = c,

k

1 m k(l ¥ (14e) my €T
NlogEe N Dk 1 Mk ( Ve )]1;@4_ > N sup ) </f(%>dy(x)—H(yh))

[1]

2]

veEP([-Mpn,Mp
fz2du:c

— gk (N).
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