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Abstract — In this perspective article, we emphasize the 
combination of Surface-Enhanced Raman Spectroscopy (SERS) 
and Microfluidic devices. SERS approaches have been widely 
studied and used for multiple applications including trace molecules 
detection, in situ analysis of biological samples and monitoring or, 
all of them with good results, however still with limitations of the 
technique, for example regarding with improved precision and 
reproducibility. These implications can be overcome by microfluidic 
approaches. The resulting coupling Microfluidics – SERS (MF-
SERS) has recently gained increasing attention by creating 
thundering opportunities for the analytical field. For this purpose, 
we introduce some of the strategies developed to implement SERS 
within microfluidic reactor along with a brief overview of the most 
recent MF-SERS applications for biology, health and environmental 
concerns. Eventually, we will discuss future research opportunities 
of such systems. 

 
Index Terms — Microfluidics, Surface-Enhanced Raman 

Spectroscopy, Lab on a Chip, in situ characterization. 

I. INTRODUCTION 

In the last decades, Raman spectroscopy has gained increasing 
attention as an analytical tool, being conventionally used to provide 
researchers with precious data for solving problematics in various 
topics such as environment, safety, biology and healthcare. This 
technique collects the inelastic dispersion with respect to an incident 
wavelength, allowing monitoring the vibrational modes of the 
molecules or material investigated. Due to the coupling to microscope, 
Raman spectroscopy can be used to perform (bio)chemical imaging at 
higher spatial resolution (less than 200 nm) that what can be typically 
obtained with Infrared spectroscopy [1]. However, this 
characterization tool is known to have a low sensitivity due to weak 
Raman scattering, which is one of the major problems associated with 
this technique. Therefore, for some specific applications, this has 
pushed researchers to consider one technique now widely used in 
Raman spectroscopy: The Surface-Enhanced Raman Scattering 
(SERS). This is a surface approach that enhances Raman scattering 
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(the gain can reach a factor up to 1010, thus allowing the detection of 
trace molecules) due to the interactions between the investigated 
molecules and different nanostructured substrates constituted of noble 
metals generating localized surface plasmons and hot spots in between 
metals nanoparticles [2]. The fabrication of carefully-designed SERS 
substrates has been widely investigated; however, various challenges 
still exist in SERS, limiting its adoption by a wider scientific 
community, namely: the substrates fabrication reproducibility [3], the 
difficulty of realizing field measures and the high cost of analysis 
represent the most current problems [4]. With the purpose of 
addressing these limitations, the scientific community has look 
towards microscale processes through the use of microfluidics 
fundamentals. 

Microfluidics is the scientific field that studies the behavior of the 
fluids and their control at microscale using microchannels displaying 
dimensions in the order of tens to hundreds of µm [5]. The design, 
fabrication and use of microfluidic devices have permitted to solve 
some problems related to the SERS technique, thanks to high precision 
and reproducibility in the synthetic and/or analytical parameters [6], 
leading to the so-called MF-SERS approaches. 

Over the past 10 years, an increasing number of studies have 
reported and reviewed the use of MF-SERS to miniaturize the 
analytical systems and to enhance their reproducibility [7]–[11] 
(Figure 1). The applications of such systems are wide, from chemistry 
to biology, including several medical (point-of-care – POC analysis) 
and analytical applications (trace molecules and drugs detection, etc.). 
All these researches have grown up over time, developing methods for 
general and specific applications based on MF-SERS devices.  

In this perspective paper, we first introduce the general strategies 
for designing and fabricating MF-SERS devices and further introduce 
some of the current reported applications of MF-SERS. Eventually, a 
general perspective of this new analytical tool possibilities to other 
scientific fields will be presented.  
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Fig. 1. Advances of MF-SERS over time. 

II. COUPLING SERS WITH MICROFLUIDICS  
 
One of the most important parts to consider when designing a MF-

SERS experiment is the correct selection and fabrication/use of SERS 
substrates. These substrates are generally fabricated from the 
assemblies of nanoparticles or nanostructures of noble metals allowing 
generating the desired Plasmon effects, leading to the enhancement of 
the Raman scattering (nanoM with M = gold or silver). Several types 
of arrangements have been reported so far including metal NPs self-
assemblies or core-shell (nanoM@ Al2O3 or nanoM@SiO2) [12], [13] 
pickering emulsions [14] or metals NPs-decorated oxides solids 
substrates [15]. Nevertheless, the complex fabrication procedures 
mostly exhibit low reproducibility, leading to a dispersion in the 
results.  

When considering the integration of SERS substrates into 
microfluidics devices, additional difficulties arise, as several other 
considerations need to be taken into account. First, complicated 
microfabrication techniques generally have to be considered to 
integrate the substrates into a microfluidic chip. At the nanometer scale 
- required for such applications - it is not easy to control either the 
arrangement of NPs for a bottom-up SERS substrate approach [16] or 
the top-down manufacturing of substrates [17]. Second, the 
physicochemical stability of the substrates exposed to additional 
stresses (fluid flow, chemicals, temperature, etc.) has to be carefully 
investigated, as it can result in a modification or even a failure of the 
substrate during experimentation, leading to poor reproducibility. 

Nevertheless, there are several strategies that can be employed to 
generate SERS effect within microfluidic systems depending on 
whether the SERS substrate is in solution (colloids, nanoparticles 
aggregates) or fixed on a surface (solid substrates fabricated from top 
down microfabrication or bottom up in situ synthesis), see Figure 2, 
which corresponds respectively to: (i) SERS substrates dispersed in 
flow, (ii) integrated SERS substrates (top-down approaches) and (iii) 
immobilized SERS substrates (bottom-up approaches), which are 
discussed hereafter. 
 

 

 
 

Fig. 2. Strategies for the integration of SERS substrates within 
microfluidic reactors. (a) examples of SERS colloids: Gold 
nanostructures (nanotriangles, nanospheres and nanostars) used in 
flow (adapted from [18] with permission from The Royal Society of 
Chemistry), (b) microfabricated substrates based on plasmonic 
nanopillar geometry inside microchannel (adapted from [19] with 
permission from The Royal Society of Chemistry), (c) Silver NPs 
deposited inside of a microchannel as a fixed MF-SERS substrate 
(adapted from [20] with permission from The Royal Society of 
Chemistry). 
 

Dispersed SERS substrates. The first strategy consists in using 
nanoM assemblies dispersed within the solution to analyze. This 
simple procedure requires the pre-synthesis of the nanoM assemblies 
(which size generally ranges from 20 to 200 nm) and their dispersion 
in the media. Several types of morphologies for the nanoM 
arrangements have been reported such as metal nanoflowers or 
nanostars [21]. Indeed, the SERS effect is affected not only by the 
particle size, but also by their shape, and the distances between the 
metallic nanoparticles, generating controllable hot spots, driven by the 
localized electric field (Figure 2-a). The main interest concerns the 
easy manipulation and preparation of the samples, while the substrates 
can be recovered between analyses and cleaned to minimize cross 
contaminations. Nevertheless, solid handling inside microfluidics 
channels still remains challenging and some deposition of the 
nanostructured SERS substrates on the microchannel walls can occur 
over time, leading potentially to clogging of the device. Additionally, 
random aggregation of such nanoM colloids inside the solution may 
induce uncontrollable variation in the Raman signals. It is therefore 
highly desirable to pay attention to the fluidic design of the chips. The 
design and fabrication of microfluidic devices are not limited to their 
fabrication with only one microchannel to transport the fluid. Indeed, 
there are many possibilities to design microfluidic devices with 
different number of microchannels that expand their applications. For 
instance, Cui Y. et al show the use of a microfluidic system with 
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different microchannels for the in situ synthesis and generation of gold 
SERS substrates and their performance evaluation [22], [23]. 

The advantage of this strategy is its easy operation and the use of 
nanoM previously synthesized as well as commercial nanoM. Also, in 
this strategy, is possible to recover and to clean the nanoM for reuse. 
This way, the chip can be used several times. However, undesirable 
clogging into the microchannels and nanoM agglomerations are hard 
to avoid, causing variation in Raman signals. 

 
Integrated microfabricated SERS substrates on chip. The second 

strategy concerns the generation of SERS substrate directly inside the 
channels, which is now been made possible thanks to the recent 
development of microfabrication techniques at nanoscale (Figure 2-b). 
Such approaches allow to design 3D SERS substrates for example 
through the fabrication of nanopillar arrays from silicon or glass [24], 
on the top of which thin metals layers can be sputtered or nanoM 
assemblies can be deposited for generating the desired SERS effect. 
Similarly, oxide nanoporous layers, nanotubes or nanowires (Al2O3, 

ZnO or TiO2) can be first grown on a planar surface and later decorated 
with nanoM assemblies [25]–[27]. These substrates are slightly more 
complicated to realize but lead so far to the best stability and 
reproducibility of the results thanks to a more homogeneous adsorption 
of molecules on the SERS substrates.  

Among the various available fabrication techniques, it is worth 
mentioning the laser irradiation techniques [28], which allows 
accessing complex multi-materials nanostructures directly on chip. 
The principle consists in irradiating a metallic film with a laser, which 
will heat a precursor solution in contact with the film, leading to their 
decomposition and the heterogeneous growth of nanostructures. This 
approach was use in particular to grow 3D Ag@ZnO nanostructures 
for MF-SERS applications [29]. The laser direct writing approaches 
[30], is yet another interesting methodology, which allows accessing 
nanoscale structuration of MF-SERS substrates thanks to the recent 
development of femtosecond laser writing for the precise design of 
nanoscale structures. 

Eventually, nanoprinting methodologies [31], aiming at transferring 
through a mold sub-micrometer designs to a process able active layer, 
have quickly evolved over the last decades and can now easily be 
implemented to design metal SERS substrates at the nanoscale [32]. 

Despite this strategy is expensive for the distinct microfabrication 
techniques at nanoscale and their hard training for operations, it 
presents great advantages. With integrated microfabricated SERS 
substrates on chip, it is indeed possible to design highly ordered and 
controlled nanoM SERS substrates for increasing the number of 
hotspots and the homogeneous adsorption of molecules, and thus to 
realize reproducible SERS analysis. 
 

Immobilized SERS substrates within microchannels. This last 
strategy refers to the ordered spatial deposition of single metals 
nanoparticles or nanostructured materials inside of a microchannel 
(Figure 2-c). These immobilized SERS substrates constituted of 
nanoM arrays allow a fine control of the interparticle distance for 
improving the electrical field and the subsequent SERS effect. Thanks 
to advances in surface chemistry on glass or polymers, coupled to 
either nanoimprint lithography [33], electron beam lithography [34], 
focused ion beam [35], or nanosphere lithography [36] approaches, 
these types of substrates can be easily modified for generating either 
homogeneous or heterogeneous patterns. Compared to the first 
strategy of flowing SERS substrates, these immobilized substrates 
reduce the Raman signal fluctuations and no specific microfluidic 
design are needed to handle solids assemblies. However, the main 
limitation remains: (i) the non-homogeneous molecules adsorption on 
the surface of the SERS substrate, (ii) the relatively high cost of 
fabrication, especially for the patterning part and (iii) the possible 
contamination of the MF-SERS devices over time as the cleaning of 
such substrates is not straightforward and might lead to particles 

desorption from the surface. Despite these limitations, such strategy is 
probably the most promising one to increase reliability of the MF-
SERS devices as it provides ways towards the synthesis and the 
assembly of colloids directly on chip in a control manner. Since 
nanomaterials synthesis in microfluidics devices have been largely 
reported [37], their further in situ assemblies (self- or orientated) could 
constitute a real advantage compared to the other reported strategies as 
the SERS substrate could be synthesized and shaped directly in a single  

step within microchannels. For example, Sepaniak et al. have 
worked with the microfluidic synthesis of nanostructures since 2004, 
creating different microfluidic SERS systems and testing their 
applications in various domains [38]–[40]. Summarizing their work, it 
was observed that for the correct synthesis and coupling of these 
materials, is necessary to provide an accurate design and fabrication of 
the microfluidic devices. Similarly, Xu and Giorgis have reported 
different techniques and materials of fabrication for the microfluidic 
devices, (PDMS, PDMS/silicon, PDMS/glass, glass-glass, paper using 
3D printing, molding and soft lithography) [41], [42]. They have 
demonstrated for all these materials the integration of synthesized 
nanostructures as SERS substrates for the generation of MF-SERS 
systems capable of performing in situ analysis [22]. 

In spite of their disadvantages as high cost of fabrication, facile 
contamination and hard cleaning procedures, the principal advantage 
of this approach is the possibility for synthesizing and assembling the 
nanoM in situ into the microchannel and, with some microfabrication 
techniques create nanoM arrays with a specific interparticle distance. 

We summarize hereafter (Table 1) the major advantages / 
limitations of each strategy. As described in the previous sessions, the 
main difference between these strategies lies in the investment / 
production costs and the enhancement factors (EF) and limits of 
detection (LOD) achieved. 
 
Table 1: Comparison of the advantages and limitations of each above-
mentioned methodology. 
 

Feature 
Dispersed 
MF-SERS 
substrates 

Integrated 
MF-SERS 
substrates 

Immobilized 
MF-SERS 
substrates 

Fabrication 
cost $ $$$ $$ 

Viability of 
reuse easy hard medium 

Maximum EF 
reported 109 1012 1010 

Minimum 
LOD reported 10-8 M 10-6 M 10-12 M 

Chip platform PDMS-glass PDMS-glass, 
PDMS-Si 

PDMS-glass, 
all-PDMS 

Analysis time 60-80 min 5 min 5 min 
Manufacturing 
infrastructure basic sophisticated intermediate 

Example 
applications 

biomolecules, 
cancer 

diagnosis 

biomolecules, 
cells 

biomolecules, 
drugs, dyes 

 
We will detail in the next section some applications of MF-SERS 

devices for several domains of research. 

III. MF-SERS: A FULL RANGE OF APPLICATIONS 
 

The first mention about flow-injection analysis coupled to SERS 
(FIA) at small scale was reported in the late 1980s by Laserna, 
Berthod, and Winefordner. They were able to detect 4-aminobenzoic 
acid using SERS in submillimetric channels [43]–[45]. In the next 
decade, Caballin, Ruperez, and Laserna developed a windowless flow 
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cell for the SERS detection of amiloride, amiphenazole, 2-
mercaptopyridine, pemoline and triamterene [46], [47]. Since then, 
several other applications have been reported, among which are the 
research domains of environment, food monitoring for analytes 
detection and cells management and analysis on a chip, which are 
discussed below. 
 

Analytes detection. The combination between microfluidic devices 
and SERS technique has allowed the better handling of analytes and 
the improvement of their assays. Thanks to the high sensitivity of 
SERS, miniaturized devices have been developed for portable 
detection of various molecules including pollutants [48], drugs or 
narcotics [49], as well as biomolecules such as DNA or pathogens [50]. 
In particular, the most studied analytes are dyes including rhodamine 
6G, crystal violet, and other Raman tags such as 4-MBA, due to their 
signal intensity, photostability, and their functional groups that permit 
specific bonding between these molecules and the SERS substrates 
[51]–[53]. Furthermore, this combination also has permitted the 
analysis of diverse inorganic samples highlighting the detection of 
metallic ions for applications in food safety and environmental 
monitoring [54], such as Hg(II) [55], As(III) [56], Cr(III) [57] or Fe(II) 
[58]. The efficiency of MF-SERS platforms to be very sensitive, rapid, 
low-cost, non-invasive, highly selective and specific, has found 
various applications in clinical studies and drugs detection such as 
morphine and cocaine traces [59]. Additionally, other interesting 
applications include the detection of explosives molecules as traces, 
mostly for security checking and military on site applications. Indeed, 
MF-SERS allow the fabrication of small, portable devices, which can 
be utilized in real environments. Besides, the MF-SERS analysis of 
explosive samples provide safer operating conditions with a small 

amount of sample, as reported for 4-ABT [60], DTN [61], TNT [62]. 
Other research areas that have been favored for MF-SERS use are 
biology and medicine for the detection of biomolecules, biomarkers 
and pathogens. Adenine, DNA, RNA, and different proteins are some 
biologic probes that are analyzed using MF-SERS combination due to 
facilitate the handling of samples using microfluidics parameters [63]–
[65]. Similarly, diverse pathogens can also be detected with this 
approach, as reported for such as Escherichia coli, Staphylococcus 
aureus, and different mycotoxins in real samples using MF-SERS [66], 
[67]. Eventually, the detection of different viruses as human 
immunodeficiency virus, HIV, type 1 [68] and avian influenza virus, 
AIV, H7N9 [69] has been possible with the development of 
microfluidic devices and their link-up with SERS due to their ability 
to discriminate selectively the infected cells. All these proves of 
concept of SERS in medical applications and the miniaturization of the 
instrumentation permitted by the microfluidic devices have led to the 
fabrication of point-of-care (POC) devices. The POC systems present 
advantages as low-cost, field analysis as well as time saving in the 
training of personnel [70]. Nowadays, it is possible to realize different 
analysis in patients without high personal training and in a faster way. 
There are several reports about POC tests using blood, saliva and urine 
as samples for the opportune detection of disease [71], [72]. This is 
currently the main trend for the development of MF-SERS devices. 
 

MF-SERS for cell analysis. The combination of microfluidic 
systems and SERS allows a high sample control of fluids flow and the 
generation of reproducible substrates for in situ analysis. Cooper et al., 
confirmed that the use of microfluidic systems allows a better sample 
control for cell characterization. Cells or bacteria can be manipulated 
one by one using microfluidic chips, due to the dimension of the 

 
 
Fig. 3. Examples of MF-SERS applications in the biological field. (a) droplets-based single cell microfluidics strategy coupled to SERS 

to investigated glycan expression in cancer cells at cellular resolution (adapted from [76] with permission from American Chemical 
Society), (b) scheme of a MF-SERS set-up and comparison results of both live and dead cell and isolated and grouped yeasts cells (adapted 
from [78] with permission from Elsevier B.V.). (c) MF-SERS set-up and results for the identification of six different mycobacteria from 
blood samples (adapted with permission from [79] with permission from American Chemical Society). 
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microchannels and the low volume to control, allowing to analyze cells 
in an individually way. MF-SERS systems have been used for diverse 
biological analysis [73]–[75] including single-cell analysis for 
improving the understanding of cellular systems. Indeed, cells can be 
encapsulated within droplets, which can be later stored in a 
microfluidic device and analyzed by SERS at cellular resolution [76] 
(Figure 3-a). Originally limited to medical / clinical studies, the use of 
MF-SERS could be extended to environmental biology for the on-field 
investigation of microbes [77]. In this research field, MF-SERS can be 
adapted to target the study of different microorganisms (fungi, viruses, 
yeasts and bacteria) based on their specific variations in spectral 
features. As an example, isolated and grouped yeasts cells were 
monitored in situ using MF-SERS coupled to integrated 
electrophoresis [78]. This approach was also used for the rapid 
identification of live and dead cells within aqueous environments, 
demonstrating the capability of MF-SERS to analyze biochemical 
molecules secreted during the cell growth, metabolism, proliferation 
and apoptosis (Figure 3-b). Another example concerns the used of MF-
SERS for the differentiation of various mycobacteria in blood samples 
in short time demonstrating the high potential of these approaches for 
personalized medicine [79] (Figure 3-c). All these types of in situ 
analyses and monitoring approaches are of primary importance for 
several biological applications using microfluidics tool at lab scale. 

 
MF-SERS in cells cytometry and liquid chromatography. The 

SERS effect can be used as an efficient in situ detection tool coupled 
to flow processes at microscale. In particular, separation methods have 
largely benefited from microfluidic principles such as liquid 
chromatography, by introducing variants of the sheath-flow 
(hydrodynamic flow focusing) method [80], which are also widely 
used in cytometry. The sheath-flow is based on the splitting of a liquid 
sample within droplets or slugs thanks to the squeezing of the sample 
by another fluid (liquid or gas) within a microfluidic channel. In this 
context, Schultz et al. have been developing and using this method by 
controlling microfluidic parameters for sample separation and their 
analysis using SERS, generating different continuous processes [51], 
[81]. Similarly, SERS technologies have designed for flow cytometry 
(SERS-activated cells sorting) [82] and cell counting at microscale 
allowing detecting Raman signals in ultra-short time, as reviewed by 
Zhang et al [83]. In situ SERS effect was also demonstrated for the 
detection and separation of molecules in liquid chromatography. For 
instance, Wang et al. have coupled HPLC with SERS for continuous 
separation and further detection of several analytes, providing an 
online characterization mean for the acquisition of molecular structural 
information of solutions [84]. 

MF-SERS integrated platforms for micro-assays. Some of the 
latest developments of MF-SERS concern the fabrication and use of 
all-in-one devices for fast screening at microscale. In particular, Popp 
et al. have worked on such microfluidics platforms for the synthesis, 
the separation, the mixing and the analysis of various types of samples. 
These platforms have been integrated with SERS for biological probe 
detection of cells in liquid media or biomolecules in urine samples 
[85]–[87]. Another application that uses the microfluidic concept is the 
lateral-flow assay (LFA). These assays are realized in paper strips in 
which capillary forces actions can carry an analyte in different stages 
onto the strip from their processing to the analysis stage [88]. Choo et 
al. employed this technique for realizing immunoassays [89], virus 
[68] and pollutant detection [90], [91]. The concept of microfluidic 
platforms for fast screening of the operating parameters has led to the 
realization of immunoassays using SERS as an analytical tool. These 
on chip devices have been used in particular for Immunotherapeutic 
molecules screening. [92] Besides, the possibility to have different 
stages to realize different processes as LFA technique, plus all the 

possible applications that already exist in the state of the art, have 
incited researchers to study, design and fabricate devices as the Lab on 
a Chip (LOC) equipped with SERS probes [93]. 

IV. CHALLENGES AND OPPORTUNITIES 

The use of microfluidic fundaments for the manufacturing of 
systems capable to control, synthesize, separate and analyze very small 
volumes are promoting the growth of a wide panorama of possibilities 
and applications. Now that the coupling of microfluidics with SERS 
has been validated and used for several applications, the main 
challenges associated with MF-SERS could be the development of 
microsystems able to withstand harsher conditions to opens ways for 
analyzing more complex samples for applications in industrial 
processes (including high pressure, high temperature or aggressive 
chemical conditions). All the current publications on MF-SERS have 
mostly investigated aqueous media at room conditions, therefore 
leading to the use of polymers (PDMS mostly) as the microdevices 
fabrication materials. Being able to couple SERS with microreactors 
made of glass or silicon-Pyrex would provide more robust 
microsystems for enlarging the range of applications. This challenge 
would then also be associated to the need of developing stable SERS 
substrates integrated in such devices. 

Besides enlarging the range of conditions, which could be used by 
MF-SERS devices, new nano-micro-fabrication processes are also 
highly desirable. In this view, the recent development of 3D 
nanoprinting approaches opens avenues towards the precise spatial 
design of MF-SERS devices down to few hundreds of nanometers 
[94]. This approach based on two photon polymerization technique and 
shadow masking for micropatterning was originally developed for 
tissues engineering [95] before moving to micro electromechanical 
systems development (MEMS) [96] and could possibly be easily 
adapted to designed MF-SERS devices. 

Among the potential future applications of MF-SERS, POC devices 
are probably the most promising ones, given the growing demand for 
personal healthcare solutions. To reduce the fabrication cost of MF-
SERS devices for such applications, paper-based SERS microfluidics 
substrates [97]–[100] should be a great alternative to conventional 
microfabrication techniques. The low cost and easy fabrication 
principle consist in impregnating noble metal nanoparticles within a 
conventional paper microreactor. Besides their cheapness, these MF-
SERS substrates also allow overcoming the signal fluctuations 
sometimes encountered in liquid-based MF-SERS. 

Environmental biology is yet another example of future applications 
for MF-SERS thanks to the portability and miniaturization of the 
devices, which can be used directly on field. In this context, such tools 
could be used to investigate the biosphere. Indeed, the vast majority of 
microbes from natural environments is still mostly unknown, but 
largely contribute to the Earth global carbon cycle. MF-SERS 
platforms operating in harsh conditions could therefore offer a unique 
opportunity to better understand endemic microbes in their 
environments.  

It is also worth mentioning the recent use of 3D living cells mapping 
with confocal Raman spectroscopy, which could also largely benefits 
form the combination of microfluidics systems with SERS effect. The 
major advantage of Raman in such studies relies on the ability to work 
with label-free sample, preventing from bias, which can be induced by 
the use of tag molecules, generally needed in fluorescent laser confocal 
microscopy [101]. Nevertheless, the major limitations mostly reside in 
the low signal to noise ratio of some particular vibration bands 
characteristics from specific proteins or biomolecules. In that view, 
SERS could easily be used to overcome this limitation [102], [103] and 
combined to microfluidics, this should provide advanced working 
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environments for the culture, detection and analysis of living cells 
(Figure 4-a) and the microbiology research field in general (Figure 4-
b). 

 

 
 
Fig. 4. Examples of living cells SERS mapping. (a) 3D volumes of 

intensity distributions of human induced pluripotent stem cells, and 
adult rat ventricular cardiomyocytes for selected bands: 1,008 cm-1 for 
cell cytoplasm (blue), 789 cm-1 for cell nucleus (red), 2,857 cm-1 for 
lipids (green), 485 cm-1 for glycogen (white) and a merge of all 
components; scale bar 10 µm. (adapted from [104] with permission 
from Springer Nature), (b) molecular composition of Leishmania-
infected macrophage cells in vitro by SERS (adapted from [105] with 
permission from American Chemical Society). 

 
Eventually, Stable Isotope probing strategies could also be 

implemented in MF-SERS for identifying microbial cells at different 
levels of substrate incorporation in a complex microbial community, 
as recently exemplified using conventional SERS [106], [107]. 
Overall, from the current research general tendency, it is foreseen that 
MF-SERS will move within the next 10 years from conventional 
laboratory uses to the palm of our hands.  

V. CONCLUSION 
Microfluidic has allowed to improve the separation process and 

analysis of inorganic, biological and environmental samples. 
Furthermore, the nature of design and fabrication for microfluidic 
devices has permitted the coupling of the SERS analytical technique, 
generating new technologies capable of carrying out more than one 
process in one place as shown by the multiple applications and 

potential of the MF-SERS devices. 
Recent strategies have been employed to generate reproducible 

SERS substrates depending on if the substrate is in solution or fixed 
on the surface. Dispersed SERS substrates in flow, integrated 
microfabricated SERS substrates on chip and immobilized SERS 
substrates within microchannels are the most recent strategies for 
SERS substrates microfabrication. However, some limitations as 
random aggregation of nanoM colloids, uncontrollable synthesis 
inside of a microchannel, non-homogeneous molecules adsorption and 
the relative high cost of fabrication are present in these strategies it is 
important try to solve them. Even so, with all these limitations, the 
coupling between microfluidics and SERS technique has permitted a 
wide range of applications. 

Nowadays, MF-SERS had allowed different applications as 
analytes detections, cells analysis, cytometry and liquid 
chromatography. Different analytes have been detected as pollutants, 
drugs, explosives, biomolecules, DNA or pathogens because of the 
facility of portable microfluidic devices fabrication. Due to the wide 
use of these devices on medicine and biology, it has been extended the 
use of POC as a field analysis tool for the opportune detection of 
disease. 

Besides, MF-SERS devices have allowed in situ analysis. Different 
microorganisms as fungi, viruses, yeasts and bacteria, can be handled 
one by one using these devices, analyzing them in an individually way. 

The separation methods have benefited with the control of flow 
processes using microfluidic devices. The cytometry and the liquid 
chromatography are techniques that have been improved with the 
coupling of MF-SERS devices, developing SERS-activated cell 
sorting and cell counting. Also, HPLC with SERS provides an online 
characterization. 

Another use of MF-SERS is in the design of platforms for 
microassays. Lateral-flow assays and all-in-one devices have been 
developed to realize different processes at the same time, becoming 
them to LOC devices. 

Therefore, MF-SERS devices have permitted an improvement in the 
way to analyze and to control different samples, opening a wide range 
of possibilities that will allow to enlarge the knowledge on the fields 
of chemistry, biology and medicine. 
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