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Time-consistent estimation of LAI by1

assimilation in GreenLab plant growth model2

Thomas Corpetti1,2, Xing Gong1,2, MengZhen Kang1, BaoGang Hu1, Laurence3

Hubert-Moy2
4

Abstract5

This paper is concerned with the recovery of Leaf Area Index (LAI) time series in intense agriculture6

areas from moderate resolution remote sensing data (MODIS or SENTINEL). Although their resolution7

limits an analysis at a parcel level, their high temporal rate enables to monitor land use/land cover8

through the temporal evolution of key biophysical parameters as LAI. However in practice, frame-by-9

frame estimation is unsatisfactory since the quality of each single data is subjected to undesirable effects10

due to atmosphere disturbance, sun geometry, viewing geometry, etc. These effects lead to a lack of11

temporal consistency of resulting time series. The reconstruction of such time series is delicate using12

conventional interpolation methods since underlying physical processes are not taken into account. In13

this paper, we tackle this issue by exploiting the prior information of a plant growth model, namely14

GreenLab, using stochastic data assimilation techniques. Our experiments on challenging situations,15

such as few data and fragmented landscapes, demonstrate the approach is robust on various challenging16

situations and enables to extract additional information about observed fields. Experiments are performed17

on MODIS data.18

Index Terms19

Leaf Area Index, GreenLab model, data assimilation, noisy/missing data20
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I. INTRODUCTION21

A. Land surface monitoring22

Land surface on earth is mainly covered by green plants including forests, grasslands or23

agricultural fields (Townshend et al. (1991)). These vegetation areas are of great importance for24

global ecological systems and food supply for human beings. Therefore in the past several25

decades, many satellites have been launched to observe and monitor these areas (Richards26

(2013); Trotter (1991)). A number of important tools has been developed to extract some crucial27

information on crops and plants from satellite images. This is indeed a prerequisite in many28

agricultural applications such as monitoring the plant physiology and/or ecology at different29

scales (Gao (1996); Huete (1988); Liang (2005)). One of the most popular vegetation index is30

the NDVI (Normalized Difference Vegetation Index, Rouse Jr et al. (1974)), based on the spectral31

reflectance property of green leaves (chlorophyll) at different spectral bands and computed using32

red and near-infrared wavebands. While NDVI is a sensitive indicator of canopy structure and33

chemical content (plant biomass, leaf area index, chlorophyll content in sparse canopies and foliar34

nitrogen content), it is still a limited index for total canopy biomass in high-density vegetation35

areas (Gamon et al. (1995)). Some other more sophisticated biophysical indexes have been36

proposed, such as :37

• fCover (vegetation cover fraction): which represents the fraction of ground covered by38

green vegetation;39

• fAPAR (fraction of photo-synthetically active radiation absorbed by the canopy): which40

represents the fraction of the solar radiation absorbed by live leaves;41

• LAI (Leaf Area Index) : which represents the total quantity of green leaf area per unit42

ground surface area.43

In practice, fAPAR is sensitive to sun lighting while fCover and LAI are independent from44

the illumination. In this study we rely on LAI since the total quantity of leaves is captured45

(and not only the ground surface); moreover, this parameter is largely used in practice (Baret46

et al. (2007)), for example to estimate productivity for certain crops. Readers can find in47

Carlson and Ripley (1997); Gamon et al. (1995) more details about these biophysical variables.48

The estimation of these biophysical variables from remote sensing is a delicate task. Several49

models, based on light interception by plant canopies and vegetation reflectance in terms of50

biophysical characteristics, have been designed and inverted to retrieve biophysical information51
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from optical satellite images. Among them, SAIL (Scattering by Arbitrary Inclined Leaves)52

canopy bidirectional reflectance model Verhoef (1984) and PROSECT (based on leaf optical53

properties) are widely used Schaepman-Strub et al. (2006). Even though the results were globally54

satisfactory, strong improvements have been obtained when one mixes these two models. The55

resulting one, PROSAIL, has allowed to describe both the spectral and directional variation of56

canopy reflectance based on single static images (Jacquemoud et al. (2009); Lecerf et al. (2008);57

González-Sanpedro et al. (2008)).58

All these methods have been designed for single images and only few of them exploit the time59

series observation to derive the plant growth evolution information : in Roerink et al. (2000),60

authors have developed a Fourier analysis method to reconstruct cloud free NDVI composites61

while in Jonsson and Eklundh (2002), the authors have proposed a technique based on nonlinear62

least squares. Despite the fact that they provide interesting information, no physical knowledge63

about plant or vegetation growth is taken into consideration.64

In this study we suggest to exploit the short revisit period of satellites to improve the quality65

of estimated biophysical variables by constraining the solution to be consistent with physical66

dynamic priors. This data assimilation procedure, though presented here for LAI estimation, can67

be applied to any biophysical variable provided that a physical model of its temporal evolution68

exists.69

B. Plant growth modelling70

The term plant modelling has various meanings depending on scientific communities. One71

can simulate realistic forms and patterns of plants from an architectural and geometrical point of72

view (Fisher (1992)), as in earlier developments (see for example Cohen (1967); Honda (1971);73

Lindenmayer (1968)). This structural simulation of plants refers to various tools either related74

to L-systems (Przemyslaw et al. (1988)), fractals (Smith (1984)), particle systems (Reeves and75

Blau (1985)) or ramified matrix (Viennot et al. (1989)) for example.76

When one is concerned with more physical studies related to plants and crops (agronomy,77

forestry, biophysics, ...), specific plant growth models have been developed for agronomic pur-78

poses, harvest prediction or optimum crop management (see for an Brisson et al. (2003)) and79

rely on physical properties: they describe the flux of external and internal resources through the80

element “plant” in order to expect its yield. These process-based models (PBM) consider biomass81
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production through the photosynthetic process and the global biomass partitioning among organs82

(Heuvelink (1999) or Dayan et al. (2004)).83

Between process-based models and architectural models, functional-structural plant models84

(FSPM) have emerged since the end of the 1990’s (see De Reffye et al. (1997); Kurth and85

Sloboda (1997); Perttunen et al. (1996); Vos et al. (2007); Yan et al. (2004)). They perform86

efficient and realistic dynamic simulations of plant morphogenesis (see for example Jallas et al.87

(2000); Perttunen et al. (1996)) by taking into account both physical and structural properties. The88

GreenLab plant growth model (Yan et al. (2004)) belongs to this family and has been designed to89

provide dynamic representations of the morphogenesis and architecture of plants. Because of i)90

its efficiency in modelling realistic physical behaviours ; ii) its efficiency in designing consistent91

plant architectures and iii) its permanent interaction between structural and functional part, this92

model is really interesting for plant studies. We therefore rely on it in this paper.93

C. Contributions and novelty of the paper94

Though generating LAI by assimilating remote sensing data in crop model has already been95

studied (see for example Launay and Guerif (2005); Zhao et al. (2013); Dente et al. (2008);96

Curnel et al. (2011)), only a specific culture (sugar, maize, wheat) has been explored in most of97

these studies. In addition, associated models do not contain a functional part as GreenLab do,98

and this latter has never been used yet for data assimilation. This is the scope of this paper.99

The overall article is organised as follows: the next section introduces the principles and100

required details of GreenLab plant growth model. As this model is designed at a plant level,101

some manipulations and simplifications are required for its adaptation to medium resolution102

images. These modifications, detailed in section II-B, enable to finally exploit an easy-to-use103

version for data assimilation. The assimilation part is presented in section II-C and finally, section104

III show some experiments on synthetic and real data.105

II. MATERIAL AND METHODS106

A. Introduction to the Greenlab model107

GreenLab model aims at simulating plant growth evolution. For each type of plant, this model108

is calibrated with ad-hoc observations of growth made under controlled environment and where109

extensive and even destructive measurements of individual plants are made regularly Guo et al.110

(2006); Kang et al. (2008). This enables to derive a deterministic description of a plant evolution111
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(in more recent research, some stochasticity has been introduced to bring about plant growth112

variations Lopez et al. (2008); Wang et al. (2011)). The model works sequentially and in each113

cycle, two steps are performed:114

1) Biomass production: this step generates a biomass pool from some environmental pa-115

rameters (sun lighting, photosynthesis efficiency, plant density, ...);116

2) Biomass repartition: the generated biomass is shared between some organs (leafs, fruits,117

...).118

The idea behind this model is that all organs of a plant share a common biomass pool and119

are therefore in competition each others. In addition to these two primal operations, a natural120

withering of each plant is modelled. This is schematised in figure 1 and main steps are detailed121

below.122

1) Biomass production: The biomass production comes from a large number of factors123

as photosynthesis efficiency of plant species, total leaf area, environmental context, etc. In124

GreenLab, the production is done over growth cycle through the relation:125

Qtk = E · Sp ·
1

r

(
1− exp

(
−k · Stk

Sp

))
(1)

where:126

• Qtk is the Biomass generated at the growth cycle between tk and tk+1 ;127

• E is an empirical environmental factor (sun lighting, temperature, etc);128

• Sp is the land occupation of the plant;129

• k is photosynthesis efficiency;130

• r is an resistance parameters, setting the effect of mutual shading;131

• Stk is the total leaf area at tk.132

From Eq. (1), one observes that biomass generation is largely dependent of the leaf area Stk133

and is also restricted by land occupation Sp, surrounding environment E and species-dependent134

coefficient constant r, k.135

This description is the one that will be used in our data assimilation process. Let us now136

describe the biomass repartition step.137

2) Biomass repartition: Once the biomass is produced, it has to be redistributed among the138

different organs of the plant following their own demand. To this end, for each kind of organ o139

in the set of organs Ω (Ω can contain organs as leaves, branches, sheath tassel, cob, ... as will140

be seen later we will focus mainly on branches b, leaves ` and fruits f ) one has to compute141
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its biomass increment ∆qo(tk+1) at time tk+1 following some rules described below (Yan et al.142

(2004)):143

Dtk+1
=
∑
o∈Ω

(
No(tk+1)

tk+1∑
t=1

do(t)

)
(2)

do(t) = So · φo(t) (3)

∆qo(tk+1) = do(tk+1) · Qtk

Dtk+1

(4)

with144

• Dtk+1
the total biomass demand in the beginning of cycle tk+1 depending on all organs145

o ∈ Ω;146

• do(t) the biomass demand of an organ o ∈ Ω for time t;147

• So the sink-strength of organ o ∈ Ω;148

• ∆qo(tk+1) the increment of biomass related to organ o ∈ Ω in the end of cycle cycle k;149

• No(tk+1) the active number of organ of type o at time tk+1;150

• φo(t) a beta law function related to the demand of each organ. This latter is small at the151

beginning and end of organ growth and relatively large during the growth process Guo et al.152

(2006). It takes the following form:153

φo(t) = (t− 0.5)ao−1 · (tgo − t+ 0.5)bo−1 (5)

where ao, bo and tgo are parameters related to an organ. More precisely, tgo is called154

expansion time for organ o and indicates the growing period: after this step, it does not join155

the biomass repartition in Eq. (2) anymore (this models for example the fact that stalks stop156

to grow after autumn). Parameters ao and bo are calibration ones related to each organ.157

As one can see, the association of the biomass to one specific organ is based on its demand do158

(cf Eq. (3)) and depends on its sink strength So and growth age. The strength is plant-dependent:159

for example concerning fruit trees, the fruit organ tends to have more demand than a tiny root.160

Therefore So in Eq. (3) is bigger for the fruit organ than tiny root one. As for the age component,161

GreenLab assumes that an organ grows relatively slowly at the beginning and end of his life162

and accumulate most portion of biomass in the middle part. This is modelled by function φo(t).163

Finally, the role of Eq. (4) is to distribute the biomass among organs based on individual demands164

and the total available biomass.165
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3) Natural withering: Regarding leaf area index Stk related to organ leaf (noted `, which is166

the variable of interest in this paper) and without withering, a natural evolution model for Stk167

would be Stk+1
= Stk + ∆q`(tk+1). To model the fact that each organ naturally dies after a given168

time, a withering of all plants is modelled through the following rule:169

Stk+1
= α · (Stk − β(tk, te`)) + ∆q`(tk+1). (6)

This equation expresses the fact that in the end of cycle tk, the next leaf area Stk+1
will be170

increased by ∆q`(tk+1), the growth of organ leaf issued from equation (4). This is altered by171

(α, β(tk, te`)). The rule of coefficient α ∈ [0, 1], which stands for the spoilage in natural growth,172

is to model a global withering while function β(tk, te`) is time-varying and relies on the life173

expectance (roughly speaking the “birth”) te` of leaves `. The value of this function will be174

discussed in next section.175

Equations (1–6) are the core of the GreenLab model for biomass generation, partition and176

withering. This model is dependant from many parameters. It is useful to simulate plant growth177

from known parameters but obviously their recovery from image sequences appears impossible,178

as pointed out in Yang et al. (2008). Fortunately, many simplifications related to medium179

resolution remote sensing images are possible and we can design an assimilation tool based180

on GreenLab principles. This is the scope of next section.181

B. Simplified Greenlab for remote sensing data assimilation182

We suggest to simplify and adapt the initial GreenLab model to remote sensing. Though the183

biomass generation process does not change, all details regarding the internal structure of plants184

can be simplified. Associated manipulations are detailed bellow.185

1) Focus main organs: We decide to take into consideration only the three most important186

organs responsible of the majority of biomass production: leaf, fruit and branch (internode),187

respectively noted (`, f, b), yielding a set of organs Ω = {`, f, b}, the remaining ones being188

modelled with noises, as will be shown in equation (10).189

2) Plant structure simplification: In order to describe plant structure evolution, we keep an190

empirical Look-Up-Table, U = {Ui|i = 1, ..., N} which store statistical number for different191

appearing organs. For instance, U4 = {` = 3, b = 2, f = 0} means that at 4th growth cycle,192

there would be 3 new leaves, 2 new internodes and no new fruits (one also notes U4{`} = 3,193

U4{b} = 2 and so on). In practice, available Look-Up-Tables for more than 30 species are194
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already available (see for example Ma et al. (2006); Mathieu et al. (2007); Wang et al. (2009))195

and are used in this study.196

3) Natural withering modelling: In equation (6), the withering of leaves at the growth cycle197

between tk and tk+1 is modelled with function as β(tk, te`). This function is plant-dependent198

and is conditioned by the age of leaves which in practice is available through the structural199

sub-model. To prevent from the dependency from this age and on the kind of plants, we rely on200

the active number of organs No(tk) computed using the Look-Up-Tables U previously defined:201

No(tk) =

tk∑
i=tk−teo

Ui{o}. (7)

where teo is the expectance-time for any organ o ∈ Ω. Concerning function β(tk, teo) in Eq. (6),202

its formulation is based on leaves’s appearing time and life expectance teo as:203

β(tk, teo) =
Utk−teo{`}
N`(tk)

· Stk (8)

with N` the active number of leaves. Its expression is in practice computed using available204

Look-Up-Tables and relation (7).205

4) Overall model used for data assimilation: To model potential errors likely to arise because206

of the three aforementioned kind of simplifications, a white gaussian noise of standard deviation207

ηtk is introduced for each tk. Therefore, the overall sequential model to compute Leaf Area208

Index Stk+1
based on Stk and greenlab reads:209

Stk+1
= α · (Stk − β(tk, teo)) + ∆q`(tk+1) + ηtk . (9)

Using relations (1) to (8), one can reformulate the above plant growth model by:210

Stk+1
= Mk[Stk ] + ηtk

with:

Mk[Stk ] = α

(
1− Utk−teo{`}

N`(tk)

)
Stk −

ESpdo(tk+1)

rDtk+1

exp

(
−k · Stk

Sp

)
︸ ︷︷ ︸

non linear model w.r.t. Stk

+
ESpdo(tk+1)

rDtk+1︸ ︷︷ ︸
independent from Stk

(10)

where the unknown parameters to recover are:211

• Stk the Leaf Area Index at time tk ;212
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• k the photosynthesis efficiency parameter in equation (1);213

• E/r a coefficient related to the external influence (environmental over resistance parameter)214

in equation (1);215

• α standing for the spoilage in natural growth in equation (6);216

• tel standing for the life expectance of leaves;217

• η standing for the noise due to model errors in equation (10).218

All other parameters involved in (10) are available through Loop-Up-Tables and from relations219

(2) to (5). The second term of Mk[Stk ] in (10) does not depend on the variable of interest Stk220

and the first one is nonlinear because of its exponential part. This model will be used in our221

assimilation process.222

In Figure 2, we give some illustrations of the leaf area index evolution depending on some223

parameters. This new version of the model, adapted to medium resolution remote sensing images,224

can now be used in data assimilation schemes to combine it with images.225

C. Data assimilation226

Combining different sources of information driven by a physical model, commonly named227

“data assimilation”, has always been a hot research topic for which a large panel of approaches228

exist. Researchers in this area have developed a number of efficient inference tools, such as229

stochastic methods Doucet et al. (2000), Kalman filter Welch and Bishop (1995) and varia-230

tional approaches as the well-known 4DVAR algorithm Bain and Crisan (2009); Le Dimet and231

Talagrand (1986); Lions and Mitter (1971); Courtier et al. (1994).232

In all these techniques one can model the problem as follows: the data to estimate (noted Stk233

at time tk in our application), driven by a dynamical model M , are represented through a system234

state discretized into a sequence of hidden states Kitagawa (1996) and are observed directly or235

indirectly by Otk through an observation system H:236

Stk+1
= M k[Stk ] + ηtk (11)

Otk = H [Stk ] + εtk (12)

where ηtk (resp. εtk) are the system noises to estimate that models uncertainties w.r.t the dynamics237

M (resp. w.r.t observation operator H). In our application the prediction model Mk is based on238

Greenlab and is modelled in Eq. (6). As for the observation operator H , in practice because239

of the complexity of the relationship between the image luminance and the LAI, the definition240
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of a complete observation system H that directly links the LAI to data would be tricky. We241

therefore prefer to adopt a two stage strategy where at first we estimate the leaf area index242

thanks to the PROSAIL model Jacquemoud et al. (2009); Lecerf et al. (2008) and then use an243

identity observation operator in H . This “pseudo-observation” approach is commonly used when244

data assimilation systems involve complex relationships between observations and system states245

Courtier and Talagrand (1987). In practice, efficient tools based on neural network to inverse246

PROSAIL model to estimate biophysical variables from MODIS time series exist and we use247

the technique presented in Lecerf et al. (2008).248

Among possible solutions mentioned above to perform model inference, variational and stochas-249

tic techniques are the most popular. Here, because of the complexity and non-linearity of our250

dynamical model, we prefer to rely on stochastic approaches and more precisely on the forward-251

backward smoother since we consider the whole sequence to recover all data (unlike particle252

filter which recovers data with the knowledge of past and current data only) Doucet (2001).253

Starting from:254

• An observation sequence Ōtk = {Ot1 , Ot2 ..., Otk} available sequentially;255

• An initial distribution of the system’s state p(St1);256

• Transition and observation models: p(Stk |Stk−1
) and p(Otk |Stk) respectively, related to the257

stochastic processes M and H presented above;258

• Common assumption of zero-mean time-independent Gaussian noise for η, ε in (11-12),259

leading to p(Stk |Stk−1
) ∼ N (Mk(Stk−1

), η) and p(Otk |Stk) ∼ N (Hk(Stk), ε) with N the260

normal distribution,261

it can be shown that the sequential estimation of (Stk) can be obtained using a two-fold262

prediction/correction system. We refer readers to Doucet (2001) for more details.263

Following equations (1-6), the set of additional parameters {Θ = E/r, k, α, te`, η, ε} has to be264

fixed in order to describe properly the LAI evolution of a plant. Parameters E/r, k are related265

to environment, leaf mutual shading parameter and photosynthesis efficiency in Eq. (1), α to266

natural leaf foliage in Eq. (6), te` the time expectance of leaves in (6), η to the system noise in267

Eq. (11) and ε to the observation variance in Eq. (12). They are estimated for each time step tk268

by a least square between the mean state Stk of particles Sitk , i = {1...N} at a given time tk and269

the LAI Setk issued from GreenLab model, depending on {r, k, α} (see illustration in Fig. 2):270

{r, k, α, te`} = arg min
r,k,α,te`

N∑
i=1

||Stk − Setk ||
2. (13)
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As for the system noise η in Eq. (11), its distribution is assumed to be time independent271

zero-mean Gaussian. Its variance ση can then directly be computed in each time step tk using272

available N particles with the relation:273

ση =
1

N

N∑
i=1

||Sitk − S
e
tk
||2. (14)

The same holds for the estimation of ε: noisy estimation Sotk of Leaf Area Index being acquired274

from each image Otk by an inversion of PROSAIL model, the uncertainty σε related to the275

observation system can be extracted through:276

σε =
1

N

N∑
i=1

||Sitk − S
o
tk
||2. (15)

Concerning the initialization of the system, we estimate noisy LAI sequence {Sotk |k = 1, ..., T}277

from input images. Data with missing observations are approximated with a polynomial regres-278

sion from {Sotk}. All these steps result in the following iterative algorithm:279

Incremental technique for LAI estimation and parameter inference

• Initializations:

– From MODIS images {Otk}, compute noisy estimations {So
tk
} of LAI folloing Lecerf et al.

(2008);

– Perform a polynomial regression on {So
tk
}in order to initialize {Sr

tk
|k = 1, ...,M};

1) Estimate hidden parameters {E/r, k, α, te`} with Eq. (13)

2) Compute associated uncertainties {η, ε} with Eq. (14-15)

3) Perform LAI inference through particle methods described in this section (cf Doucet (2001))

4) Loop to step (1) until the estimation of LAI converges

• Once converged, the reconstructed Leaf Area Index sequence {Sr
tk
|k = 1, ...,M} and associated

hidden parameters Θ = {r, k, α, te`, η, ε} are available.

280

From this algorithm, we observe that the model and observation uncertainties η and ε are281

automatically adapted during the process.282

III. EXPERIMENTAL RESULTS283

Our approach has been tested on synthetic, real data sets with ground truth and real data and284

in order to analyse the benefits of our method under various situations. Before entering into285

details, let us discuss about the experimental setup.286
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A. Experimental settings287

The following experimental conditions have been applied:288

• In each experiment, the number of particles has been set to 200;289

• The efficiency of the reconstruction process presented in this paper has been compared290

with polynomial regression (5 degrees) and wavelet filter (Daubechies with 5-level). These291

parameters have also been set by cross-validation. When ground truth is available, only292

polynomial and linear interpolation has been performed since no enough data were available293

to test wavelet filters;294

• We have indicated the results with a simulation of GreenLab with estimated parameters295

(E/r, k, α, te`) using the proposed procedure in Section II-C. Then we could iteratively296

predict the LAI values without the correction steps, as demonstrated in Fig. 2. This could297

be considered as a model-based regression ;298

• All graphes have been compensated by estimated te` in order to have similar starting points.299

B. Data with ground truth measurements300

To evaluate the efficiency of our technique, we have used ground LAI measurements of 9 series301

of wheat and 9 series of rape acquired from January to July 2017 in Brittany, North France (5302

ground measurements for rape and 4 ground measurements for wheat). These measurements act303

as ground truth validation. All series have been acquired on different parcels (whose size are304

larger than one SENTINEL-2 pixel) to sense the variability of our approach. Investigated areas305

are part of a Long Ecological Research site named “Pleine Fougres”, located on the southern306

part of the Bay of Mont-Saint-Michel, France, and referenced in the LTER-Europe1 and ILTER307

networks2. This agricultural landscape is dominated by fields of wheat, maize, rapeseed and308

grasslands. Field observations and measurements were conducted on the study site during one309

crop year (2017) in order to calibrate and quantitatively validate the proposed approach. Different310

parameters were measured and georeferenced once per three weeks using a GPS (5 m accuracy):311

water saturation, vegetation height and LAI, whereas phenology stages, dates of sowing and312

harvests, and yields were observed in 18 fields.313

1See: http://www.lter-europe.net/
2See: https://www.ilter.network/
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An illustration of the position of on site measurements is visible in figure 4. Corresponding314

SENTINEL-2 images (9 images during the period) have been downloaded and our process has315

been applied on pixels associated with parcels. To evaluate the efficiency of the GreenLab model,316

data from May to September (resp. from February to May) have been removed in the processing317

of wheat (resp. rape). This choice has been done on the basis of the associated phenological318

states in order to remove from observations the main informations. Estimated values (one image319

per day) have been compared with ground truth.320

Associated errors (mean and standard deviations on 100 realisations) and illustrations of some321

reconstructions are respectively depicted on table I and figure 5 both for wheat and rape. As322

one can observe on figure 5, the assimilations with GreenLab (particle filter and smoother) are323

systematically more in accordance with ground truth than interpolations. For example in all series324

with wheat, as the maximum of LAI is never observed, interpolation techniques that are not driven325

by a physical model fail in recovering the growth and decrease of LAI. On the contrary, the use326

of a physical model enables to better recover the physical evolution of LAI. The same kind of327

observations stands for rape. Here, as observations during the growing period are missing (from328

February to May), interpolation techniques fail in recovering the variability of the growth, unlike329

our assimilation approach. All these observations can be confirmed with quantitative values in330

table I where assimilations with particle smoother (and then filter) systematically outperform331

interpolation techniques.332

These first experiments with ground truth measurements confirm the ability of our technique333

to recover LAI thanks to the GreenLab model. We now turn to experiments with estimated LAI.334

335

C. Data with estimated LAI336

Data used are issued from real MODIS reflectance product (a sequence of 17 images) on which337

LAI estimations, issued from the PROSAIL model, have been reconstructed and validated (see338

Lecerf et al. (2008, 2005)). In addition, associated classifications of large agricultural parcels (we339

mean by large the fact that they recover more than one MODIS pixel) were available, providing340

us confident LAI time series and associated land cover. In practice three types of agricultural341

crops were used: colza, maize and wheat. Some LAI profiles are visible in Fig. 3.342

To model the various artefacts prone to occur in remote sensing images, several processes343

have been applied on these data:344
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• Noisy observations. Data are equally subsampled (one image every 10 days) from ground345

data and a Gaussian white noise has been introduced as shown in Fig. 6.346

• Sparse observations. Data for only 6 observations have been kept. The motivation is to347

evaluate the performance of our algorithm under a short length of remote sensing observation348

time series (very cloudy regions), as shown in Fig. 7.349

• Missing observations. Very few observations were used (7 in practice) but here we simulate350

the absence of data during a long series. Therefore missing data are consecutive in time as351

shown in Fig. 8.352

1) Result on sequence of noisy observations: This kind of data represents a great challenge in353

remote sensing analysis since all observations are in general corrupted by noise and conventional354

techniques often require to have an estimation of such noise Rabiner and Gold (1975); Burrus355

et al. (1998), unlike our process.356

In order to make a quantitative evaluation, various levels of Gaussian zero-mean noise, with357

Signal-to-noise ratio (SNR) ranging from 2 to 10, were tested. The table II represents the358

root-mean-square error (RMSE) between reconstructed LAI (with particle filter and smoother359

and other reconstruction techniques introduced in section III-A) and reference data for 100360

realizations. It is interesting to observe in this table that the introduction of GreenLab plant growth361

model in the reconstruction process systematically reduces the error residual and outperforms362

all other methods. Particles smoother almost always gives a better performance than particle363

filter, which is quite rational as when estimating the LAI at any time point, particle filter only364

exploits information of up-to-date observations, while particle smoother takes into account all365

observations in time series. In order to have a visual inspection of the reconstructions, some366

illustrations are visible in Fig. 6 and confirm that our outputs are of reliable quality. Even if other367

curves are sometimes consistent with ground truth, particle filter and/or smoother represent the368

best compromise since strong errors are likely to appear with other techniques (as the polynomial369

one very sensible to little variations).370

2) Sequence with sparse observations: We have randomly taken only six observations to371

reconstruct the whole time series. These observations are represented by blue dotted points in372

Fig. 7. As one can observe, they are more or less issued from a uniform sample along the time373

period. Quantitative results are depicted in table III. Here again, the performance and the benefit374

of relying on GreenLab growth model is illustrated. Reconstructed curves are also visible in375

figure 7 and demonstrate the great ability of our technique to recover proper series.376

October 31, 2018 DRAFT



COMPUTERS & GEOSCIENCES 15

3) Sequence of missing observations: We have removed long periods of consecutive data.377

Some illustrations are visible in Fig. 8 where one can observe that no observations during the378

growing period are available, which is a very delicate problem. Despite these difficulties, the379

proposed framework is able to provide very good reconstruction of LAI time series, as shown380

in Tab. IV and in Fig. 8. Obviously here, only the dynamical model prior is able to estimate381

consistent values during critical periods of missing data. This is to our opinion a very interesting382

behaviour of our estimators.383

In this three experiments, various reconstruction methods have been tested. In all situations, the384

use of GreenLab as prior plant growth model has enabled to improve the reconstruction of LAI385

over long time periods. This is to our opinion a very interesting behavior likely to have many386

potential applications. It should also be outlined that our technique not only reconstructs the387

LAI but is also able to extract deviations with respect to observations and dynamical model388

(parameters {η, ε}) and internal parameters of plants {E/r, k, α, te`}. This point may have389

interesting applications in the future. At the moment, three species (wheat, rape, maize) have390

been studied but the functional part of GreenLab enables this model to adapt to many other kind391

of cultures. Associated landscapes (Brittany, France) and crops on which our experimentations392

have been performed are very fragmented, which disturbs the observation with moderate remote393

sensing images. It is expected that in larger areas (USA, China, ...), the application of our process394

would be easier. It is also important to point out that some recent domain adaptation techniques395

Courty et al. (2017) issued from machine learning and artificial intelligence (how to fit a model396

designed for one site to another site) could be tested on these assimilation approaches to adapt397

this work to other regions or species. This is actually the scope of a current work.398

This second series of experiments has quantitatively demonstrated the efficiency of our tech-399

nique. Let us now present experiments on real MODIS data.400

D. Application on large scale study site401

We have applied our methods on a large scale study site in Chizé, France. This study site402

is abundant with various sorts of vegetation, such as wood, grassland, maize, colza, wheat. In403

practice 16 images from March to October 2006 were available. On these images, the PROSAIL404

model has been applied to derive LAI time series. An illustration of available data is visible in405

the top of Fig. 11 where red stands for high values of LAI (indicating dense plant canopy) and406
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blue for low LAI. However at some location, observation data are corrupted, mainly because of407

cloud coverage, yielding corrupted time series.408

In the bottom of figure 11, the results from particle smoother under our proposed framework409

are depicted. In addition we have plotted in Fig. 9 some curves randomly taken from the images.410

Despite the fact that no ground truth exist here, it appears obviously that our method seems411

consistent and enables to recover uncorrupted LAI time series.412

IV. CONCLUSION413

In this paper, we have proposed a technique that estimates leaf area index time series using414

data assimilation. The dynamical model is based on the GreenLab plant growth model where415

a number of modifications have been applied to adapt it in a remote sensing context. LAI416

observations are issued from the inversion of the PROSAIL model. As shown in our experiments,417

this technique is efficient in many various situations as very sparse observations or missing/noisy418

data. Quantitatively, it outperforms other reconstruction strategies that do not rely on a physical419

prior knowledge, especially when large period of missing data occur. An additional key point of420

our process is its ability to estimate internal parameters of the plant unobservable from images421

(environmental parameters, spoilage, ...). This is to our opinion a very good property that open422

new applications in the future.423
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Fig. 1. Illustration of GreenLab model with two steps: in each cycle, the biomass production step computes

the produced biomass based on the current plant structure and environmental parameters. The biomass repartition

step allocates this biomass in various organs to generate a new plant at cycle n+1. All these operations are balanced

by healthy coefficients that model the natural withering

424

425
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Fig. 3. A demonstration of uncorrupted LAI time series for three sorts of agriculture crops in Brittany, France

Fig. 4. Localisation of on site measurements for wheat and rape in Brittany, North of France. All parcels are

higher than a SENTINEL-2 pixel area
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Fig. 5. LAI reconstruction for wheat and rape with ground truth superposition over the year 2017 with missing

data from May to September (wheat) and from February to May (rape). Ground truth measurements are block dots,

GreenLab assimilation with particle smoother (our technique) is in blue, GreenLab assimilation with particle filter

is in red, polynomial interpolation in purple and linear interpolation in yellow.
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TABLE I

ROOT-MEAN-SQUARE ERROR (RMSE) IN RECOVERING LAI FOR ALL SERIES AND IN AVERAGE FOR WHEAT (TOP) AND

RAPE (BOTTON).

Wheat Series # Polynomial Linear Particle Filter Particle Smoother

1 1.2656 1.6455 0.2904±0.1056 0.1447±0.0557

2 1.3759 1.6240 0.2722±0.0996 0.1354±0.0541

3 1.5901 2.0144 0.2765±0.1175 0.1419±0.0501

4 1.2049 1.5030 0.2978±0.1117 0.1420±0.0453

5 1.5419 1.7098 0.2948±0.1103 0.1450±0.0540

6 1.6430 1.9742 0.2861±0.1021 0.1458±0.0546

7 1.0115 1.2628 0.2861±0.1047 0.1416±0.0427

8 1.3134 1.4688 0.2821±0.0976 0.1415±0.0565

9 1.4233 1.7686 0.2912±0.0944 0.1434±0.0529

Average 1.3744 1.6634 0.2864±0.1048 0.1424±0.0518

Rape Series # Polynomial Linear Particle Filter Particle Smoother

1 0.3870 0.4039 0.2934±0.1000 0.1442±0.0529

2 0.2488 0.2025 0.2767±0.1042 0.1359±0.0488

3 0.9274 0.6938 0.2729±0.0961 0.1408±0.0470

4 0.4925 0.5515 0.2909±0.1059 0.1466±0.0524

5 0.0464 0.0354 0.2814±0.0951 0.1384±0.0497

6 0.4558 0.3834 0.2835±0.1046 0.1546±0.0484

7 0.4504 0.5028 0.2669±0.0996 0.1431±0.0501

8 0.0296 0.0175 0.3003±0.1124 0.1443±0.0501

9 0.3396 0.2485 0.2917±0.1107 0.1432±0.0565

Average 0.3753 0.3377 0.2842±0.1032 0.1435±0.0507

TABLE II

THE ROOT-MEAN-SQUARE ERROR (RMSE) OF DIFFERENT METHODS ON SEQUENCES OF VARIOUS SNR LEVEL.

RMSE SNR=2 SNR=4 SNR=6 SNR=8 SNR=10

Observations 1.3222±0.2637 0.8712±0.1712 0.7747±0.1327 0.6707±0.1300 0.6313±0.0895

Polynomial 0.7971±0.2126 0.6120±0.1535 0.5760±0.1168 0.5351±0.0893 0.5136±0.0770

Wavelet filter 0.8018±0.1749 0.7040±0.0895 0.6795±0.0793 0.6481±0.0848 0.6365±0.0548

Fitted model 0.7063±0.2477 0.5749±0.1829 0.5259±0.1561 0.5189±0.1699 0.4586±0.0843

Particle filter 0.7755±0.2500 0.6633±0.1822 0.5973±0.1329 0.5452±0.1327 0.5403±0.1175

Particle smoother 0.7072±0.2495 0.5660±0.1634 0.5014±0.1240 0.4837±0.1036 0.4341±0.1057
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Fig. 6. LAI reconstruction with various techniques on the sequence of noisy observations (with SNR=6). Dark

line are uncorrupted MODIS observations (ground truth state), blue dots are the input noisy observations, red line

is the result of reconstruction with particle smoother, cyan line from particle filter, green line from fitted model,

pink line from polynomial regression, blue line from wavelet filter. Even in this situation where the noise is large,

the best fitted curves are issued from techniques based on the GreenLab model
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Fig. 7. LAI reconstruction with various techniques on the sequence of sparse observations (with SNR=6).

Dark line are uncorrupted MODIS observations (ground truth state), blue dots are the input noisy observations,

red line is the result of reconstruction with particle smoother, cyan line from particle filter, green line from fitted

model, pink line from polynomial regression, blue line from wavelet filter.
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Fig. 8. LAI reconstruction with various techniques on the sequence of missing observations (with SNR=6)

. Dark line are uncorrupted MODIS observations (ground truth state), blue dots are the input noisy observations,

red line is the result of reconstruction with particle smoother, cyan line from particle filter, green line from fitted

model, pink line from polynomial regression, blue line from wavelet filter.
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Fig. 9. Several examples of LAI time series reconstruction with particle smoother at a study site in Chizé,

France
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Fig. 10. Estimated biomass production and its partition during continuous growth cycles of unit wheat field.

TABLE III

THE ROOT-MEAN-SQUARE ERROR (RMSE) OF DIFFERENT METHODS ON SEQUENCE WITH SPARSE OBSERVATIONS.

RMSE SNR=2 SNR=4 SNR=6 SNR=8 SNR=10

Observations 1.4425±0.3580 1.2365±0.3881 0.9455±0.3495 0.7818±0.2562 0.6887±0.1431

Polynomial 1.4943±0.5823 1.2852±0.1447 0.1447±0.4577 0.8807±0.3098 0.7867±0.1761

Wavelet filter 1.1932±0.4386 1.1424±0.3814 1.0390± 0.4995 0.7390±0.2517 0.7229±0.1860

Fitted model 1.0346±0.3362 1.0425±0.3267 0.8574±0.3565 0.6767±0.3192 0.7126±0.2611

Particle filter 1.1762±0.3986 1.1233±0.3220 0.8523±0.3780 0.7931±0.3361 0.7549±0.1903

Particle smoother 1.0198±0.3526 0.9622±0.3477 0.9451±0.3330 0.5923±0.2364 0.5919±0.1420

TABLE IV

THE ROOT-MEAN-SQUARE ERROR (RMSE) OF DIFFERENT METHODS ON SEQUENCE OF MISSING OBSERVATIONS.

RMSE SNR=2 SNR=4 SNR=6 SNR=8 SNR=10

Observations 1.2934±0.3317 1.0424±0.2523 0.9218±0.2468 0.7011±0.1642 0.7118±0.1709

Polynomial 1.2606±0.5608 1.1733±0.4756 1.0649±0.4444 1.1239±0.6996 0.8877±0.5777

Wavelet filter 1.3656±0.6070 1.0531±0.3697 0.8184± 0.2907 0.7741±0.3403 0.7840±0.3407

Fitted model 1.2036±0.6758 1.0689±0.4229 0.8079±0.2906 0.7072±0.3583 0.6894±0.3031

Particle filter 1.2617±0.6158 0.9596±0.3778 0.8526±0.2759 0.7232±0.3553 0.7044±0.3254

Particle smoother 1.2065±0.6876 1.0253±0.4510 0.8055±0.3180 0.7050±0.3578 0.6892±0.3479
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Fig. 11. Result of particle smoother at a study site in Chizé, France
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