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Abstract: Monitoring forest–agriculture mosaics is crucial for understanding landscape heterogeneity
and managing biodiversity. Mapping these mosaics from remotely sensed imagery remains
challenging, since ecological gradients from forested to agricultural areas make characterizing
vegetation more difficult. The recent synthetic aperture radar (SAR) Sentinel-1 (S-1) and optical
Sentinel-2 (S-2) time series provide a great opportunity to monitor forest–agriculture mosaics due to
their high spatial and temporal resolutions. However, while a few studies have used the temporal
resolution of S-2 time series alone to map land cover and land use in cropland and/or forested areas,
S-1 time series have not yet been investigated alone for this purpose. The combined use of S-1 & S-2
time series has been assessed for only one or a few land cover classes. In this study, we assessed the
potential of S-1 data alone, S-2 data alone, and their combined use for mapping forest–agriculture
mosaics over two study areas: a temperate mountainous landscape in the Cantabrian Range (Spain)
and a tropical forested landscape in Paragominas (Brazil). Satellite images were classified using
an incremental procedure based on an importance rank of the input features. The classifications
obtained with S-2 data alone (mean kappa index = 0.59–0.83) were more accurate than those obtained
with S-1 data alone (mean kappa index = 0.28–0.72). Accuracy increased when combining S-1 and
2 data (mean kappa index = 0.55–0.85). The method enables defining the number and type of
features that discriminate land cover classes in an optimal manner according to the type of landscape
considered. The best configuration for the Spanish and Brazilian study areas included 5 and 10
features, respectively, for S-2 data alone and 10 and 20 features, respectively, for S-1 data alone.
Short-wave infrared and VV and VH polarizations were key features of S-2 and S-1 data, respectively.
In addition, the method enables defining key periods that discriminate land cover classes according
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to the type of images used. For example, in the Cantabrian Range, winter and summer were key for
S-2 time series, while spring and winter were key for S-1 time series.

Keywords: remote sensing; optical and SAR satellite images; feature selection; decision trees; random
forests; Brazilian Amazon; cantabrian range

1. Introduction

Mapping forest–agriculture mosaics is essential for understanding effects of land cover changes
on economic (e.g., agricultural and silvicultural production, timber extraction, ecotourism) and
non-market ecosystem services (e.g., carbon sequestration, water quality, stream flow, species
conservation) [1]. Cropland and pastures are the largest use of Earth’s ice-free land [2] and have
particularly high biodiversity potential [3]. However, this capacity refers to landscapes with
heterogeneous semi-intensive agricultural systems and semi-natural elements (hedgerows, wetlands,
forests) [4–6]. In many parts of the world, land cover changes affect landscapes, causing habitat loss
and fragmentation [7]. Habitat fragmentation decreases the size of habitats and populations and
increases distances between patches of habitat, which may result in species loss [8].

Each species uses different kinds of habitats and requires different amounts of them [7]. Many
species perceive landscapes in ways more complex than as a “habitat-matrix” dichotomy (i.e., dividing
the landscape into “habitat”, which contains all necessary resources, and “matrix”, which is hostile)
and use resources from different cover types [5]. Thus, landscape management can be considered a
complex process that requires characterizing the landscape composition and structure suitable for
the target species. Habitat selection and resistance models are widely used as a decision support
tool, since they can apply to multiple groups of species (e.g., insects, birds, herpetofauna, mammals,
plants). Landscape maps are essential for developing these models, and most environmental features
used in the models are derived from remote sensing imagery [9]. Remotely sensed imagery is a
common tool for straightforward land cover classification. The main difficulty is that the land cover
classes in forest–agriculture mosaics are distributed along a landscape gradient, which results in
misclassification. Images with high and very high spatial resolutions provide greater spatial detail
and precise information [10–13]. However, the low temporal resolution of such data does not enable
monitoring vegetation dynamics to better discriminate land cover classes that are spectrally similar.
In contrast, satellite time series provide great opportunities for this purpose.

MODIS and Landsat optical time series have been used extensively for land cover classification
since the 1970s. Despite a 1–2-day revisit time, however, land cover derived from MODIS has low
local accuracy due to the maximum spatial resolution of 250 m. The Landsat constellation has an
8-day revisit time but has a higher spatial resolution (30 m) than MODIS. The S-2 satellite has even
higher capacities, with a five-day revisit time and a 10 m spatial resolution [14]. Despite these high
capacities, optical images sometimes cannot be used (e.g., lack of cloud-free periods) or are at the limit
of their utility (e.g., optical reflectance provides information only about the top layer of vegetation).
In this context, synthetic aperture radar (SAR) images provide a reliable alternative to optical images
because they are not greatly influenced by atmospheric conditions and can be acquired during the
day or night. Several scattering mechanisms, including single bounce, double bounce, and volume
scattering can contribute to SAR backscatter over distributed targets such as agricultural fields [15],
depending on crop properties (e.g., biomass, architecture, height) [16–18] and soil conditions (e.g.,
roughness, moisture) [19–21]. Unlike optical data, however, SAR data are rarely used to map land cover.
Some studies have focused on the complementarity of SAR and optical data, concluding that using
them together provided better results than using them separately [22]. The SAR signal is sensitive
to the geometry (e.g., roughness, texture, internal structure) and wetness of the observed targets,
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while optical reflectance is influenced by their physiology. Thus, these two spectral domains provide
complementary information.

The recent SAR Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series provide a great opportunity
to monitor forest–agriculture mosaics due to their high spatial and temporal resolutions, with a five-day
revisit time and decametric resolution. They are freely available under an open license, unlike most
SAR data (e.g., TerraSAR-X, ALOS2, RADARSAT-2, COSMO-Sky Med) and optical data (e.g., SPOT,
Quickbird, WorldView, Geo-Eye, Ikonos). Recent studies have demonstrated the potential of S-2 data
for mapping 6–12 land cover classes from a single-date image [23–27]. Studies that use S-2 time series
focus on one or a few specific land cover classes, usually on homogeneous agricultural or forested
landscapes located in the same climatic region [28–34]. Use of S-1 data has been limited to combining
them with S-2 or Landsat data, which increases classification accuracy [35–39]. Hence, the use of S-1
time series alone for mapping land cover classes has not yet been evaluated.

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone,
and combined S-1 and 2 data for mapping land cover in forest–agriculture mosaics. We focused
on two landscapes with contrasting vegetation gradients: a temperate mountainous landscape in
the Cantabrian Range (Spain) and a humid tropical forested landscape in Paragominas (Brazil).
Although these forest–agriculture mosaics differ greatly, they perform similar ecological functions,
such as conserving high levels of biodiversity and storing carbon.

Satellite images were classified using an incremental procedure based on the rank of importance
of input features derived from S-1 and S-2 time series. The method automatically selects the relevant
features (spectral bands and/or vegetation indices) and time periods to use to best classify land cover
types in the forest–agriculture mosaics.

2. Study Area and Data

2.1. Study Area

The Spanish study area is located in northwestern Spain, extending from eastern Lugo to western
Cantabria. Covering the entire Cantabrian Range, it has an area of 35,700 km2 (Figure 1a). The region
has an elevation of 0–2468 m, an Atlantic climate, and remnant forest fragments that are distinct from
a non-forest matrix composed mainly of pastures and heathlands in abandoned meadows [40,41].
Croplands constitute 22% of the study area and are composed of vines and cereals crops including
wheat, barley, rye, sunflower and oats [42]. These crops are located in the south of the study area
(Castile-Leon), most of them are irrigated [43]. In northern slopes of the Cantabrian range, oaks
(Quercus robur and Q. petraea), beeches (Fagus sylvatica) and chestnuts (Castanea sativa) are the main
species found in forested areas, while southern slopes are dominated by semi-deciduous oaks (Q.
pyrenaica and Q. faginea) and evergreen oaks (Q. ilex), Pinus sp. and Eucalyptus globulus being relatively
abundant [42]. The major decrease in the forest area dates back to 3000 years BP, with the transformation
of large patches of natural forests into pasturelands (traditional cattle grazing and selective timber
extraction). More recently, additional forests were lost due to road construction, surface mining,
increased frequency of anthropogenic fires, and creation of forest plantations. In the past 20 years,
reserves were established that impose legal restrictions on new land uses [40]. Many studies focused
on habitat quality for brown bear and wood grouse, two native species of the Cantabrian Range,
indicating that the forest cover is essential to their presence [41,44]. Brown bear home ranges include
forests, shrublands, rocky areas, and grasslands [41].

The second study area is the municipality of Paragominas, Pará State, in the eastern Brazilian
Amazonia, 217 km south of Belem (Figure 1b). The municipality extends for 19,342 km2, has
an elevation up to 190 m, and has a tropical climate. It experienced a continuous period of
deforestation from the 1960s to 2010, due mainly to cattle ranching, soybean and corn cultivation,
and creation of forest plantations. Overlogging and fires degraded the remaining forests greatly [45,46].
The municipality was the main timber-producing region in Brazil in 1990. A biodiversity survey
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performed in the municipality showed that both landscape and within-forest disturbances contributed
to biodiversity loss, with the greatest negative effects on species of high conservation and functional
value [47]. In 2005, in the context of the new federal policy to fight deforestation, Paragominas
was asked to establish measures against deforestation. The municipality established a new local
governance model, called “Municipio Verde” [48], which aimed to fight deforestation and strengthen
the ability of local institutions to develop specific environmental policies based on the Brazilian
forest code. Since then, annual deforestation rates have decreased by up to 80%. Paragominas
represents a case of remarkable deforestation that became a national reference for municipal-level
anti-deforestation policies.

(a) (b)

Figure 1. Location of (a) the Spanish study area ( c© EuroGeographics for the country boundaries) and
(b) the Brazilian study area ( c© 2018 GADM for the state boundaries).

2.2. Data

2.2.1. Reference Data

A set of 828 polygons was manually discriminated on the Spanish study area using aerial
photographs and the Forest Map of Spain [49], which was developed from 1997–2006 and is the
official forest inventory of the country. Its minimum mapping unit is 2.25 ha. The map is composed
of polygons containing land cover and land use attributes derived from interpretation of aerial
photographs and field inventory data. The 8 land cover classes discriminated in the sample data
were permanent bare soils, artificial surfaces, water bodies, forested areas, shrublands, permanent
herbaceous vegetation (herbaceous vegetation containing chlorophyll throughout the year), summer
herbaceous vegetation, and winter herbaceous vegetation. The total area of samples per class ranged
from 260–290 ha.

A set of 328 GPS points was recorded during a 3-week field mission in Paragominas in September
2017. The samples were produced by calculating polygons around the GPS points and using aerial
photographs for photo-interpretation. The seven land cover classes discriminated were bare soils,
artificial surfaces, water bodies, forested areas, croplands, pastures, and ”young secondary forests”
(fallow land with dense but low vegetation representing early regeneration stages of forests after
abandonment of agriculture or pasture ). The total area of samples per class ranged from 14 ha (bare
soil) to 530 ha (forested area).
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2.2.2. Sentinel-1 Time Series

S-1 Ground Range Detected (GRD) products were acquired in Interferometric Wide Swath mode
and delivered with VV and VH polarizations and an incidence angle ranging from 30.6–46.00 (Table 1).
The GRD products provide multilook intensity (5 and 1 looks according to slant range and azimuthal
direction, respectively) and are projected to a ground range based on an Earth ellipsoid model [50].
The range and azimuth spatial resolutions were 20 and 22 m, respectively, and the pixel spacing was
10 ˆ 10 m (Table 1).

Table 1. Main characteristics of Sentinel-1A L1C images [50].

Band C (center frequency of 5.405 GHz)
Mode Interferometric Wide Swath

Product type Ground Range Detected
Pixel resolution 20 ˆ 22 m (range ˆ azimuth)

Pixel spacing 10 ˆ 10 m (range ˆ azimuth)
Temporal resolution 5 days (Spain) and 12 days (Brazil)

Orbit Ascending
Polarization VV & VH

Swath 250 ˆ 350 km
Incidence angle (0) 30.6–46.0

Sets of 66 and 42 S-1A images were downloaded for the Spanish and Brazilian study areas,
respectively. S-1A images were acquired on two orbits (five-day and 12-day revisit time for Spain and
Brazil, respectively), and 3 images were required to cover each study area. In total, 22 mosaics were
produced from December 2016 to September 2017 for the Spanish study area, while 14 mosaics were
produced from November 2016 to December 2017 for the Brazilian study area.

2.2.3. Sentinel-2 Time Series

The S-2 sensor acquired optical images during the same periods, with spatial resolutions of 10
and 20 m, and a spectral resolution of 10 bands (Table 2). For the Spanish study area, a series of 6 S-2
mosaics was acquired from December 2016 to August 2017. The tiles were downloaded in level 2A,
which provides Top Of Canopy (TOC) reflectances and a cloud and shadow mask [51]. Eight S-2 tiles
were necessary to cover the entire study area (7–43 days between two tiles). Tiles with minimum cloud
cover were selected. The mosaics were projected onto the ETRS89/ETRS-TM30 system (EPSG 3042).

For the Brazilian study area, only one mosaic was produced due to the frequent heavy cloud cover
(July 2017). The tiles were downloaded in level 1C, which provides Top Of Atmosphere reflectances
and orthorectified images [51]. Nine S-2 tiles were necessary to cover the entire study area (no more
than 12 days between 2 tiles). The mosaic was projected onto the WGS84/UTM 22S system.

Table 2. Main characteristics of Sentinel-2 L1C/ L2A images [51].

Spatial and spectral
resolutions

10 ˆ 10 m
B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm)
20 ˆ 20 m
B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm) and B12 (2190 nm)

Temporal resolution 5 days
Swath width 290 km
Tile size 100 ˆ 100 km

3. Methodology

The method was developed to assess the potential of S-1 data alone, S-2 data alone, and combined
S-1 and 2 data for mapping land cover of forest–agriculture mosaics (Figure 2). We focused on
automatically selecting the relevant features (spectral bands and/or vegetation indices) and time
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periods to classify land cover types. The method used to select and classify features into land cover
types was based on the incremental classification developed by Inglada et al. [35].

Figure 2. Flowchart of the image processing procedure. NIR = Near-infrared band. NDVI =Normalized
difference vegetation index, EVI = Enhanced vegetation index, NDWI = Difference Water Index, SAVI
= Soil adjusted vegetation index.

3.1. Samples Selection

A set of 30 pairs of training and validation polygons were randomly selected from the reference
polygons with a 50/50 ratio. The 30 random pairs were performed in order to obtain 30 trainings and 30
corresponding validations, allowing to compute average performances with confidence intervals [35].
The 50/50 ratio allows a more reliable comparison between training and validation samples than a
ratio with a lower proportion of validation samples. For each set of selected training polygons, 300 and
1000 pixels per class were randomly selected for the Brazilian and Spanish study areas, respectively.
The same random selection of pixels was applied to each set of associated validation polygons. This
selection was performed to avoid over-representing large polygons at the expense of small polygons
in the training and validation samples and to have the same number of samples for each class.

3.2. Preprocessing

The S-1 images were preprocessed using the Sentinel-1 Toolbox (Sentinel-1 toolbox, ESA, http:
//step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first radiometrically calibrated
to extract the backscattering coefficients (σ0VV, σ0VH) (Figure 2). A speckle filter was then applied
(Lee refined, with a 7 ˆ 7 window, [52]). The images were geo-coded using Shuttle Radar Topography
Mission data to correct topographic deformations (geometric correction accuracy < 1 pixel) and were
projected onto the ETRS89-TM3/ETRS0 system (EPSG 3042) and the WGS84/UTM 22S system (EPSG
32722) for the Spanish and the Brazilian study areas, respectively. A ratio channel was produced
(VV/VH) from the backscattering coefficient images. All images were then converted from linear to
decibel (dB).

Spectral bands and indices were derived from S-2 images. For the Brazilian study area,
the Sen2Cor application (Sen2Cor, ESA, http://step.esa.int/main/third-party-plugins-2/sen2cor/)
was used to transform L1C tiles to level L2A (TOC). Four vegetation indices commonly used in
remote sensing were calculated for each S-2 mosaic for both study areas: EVI (Enhanced Vegetation
Index), NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index),

http://step.esa.int/main/toolboxes/sentinel-1-toolbox/
http://step.esa.int/main/toolboxes/sentinel-1-toolbox/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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and SAVI (Soil-adjusted Vegetation Index) (Table 3). Each mosaic was composed of 10 spectral bands
and 4 vegetation indices.

Table 3. Vegetation indices calculated from Sentinel-2 images for the Spanish study area. B= Blue band,
G = Green band, R = Red band, NIR = Near-infrared band. NDVI = Normalized difference vegetation
index, NDWI = Normalized difference water index, EVI = Enhanced vegetation index, SAVI = Soil
adjusted vegetation index.

Vegetation Index Formula S-2 Band Used Original Author

NDVI (NIR ´ R)/(NIR + R) (B8 ´ B4)/(B8 + B4) [53]
NDWI (NIR ´ G)/(NIR + G) (B8 ´ B3)/(B8 + B3) [54]

EVI 2.5*(NIR ´ R)/(NIR + 6*R ´ 7.5*B) + 1) 2.5*(B8 ´ B4)/(B8 + 6*R ´ 7.5*B2) + 1) [55]
SAVI (NIR ´ R)*1.5/(NIR + R + 0.5) (B8 ´ B4)*1.5/(B8 + B4 + 0.5) [56]

3.3. Feature Selection and Classification

Incremental classification was performed using a random forest (RF) classifier. Two output
analyses—mean rank of importance of each input feature and mean kappa index as a function of
the number of features—were used to select the relevant features to use in the final classification.
Incremental classification analyzes mapping quality as the type and number of features used are added,
thus, determining at what combination and number of features the classification reaches an acceptable
quality [35]. For each training and validation set (30 pairs), a RF algorithm was first applied to all of
the features (dates and bands) to rank them in order of importance based on the mean decrease in
the Gini index. Calle and Urea [57] demonstrated more robust results for exploring ranking stability
using the mean decrease in the Gini index instead of the mean decrease in accuracy. The mean rank
of importance of each feature was derived from the 30 ranks obtained from the 30 pairs of training
and validation samples. We then ran as many RF algorithms as the number of features, starting with
the two most important features and then adding the less important features until all of the features
were processed. The kappa index was calculated for each classification to estimate the accuracy of the
land cover classifications [58]. Rosenfield and Fitzpatrick-Lins [59] advised using the kappa index to
measure classification accuracy.

We chose the RF algorithm [60] due to its advantages of having low sensitivity to feature selection,
simple parameterization, and short calculation time [61,62]. We used it to select and classify features.
In both cases, the number of trees was set to 100 to reduce calculation time sincePelletier et al. [63]
demonstrated that it can be set to 100 without a major loss in accuracy. The experiments were performed
using the randomForest package of R software (randomForest package version 4.6-14, Andy Liaw,
https://cran.r-project.org/web/packages/randomForest/index.html). We used the OrfeoToolbox to
calculate the final RF prediction (OrfeoToolbox version 6.6.1., CNES, https://www.orfeo-toolbox.org/).

3.4. Percentage of Pixels Confused

For both study areas, the features selected from analyses of S-1 data alone and S-2 data alone were
used to calculate 30 RF classifiers. For each pair of classes, we calculated the percentage of confused
pixels in relation to the total number of misclassified pixels. The following equation:

Pcon f Pixelspairspi,jq “
NbPixelsri, js ` NbPixelrj, is

TotalPixels´
ř

pPixelDiagonalq
, (1)

where i and j are the classes in the pair, was applied to the 30 confusion matrices derived from the 30
RF classifications using the 30 pairs of training and validation samples. The mean of the percentages
was calculated for each pair of classes. We then calculated the mean percentage of confused pixels
per pair of classes in relation to the total number of misclassified pixels using the most important S-1
features and most important S-2 features.

https://cran.r-project.org/web/packages/randomForest/index.html
https://www.orfeo-toolbox.org/
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3.5. Comparison of Classifications

We used McNemar’s X2 test to analyze the significance of the difference or resemblance between
the classifications derived from S-1 data alone vs. S-2 data alone, S-1 data alone vs. the combined
S-1 and 2 data, and S-2 data alone vs. the combined S-1 and 2 data. This test, based on a binary 2
ˆ 2 contingency matrix, shows the proportion of pixels correctly and incorrectly classified in two
classification runs and allows the use of non-independent samples. A X2 value lower than 3.14 means
that the two classifications compared are non significantly different [64].

4. Results

4.1. Contribution of Sentinel 1 & 2 Time Series to Map Land Cover

To estimate the contribution of the optical and SAR Sentinel time series, we analyzed the mean
kappa index as a function of the number of input features. The combined use of S-1 and 2 data
provided the best results for both study areas (Figure 3). However, for the standard deviation of the
kappa index, results of the combined use of S-1 and 2 data were similar to those of S-2 data alone.
The improvement in classification due to combining S-1 and 2 data rather than using S-2 data alone
was perceptible up to 30 input features for the Spanish study area. For the Spanish study area, using
the top ten S-2 features out of the 84 total S-2 features increased the mean kappa index by ca. 0.25 (i.e.,
from 0.58 to 0.83 ); the mean kappa index continued to increase slightly up to 40 input features and
then stabilized. For the Brazilian study area, using the top 7 S-2 features out of the 14 total S-2 features
increased the mean kappa index by ca. 0.15 (i.e., from 0.70 to 0.85); the mean kappa index continued to
increase slightly up to 9 input features and then stabilized.

(a) (b)

Figure 3. Mean kappa index of the incremental classifications for Sentinel-1 data alone (green),
Sentinel-2 data alone (red), and combined Sentinel-1 & 2 data (blue) as a function of the number
of input features for (a) the Spanish study area and (b) the Brazilian study area.

Using S-1 data alone yielded the lowest accuracy for both study sites. The mean kappa index was
higher for the Spanish area than for the Brazilian area, as was the maximum kappa index (ca. 0.73 and
0.60, respectively). Compared to the mean kappa indices of S-2 data alone, those of S-1 data alone were
lower by 0.08–0.20 for the Spanish study area and by 0.28–0.40 for the Brazilian study area.
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4.2. Importance of Input Features

When using S-2 data alone, bands 11 and 12 (the short-wave infrared (SWIR) domain) were the
most important features for both study areas (mean rank of importance of 1.77 (B11) and 4.07 (B12),
and of 1.43 (B12) and 1.63 (B11) for the Spanish and Brazilian study areas respectively) (Figure 4).
For the Spanish area, the vegetation indices were relevant, with 11 of them among the top 20: 4
SAVI and 4 NDVI (1 each in January, March, June, and July), 2 NDWI (in January and March) and,
although less relevant for classifying forest–agriculture mosaics, EVI. For the Brazilian study area,
NDWI was the most relevant index (ranked 3rd), while other spectral bands were more relevant than
EVI, NDVI, or SAVI.

When assessing the relevance of time periods using S-2 data alone (Figure 4a), January was the
most important month for discriminating the 8 land cover classes, since it was the month of the top 6
features (mean rank of importance = 1.77–11). In addition, March and July appeared among the top
ten features. The least important months were August and April.

(a) (b)

Figure 4. Mean rank of importance of the most important features for Sentinel-2 data alone for (a) the
Spanish study area and (b) the Brazilian study area.

When using S-1 data alone, the VV/VH ratio was not useful for mapping land cover in these two
forest–agriculture mosaics. For both study areas, VV polarization was the most important feature.
For the Spanish and Brazilian study areas, the VV mean ranks of importance were of 2.03 and 2.13,
respectively (Figure 5). The top 20 features, however, had a nearly equal number of VV and VH
features (10 VV and 9 VH polarization dates for the Spanish study area, 11 VV and 9 VH polarization
dates for the Brazilian study area). When assessing the relevance of time periods using S-1 data alone,
the months from December to May were relevant for the Spanish study area. In contrast, months from
both dry and wet seasons were among the top ten features (January, March, April, July, September,
November, December) for the Brazilian study area.

When combining S-1 and 2 data, the top 20 important features were all S-2 features for the Spanish
study area and mostly S-2 features (the top 14) for the Brazilian study area (Figure 6).
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(a) (b)

Figure 5. Mean rank of importance of the most important features for Sentinel-1 data alone for (a) the
Spanish study area and (b) the Brazilian study area.

(a) (b)

Figure 6. Mean rank of importance of the most important features for the combined use of Sentinel-1
and 2 data for (a) the Spanish study area and (b) the Brazilian study area.



Remote Sens. 2019, 11, 979 11 of 20

As a trade-off between accuracy and processing time, we decided to maintain a minimum but
sufficient number of features for classification (Table 4). In the following experiments, we choose to
keep the 20 most important S-1 features and 10 S-2 features, and the 10 most important S-1 features
and 7 S-2 features on the Spanish and Brazilian study areas, respectively (Table 4). Due to the large
majority of S-2 features in the top 20 important features of combined S-1 and 2 data (Figure 6), we
decided to combine the previously selected features of S-1 data alone and S-2 data alone to predict the
land cover classes combining S-1 and 2 data (Table 4).

Table 4. Number of top important features selected for predictions for the Spanish and Brazilian
case studies.

Type of Data Spain Brazil

S-1 alone 20 10
S-2 alone 10 7

4.3. Confusion between Classes

Using the S-1 features for the Spanish study area, forested areas vs. shrublands, shrublands vs.
permanent herbaceous vegetation, and bare soils vs. winter vegetation were the pairs of classes most
often confused (Figure 7a). Using the S-2 features, bare soils vs. artificial surfaces, bare soils vs. winter
vegetation, and forested areas vs. shrublands were the most confused pairs of classes (Figure 7b).
Forested areas and shrublands were not well discriminated using S-1 or S2 features. Shrublands vs.
permanent vegetation were better discriminated using S-2 data than S-1 data.

(a) (b)

Figure 7. Mean percentage of pixels confused per pair of classes in relation to the total number of
misclassified pixels using (a) the top 20 Sentinel-1 features and (b) the top ten Sentinel-2 features of the
Spanish study.

Using the S-1 features for the Brazilian study area, most forested areas and young secondary
forests pair of classes was confused, unlike the other pairs of classes, including forested areas vs.
pastures (Figure 8a). Using the S-2 features, cropland vs. bare soils, pastures vs. young secondary
forests, and forested areas vs. young secondary forests were the most confused pairs of classes
(Figure 8b). Forested areas vs. young secondary forests were better discriminated by S-2 than S-1
features. However, pastures and young secondary forests were better discriminated by S-1 than S-2
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features. On both study areas, bare soils vs. artificial surfaces were discriminated better by S-1 data
than S-2 data features.

(a) (b)

Figure 8. Mean percentage of pixels confused per pair of classes in relation to the total number of
misclassified pixels using (a) the top ten Sentinel-1 features area and (b) the top 7 Sentinel-2 features of
the Brazilian study area.

4.4. Prediction of Selected Features

Misclassification errors in the land cover map of forest–agriculture mosaics of the Spanish study
area—due to cloud confusions using S-2 data alone and slopes using S-1 data alone—were partly
corrected using combined S-1 (Figure 9).

Figure 9. Classification of the Spanish study area using combined Sentinel-1 & 2 data.

The combined S-1 and 2 classification of the Brazilian study area (Figure 10) was more accurate
than classification by S-2 data alone. Misclassification of cropland, which was confused with artificial
surfaces using S-2 data alone, was partly corrected with combined S-1 and 2 data.
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Figure 10. Classification of the Brazilian study area using combined Sentinel-1 and 2 data.

4.5. McNemar χ2 Test Results

According to McNemar’s χ2 test, all land cover class predictions differed significantly (χ2 >
3.14), and S-2 data alone vs. combined S-1 and 2 data for the Brazilian study area is not significant
(p-value = NS) (Table 5). Thus, we concluded that all classifications differed.

Table 5. McNemar’s χ2 test results for the Spanish and Brazilian case studies. The χ2 value less than
3.14 indicates that the two classifications were not significantly different.

Classifications Compared Spain Brazil
χ2 p-Value χ2 p-Value

S-1 data alone vs. S-2 data alone 113.23 <0.0001 368.47 <0.0001
S-1 data alone vs. S-1 and 2 379.82 <0.0001 439.00 <0.0001
S-2 data alone vs. S-1 and 2 105.39 <0.0001 NS

5. Discussion

5.1. Relative Contributions of S-1 and S-2 Data to Map Land Cover of Forest–Agriculture Mosaics

The land cover classes that comprise forest–agriculture mosaics are distributed along a landscape
gradient, with transition classes such as shrublands to forest or pasture to young secondary forests,
which result in misclassifications. S-1 data alone were least accurate for mapping land cover of
forest–agriculture mosaics, with a best mean kappa index of 0.73, vs. 0.87 and 0.89 for S-2 data
alone and combined S-1 and 2 data, respectively (Figure 3). For example, S-2 data discriminated
forested areas from young secondary forests better than S-1 data for the Brazilian study area (Figure 8).
This may be because SAR sensors are sensitive to vegetation structure, while optical sensors are
sensitive to chlorophyll content. Thus, when observed at a 10m resolution, broad vegetation classes
were discriminated more easily by their physiology than their physical structure. Also, VV and VH
polarizations were the most important S-1 features for discriminating land cover classes, while the
VV/VH ratio was not useful (Figure 5). While it is known that VH polarization is more sensitive
to vegetation than VV polarization [65] (Patel et al., 2006), results show that both polarizations had
an equivalent low contribution to classify forest–agriculture mosaics, as well as the ratio VV/VH.
We can conclude that in this case the C-band of Sentinel-1 was not relevant to classify vegetation
classes. In general, the C-band SAR is less suitable than L-Band for forest change monitoring due to
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a lower penetration depth and a rapid saturation of the signal [66]). For example, Patel et al. [65])
demonstrated that L-band is more sensitive to plant density than C-band, and that C-band interacts
mostly with the primary branches of the canopy while L-band within the vegetation canopy. We
used S-1 GRD products that record backscattering coefficients (VV and VH) because they require
less processing time than Single Look Complex products, which preserve the phase information.
However, using texture, coherence, and polarimetric indices derived from full-polar radar data, such
as RADARSAT-2 data, could improve classification based on S-1 data alone [35,36,67–70]. Thus,
although Bagdhadi et al. [71] concluded that using polarimetric indices (Shannon Entropy (SE) and
span) derived from polSAR RADARSAT-2 images did not improve estimates of soil moisture and
vegetation parameters, Betbeder et al. [72] demonstrated the greater utility of the SE index than
backscattering coefficients for mapping wetland vegetation using dual-pol TerraSAR-X time series.
The best mean kappa index achieved with S-1 data was higher for the Spanish study area than for
the Brazilian study area (0.73 vs. 0.60, respectively) (Figure 3). This could be due to differences in
the classification methods (different numbers of classes and land cover types) and to the number
of S-1 images used to classify land cover types (22 dates for the Spanish study area vs. 14 dates
for the Brazilian study area). For the Spanish study area, the classification results achieved using
S-1 data alone show that misclassification errors are most often located on mountain slopes. These
errors are due to the acquisition of SAR images in slant range geometry that causes layover and
foreshortening effects [15]. Moreover, it is known that soil moisture and roughness influence the radar
backscatter depending on frequency, polarization and the incidence angle of the incoming microwave.
Holah et al. [73] found that the sensitivity to surface roughness is more important using HH and HV
polarizations than VV polarization. However, Baghdadi et al. [74] demonstrated that the soil moisture
was not very dependent on polarization. The effects of soil moisture on forest–agriculture classification
are rather limited using C-band due to a low penetration depth of the microwaves compared to
L-band [75], however C-band is more sensitive to roughness [76]. Lastly, the higher the incidence
angle, the more important the sensitivity of the SAR to surface roughness [77].

However, S-1 data sometimes discriminated better than S-2 data—for bare soils and artificial
surfaces—(Figures 7 and 8) because the SAR signal reacts differently to these two land cover classes,
with double-bounce on buildings and single-bounce on flat bare soils [15], while their spectral
signatures in the optical domain are similar (high reflectance values in green, blue and red bands).
When using S-2 data alone, SWIR bands were the most important features for discriminating land cover
classes (Figure 4). The importance of S-2 SWIR bands has been demonstrated for mapping vegetation
and forests [23,78]. Vegetation indices derived from S-2 data (e.g., SAVI, NDVI, NDWI) discriminated
better than spectral bands for the Spanish study area, while NDWI was the most important vegetation
index for the Brazilian study area. The sensitivity of the blue band to water contained in vegetation
could explain why NDWI is well suited to tropical vegetation, while NDVI saturates at high biomass
values [55,79]. The EVI, which was developed for MODIS, was a less important feature than other
vegetation indices for both study areas. It could be interesting to calculate other vegetation indices
that are used for crop discrimination such as S2REP (Sentinel-2 Red-Edge Position), IRECI (Inverted
Red-Edge Chlorophyll Index), MTCI (MERIS Terrestrial Chlorophyll Index) or SRI (Simple Ratio
Index) [80,81].

The best mean kappa index using combined S-1 and 2 data (0.88) did not differ greatly from that
using S-2 data alone (0.86) (Figure 3). Thus, the use of S-2 data alone was sufficient to discriminate
the land cover classes with high accuracy. However, the backscattering intensity from S-1 data alone
provided additional relevant information, since predictions of land cover classes using S-1 data alone,
S-2 data alone, and combined S-1 and 2 data differed according to McNemar’s χ2 test (Table 5).
For example, the misclassification between cropland and artificial surfaces for the Brazilian study area
when using S-2 data alone was partly corrected using combined S-1 and 2 data (Figure 10).
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5.2. Using S-1 and S-2 Data to Identify the Key Time Periods for Classifying Land Cover

Based on the classification results using S-1 data alone, S-2 data alone, and combined S-1 and
2 data, classification accuracy was strongly related to the number of dates. Classification accuracy
increased when dates were added to the RF classifier (Figures 3, 4a, 5 and 6). The relevance of high
temporal resolution underlines the importance of describing and taking into account the phenology
of vegetation to map forest–agriculture mosaics. For the Spanish study area, January, March, June,
and July features are among the top 20 important S-2 features (Figure 4a). This may have been because
the S-2 sensor is sensitive to chlorophyll content in vegetation, and these months are key periods of
chlorophyll activity. The features of the months from December to May were among the top 20 S-1
features for this study area, while the summer period was not relevant (Figure 5a). This is probably
because SAR sensors, which are sensitive to the internal structure of elements, penetrate vegetation
better during the leaf-off period. Only one S-2 date was used for the Brazilian study area, which
precluded studying the importance of time period. In addition, no clear time periods emerged from
the importance ranks of the S-1 time series (Figure 5b). Thus, no intra-annual time period seems more
important than others for S-1 time series for discriminating land cover types in Paragominas. Unlike
the Cantabrian Range, where the seasons differ, temperatures and precipitation are relatively constant
in Pará, with a drier season from July to October [82]. In addition, most of the dynamics of human
practices in pastures, forested areas, and plantations are inter-annual rather than intra-annual [83].

5.3. The Robustness of the Method for Different Landscapes

The results show that the method can be applied to forest–agriculture mosaics in two landscapes
with contrasting climates (i.e., tropical, temperate) and vegetation types (e.g., tropical forests,
shrublands, coniferous and deciduous forests). S-1 and S-2 features were selected according to their
respective importance in each study area, which highlighted relevant features and time periods for the
two areas. Land cover maps of the two study areas were produced with a high degree of accuracy
and a short processing time. Time series are used to map the land cover of forest–agriculture mosaics,
but processing them requires high computational capacity. The method enabled focusing on specific
time periods and features to reduce the time required for image processing.

6. Conclusions

An incremental procedure based on ranking the importance of the input features derived from
S-1 and S-2 time series was used to discriminate land cover classes in forest–agriculture mosaics.
The method automatically selected relevant features (spectral bands and/or vegetation indices) and
time periods to classify land cover types in such landscapes. S-2 data alone were more relevant than
S-1 data alone for mapping the land cover of forest–agriculture mosaics, and combining S-1 and 2 data
slightly improved results compared to those of S-2 data alone. Using polarimetric indices, such as the
SE index, which has already shown potential for characterizing vegetation, can improve predictions of
S-1 data alone. Indeed, SAR data are useful in cloudy regions; the high cloud cover in the S-2 time
series was the main source of misclassification errors.
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61. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
62. Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Marais Sicre, C.; Dedieu, G. Effect of Training Class Label

Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series. Remote
Sens. 2017, 9, 173. [CrossRef]

63. Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests
to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ.
2016, 187, 156–168. [CrossRef]

64. Foody, G.M. Thematic map comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [CrossRef]
65. Patel, P.; Srivastava, H.S.; Panigrahy, S.; Parihar, J.S. Comparative evaluation of the sensitivity of

multi-polarized multi-frequency SAR backscatter to plant density. Int. J. Remote Sens. 2006, 27, 293–305.
[CrossRef]

66. Woodhouse, I.H. Introduction to Microwave Remote Sensing; CRC Press: Boca Raton, FL, USA, 2017.
67. Ranson, K.J.; Sun, G.; Kharuk, V.I.; Kovacs, K. Characterization of Forests in Western Sayani Mountains,

Siberia from SIR-C SAR Data. Remote Sens. Environ. 2001, 75, 188–200. [CrossRef]
68. Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Discrimination of crop types with

TerraSAR-X-derived information. Phys. Chem. Earth Parts A/B/C 2015, 83-84, 2–13. [CrossRef]
69. Roychowdhury, K. Comparison between Spectral, Spatial and Polarimetric Classification of Urban and

Periurban Landcover Using Temporal Sentinel-1 Images. In Proceedings of the XXIII ISPRS Congress,
Prague, Czech Republic, 12–19 July 2016; pp. 789–796.

70. Du, Z.; Ge, L.; Ng, A.H.M.; Zhu, Q.; Yang, X.; Li, L. Correlating the subsidence pattern and land use in
Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. Int. J. Appl. Earth Obs. Géoinf.
2018, 67, 54–68. [CrossRef]

71. Baghdadi, N.; El Hajj, M.; Zribi, M.; Fayad, I. Coupling SAR C-band and optical data for soil moisture
and leaf area index retrieval over irrigated grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016,
9, 1129–1244. [CrossRef]

72. Betbeder, J.; Rapinel, S.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multitemporal classification of
TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens. 2014, 8, 083648. [CrossRef]

73. Holah, N.; Baghdadi, N.; Zribi, M.; Bruand, A.; King, C. Potential of ASAR/ENVISAT for the
characterization of soil surface parameters over bare agricultural fields. Remote Sens. Environ. 2005,
96, 78–86. [CrossRef]

74. Baghdadi, N.; Cerdan, O.; Zribi, M.; Auzet, V.; Darboux, F.; El Hajj, M.; Kheir, R.B. Operational performance of
current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments:
application to hydrological and erosion modelling. Hydrol. Proc. 2008, 22, 9–20. [CrossRef]

75. Ulaby, F.T.; Dubois, P.C.; Van Zyl, J. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84.
[CrossRef]

76. Mattia, F.; Le Toan, T.; Souyris, J.C.; De Carolis, C.; Floury, N.; Posa, F.; Pasquariello, N. The effect of surface
roughness on multifrequency polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966.
[CrossRef]

77. Fung, A.; Chen, K. Dependence of the surface backscattering coefficients on roughness, frequency and
polarization states. Int. J. Remote Sens 1992, 13, 1663–1680. [CrossRef]

78. Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the relationships between growing stock
volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sens. Lett. 2017, 8, 508–517.
[CrossRef]

79. Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation
water content mapping using Landsat data derived normalized difference water index for corn and
soybeans. Remote Sens. Environ. 2004, 92, 475–482. [CrossRef]

80. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative
estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92.
[CrossRef]

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.3390/rs9020173
http://dx.doi.org/10.1016/j.rse.2016.10.010
http://dx.doi.org/10.14358/PERS.70.5.627
http://dx.doi.org/10.1080/01431160500214050
http://dx.doi.org/10.1016/S0034-4257(00)00166-8
http://dx.doi.org/10.1016/j.pce.2014.11.001
http://dx.doi.org/10.1016/j.jag.2018.01.001
http://dx.doi.org/10.1109/JSTARS.2015.2464698
http://dx.doi.org/10.1117/1.JRS.8.083648
http://dx.doi.org/10.1016/j.rse.2005.01.008
http://dx.doi.org/10.1002/hyp.6609
http://dx.doi.org/10.1016/0022-1694(95)02968-0
http://dx.doi.org/10.1109/36.602537
http://dx.doi.org/10.1080/01431169208904219
http://dx.doi.org/10.1080/2150704X.2017.1295479
http://dx.doi.org/10.1016/j.rse.2003.10.021
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.007


Remote Sens. 2019, 11, 979 20 of 20

81. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666.
[CrossRef]

82. World Weather Online, Para Monthly Climate Averages. Available online: https://www.
worldweatheronline.com/para-weather/para/br.aspx (accessed on 17 August 2018).

83. Piketty, M.G.; Poccard-Chapuis, R.; Drigo, I.; Coudel, E.; Plassin, S.; Laurent, F.; Thâles, M. Multi-level
Governance of Land Use Changes in the Brazilian Amazon: Lessons from Paragominas, State of Pará.
Forests 2015, 6, 1516–1536. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/1936256
https://www.worldweatheronline.com/para-weather/para/br.aspx
https://www.worldweatheronline.com/para-weather/para/br.aspx
http://dx.doi.org/10.3390/f6051516
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Study Area and Data
	Study Area
	Data
	Reference Data
	Sentinel-1 Time Series
	Sentinel-2 Time Series


	Methodology
	Samples Selection
	Preprocessing
	Feature Selection and Classification
	Percentage of Pixels Confused
	Comparison of Classifications

	Results
	Contribution of Sentinel 1 & 2 Time Series to Map Land Cover
	Importance of Input Features
	Confusion between Classes
	Prediction of Selected Features
	McNemar 2 Test Results

	Discussion
	Relative Contributions of S-1 and S-2 Data to Map Land Cover of Forest–Agriculture Mosaics
	Using S-1 and S-2 Data to Identify the Key Time Periods for Classifying Land Cover
	The Robustness of the Method for Different Landscapes

	Conclusions
	References

