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This paper is concerned with the recovery of Leaf Area Index (LAI) time series in intense agriculture areas from moderate resolution remote sensing data (MODIS or SENTINEL). Although their resolution limits an analysis at a parcel level, their high temporal rate enables to monitor land use/land cover through the temporal evolution of key biophysical parameters as LAI. However in practice, frame-byframe estimation is unsatisfactory since the quality of each single data is subjected to undesirable effects due to atmosphere disturbance, sun geometry, viewing geometry, etc. These effects lead to a lack of temporal consistency of resulting time series. The reconstruction of such time series is delicate using conventional interpolation methods since underlying physical processes are not taken into account. In this paper, we tackle this issue by exploiting the prior information of a plant growth model, namely GreenLab, using stochastic data assimilation techniques. Our experiments on challenging situations, such as few data and fragmented landscapes, demonstrate the approach is robust on various challenging situations and enables to extract additional information about observed fields. Experiments are performed on MODIS data.

I. INTRODUCTION

A. Land surface monitoring

Land surface on earth is mainly covered by green plants including forests, grasslands or agricultural fields [START_REF] Townshend | Global land cover classification by remote sensing: present capabilities and future possibilities[END_REF]). These vegetation areas are of great importance for global ecological systems and food supply for human beings. Therefore in the past several decades, many satellites have been launched to observe and monitor these areas [START_REF] Richards | Remote sensing digital image analysis: an introduction[END_REF]; [START_REF] Trotter | Remotely-sensed data as an information source for geographical information systems in natural resource management a review[END_REF]). A number of important tools has been developed to extract some crucial information on crops and plants from satellite images. This is indeed a prerequisite in many agricultural applications such as monitoring the plant physiology and/or ecology at different scales [START_REF] Gao | Ndwiła normalized difference water index for remote sensing of vegetation liquid water from space[END_REF]; [START_REF] Huete | A soil-adjusted vegetation index (savi)[END_REF]; [START_REF] Liang | Quantitative remote sensing of land surfaces[END_REF]). One of the most popular vegetation index is the NDVI (Normalized Difference Vegetation Index, [START_REF] Rouse | Monitoring vegetation systems in the great plains with erts[END_REF]), based on the spectral reflectance property of green leaves (chlorophyll) at different spectral bands and computed using red and near-infrared wavebands. While NDVI is a sensitive indicator of canopy structure and chemical content (plant biomass, leaf area index, chlorophyll content in sparse canopies and foliar nitrogen content), it is still a limited index for total canopy biomass in high-density vegetation areas [START_REF] Gamon | Relationships between ndvi, canopy structure, and photosynthesis in three californian vegetation types[END_REF]). Some other more sophisticated biophysical indexes have been proposed, such as :

• fCover (vegetation cover fraction): which represents the fraction of ground covered by green vegetation;

• fAPAR (fraction of photo-synthetically active radiation absorbed by the canopy): which represents the fraction of the solar radiation absorbed by live leaves;

• LAI (Leaf Area Index) : which represents the total quantity of green leaf area per unit ground surface area.

In practice, fAPAR is sensitive to sun lighting while fCover and LAI are independent from the illumination. In this study we rely on LAI since the total quantity of leaves is captured (and not only the ground surface); moreover, this parameter is largely used in practice [START_REF] Baret | Lai, fapar and fcover cyclopes global products derived from vegetation: Part 1: Principles of the algorithm[END_REF]), for example to estimate productivity for certain crops. Readers can find in [START_REF] Carlson | On the relation between ndvi, fractional vegetation cover, and leaf area index[END_REF]; [START_REF] Gamon | Relationships between ndvi, canopy structure, and photosynthesis in three californian vegetation types[END_REF] more details about these biophysical variables.

The estimation of these biophysical variables from remote sensing is a delicate task. Several models, based on light interception by plant canopies and vegetation reflectance in terms of biophysical characteristics, have been designed and inverted to retrieve biophysical information October 31, 2018 DRAFT from optical satellite images. Among them, SAIL (Scattering by Arbitrary Inclined Leaves) canopy bidirectional reflectance model [START_REF] Verhoef | Light scattering by leaf layers with application to canopy reflectance modeling: the sail model[END_REF] and PROSECT (based on leaf optical properties) are widely used [START_REF] Schaepman-Strub | Reflectance quantities in optical remote sensingłdefinitions and case studies[END_REF]. Even though the results were globally satisfactory, strong improvements have been obtained when one mixes these two models. The resulting one, PROSAIL, has allowed to describe both the spectral and directional variation of canopy reflectance based on single static images [START_REF] Jacquemoud | Prospect+ sail models: A review of use for vegetation characterization[END_REF]; [START_REF] Lecerf | Estimating biophysical variables at 250 m with reconstructed eos/modis time series to monitor fragmented landscapes[END_REF]; [START_REF] González-Sanpedro | Seasonal variations of leaf area index of agricultural fields retrieved from landsat data[END_REF]).

All these methods have been designed for single images and only few of them exploit the time series observation to derive the plant growth evolution information : in [START_REF] Roerink | Reconstructing cloudfree ndvi composites using fourier analysis of time series[END_REF], authors have developed a Fourier analysis method to reconstruct cloud free NDVI composites while in [START_REF] Jonsson | Seasonality extraction by function fitting to time-series of satellite sensor data[END_REF], the authors have proposed a technique based on nonlinear least squares. Despite the fact that they provide interesting information, no physical knowledge about plant or vegetation growth is taken into consideration.

In this study we suggest to exploit the short revisit period of satellites to improve the quality of estimated biophysical variables by constraining the solution to be consistent with physical dynamic priors. This data assimilation procedure, though presented here for LAI estimation, can be applied to any biophysical variable provided that a physical model of its temporal evolution exists.

B. Plant growth modelling

The term plant modelling has various meanings depending on scientific communities. One can simulate realistic forms and patterns of plants from an architectural and geometrical point of view [START_REF] Fisher | How predictive are computer simulations of tree architecture[END_REF]), as in earlier developments (see for example [START_REF] Cohen | Computer simulation of biological pattern generation processes[END_REF]; [START_REF] Honda | Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body[END_REF]; [START_REF] Lindenmayer | Mathematical models for cellular interactions in development i. filaments with one-sided inputs[END_REF]). This structural simulation of plants refers to various tools either related to L-systems [START_REF] Przemyslaw | Developmental models of herbaceous plants for computer imagery purposes[END_REF]), fractals [START_REF] Smith | Plants, fractals, and formal languages[END_REF]), particle systems [START_REF] Reeves | Approximate and probabilistic algorithms for shading and rendering structured particle systems[END_REF]) or ramified matrix [START_REF] Viennot | Combinatorial analysis of ramified patterns and computer imagery of trees[END_REF]) for example.

When one is concerned with more physical studies related to plants and crops (agronomy, forestry, biophysics, ...), specific plant growth models have been developed for agronomic purposes, harvest prediction or optimum crop management (see for an [START_REF] Brisson | An overview of the crop model stics[END_REF]) and rely on physical properties: they describe the flux of external and internal resources through the element "plant" in order to expect its yield. These process-based models (PBM) consider biomass October 31, 2018 DRAFT production through the photosynthetic process and the global biomass partitioning among organs [START_REF] Heuvelink | Evaluation of a dynamic simulation model for tomato crop growth and development[END_REF] or [START_REF] Dayan | Prediction and calculation of morphological characteristics and distribution of assimilates in the rosgro model[END_REF]).

Between process-based models and architectural models, functional-structural plant models (FSPM) have emerged since the end of the 1990's (see De [START_REF] De Reffye | A functional model of tree growth and tree architecture[END_REF]; [START_REF] Kurth | Growth grammars simulating trees-an extension of l-systems incorporating local variables and sensitivity[END_REF]; [START_REF] Perttunen | Lignum: a tree model based on simple structural units[END_REF]; [START_REF] Vos | Functional-structural plant modelling in crop production: adding a dimension[END_REF]; [START_REF] Yan | A dynamic, architectural plant model simulating resource-dependent growth[END_REF]). They perform efficient and realistic dynamic simulations of plant morphogenesis (see for example [START_REF] Jallas | Virtual cotons R , the firstborn of the next generation of simulation model[END_REF]; [START_REF] Perttunen | Lignum: a tree model based on simple structural units[END_REF]) by taking into account both physical and structural properties. The GreenLab plant growth model [START_REF] Yan | A dynamic, architectural plant model simulating resource-dependent growth[END_REF]) belongs to this family and has been designed to provide dynamic representations of the morphogenesis and architecture of plants. Because of i) its efficiency in modelling realistic physical behaviours ; ii) its efficiency in designing consistent plant architectures and iii) its permanent interaction between structural and functional part, this model is really interesting for plant studies. We therefore rely on it in this paper.

C. Contributions and novelty of the paper

Though generating LAI by assimilating remote sensing data in crop model has already been studied (see for example [START_REF] Launay | Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications[END_REF] and this latter has never been used yet for data assimilation. This is the scope of this paper.

The overall article is organised as follows: the next section introduces the principles and required details of GreenLab plant growth model. As this model is designed at a plant level, some manipulations and simplifications are required for its adaptation to medium resolution images. These modifications, detailed in section II-B, enable to finally exploit an easy-to-use version for data assimilation. The assimilation part is presented in section II-C and finally, section III show some experiments on synthetic and real data.

II. MATERIAL AND METHODS

A. Introduction to the Greenlab model

GreenLab model aims at simulating plant growth evolution. For each type of plant, this model is calibrated with ad-hoc observations of growth made under controlled environment and where extensive and even destructive measurements of individual plants are made regularly [START_REF] Guo | Parameter optimization and field validation of the functional-structural model greenlab for maize[END_REF]; [START_REF] Kang | Analytical study of a stochastic plant growth model: application to the greenlab model[END_REF]. This enables to derive a deterministic description of a plant evolution October 31, 2018 DRAFT (in more recent research, some stochasticity has been introduced to bring about plant growth variations [START_REF] Lopez | Integrating simulation of architectural development and source-sink behaviour of peach trees by incorporating markov chains and physiological organ function submodels into l-peach[END_REF]; [START_REF] Wang | A stochastic model of tree architecture and biomass partitioning: application to mongolian scots pines[END_REF]). The model works sequentially and in each cycle, two steps are performed:

1) Biomass production: this step generates a biomass pool from some environmental parameters (sun lighting, photosynthesis efficiency, plant density, ...);

2) Biomass repartition: the generated biomass is shared between some organs (leafs, fruits, ...).

The idea behind this model is that all organs of a plant share a common biomass pool and are therefore in competition each others. In addition to these two primal operations, a natural withering of each plant is modelled. This is schematised in figure 1 and main steps are detailed below.

1) Biomass production: The biomass production comes from a large number of factors as photosynthesis efficiency of plant species, total leaf area, environmental context, etc. In GreenLab, the production is done over growth cycle through the relation:

Q t k = E • S p • 1 r 1 -exp -k • S t k S p (1) 
where:

• Q t k is the Biomass generated at the growth cycle between t k and t k+1 ;

• E is an empirical environmental factor (sun lighting, temperature, etc);

• S p is the land occupation of the plant;

• k is photosynthesis efficiency;

• r is an resistance parameters, setting the effect of mutual shading;

• S t k is the total leaf area at t k .

From Eq. ( 1), one observes that biomass generation is largely dependent of the leaf area S t k and is also restricted by land occupation S p , surrounding environment E and species-dependent

coefficient constant r, k.
This description is the one that will be used in our data assimilation process. Let us now describe the biomass repartition step.

2) Biomass repartition: Once the biomass is produced, it has to be redistributed among the different organs of the plant following their own demand. To this end, for each kind of organ o in the set of organs Ω (Ω can contain organs as leaves, branches, sheath tassel, cob, ... as will be seen later we will focus mainly on branches b, leaves and fruits f ) one has to compute October 31, 2018 DRAFT its biomass increment ∆ qo (t k+1 ) at time t k+1 following some rules described below [START_REF] Yan | A dynamic, architectural plant model simulating resource-dependent growth[END_REF]):

D t k+1 = o∈Ω N o (t k+1 ) t k+1 t=1 d o (t) (2) d o (t) = S o • φ o (t) (3) 
∆ qo (t k+1 ) = d o (t k+1 ) • Q t k D t k+1 (4) 
with

• D t k+1 the total biomass demand in the beginning of cycle t k+1 depending on all organs o ∈ Ω;

• d o (t) the biomass demand of an organ o ∈ Ω for time t;

• S o the sink-strength of organ o ∈ Ω;

• ∆ qo (t k+1 ) the increment of biomass related to organ o ∈ Ω in the end of cycle cycle k;

• N o (t k+1 ) the active number of organ of type o at time t k+1 ;

• φ o (t) a beta law function related to the demand of each organ. This latter is small at the beginning and end of organ growth and relatively large during the growth process [START_REF] Guo | Parameter optimization and field validation of the functional-structural model greenlab for maize[END_REF]. It takes the following form:

φ o (t) = (t -0.5) ao-1 • (t go -t + 0.5) bo-1 (5)
where a o , b o and t go are parameters related to an organ. More precisely, t go is called expansion time for organ o and indicates the growing period: after this step, it does not join the biomass repartition in Eq. ( 2) anymore (this models for example the fact that stalks stop to grow after autumn). Parameters a o and b o are calibration ones related to each organ.

As one can see, the association of the biomass to one specific organ is based on its demand d o (cf Eq. ( 3)) and depends on its sink strength S o and growth age. The strength is plant-dependent:

for example concerning fruit trees, the fruit organ tends to have more demand than a tiny root.

Therefore S o in Eq. ( 3) is bigger for the fruit organ than tiny root one. As for the age component, GreenLab assumes that an organ grows relatively slowly at the beginning and end of his life and accumulate most portion of biomass in the middle part. This is modelled by function φ o (t).

Finally, the role of Eq. ( 4) is to distribute the biomass among organs based on individual demands and the total available biomass.
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3) Natural withering: Regarding leaf area index S t k related to organ leaf (noted , which is the variable of interest in this paper) and without withering, a natural evolution model for S t k would be S t k+1 = S t k + ∆ q (t k+1 ). To model the fact that each organ naturally dies after a given time, a withering of all plants is modelled through the following rule:

S t k+1 = α • (S t k -β(t k , t e )) + ∆ q (t k+1 ). (6) 
This equation expresses the fact that in the end of cycle t k , the next leaf area S t k+1 will be increased by ∆ q (t k+1 ), the growth of organ leaf issued from equation ( 4). This is altered by

(α, β(t k , t e )).
The rule of coefficient α ∈ [0, 1], which stands for the spoilage in natural growth, is to model a global withering while function β(t k , t e ) is time-varying and relies on the life expectance (roughly speaking the "birth") t e of leaves . The value of this function will be discussed in next section.

Equations (1-6) are the core of the GreenLab model for biomass generation, partition and withering. This model is dependant from many parameters. It is useful to simulate plant growth from known parameters but obviously their recovery from image sequences appears impossible, as pointed out in [START_REF] Yang | Structural identifiability of generalized constraint neural network models for nonlinear regression[END_REF]. Fortunately, many simplifications related to medium resolution remote sensing images are possible and we can design an assimilation tool based on GreenLab principles. This is the scope of next section.

B. Simplified Greenlab for remote sensing data assimilation

We suggest to simplify and adapt the initial GreenLab model to remote sensing. Though the biomass generation process does not change, all details regarding the internal structure of plants can be simplified. Associated manipulations are detailed bellow.

1) Focus main organs:

We decide to take into consideration only the three most important organs responsible of the majority of biomass production: leaf, fruit and branch (internode), respectively noted ( , f, b), yielding a set of organs Ω = { , f, b}, the remaining ones being modelled with noises, as will be shown in equation ( 10).

2) Plant structure simplification: In order to describe plant structure evolution, we keep an empirical Look-Up- and are used in this study.

3) Natural withering modelling: In equation ( 6), the withering of leaves at the growth cycle between t k and t k+1 is modelled with function as β(t k , t e ). This function is plant-dependent and is conditioned by the age of leaves which in practice is available through the structural sub-model. To prevent from the dependency from this age and on the kind of plants, we rely on the active number of organs N o (t k ) computed using the Look-Up-Tables U previously defined:

N o (t k ) = t k i=t k -teo U i {o}. ( 7 
)
where t eo is the expectance-time for any organ o ∈ Ω. Concerning function β(t k , t eo ) in Eq. ( 6), its formulation is based on leaves's appearing time and life expectance t eo as:

β(t k , t eo ) = U t k -teo { } N (t k ) • S t k (8)
with N the active number of leaves. Its expression is in practice computed using available Look-Up-Tables andrelation (7).

4) Overall model used for data assimilation:

To model potential errors likely to arise because of the three aforementioned kind of simplifications, a white gaussian noise of standard deviation η t k is introduced for each t k . Therefore, the overall sequential model to compute Leaf Area Index S t k+1 based on S t k and greenlab reads:

S t k+1 = α • (S t k -β(t k , t eo )) + ∆ q (t k+1 ) + η t k . (9) 
Using relations (1) to ( 8), one can reformulate the above plant growth model by:

S t k+1 = M k [S t k ] + η t k with: M k [S t k ] = α 1 - U t k -teo { } N (t k ) S t k - ES p d o (t k+1 ) rD t k+1 exp -k • S t k S p non linear model w.r.t. St k + ES p d o (t k+1 ) rD t k+1 independent from St k (10)
where the unknown parameters to recover are:

• S t k the Leaf Area Index at time t k ;
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• k the photosynthesis efficiency parameter in equation (1);

• E/r a coefficient related to the external influence (environmental over resistance parameter) in equation ( 1);

• α standing for the spoilage in natural growth in equation ( 6);

• t el standing for the life expectance of leaves;

• η standing for the noise due to model errors in equation ( 10).

All other parameters involved in (10) are available through Loop-Up-Tables andfrom relations (2) to ( 5). The second term of M k [S t k ] in (10) does not depend on the variable of interest S t k and the first one is nonlinear because of its exponential part. This model will be used in our assimilation process.

In Figure 2, we give some illustrations of the leaf area index evolution depending on some parameters. This new version of the model, adapted to medium resolution remote sensing images, can now be used in data assimilation schemes to combine it with images.

C. Data assimilation

Combining different sources of information driven by a physical model, commonly named "data assimilation", has always been a hot research topic for which a large panel of approaches exist. Researchers in this area have developed a number of efficient inference tools, such as stochastic methods [START_REF] Doucet | On sequential monte carlo sampling methods for bayesian filtering[END_REF], Kalman filter [START_REF] Welch | An introduction to the kalman filter[END_REF] and variational approaches as the well-known 4DVAR algorithm [START_REF] Bain | Fundamentals of stochastic filtering[END_REF]; Le Dimet and Talagrand (1986); [START_REF] Lions | Optimal control of systems governed by partial differential equations[END_REF]; [START_REF] Courtier | A strategy for operational implementation of 4d-var, using an incremental approach[END_REF].

In all these techniques one can model the problem as follows: the data to estimate (noted S t k at time t k in our application), driven by a dynamical model M , are represented through a system state discretized into a sequence of hidden states [START_REF] Kitagawa | Monte carlo filter and smoother for non-gaussian nonlinear state space models[END_REF] and are observed directly or indirectly by O t k through an observation system H:

S t k+1 = M k [S t k ] + η t k (11) O t k = H [S t k ] + t k (12)
where η t k (resp. t k ) are the system noises to estimate that models uncertainties w.r.t the dynamics M (resp. w.r.t observation operator H). In our application the prediction model M k is based on Greenlab and is modelled in Eq. ( 6). As for the observation operator H, in practice because of the complexity of the relationship between the image luminance and the LAI, the definition October 31, 2018 DRAFT of a complete observation system H that directly links the LAI to data would be tricky. We therefore prefer to adopt a two stage strategy where at first we estimate the leaf area index thanks to the PROSAIL model [START_REF] Jacquemoud | Prospect+ sail models: A review of use for vegetation characterization[END_REF]; [START_REF] Lecerf | Estimating biophysical variables at 250 m with reconstructed eos/modis time series to monitor fragmented landscapes[END_REF] and then use an identity observation operator in H. This "pseudo-observation" approach is commonly used when data assimilation systems involve complex relationships between observations and system states [START_REF] Courtier | Variational assimilation of meteorological observations with the adjoint vorticity equation. ii: Numerical results[END_REF]. In practice, efficient tools based on neural network to inverse PROSAIL model to estimate biophysical variables from MODIS time series exist and we use the technique presented in [START_REF] Lecerf | Estimating biophysical variables at 250 m with reconstructed eos/modis time series to monitor fragmented landscapes[END_REF].

Among possible solutions mentioned above to perform model inference, variational and stochastic techniques are the most popular. Here, because of the complexity and non-linearity of our dynamical model, we prefer to rely on stochastic approaches and more precisely on the forwardbackward smoother since we consider the whole sequence to recover all data (unlike particle filter which recovers data with the knowledge of past and current data only) [START_REF] Doucet | Sequential monte carlo methods[END_REF].

Starting from:

• An observation sequence Ōt k = {O t 1 , O t 2 ..., O t k } available sequentially;
• An initial distribution of the system's state p(S t 1 );

• Transition and observation models: p(S t k |S t k-1 ) and p(O t k |S t k ) respectively, related to the stochastic processes M and H presented above;

• Common assumption of zero-mean time-independent Gaussian noise for η, in (11-12),

leading to p(S t k |S t k-1 ) ∼ N (M k (S t k-1 ), η) and p(O t k |S t k ) ∼ N (H k (S t k ), ) with N the normal distribution,
it can be shown that the sequential estimation of (S t k ) can be obtained using a two-fold prediction/correction system. We refer readers to [START_REF] Doucet | Sequential monte carlo methods[END_REF] for more details.

Following equations (1-6), the set of additional parameters {Θ = E/r, k, α, t e , η, } has to be fixed in order to describe properly the LAI evolution of a plant. Parameters E/r, k are related to environment, leaf mutual shading parameter and photosynthesis efficiency in Eq. ( 1), α to natural leaf foliage in Eq. ( 6), t e the time expectance of leaves in (6), η to the system noise in Eq. ( 11) and to the observation variance in Eq. ( 12). As for the system noise η in Eq. ( 11), its distribution is assumed to be time independent zero-mean Gaussian. Its variance σ η can then directly be computed in each time step t k using available N particles with the relation:

σ η = 1 N N i=1 ||S i t k -S e t k || 2 . ( 14 
)
The same holds for the estimation of : noisy estimation S o t k of Leaf Area Index being acquired from each image O t k by an inversion of PROSAIL model, the uncertainty σ related to the observation system can be extracted through: 13)

σ = 1 N N i=1 ||S i t k -S o t k || 2 . ( 15 
)
2) Compute associated uncertainties {η, } with Eq. (14-15)

3) Perform LAI inference through particle methods described in this section (cf Doucet ( 2001))

4) Loop to step (1) until the estimation of LAI converges

• Once converged, the reconstructed Leaf Area Index sequence {S r t k |k = 1, ..., M } and associated hidden parameters Θ = {r, k, α, t e , η, } are available.

From this algorithm, we observe that the model and observation uncertainties η and are automatically adapted during the process.

III. EXPERIMENTAL RESULTS

Our approach has been tested on synthetic, real data sets with ground truth and real data and in order to analyse the benefits of our method under various situations. Before entering into details, let us discuss about the experimental setup.
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A. Experimental settings

The following experimental conditions have been applied:

• In each experiment, the number of particles has been set to 200;

• The efficiency of the reconstruction process presented in this paper has been compared with polynomial regression (5 degrees) and wavelet filter (Daubechies with 5-level). These parameters have also been set by cross-validation. When ground truth is available, only polynomial and linear interpolation has been performed since no enough data were available to test wavelet filters;

• We have indicated the results with a simulation of GreenLab with estimated parameters (E/r, k, α, t e ) using the proposed procedure in Section II-C. Then we could iteratively predict the LAI values without the correction steps, as demonstrated in Fig. 2. This could be considered as a model-based regression ;

• All graphes have been compensated by estimated t e in order to have similar starting points.

B. Data with ground truth measurements

To evaluate the efficiency of our technique, we have used ground LAI measurements of 9 series of wheat and 9 series of rape acquired from January to July 2017 in Brittany, North France (5 ground measurements for rape and 4 ground measurements for wheat). These measurements act as ground truth validation. All series have been acquired on different parcels (whose size are larger than one SENTINEL-2 pixel) to sense the variability of our approach. Investigated areas are part of a Long Ecological Research site named "Pleine Fougres", located on the southern part of the Bay of Mont-Saint-Michel, France, and referenced in the LTER-Europe 1 and ILTER networks 2 . This agricultural landscape is dominated by fields of wheat, maize, rapeseed and grasslands. Field observations and measurements were conducted on the study site during one crop year (2017) in order to calibrate and quantitatively validate the proposed approach. Different parameters were measured and georeferenced once per three weeks using a GPS (5 m accuracy):

water saturation, vegetation height and LAI, whereas phenology stages, dates of sowing and harvests, and yields were observed in 18 fields. These first experiments with ground truth measurements confirm the ability of our technique to recover LAI thanks to the GreenLab model. We now turn to experiments with estimated LAI.

C. Data with estimated LAI

Data used are issued from real MODIS reflectance product (a sequence of 17 images) on which LAI estimations, issued from the PROSAIL model, have been reconstructed and validated (see [START_REF] Lecerf | Estimating biophysical variables at 250 m with reconstructed eos/modis time series to monitor fragmented landscapes[END_REF][START_REF] Lecerf | Monitoring land use and land cover changes in oceanic and fragmented landscapes with reconstructed modis time series[END_REF]). In addition, associated classifications of large agricultural parcels (we mean by large the fact that they recover more than one MODIS pixel) were available, providing us confident LAI time series and associated land cover. In practice three types of agricultural crops were used: colza, maize and wheat. Some LAI profiles are visible in Fig. 3.

To model the various artefacts prone to occur in remote sensing images, several processes have been applied on these data:
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• Noisy observations. Data are equally subsampled (one image every 10 days) from ground data and a Gaussian white noise has been introduced as shown in Fig. 6.

• Sparse observations. Data for only 6 observations have been kept. The motivation is to evaluate the performance of our algorithm under a short length of remote sensing observation time series (very cloudy regions), as shown in Fig. 7.

• Missing observations. Very few observations were used (7 in practice) but here we simulate the absence of data during a long series. Therefore missing data are consecutive in time as shown in Fig. 8. In order to make a quantitative evaluation, various levels of Gaussian zero-mean noise, with Signal-to-noise ratio (SNR) ranging from 2 to 10, were tested. The table II represents the root-mean-square error (RMSE) between reconstructed LAI (with particle filter and smoother and other reconstruction techniques introduced in section III-A) and reference data for 100 realizations. It is interesting to observe in this table that the introduction of GreenLab plant growth model in the reconstruction process systematically reduces the error residual and outperforms all other methods. Particles smoother almost always gives a better performance than particle filter, which is quite rational as when estimating the LAI at any time point, particle filter only exploits information of up-to-date observations, while particle smoother takes into account all observations in time series. In order to have a visual inspection of the reconstructions, some illustrations are visible in Fig. 6 and confirm that our outputs are of reliable quality. Even if other curves are sometimes consistent with ground truth, particle filter and/or smoother represent the best compromise since strong errors are likely to appear with other techniques (as the polynomial one very sensible to little variations).

2) Sequence with sparse observations: We have randomly taken only six observations to reconstruct the whole time series. These observations are represented by blue dotted points in Fig. 7. As one can observe, they are more or less issued from a uniform sample along the time period. Quantitative results are depicted in table III. Here again, the performance and the benefit of relying on GreenLab growth model is illustrated. Reconstructed curves are also visible in figure 7 and demonstrate the great ability of our technique to recover proper series.
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3) Sequence of missing observations: We have removed long periods of consecutive data.

Some illustrations are visible in Fig. 8 where one can observe that no observations during the growing period are available, which is a very delicate problem. Despite these difficulties, the proposed framework is able to provide very good reconstruction of LAI time series, as shown in Tab. IV and in Fig. 8. Obviously here, only the dynamical model prior is able to estimate consistent values during critical periods of missing data. This is to our opinion a very interesting behaviour of our estimators.

In this three experiments, various reconstruction methods have been tested. In all situations, the use of GreenLab as prior plant growth model has enabled to improve the reconstruction of LAI over long time periods. This is to our opinion a very interesting behavior likely to have many potential applications. It should also be outlined that our technique not only reconstructs the LAI but is also able to extract deviations with respect to observations and dynamical model (parameters {η, }) and internal parameters of plants {E/r, k, α, t e }. This point may have interesting applications in the future. At the moment, three species (wheat, rape, maize) have been studied but the functional part of GreenLab enables this model to adapt to many other kind of cultures. Associated landscapes (Brittany, France) and crops on which our experimentations have been performed are very fragmented, which disturbs the observation with moderate remote sensing images. It is expected that in larger areas (USA, China, ...), the application of our process would be easier. It is also important to point out that some recent domain adaptation techniques [START_REF] Courty | Optimal transport for domain adaptation[END_REF] issued from machine learning and artificial intelligence (how to fit a model designed for one site to another site) could be tested on these assimilation approaches to adapt this work to other regions or species. This is actually the scope of a current work.

This second series of experiments has quantitatively demonstrated the efficiency of our technique. Let us now present experiments on real MODIS data.

D. Application on large scale study site

We have applied our methods on a large scale study site in Chizé, France. This study site is abundant with various sorts of vegetation, such as wood, grassland, maize, colza, wheat. In In the bottom of figure 11, the results from particle smoother under our proposed framework are depicted. In addition we have plotted in Fig. 9 some curves randomly taken from the images.

Despite the fact that no ground truth exist here, it appears obviously that our method seems consistent and enables to recover uncorrupted LAI time series.

IV. CONCLUSION

In this paper, we have proposed a technique that estimates leaf area index time series using data assimilation. The dynamical model is based on the GreenLab plant growth model where a number of modifications have been applied to adapt it in a remote sensing context. LAI observations are issued from the inversion of the PROSAIL model. As shown in our experiments, this technique is efficient in many various situations as very sparse observations or missing/noisy data. Quantitatively, it outperforms other reconstruction strategies that do not rely on a physical prior knowledge, especially when large period of missing data occur. An additional key point of our process is its ability to estimate internal parameters of the plant unobservable from images (environmental parameters, spoilage, ...). This is to our opinion a very good property that open new applications in the future.
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Cycle n

Environnemental parameters

Sun ligh6ng

Humidity …

Structure (k)

Composed of organs as leaves, branches, fruits, …

Biomass produc3on

(see equa9on ( 1))

Biomass repar33on

Repar99on of the produced biomass in each organ

Cycle n+1

Environnemental parameters

Sun ligh6ng

Humidity …

Along life : natural withering

Q tk

Step 1

Step 2

One cycle of GREENLAB

Structure (k+1)

Composed of organs as leaves, branches, fruits, … Leaf Area Index r=1.0,k=1.0,α=1.0 r=1.2,k=1.0,α=1.0 r=1.0,k=1.0,α=0.9 r=1.0,k=1.5,α=1.0 r=1.0,k=1.0,α=0.7 

  ;[START_REF] Zhao | Assimilating remote sensing information with crop model using ensemble kalman filter for improving lai monitoring and yield estimation[END_REF];[START_REF] Dente | Assimilation of leaf area index derived from asar and meris data into ceres-wheat model to map wheat yield[END_REF];[START_REF] Curnel | Potential performances of remotely sensed lai assimilation in wofost model based on an oss experiment[END_REF]), only a specific culture (sugar, maize, wheat) has been explored in most of these studies. In addition, associated models do not contain a functional part as GreenLab do,

1)

  Result on sequence of noisy observations: This kind of data represents a great challenge in remote sensing analysis since all observations are in general corrupted by noise and conventional techniques often require to have an estimation of such noise Rabiner and Gold (1975); Burrus et al. (1998), unlike our process.

  practice 16 images from March to October 2006 were available. On these images, the PROSAIL model has been applied to derive LAI time series. An illustration of available data is visible in the top of Fig. 11 where red stands for high values of LAI (indicating dense plant canopy) and October 31, 2018 DRAFT blue for low LAI. However at some location, observation data are corrupted, mainly because of cloud coverage, yielding corrupted time series.

…Fig. 1 .

 1 Fig. 1. Illustration of GreenLab model with two steps: in each cycle, the biomass production step computes the produced biomass based on the current plant structure and environmental parameters. The biomass repartition step allocates this biomass in various organs to generate a new plant at cycle n+1. All these operations are balanced by healthy coefficients that model the natural withering

Fig. 2 .Fig. 5 .

 25 Fig. 2. Leaf area index evolution with different r, k, α

Fig. 7 .

 7 Fig. 7. LAI reconstruction with various techniques on the sequence of sparse observations (with SNR=6).Dark line are uncorrupted MODIS observations (ground truth state), blue dots are the input noisy observations, red line is the result of reconstruction with particle smoother, cyan line from particle filter, green line from fitted model, pink line from polynomial regression, blue line from wavelet filter.

Fig. 8 .Fig. 9 .FranceFig. 10 .

 8910 Fig. 8. LAI reconstruction with various techniques on the sequence of missing observations (with SNR=6). Dark line are uncorrupted MODIS observations (ground truth state), blue dots are the input noisy observations, red line is the result of reconstruction with particle smoother, cyan line from particle filter, green line from fitted model, pink line from polynomial regression, blue line from wavelet filter.

Fig. 11 .

 11 Fig. 11. Result of particle smoother at a study site in Chizé, France October 31, 2018 DRAFT

  They are estimated for each time step t k by a least square between the mean state S t k of particles S i t k , i = {1...N } at a given time t k and the LAI S e t

k issued from GreenLab model, depending on {r, k, α} (see illustration in Fig.

2

):

{r, k, α, t e } = arg min r,k,α,t e N i=1 ||S t k -S e t k || 2 . (

13

)
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  Concerning the initialization of the system, we estimate noisy LAI sequence {S o t

k |k = 1, ..., T } from input images. Data with missing observations are approximated with a polynomial regression from {S o t k }. All these steps result in the following iterative algorithm: Incremental technique for LAI estimation and parameter inference • Initializations: -From MODIS images {O t k }, compute noisy estimations {S o t k } of LAI folloing Lecerf et al. (2008); -Perform a polynomial regression on {S o t k }in order to initialize {S r t k |k = 1, ..., M }; 1) Estimate hidden parameters {E/r, k, α, t e } with Eq. (

TABLE I ROOT

 I -MEAN-SQUARE ERROR (RMSE) IN RECOVERING LAI FOR ALL SERIES AND IN AVERAGE FOR WHEAT (TOP) AND RAPE (BOTTON).

	Wheat Series #	Polynomial Linear	Particle Filter	Particle Smoother
	1	1.2656	1.6455 0.2904±0.1056	0.1447±0.0557
	2	1.3759	1.6240 0.2722±0.0996	0.1354±0.0541
	3	1.5901	2.0144 0.2765±0.1175	0.1419±0.0501
	4	1.2049	1.5030 0.2978±0.1117	0.1420±0.0453
	5	1.5419	1.7098 0.2948±0.1103	0.1450±0.0540
	6	1.6430	1.9742 0.2861±0.1021	0.1458±0.0546
	7	1.0115	1.2628 0.2861±0.1047	0.1416±0.0427
	8	1.3134	1.4688 0.2821±0.0976	0.1415±0.0565
	9	1.4233	1.7686 0.2912±0.0944	0.1434±0.0529
	Average	1.3744	1.6634 0.2864±0.1048	0.1424±0.0518
	Rape Series #	Polynomial Linear	Particle Filter	Particle Smoother
	1	0.3870	0.4039 0.2934±0.1000	0.1442±0.0529
	2	0.2488	0.2025 0.2767±0.1042	0.1359±0.0488
	3	0.9274	0.6938 0.2729±0.0961	0.1408±0.0470
	4	0.4925	0.5515 0.2909±0.1059	0.1466±0.0524
	5	0.0464	0.0354 0.2814±0.0951	0.1384±0.0497
	6	0.4558	0.3834 0.2835±0.1046	0.1546±0.0484
	7	0.4504	0.5028 0.2669±0.0996	0.1431±0.0501
	8	0.0296	0.0175 0.3003±0.1124	0.1443±0.0501
	9	0.3396	0.2485 0.2917±0.1107	0.1432±0.0565
	Average	0.3753	0.3377 0.2842±0.1032	0.1435±0.0507

TABLE II THE

 II ROOT-MEAN-SQUARE ERROR (RMSE) OF DIFFERENT METHODS ON SEQUENCES OF VARIOUS SNR LEVEL. LAI reconstruction with various techniques on the sequence of noisy observations (with SNR=6). Dark line are uncorrupted MODIS observations (ground truth state), blue dots are the input noisy observations, red line is the result of reconstruction with particle smoother, cyan line from particle filter, green line from fitted model, pink line from polynomial regression, blue line from wavelet filter. Even in this situation where the noise is large, the best fitted curves are issued from techniques based on the GreenLab model

	Leaf Area Index	3 4 5 6 7 8							Wavelet Polynomial Particle filter Particle smoother State Observation Fitted model	Leaf Area Index	7 6 3 4 5							Wavelet Polynomial Particle filter Particle smoother State Fitted model Observation	Leaf Area Index	8 7 3 4 5 6				Wavelet Polynomial Particle filter Particle smoother State Observation Fitted model
												2													
		2																				2			
		1										1										1			
		0	2	4	6	8 Time Step 10	12	14	16		0	2	4	6	8 Time Step 10	12	14	16		0	2	4	6	8 Time Step 10	12	14	16
					(a)Wheat								(b)Maize								(c)Colza
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						Time Step									Time Step									Time Step
					RMSE			SNR=2				SNR=4			SNR=6				SNR=8		SNR=10
				Observations		1.3222±0.2637 0.8712±0.1712 0.7747±0.1327 0.6707±0.1300 0.6313±0.0895
				Polynomial		0.7971±0.2126 0.6120±0.1535 0.5760±0.1168 0.5351±0.0893 0.5136±0.0770
				Wavelet filter		0.8018±0.1749 0.7040±0.0895 0.6795±0.0793 0.6481±0.0848 0.6365±0.0548
				Fitted model		0.7063±0.2477 0.5749±0.1829 0.5259±0.1561 0.5189±0.1699 0.4586±0.0843
				Particle filter		0.7755±0.2500 0.6633±0.1822 0.5973±0.1329 0.5452±0.1327 0.5403±0.1175
				Particle smoother	0.7072±0.2495 0.5660±0.1634 0.5014±0.1240 0.4837±0.1036 0.4341±0.1057
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TABLE III THE

 III ROOT-MEAN-SQUARE ERROR (RMSE) OF DIFFERENT METHODS ON SEQUENCE WITH SPARSE OBSERVATIONS.

	RMSE	SNR=2	SNR=4	SNR=6	SNR=8	SNR=10
	Observations	1.4425±0.3580 1.2365±0.3881	0.9455±0.3495	0.7818±0.2562 0.6887±0.1431
	Polynomial	1.4943±0.5823 1.2852±0.1447	0.1447±0.4577	0.8807±0.3098 0.7867±0.1761
	Wavelet filter	1.1932±0.4386 1.1424±0.3814 1.0390± 0.4995 0.7390±0.2517 0.7229±0.1860
	Fitted model	1.0346±0.3362 1.0425±0.3267	0.8574±0.3565	0.6767±0.3192 0.7126±0.2611
	Particle filter	1.1762±0.3986 1.1233±0.3220	0.8523±0.3780	0.7931±0.3361 0.7549±0.1903
	Particle smoother	1.0198±0.3526 0.9622±0.3477	0.9451±0.3330	0.5923±0.2364 0.5919±0.1420

TABLE IV THE

 IV ROOT-MEAN-SQUARE ERROR (RMSE) OF DIFFERENT METHODS ON SEQUENCE OF MISSING OBSERVATIONS.

	RMSE	SNR=2	SNR=4	SNR=6	SNR=8	SNR=10
	Observations	1.2934±0.3317 1.0424±0.2523	0.9218±0.2468	0.7011±0.1642 0.7118±0.1709
	Polynomial	1.2606±0.5608 1.1733±0.4756	1.0649±0.4444	1.1239±0.6996 0.8877±0.5777
	Wavelet filter	1.3656±0.6070 1.0531±0.3697 0.8184± 0.2907 0.7741±0.3403 0.7840±0.3407
	Fitted model	1.2036±0.6758 1.0689±0.4229	0.8079±0.2906	0.7072±0.3583 0.6894±0.3031
	Particle filter	1.2617±0.6158 0.9596±0.3778	0.8526±0.2759	0.7232±0.3553 0.7044±0.3254
	Particle smoother	1.2065±0.6876 1.0253±0.4510	0.8055±0.3180	0.7050±0.3578 0.6892±0.3479
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