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Inflammasomes are caspase-1–activating multiprotein complexes.
The mouse nucleotide-binding domain and leucine rich repeat
pyrin containing 1b (NLRP1b) inflammasome was identified as
the sensor of Bacillus anthracis lethal toxin (LT) in mouse macro-
phages from sensitive strains such as BALB/c. Upon exposure to LT,
the NLRP1b inflammasome activates caspase-1 to produce mature
IL-1β and induce pyroptosis. Both processes are believed to depend
on autoproteolysed caspase-1. In contrast to human NLRP1, mouse
NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that
the assembly of the NLRP1b inflammasome does not require the
adaptor apoptosis-associated speck-like protein containing a CARD
(ASC). LT-induced NLRP1b inflammasome activation was shown to
be impaired upon inhibition of potassium efflux, which is known to
play a major role in NLRP3 inflammasome formation and ASC di-
merization. We investigated whether NLRP3 and/or ASC were re-
quired for caspase-1 activation upon LT stimulation in the BALB/c
background. The NLRP1b inflammasome activation was assessed in
both macrophages and dendritic cells lacking either ASC or NLRP3.
Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b
inflammasome activity. Surprisingly, the absence of ASC resulted in
IL-1β cleavage and pyroptosis, despite the absence of caspase-1
autoprocessing activity. By reconstituting caspase-1/caspase-11−/−

cells with a noncleavable or catalytically inactive mutant version of
caspase-1, we directly demonstrated that noncleavable caspase-1 is
fully active in response to the NLRP1b activator LT, whereas it is
nonfunctional in response to the NLRP3 activator nigericin. Taken
together, these results establish variable requirements for caspase-1
cleavage depending on the pathogen and the responding NLR.
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Anthrax is a zoonotic disease caused by the Gram-positive
bacterium Bacillus anthracis. B. anthracis provokes a shock-

like syndrome that can prove fatal to the host (1) and has re-
cently gained notoriety as a potential bioterrorism agent. An-
thrax pathogenicity relies on its ability to secrete three virulence
proteins, which combine with each other to form two toxins. The
protective antigen (PA) combines with the edema factor (EF) to
form the edema toxin (2, 3). EF is an adenylate cyclase that causes
edema of the infected tissue. The binary combination of PA with
lethal factor (LF) gives rise to the most virulent factor, called lethal
toxin (LT), responsible for the systemic symptoms and death of the
infected animal. To escape the host immune response, LT impairs
the host innate immunity by killing macrophages (4–6). The PA
protein interacts with LF and binds to cell surface receptors, en-
abling endocytosis of the LT complex. In the acidic compartment,
PA forms pores allowing the delivery of LF to the cytosol. LF is
a zinc metalloprotease that was shown to cleave the N-terminal
region of many MAP kinase kinases and to induce apoptosis of
macrophages. LT also triggers pyroptosis through the formation of
a caspase-1–activating platform, named “inflammasome” (6–8).
Inflammasomes are multiprotein complexes of the innate

immune response that control caspase-1 activity and pro–IL-1β
and pro–IL-18 maturation. Most inflammasomes are composed
of specific cytosolic pathogen recognition receptors (PRRs), as
well as the apoptosis-associated speck-like protein containing

a caspase activation and recruitment domain (CARD) (ASC)
adaptor protein that enables the recruitment and activation of
the caspase-1 protease. Once caspase-1 is oligomerized within an
inflammasome platform, the enzyme undergoes autoproteolysis
to form heterodimers of active caspase-1 (9–12). In the mouse, at
least five distinct inflammasomes have been described, distin-
guished by the PRR that induces the complex formation. The
PRRs capable of participating in inflammasome platform for-
mation are either members of the nod-like receptor (NLR)
family (e.g., NLRP1, NLRP3, or NLRC4) or of the PYrin and
HIN (PYHIN) family (e.g., AIM2) (13, 14). ASC is composed of
a pyrin domain (PYD) and a caspase activation and recruitment
domain (CARD). ASC interacts with a PYD-containing PRR via
its PYD domain and recruits the CARD domain of caspase-1 via
its CARD domain. Thus, ASC is essential to the formation of the
inflammasome by receptors such as NLRP3 or AIM2 (15–18).
However, its presence is dispensable for NLRC4, which contains
a CARD in place of a PYD, allowing direct interaction with the
CARD domain of caspase-1 (19, 20).
Past studies have determined that certain mouse strains are

more sensitive than others to LT cytotoxicity, and genetic studies
identified NLRP1b as the factor conferring mouse strain sus-
ceptibility to anthrax LT (21). The mouse genome contains three
different NLRP1 isoforms (a, b, and c) and a functional NLRP1b
was found to be expressed by the mouse strains sensitive to LT
(e.g., BALB/c or 129 background). Expression of NLRP1b was
shown to mediate IL-1β release and caspase-1–mediated cell
death in response to LT (7, 21, 22). Mouse NLRP1b differs
structurally from human NLRP1 in that it lacks the N-terminal
PYD (23). The absence of the PYD suggests that NLRP1b can
directly engage caspase-1 without a requirement for ASC.
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However, studies dissecting the mechanism of NLRC4 inflam-
masome activation demonstrated that ASC is required for the
amplification of caspase-1 autoprocessing and IL-1β secretion
but not for pyroptosis (19, 20). Cell lysis mediated by LT was
shown to be dependent on sodium and potassium fluxes (24),
and high extracellular potassium inhibited IL-1β secretion upon
LT treatment, suggesting a role for the NLRP3 inflammasome in
LT sensing (22, 25). Therefore, we investigated whether NLRP3
and/or ASC were required for caspase-1 activation in response to
LT. The NLRP3, ASC, and caspase-1 mouse knockout strains
were backcrossed into the BALB/c background and the response
of macrophages and dendritic cells (DCs) to LT intoxication was
studied. Our data reveal that (i) in response to LT, ASC is dis-
pensable for caspase-1 activation, but uncleavable caspase-1 is
fully active; and (ii) upon activation of the NLRP3 inflamma-
some, uncleavable caspase-1 is inactive.

Results
Secretion of Mature IL-1β in Response to LT Is Independent of the
NLRP3 Inflammasome in Murine Macrophages. In response to LT,
NLRP1b is activated to form an inflammasome, resulting in
caspase-1 activation. To study whether ASC and/or NLRP3 were
also required to activate caspase-1 in response to LT, we isolated
peritoneal macrophages and differentiated macrophages from
bone marrow progenitors (BMDMs) from BALB/c WT, caspase-1/
caspase-11-, ASC-, or NLRP3-deficient mice. In mouse macro-
phages, lipopolysaccharide (LPS) is used as the priming signal,
also called signal 1 that is necessary to induce the expression of the
caspase-1 substrate, pro–IL-1β, and to increase the amount of
NLRP3. The cells were then incubated with LT for 6 h and
inflammasome activation was monitored by assessing the secretion
of mature IL-1β and cleaved caspase-1. As expected, LT induced
secretion of mature IL-1β and cleaved caspase-1 (p20) in the su-
pernatant of primed WT cells (Fig. 1 A and B). Secretion of IL-18
was also significantly increased upon LT treatment (Fig. S1A). In
nonprimed macrophages, the level of cleaved caspase-1 secreted
into the supernatant was similar to that under priming conditions
(Fig. 1 A and B). Upon LT treatment, NLRP3−/− macrophages
secreted a similar amount of IL-1β, IL-18, and cleaved caspase-1
to WT cells, demonstrating that NLRP3 was dispensable for
NLRP1b inflammasome activation (Fig. 1 and Fig. S1A). LT
treatment triggered significant IL-1β maturation in the cell
supernatants of ASC−/− peritoneal macrophages and BMDMs,
suggesting that ASC was not required for NLRP1b inflammasome
formation to induce IL-1β maturation (Fig. 1 A and B). In-
triguingly, in the absence of ASC, cleaved caspase-1 was not
detected in the cell supernatant of either peritoneal macrophages
or BMDMs, whether the cells were primed or not. Similarly,
cleaved caspase-1 was not detected in the ASC−/− cell lysates,
suggesting that caspase-1 did not undergo autoproteolysis (Fig.
S1B). As previously described, IL-1β and caspase-1 p20 secretions
were abolished in NLRP3−/− and ASC−/− peritoneal macrophages
and BMDMs in response to the NLRP3 activator nigericin (15).
Finally, primed caspase-1/caspase-11−/− macrophages treated with
LT did not produce mature IL-1β, demonstrating that caspase-1 is
the effector of NLRP1b activation.

LT Induces IL-1β Maturation in the Absence of Caspase-1 Cleavage in
ASC−/− Bone Marrow Derived Dendritic Cells. To determine whether
the phenotype observed in mouse macrophages was conserved in
mouse DC, bone marrow dendritic cells (BMDCs) from WT,
ASC-, NLRP3-, and caspase-1/caspase-11–deficient mice were
generated and exposed to LT. WT BMDCs released a similar
amount of cleaved caspase-1 into the cell supernatant whether or
not the cells were exposed to a priming signal; however, only
LPS-primed cells secreted a large amount of mature IL-1β (Fig.
1C). As expected, caspase-1/caspase-11−/− BMDCs primed with
LPS did not produce active IL-1β (Fig. 1C). In NLRP3−/−

BMDCs, LT induced similar levels of caspase-1 activation to WT
cells, as illustrated by the amount of p20 subunit secreted into
the cell supernatant. Furthermore, in the presence of LPS + LT,
NLRP3−/− cells efficiently secreted IL-1β, demonstrating that
NLRP3 does not participate in NLRP1b inflammasome formation
in response to LT (Fig. 1C). ASC−/− BMDCs stimulated with LT
did not secrete processed caspase-1 as illustrated by the absence of
p20 in the cell supernatant, regardless of the presence of a priming
signal. As observed in macrophages, when the cells were primed
with LPS, mature IL-1β was secreted despite the lack of processed
caspase-1 in the cell supernatant (Fig. 1C). Thus, the absence of
ASC in primed BMDCs prevents caspase-1 autoprocessing but does
not affect the pro–IL-1β maturation and secretion (Fig. 1C and Fig.
S1C). As described earlier, the absence of NLRP3 and ASC abol-
ished the IL-1β production in response to nigericin treatment.

LT-Induced Pyroptosis Is Independent of NLRP3 and ASC. In addition
to its role in IL-1β maturation, LT is a potent inducer of
pyroptosis, a caspase-1–dependent cell death (21). To address
the question of whether ASC and NLRP3 are required for LT-
induced pyroptosis, peritoneal macrophages isolated from WT,
caspase-1/caspase-11−/−, ASC−/−, and NLRP3−/− mice, were trea-
ted with LT and cell death was monitored over 6 h. As shown in
Fig. 2A, when exposed to LT, WT macrophages died rapidly,
beginning at 2 h posttreatment and reaching more than 90%
cell death by 6 h. ASC−/− and NLRP3−/− cells were as sensitive
as WT cells to LT-induced pyroptosis, indicating that neither
ASC nor NLRP3 participated in LT-induced cell death. LT
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Fig. 1. LT induces IL-1β secretion but not caspase-1 autoprocessing in ASC-
deficient macrophages and BMDCs. Nonprimed or LPS-primed mouse peri-
toneal macrophages (A) or BMDMs (B) or BMDCs (C) of indicated genotypes
were treated with B. anthracis lethal toxin (LT, 0.5 μg/mL, 6 h) or nigericin
(Nig, 10 μM, 2 h) or left untreated (−); caspase-1 and IL-1β cleavage, and ASC
and NLRP3 protein levels were assessed by Western blot. Actin was used as
a loading control. These results were replicated three times independently.
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intoxication was easily visible 2 h posttreatment by phase
contrast microscopy as illustrated by the presence of bright
blebs on sensitive cells (Fig. S2A). As described previously in
the literature, caspase-1/caspase-11−/− macrophages were fully
protected from pyroptosis and showed no morphological signs of
intoxication (Fig. 2A and Fig. S2A) (21). Similar experiments were
carried out in BMDMs (Fig. 2B) and BMDCs (Fig. 2C), and, as
described for peritoneal macrophages, ASC and NLRP3 were not
required for the pyroptosis triggered by LT. The absence of cas-
pase-1 protected both BMDMs and BMDCs from death. Next, an
in vivo model was used to assess in situ the macrophage sensitivity
to LT intoxication. Thioglycollate-treated animals were injected
intraperitoneally on day 3 with LT and euthanized 3 h later to
quantify the number of macrophages present in the peritoneal
cavity. As observed in vitro, LT induced the death of peritoneal
macrophages in vivo of WT and ASC−/− mice, whereas peritoneal
macrophages of caspase-1/caspase-11−/− mice were mostly not af-
fected, but did not induce the death of neutrophils (Fig. 2D and
Fig. S2B).

Uncleaved Caspase-1 Is Able to Induce Pyroptosis and IL-1βMaturation
upon LT Stimulation. Altogether, these observations suggest that
caspase-1 may be fully active in its 45-kDa form and in the ab-
sence of autoprocessing. To clarify whether caspase-1 activity is
involved in IL-1β secretion and pyroptosis in ASC−/− cells, WT
and ASC−/− macrophages were pretreated with carbobenzoxy-
valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (z-VAD-
fmk), a pan-caspase inhibitor, or Z-Tyr-Val-Ala-Asp(OMe)-
fluoromethylketone (z-YVAD-fmk), a caspase-1–specific inhibitor,
before the addition of the toxin. In WT cells, z-VAD-fmk and
z-YVAD-fmk completely inhibited both the NLRP3 inflammasome
activity in response to nigericin, and the NLRP1b inflammasome
activity upon LT treatment, as illustrated by the absence of mature
IL-1β and cleaved caspase-1 in the cell supernatants (Fig. 3A). LT-
induced IL-18 secretion was also reduced (Fig. S3A). Similarly, in
ASC−/− cells incubated with LT, a complete inhibition of IL-1β and
IL-18 secretion was observed in the presence of z-VAD-fmk or
z-YVAD-fmk. Both caspase inhibitors protected WT and ASC−/−

macrophages from LT intoxication (Fig. 3B). These results in-
directly suggest that caspase-1 is enzymatically active in ASC−/− cells
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despite its inability to undergo autoproteolysis. Caspase-1/caspase-
11−/− BMDMs were reconstituted with retroviruses expressing ei-
ther WT or different mutant forms of caspase-1 to directly and
definitively establish whether, in response to LT, noncleaved cas-
pase-1 is capable of triggering IL-1β and IL-18 maturation and se-
cretion and pyroptosis. Caspase-1 was expressed at similar levels
using WT caspase-1, caspase-1 DEAD (mutated at the catalytic
site), and uncleavable caspase-1 C71 (catalytically active but mu-
tated in all processing sites) (Fig. 4A) (20). Transduction of cas-
pase-1/caspase-11–deficient cells with WT caspase-1–expressing
plasmid restored LT sensitivity, as assessed by cell death (Fig. 4B).
Furthermore, the expression of WT caspase-1 resulted in the se-
cretion of IL-1β and IL-18 and autoprocessed caspase-1 upon LT
and nigericin treatments (Fig. 4A and Fig. S3B). As expected, cells
reconstituted with the enzyme-dead version did not produce any
active IL-1β in response to LT or to nigericin and were not sensitive
to LT intoxication. Interestingly, the expression of the uncleavable
C71 caspase-1 mutant was able to restore pyroptosis and the pro-
duction of mature IL-1β and IL-18, demonstrating that the caspase-
1 45 kDa is fully active in response to LT treatment (Fig. 4A and
Fig. S3B). As described for BMDMs, the transduction of caspase-1/
caspase-11–deficient BMDCs with the uncleavable C71 caspase-1
mutant restored both IL-1β secretion and pyroptosis in response to
LT (Fig. 4 C and D). Notably, in both BMDMs and BMDCs, C71
caspase-1 did not restore nigericin-induced cleavage and secretion
of IL-1β, suggesting different mechanisms of caspase-1 activation
in the NLRP1b and NLRP3 inflammasomes (Fig. 4 A and C).

LT Induces Speck Formation in WT and Caspase-1/Caspase-11−/− Cells.
Upon inflammasome activation, ASC assembles into a large
multimeric structure called a “speck” detectable by immunoflu-
orescence as a single perinuclear focus (26, 27). The polymerized
ASC recruits and dimerizes caspase-1 within the specks, allowing
caspase-1 activation by autoproteolysis of the enzyme (27). Re-
cently, efficient cytokine production was associated with autopro-
cessing of caspase-1 within specks upon NLRC4 inflammasome

activation (20). LT treatment of macrophages induced caspase-1
cleavage and secretion, suggesting active ASC speck formation. We
therefore wondered whether the sensing of LT by the NLRP1b
inflammasome could induce ASC speck formation. In WT macro-
phages treated with LT, ASC specks were detected 2 h posttreat-
ment by immunofluorescence (Fig. 5A). At the same time point,
caspase-1 was also found to form a perinuclear focus (Fig. 5B).
Colabeling of ASC and caspase-1 clearly demonstrated that foci of
caspase-1 were localized in very close proximity to ASC specks (Fig.
5C). In the absence of caspase-1, ASC was still able to form a speck
(Fig. 5A). However, when ASC was absent from the cells, no cas-
pase-1 focus was detected, suggesting that ASC specks recruit cas-
pase-1 to the foci in response to LT (Fig. 5B).

Discussion
In mouse macrophages of sensitive strains, LT triggers the for-
mation of the NLRP1b inflammasome, culminating in pyroptosis
and in the secretion of mature IL-1β and active caspase-1 (7, 21).
We and others could inhibit NLRP1b inflammasome activity by
adding extracellular potassium to the culture medium (Fig. S4)
(22, 25), suggesting a role for NLRP3 and/or ASC in the for-
mation of the NLRP1b inflammasome. To study whether these
proteins contribute to LT detection by the NLRP1b inflamma-
some, we examined the role of NLRP3, ASC, and caspase-1 in
response to LT intoxication in both macrophages and DCs in the
mouse BALB/c background.
The data presented here show that LT induces similar levels of

autoprocessed caspase-1 in primed and nonprimed cells (Figs. 1 and
2), suggesting that the assembly of the NLRP1b inflammasome does
not require any upstream Toll-like receptors (TLRs) signaling (sig-
nal 1) for optimal activation. This mode of activation differs from
the NLRP3 inflammasome activation. Although the NLRP3 inflam-
masome can form and activate caspase-1 without an additional
signal, studies showed that the TLR priming signal significantly
increases the amount of NLRP3 protein and therefore the amount
of caspase-1 activated within the inflammasome platform (28, 29).
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However, our results show that NLRP3 is not required for IL-1β
maturation and pyroptosis in response to LT in mouse macro-
phages and in BMDCs. As such, our results extend those of
Kovarova et al. who described that NLRP3 is dispensable for
NLRP1b inflammasome activation in macrophages of 129 back-
groundmice (30). Using ASC-deficient macrophages and BMDCs,
we observed that upon LT stimulation, IL-1β secretion and
pyroptosis proceeded normally despite the absence of caspase-1
autoprocessing (Figs. 1 and 2). As described in the literature, cas-
pase-1/caspase-11−/− macrophages and DCs were fully protected
from death and did not secrete any IL-1β. With regard to macro-
phage cell death, cells were as sensitive in vivo as in vitro; ASC−/−

macrophages died in response to LT treatment, whereas caspase-1/
caspase-11−/− macrophages were protected (Fig. 2D). Intriguingly,
whereas ASC−/− cells secreted a similar level of IL-1β to WT cells,
we were not able to detect any cleaved caspase-1 (p20) in the cell
supernatants. However, IL-1β production was dependent on cas-
pase-1 activity, as IL-1β secretion was inhibited by the pan-caspase
inhibitor z-VAD-fmk and by the caspase-1 inhibitor z-YVAD-fmk
(Fig. 3A). Similarly, pyroptosis was inhibited in ASC−/− cells with
both caspase inhibitors (Fig. 3B). Our results suggest that in re-
sponse to LT and in the absence of ASC, caspase-1 zymogen (p45)
is active despite its inability to undergo autoproteolysis.
Caspase-1 belongs to the family of initiator caspases, which

includes caspase-8, -9, and -2. Initiator caspases are found in the
cell cytosol as monomeric zymogens with little activity (31). Their
activation is thought to follow the proximity-induced dimerization
model (32, 33). Local increase in caspase-1 zymogen through di-
merization increases the catalytic activity required to initiate its
own activation by autoproteolysis. Once proteolysed, the caspase-1

p20 and p10 subunits assemble into enzymatically active p20/p10
dimers that cleave caspase-1 substrates such as pro–IL-1β and pro–
IL-18 (9, 10). Inflammasomes form the molecular platforms that
allow caspase-1 dimerization, activation, and autoproteolysis (11).
Our data indicate a possible role for the zymogen form of caspase-1
in IL-1β processing and pyroptosis in ASC-deficient cells. A
study by Broz et al. suggested that specific inflammasome
receptors had distinct molecular platforms with distinct modes of
activation of caspase-1 depending on the presence of ASC (20).
Inflammasomes with a PRR containing a CARD domain, such
as NLRC4, form large specks in the presence of ASC, where
caspase-1 is autoproteolysed and cleaves pro–IL-1β and pro–IL-
18. A second type of NLRC4 inflammasome platform that
functions independently of ASC, activates caspase-1 through
CARD–CARD interactions without inducing its autoprocessing
activity. This platform controls caspase-1–induced pyroptosis
(20). A similar mode of action was proposed for the CARD-
containing NLRP1b receptor. However, our study demonstrates
another mechanism of activation. In the absence of ASC and
caspase-1 autoproteolysis, the NLRP1b inflammasome was still
capable of inducing both cytokine maturation and cell death. In
addition, by reconstituting caspase-1/caspase-11–deficient BMDMs
and BMDCs with a vector expressing the uncleavable C71 or the
enzyme dead caspase-1 mutant, we showed that uncleavable
caspase-1 promoted IL-1β secretion and pyroptosis in response
to LT (Fig. 4). The efficient reconstitution of caspase-1/caspase-
11–deficient cells with WT caspase-1 excluded a role for cas-
pase-11 in response to LT.
While preparing this paper, a study by Van Opdenbosch et al.

reported observations similar to ours in C57BL/6 mice expressing
a NLRP1b transgene (34). They described IL-1β cleavage and
pyroptosis in ASC−/−macrophages. However, their work, which also
suggested that uncleaved caspase-1 is active in ASC−/− macro-
phages, was largely based on the use of a caspase-1 inhibitor, which,
like most pharmacological inhibitors, may lack complete selectivity.
In the work presented here, we sought to overcome this limitation
and, by reconstituting caspase-1 knockout cells expressing endoge-
nous NLRP1b with different caspase-1 mutant constructs, we di-
rectly and definitively demonstrated for the first time to our
knowledge that the uncleavable version of caspase-1 accomplishes
efficient IL-1β maturation and pyroptosis upon LT stimulation.
Our work suggests that the NLRP1b–caspase-1 interaction

through their CARD domains confers a structural change allowing
full-length caspase-1 to become activated. The NLRP1b inflam-
masome may function like the apoptosome (Fig. S5). A recent
biochemical analysis reported that the electrostatic surface
charges of hNLRP1 and caspase-1 CARDs share similarities with
the surfaces of Apaf-1 and caspase-9 CARDs (35). Caspase-9 was
shown to be active in its full-length form when oligomerized within
the apoptosome in the absence of autoproteolysis (36, 37). Further
biochemical experiments are required to understand how full-
length caspase-1 is activated within the NLRP1b inflammasome.
In addition, we show that the C71 uncleavable mutant was not

effective in response to the NLRP3 inflammasome activator
nigericin despite the presence of ASC. This result implies that the
NLRP3 inflammasome fully relies on caspase-1 autoproteolysis for
activity. The NLRP3 inflammasome requires the presence of ASC
to activate caspase-1. Indeed, it has been widely described that in
response to NLRP3 activators, the IL-1β secretion is abolished and
the pyroptosis is strongly impaired in ASC−/− macrophages (16,
19). NLRP3 bearing only a PYD and no CARD domain requires
ASC, containing both a PYD and a CARD, to recruit caspase-1
and to form an inflammasome. Caspase-1 is then autoproteolysed
and activated within specks. Thus, NLRP1b and NLRP3 inflam-
masomes differentially activate caspase-1.
Our study also shows that in WT cells treated with LT, ASC

specks are formed and foci of caspase-1 colocalized with the
specks (Fig. 5). In the absence of ASC, the foci of caspase-1 are

LT

N
uc

le
us

Ca
sp

as
e-

1
M

er
ge

C

AS
C

LT

W
ild

 Ty
pe

AS
C

-/-

B

LT

W
ild

 Ty
pe

AS
C

-/-
Ca

sp
as
e-
1/

Ca
sp
as
e-
11

-/-

A -

-

-

ASC Nucleus

NucleusCaspase-1

Fig. 5. LT induces ASC speck formation in a caspase-1–independent man-
ner. LPS-primed peritoneal macrophages were treated with LT (0.5 μg/mL) or
not (−) for 2 h. Cells were then fixed in 2% (wt/vol) paraformaldehyde and
immunostained for ASC (green, A) or caspase-1 (red, B). Confocal microscopy
sequential imaging of ASC immunostaining (green) and caspase-1 immuno-
staining (red) was performed on LPS-primed macrophages treated or not (−)
with LT (0.5 μg/mL) (C). Hoechst (blue) was used to stain nuclei.

Guey et al. PNAS Early Edition | 5 of 6

IM
M
UN

O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415756111/-/DCSupplemental/pnas.201415756SI.pdf?targetid=nameddest=SF5


not detected, whereas in the absence of caspase-1, ASC specks
are still formed. In response to LT, ASC specks are most likely
responsible for the autoproteolysis of caspase-1 as previously
described for other inflammasomes (20, 27). Recent studies
demonstrated that ASC PYD and MAVS CARD domains func-
tion like prion domains by inducing polymerization of the PYD
and CARD domains (38). Our results suggest that the NLRP1b
CARD domain is not able to induce polymerization of caspase-1
because no focus was detected in the absence of ASC. However,
ASC speck formation is most likely dependent on the NLRP1b
CARD domain. ASC polymerization was shown to be dependent
on low intracellular potassium concentration (27). ASC assembly
and the NLRP3 inflammasome activation are inhibited by in-
creasing the extracellular potassium concentration above 90 mM
(25, 27). Despite the inhibitory effect of extracellular potassium
addition on the NLRP1b inflammasome activation by LT, cas-
pase-1 activity was not dependent on its autoproteolysis within the
ASC speck. Low intracellular potassium may be required for
NLRP1b and caspase-1 interaction. Indeed, it has previously been
demonstrated that the apoptosome assembly is sensitive to po-
tassium concentration (39). The NLRP1b inflammasome can ef-
ficiently activate caspase-1 in the absence of ASC and in the
absence of caspase-1 autoproteolysis. It is therefore tempting to
speculate that ASC may have additional functions yet to be de-
scribed. Similarly, caspase-1 autoprocessing appears not to be
critical for its activity. Thus, it remains to be elucidated why cas-
pase-1 autoproteolyses in WT cells in response to LT and whether
the autoproteolysis is associated with unknown function.
In conclusion, our data, which highlight differential require-

ments for caspase-1 autoproteolysis in NLRP1b and NLRP3
inflammasome function, may have implications for pathogen
recognition and response.

Materials and Methods
Reagents. Nigericin (N7143) and KCl (P9541) from Sigma, ultra-pure LPS
(Escherichia coli 0111:B4) from Invivogen, anthrax lethal factor (batch 1692A1B),
and protective antigen (batch 17117A1B) from List Biological Laboratories.
z-YVAD-fmk and z-VAD-fmk are from Bachem.

Mice. NLRP3−/− mice were obtained from J. Tschopp (16), ASC−/− mice from
V. M. Dixit (19), and caspase-1−/− mice from R. A. Flavell (40). The three
transgenic strains were backcrossed in BALB/c/Ola background for at least
nine generations. WT animals were littermates from the caspase-1/caspase-
11−/−, ASC−/−, or NLRP3−/− colonies. Animals were housed in individually
ventilated cages under specific pathogen-free conditions, and studies were
conducted under protocols in accordance with the animal care guidelines of
the European Union laws and were validated by the local Animal Ethic
Evaluation Committee (CECCAPP).

Infection. For transduction of primary bone marrow cells, retroviral particles
were generated using Phoenix-Eco packaging cells and used to transduce
bone marrow cells at day 2 and day 3 during cell differentiation as described
by Broz et al. (20). Cells were stimulated after 7 d of differentiation as de-
scribed above. pMSC2.2-expressing vectors for caspase-1 wild type, caspase-1
DEAD, and caspase-1 C71 were obtained from P. Broz.
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