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Abstract: The scientific community involved in the UN-REDD program is still reporting large
uncertainties about the amount and spatial variability of CO2 stored in forests. The main limitation
has been the lack of field samplings over space and time needed to calibrate and convert remote
sensing measurements into aboveground biomass (AGB). As an alternative to costly field inventories,
we examine the reliability of state-of-the-art lidar methods to provide direct retrieval of many
forest metrics that are commonly collected through field sampling techniques (e.g., tree density,
individual tree height, crown cover). AGB is estimated using existing allometric equations that are
fed by lidar-derived metrics at either the individual tree- or forest layer-level (for the overstory or
underneath layers, respectively). Results over 40 plots of a multilayered forest located in northwest
Portugal show that the lidar method provides AGB estimates with a relatively small random error
(RMSE = of 17.1%) and bias (of 4.6%). It provides local AGB baselines that meet the requirements in
terms of accuracy to calibrate satellite remote sensing measurements (e.g., the upcoming lidar GEDI
(Global Ecosystem Dynamics Investigation), and the Synthetic Aperture Radar (SAR) missions NISAR
(National Aeronautics and Space Administration and Indian Space Research Organization SAR) and
BIOMASS from the European Space Agency, ESA) for AGB mapping purposes. The development of
similar techniques over a variety of forest types would be a significant improvement in quantifying
CO2 stocks and changes to comply with the UN-REDD policies.

Keywords: airborne laser scanning; lidar; 3D point cloud clustering; multi-layered forest structure;
biomass; carbon; individual tree extraction; crown delineation; vegetation cover

Remote Sens. 2016, 8, 653; doi:10.3390/rs8080653 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 653 2 of 18

1. Introduction

Measuring and monitoring aboveground biomass (AGB) has become an important research topic
in the last decade as a result of its importance within the carbon cycle, as well as for its relevance to
the international climate negotiations [1]. In 2009, the United Nations Framework Convention on
Climate Change (UNFCCC) established the MRV (measuring, reporting and verification) guidelines
for evaluating forest carbon stocks in the context of implementing REDD (Reduced Emissions from
Deforestation and forest Degradation [2]). The components of MRV include: (i) measuring the extent
and change in forest area; (ii) reporting carbon stocks and emissions; and (iii) verifying the findings
and implementation of REDD activities.

The existing and upcoming remote sensing sensors are important tools to quantify the magnitude
and spatial distribution of AGB at the regional, national and global scales. Nonetheless, as far as the
AGB estimation is concerned, the cutting edge remote techniques are still highly dependent on the
availability, quality and quantity of traditional local-scale field inventory systems [3]. Briefly, AGB
is assessed from remote sensing data through a two-stage procedure. At the first stage, remote
sensing measures or “metrics” are related to AGB, typically via regression models, with associated
field-derived AGB. At the second stage, the resulting AGB regression models are used to convert
local-scale estimates into continuous AGB maps over larger areas [4,5]. The success of this approach
strongly depends on the amount and quality of field-derived AGB. In most national and regional
inventories, the plots are small in size and have significant uncertainty in location that may introduce
large errors in calibrating the plot-level lidar metrics. This problem has been observed in most forest
types globally [6–8]. In addition, the paucity of field inventory plots in most of the unmanaged
forests due to the difficulty of the access and cost of establishing large plots has been a source of
uncertainty in the use of regression model techniques [9,10]. Reducing such uncertainty would require
the establishment of larger and more accurately located plots in global forests. It would imply, as well,
changing the protocols of national inventory plots in temperate and boreal forests [1,11]. As a result,
a fair accounting of carbon sequestration would need sophisticated field inventory systems able to
assess and to monitor AGB at a broad range of geographical sites, with frequent temporal visits and
high accuracy requirements [12]. Collecting such field measurements using traditional field techniques
is not cost effective mainly in areas where there is little or no pre-existing inventory data, as well as in
inaccessible areas and in areas that experience rapid changes in forest structure [3].

Here, we investigate the ability of airborne high-resolution lidar (light detection and
ranging) techniques to estimate AGB without the need for those massive in situ measurements.
We have been studying the ability of individual tree extraction methods to replace field sampling
techniques over different complex forest ecosystems, such as the Mediterranean [13–15] and
tropical rain forests [16]. We intend to assess their reliability to fulfill the requirements of quality
in establishing robust AGB baselines that could be used to calibrate coarser remote sensing
data, such as the measurements of the upcoming NASA spatial lidar missions GEDI (Global
Ecosystem Dynamics Investigation, http://science.nasa.gov/missions/gedi/) and NISAR (National
Aeronautics and Space Administration-Indian Space Research Organization Synthetic Aperture Radar,
http://nisar.jpl.nasa.gov). Lidar samples would be used in a manner similar to field plots, but
enabling the extension of forest sampling across larger areas. In this work, we focus on a Portuguese
multilayered forest where the lidar data are used to estimate AGB by means of similar techniques to
those commonly used in the field. Because AGB can only be measured directly through destructive
sampling, it is usually estimated by means of allometric equations defined as a function of metrics
that are easier to measure, such as stem diameter, tree height and forest layers’ cover. Recently, we
developed methods that apply to high-resolution lidar data to directly retrieve most of the forest
metrics required by allometric equations, such as tree density, individual tree height, crown depth,
forest layers’ mean height and crown cover [13–15]. Similarly to field surveys carried out by the
Portuguese authorities, the AGB is characterized at the individual tree level for the overstory and at
the forest plot level for the understory and ground vegetation.



Remote Sens. 2016, 8, 653 3 of 18

We first present the study site, which is covered by a Portuguese multilayered forest (Section 2.1).
Secondly, we explain the approaches used to acquire forest metrics using either field sampling
techniques (Section 2.2) or lidar data processing methods (Section 2.3). The AGB is estimated over
40 forest plots by means of three different techniques: (1) using field inventory measurements together
with a set of allometric equations developed to apply to Portuguese forests (Section 2.4); (2) using
lidar-derived forest metrics and the very same set of allometric equations (Section 2.5); and (3) using the
traditional approach that establishes AGB regression models using both field inventory measurements
and lidar point cloud metrics (Section 2.6). Regarding both (1) and (2), we first compare results for
single layers (mature overstory, juvenile overstory, understory and ground vegetation; Section 3.1).
Then, single layers are coherently summed up to assess the results at the forest plot level (Section 3.2).
Finally, the latter are compared to the results found by the AGB regression model approach (Section 3.3).
Conclusions are made in Section 4.

2. Materials and Methods

2.1. Study Site

The study area is located near the town of Águeda in northwest Portugal (40◦36′N, 8◦25′W)
covering nearly 9 km2 (Figure 1a). The altitude and slope range from 70–220 m and 2.5%–34.2%,
respectively. The site is predominantly occupied by eucalyptus (Eucalyptus globulus Labill.), with some
stands of maritime pine (Pinus pinaster Ait.), shrub and agricultural fields. The overstory is generally
sparse and the understory well developed. The shrubby vegetation displays luxurious vegetation,
typical of the Mediterranean forests. The underneath layer is mainly composed of suppressed trees
(eucalyptus, maritime pine, acacia and oak), gorse bush (Ulex spp.), heath (Erica spp.), carquesia
(Pterospartum spp.), gum cistus (Cistus spp.), blackberry (Rubus spp.), broom (Cytisus spp.), ferns and
herbaceous plants.
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Figure 1. Study site (a) location overlapped on a Portuguese territory map; (b) forest plots’ distribution
over a normalized digital surface model (nDSM) that clearly shows the forest heterogeneity; and
(c) example of a sampling unit composed of two concentric circles, which are covered by more than
one forest stand. In this case, only the vegetation of forest Stand #1 enclosed by the sampling unit
is measured.
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2.2. Field Inventory

Forty-seven sampling units were defined in a systematic way following a forest inventory
field protocol adapted from the Portuguese National Forest Inventory Manual (Figure 1b; [17]).
Each sampling unit consists of two nested circles, an outer one (400 m2) and an inner one (200 m2),
delineated using a distance measurer (Figure 1c). The study area is very heterogeneous because the
forest belongs to many landowners (Figure 1b). As a result, a sampling unit may contain more than
one forest stand (i.e., uniform plant communities in terms of species, age and spatial arrangement [18]),
but only the stand where the center of the sampling unit is located was measured (Figure 1c). We define
a forest plot as the area enclosed by the nested circles that comprise the forest stand of interest. Note that
a forest plot and a sampling unit do not exactly overlap if the latter is populated by more than one
forest stand.

Three plots out of the original forty-seven were discarded due to the impenetrable shrubby
vegetation. Additionally, two plots occupied by maritime pine are not taken into account in this study
because we do not dispose of allometric equations specific for the Portuguese territory. On the one
hand, we cannot derive AGB directly from the lidar data because in the literature, there is no equation
to convert individual tree height into AGB. On the other hand, there is also no stem diameter-tree
height relationship that we could use to estimate stem diameter from tree height. This prevents us from
using an existing stem diameter-AGB allometric equation that is commonly used in the framework
of field inventories. Furthermore, the small number of trees surveyed in this experiment prevents us
from deriving a robust stem diameter-tree height relationship specific for this study. Finally, two plots
that were less than 1 year old are discarded because they are not meaningful in terms of AGB. As a
result, 40 plots with eucalyptus are studied here. The age of the plots ranged from 1–13 years old.
They were stratified into two age groups containing 10 juvenile plots (1–4 years) and 30 mature plots
(>4 years). Juvenile plots are composed of either two layers (ground vegetation and juvenile overstory)
or ground vegetation only. Mature plots may display three layers (ground vegetation, understory and
overstory) or two only due to clearing activities for the removal of the understory vegetation.

The species was recorded for every single tree higher than 2 meters, as well as the diameter at
breast height (dbh, cm), the tree height (th, m) and the crown base height (cbh, m). The dbh was measured
using a caliper, whereas both th and cbh with a telescopic stick or a Vertex hypsometer. Finally, each
tree was assigned to one class that defines its social status: dominant, codominant, dominated and
suppressed trees. As far as understory and ground vegetation is concerned, it would be unfeasible to
characterize every plant individually. Instead, they are characterized at the plot level by means of the
layer mean height (h, m), the crown cover (cc, %) and the dominance (d, %). The cc is defined as the
total vertical projection area of plants’ crowns divided by the horizontal area of the observation unit
on which trees are growing [15,19]. Overlapping crowns are not counted twice, and the crown area is
defined by the outermost perimeter (envelop) of the crowns, including within crown gaps. Finally, d
is simply cc discriminated by species, which means the name of the species present within the forest
plots was recorded, as well. Following the field protocol, two field operators estimated the cc and d
visually. When their estimation was similar, the average value was recorded; otherwise, they tried to
reach an agreement. It is worth mentioning that the measurements at the single tree and plot level
were carried out within the inner and outer circle, respectively (Figure 1c).

Information collected by a forest inventory usually has lower location accuracy than that provided
by lidar systems. To improve it, a local geodetic network made of 41 pairs of GPS-derived points was
built on the same map projection as the lidar data [20]. All plot centers, as well as the tree positions
within the outer circle were surveyed using a total station theodolite. Finally, all of the data were
integrated into a single 3D geometry.

2.3. Lidar Inventory

In this section, we describe the lidar dataset acquired over the study site (Section 2.3.1) and the
methods used to extract forest metrics from the 3D lidar point cloud, i.e., the lidar forest metrics
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inventory (Section 2.3.2). These methods were published in Ferraz et al. [14] and Ferraz et al. [15],
and their reliability to retrieve relevant forest metrics was already assessed. As a result, they are only
briefly described here. Thus, instead of focusing on the methods themselves, our effort is directed at
analyzing their reliability for the extraction of the forest metrics that are further used in AGB estimates
(e.g., tree density, tree height, forest layers mean height and crown cover).

2.3.1. Lidar Data Measurements

The lidar data were acquired on 14 July 2008, in a full-waveform mode using a LiteMapper 5600.
The footprint and the scan angle have the values 0.3 m and ±22.5◦, respectively. A strip overlap of
70% guaranteed “wall-to-wall” coverage. With a single run pulse density of 3.3 points per square
meter (pts/m2), the final average pulse density within each forest plot is 9.5 pts/m2 (min = 4.7,
max = 15.5, σ = 1.9 pts/m2). The photons corresponding to each pulse were reflected by the different
features of the landscape and recorded into a waveform structure. The digitized waves were processed
using the RiANALIZE software (http://www.riegl.com/products/software-packages/rianalyze/) in
a workstation; each pulse gave rise to 1–5 lidar returns. The position and orientation of the platform,
which are given by onboard GPS/IMU hybrid measurements, were corrected by analyzing overlapping
laser strips from the calibration cross-strips. These parameters, together with the GPS measurements
acquired during the flight using a reference ground station, provided a point cloud in the WGS84/UTM
zone 29N coordinate system for further processing. Systematic height errors were finally removed
by using field control data that spread all over the study area. To calculate the effective height of the
objects in the scene, ground and vegetation returns were separated. A Delaunay triangulation was
generated to produce a digital terrain model with 0.3-m spatial resolution that was used to normalize
the point cloud. More details of this experiment concerning both the field inventory and lidar data can
be found in Ferraz et al. [14] and Ferraz et al. [15].

2.3.2. Forest Metrics Extraction

The forest metrics, such as the tree density, individual tree height, individual crown length and
height of forest layers, are important to estimate AGB. With the exception of the latter, which was
estimated using the approach published in Ferraz et al. [15], the metrics have been extracted using a
method called adaptive mean shift (AMS3D) described in Ferraz et al. [14]. It applies directly to the
lidar point cloud (Figure 2a) and provides 3D clusters of lidar points that correspond to individual
vegetation features, such as shrubs or tree crowns. For visual purposes, we fit the minimum volume
enclosing ellipsoid to each 3D cluster ([21]; Figure 2b). The AMS3D assigns every plant crown to a
forest layer, namely ground vegetation, understory and overstory (green, red and randomly-colored
ellipsoids). Therefore, the individual crown map shown in Figure 2b readily provides single layer
forest metrics: tree density (number of ellipsoids within the forest plot normalized by its area), tree
height (z coordinate of the highest lidar point assigned to a given 3D cluster), individual crown length
(distance between the tree height and the lowest lidar point of the 3D cluster) and the forest layers mean
height (the 50th height percentile of the lidar points assigned to juvenile overstory and understory and
the 90th height percentile regarding the ground vegetation [22]). According to Ferraz et al. [15], the cc
is computed for single layers using the lidar returns assigned to juvenile overstory, understory and
ground vegetation. A statistical tool called kernel density estimators (KDE) was used to transform
discrete measurements, i.e., lidar points, into continuous smooth surfaces called canopy density models
(CDM). The later are probabilistic maps that calculate the probability of the occurrence of vegetation
for every location in the forest based on the local spatial density of lidar points. Figure 2c,d show
two different CDMs where such a probability for a given area is assigned to a value within the range
[0, 1] (color bar in Figure 2). Then, the outermost perimeter of plants crowns (black contours in both
Figure 2c,d) is delineated by means of a probability density threshold below which no vegetation is
expected. The threshold is automatically defined as a function of the point cloud density for a given
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forest layer (for more details, refer to [15]). Finally, cc is computed as the ratio between the area covered
by the plants’ crowns to the area of the forest plot.
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Figure 2. Forest metrics extraction approach. (a) Original point cloud for a mature forest plot and the
field estimated mean height for understory (red) and ground vegetation (green) represented by the
dashed lines; (b) AMS3D crowns of individual plants modeled by ellipsoids for visual purposes are
assigned to overstory (colored ellipsoids), understory (red ellipsoids) and ground vegetation (green
ellipsoids). The dashed horizontal lines represent the mean height estimated for understory (red) and
ground vegetation (green). The vertical line segments in black were calculated using the location and
height of trees surveyed in the field inventory, and the horizontal black line corresponds to the crown
base height; (c,d) The canopy density models (CDM) for the ground vegetation of Plots #21 (cc = 94.2%)
and #2 (cc = 73.1%), respectively, calculated as a function of the lidar points (grey dots). The color bar
corresponds to the normalized CDM values that range between 0 and 1.

In the following, we briefly describe the results concerning the forest metrics extraction found by
Ferraz et al. [14,15]. Similar to field-based techniques, the mature forest overstory is characterized at
the individual tree level through tree density, th and cbh, whereas the juvenile overstory, understory
and ground vegetation at the forest plot level through h and cc. Regarding the density of mature
overstory trees, the AMS3D approach can detect 438 trees out of 649 (67.5%). These trees are referred
to as correctly-detected trees (CD). The CD success rate largely depends on the crown location in
the forest canopy with 98.6%, 85.2%, 61.4% and 12.8% for dominant, codominant, dominated and
suppressed eucalyptus trees, respectively. Conversely, 9.2% of the trees within the AMS3D maps
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correspond to false positive trees, i.e., fictitious trees that are hereafter called incorrectly-detected (ID)
trees. This means that the AMS3D had extracted 60 trees that do not exist in the field due to either
over-segmentation (a single crown was wrongly split into two) or the edge effect (tree stems outside
the plot boundary have portions of their crowns extent within the plot boundary). Scatter plots of
predicted versus observed th and cbh of CD trees show that the AMS3D explains better the variability
associated with th (R2 = 0.96%, RMSE = 0.86 m) than with the cbh (R2 = 0.69%, RMSE = 2.48 m).
Note that cl is obtained by subtracting cbh from th.

The juvenile overstory, understory and ground vegetation were validated at the forest plot level
by means of h and cc. The comparison between observed and predicted h gives rise to satisfactory
RMSE (0.31 m, 0.96 m and 0.15 m) with R2 values of 0.92, 0.62 and 0.7 for juvenile overstory, understory
and ground vegetation, respectively. Finally, the variability explained by the CDM-based approach
regarding the cc equals 0.85, 0.85 and 0.84, respectively, whereas the corresponding RMSEs are 8.5%,
6.2% and 13.8%.

2.4. Aboveground Biomass Estimation Using Field Measurements

The forest layers’ AGBs are estimated using different allometric equations depending on the
nature of the layers or the availability of field measurements for a given experiment (Table 1). In this
study, mature overstory AGB is first computed for individual trees (Equations (1)–(5)), and then, the
results are summed up to estimate the total forest layer AGB. Conversely, AGB is directly calculated at
the forest layer level for juvenile overstory, understory and ground vegetation (Equation (6)).

As far as individual trees are concerned, the allometric equations were established by destructive
sampling of 441 eucalypti (Eucalyptus globulus Labill.) over 113 forest plots in Portugal [23].
Such equations depend on individual tree metrics, such as dbh, th and crown length (cl = th− cbh),
as well as on a forest plot-specific metric called dominant height (dh), which is defined as the mean
height of the three tallest trees within a forest plot (Table 1). As for the forest layers, AGB is computed
using Equation (6) as a function of the mean height (h, meters), crown cover (cc, %), area (a, m2) and
weighted mean bulk density (bd, kg·m−3). The bulk density is defined as the biomass per unit volume
and depends on the species. Here, we defined bd as the weighted mean of the species bulk densities
weighted by the species dominance (d, Section 2.2) that populate each forest plot layer. The bulk
densities were obtained from Simões [24], who reports the reference values for most plant species that
populate shrubby vegetation in Portugal.

Table 1. Allometric equations for AGB and dbh (Equations (1)–(6) [23] and 7 [25], respectively). The
acronyms th, cl, dh, h, cc, a and bd stand for tree height, crown length, dominant height, forest layer
mean height, crown cover, area of the forest plot and weighted mean bulk density, respectively.

AGB (kg)

Individual
trees

Stem ww = 0.0101× dbhaw × th1.3638 aw = dh/(−0.6653 + 0.6243× dh) if dh ≤ 10.71 (1)aw = 1.7788 if dh > 10.71

Bark wb = 0.0006× dbhab × th1.0616 ab = dh/(−0.6970 + 0.4586× dh) if dh ≤ 18.27 (2)ab = 2.3784 if dh > 18.27

Leaves wl = 0.0295× dbhal × cl0.6430 al = dh/(−1.0312 + 0.7069× dh) if dh ≤ 7.39 (3)al = 1.7627− 0.01065× dh if dh > 7.39

Branches wbr = 0.0237× dbhabr × cl0.6067 abr = dh/(−0.913 + 0.7043× dh) if dh ≤ 8.83 (4)abr = 1.664 if dh ≤ 8.83
Total wt = ww + wb + wl + wbr (5)

Forest layers wstratum = h× cc× a× bd (6)

dbh (cm)

Individual trees dbh =
0.6073× th

1− 0.0116× th
(7)

2.5. Aboveground Biomass Estimation Using Lidar Measurements

The calculation of AGB using the lidar measurements is very similar to that of the field inventory
because the AMS3D technique provides direct retrieval for most forest metrics required by the
allometric equations shown in Table 1. Therefore, AGB for mature overstory is estimated at the
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individual tree level applying Equations (1)–(5). As mentioned in Section 2.3.2, the AMS3D provides
all of the unknown variables except the dbh, the size of which is incompatible with the actual lidar
spatial resolution employed for forestry applications, i.e., typically from 4 pt/m2–20 pt/m2. As a result,
the dbh is generally derived from th measurements using allometric equations [26]. Here, we apply
Equation (7) established by Soares and Tomé [25] as a function of the very same field measurements
used in this study that are described in Section 2.2. It is worth mentioning that we take advantage of
the fact that only eucalyptuses live in the overstory. Otherwise, it would be necessary to discriminate
tree species in order to select the adequate allometric equations.

Similarly to the field inventory technique, we calculate the AGB for juvenile overstory, understory
and ground vegetation using Equation (6). As explained in Section 2.3.2, the AMS3D method provides
single layer h measurements, whereas its cc is calculated using the CDM approach. Furthermore, a is
simply the area of the forest plot that is calculated as the area of the convex hull that encloses all of
the lidar points of a given plot (Section 2.2). The retrieval of the bd from the lidar data would imply
the species identification within the underneath layers, which remains a scientific issue that would
require further investigation and is discussed in Section 3. In this study, we used a layer-specific mean
bulk density (b̃d) that applies to the entire study area. Firstly, species that populate each layer were
identified using the field inventory dataset (Section 2.3.2). The corresponding reference bulk densities
given in Simões [24] were assigned to each species. The average of the bulk densities that populate
each layer was computed in order to estimate the corresponding b̃d. The values were 1.76, 2.21 and
2.46 kg·m−3 for juvenile overstory, understory and ground vegetation, respectively. Therefore, to
estimate the AGB for single layers using the lidar approach, we set bd = b̃d in Equation (6).

2.6. Aboveground Biomass Estimation Using Field and Lidar Measurements

A major advantage of our method with respect to the existing AGB regression model approach is
that massive field inventory data are no longer required to calibrate and convert lidar point clouds’
metrics to AGB. Here, we compare their ability to explain the AGB variability over our study site
in order to assess the contribution of our methodology in terms of AGB estimates’ accuracy with
respect to the traditional approach. We developed an AGB regression model following Silva et al. [27].
Briefly, we first calculated 31 metrics from the 3D lidar point cloud (Table S1), according to each one of
the forty forest plots (Section 2.2). Then, we used Pearson’s correlation coefficient (r) to identify highly
correlated metrics and to exclude redundant predictors (r > 0.9). We selected the four most meaningful
predictors using the “regsubset” function (package “leaps” in the R programming language [28]).
It allows restraining the AGB regression model to be defined as a function of four metrics in the
maximum, avoiding highly complex models. Next, we established a set of models by calculating a
family of linear regressions defined as a function of one metric in the minimum and of four metrics in
the maximum. The models have been ranked according to the minimum corrected Akaike information
criterion (AIC) to select the AGB regression model that better explains the variability of our study site.
Finally, the residuals of the model were analyzed graphically and tested for normality, as well as for
heteroscedasticity. Results are reported using the leave-one-out cross-validation (loocv) technique.
Please refer to Silva et al. [27] for more details on the regression model analysis.

3. Results and Discussion

Field- and lidar-derived aboveground estimates (AGB) are compared over 40 forest plots at two
different scales. In Section 3.1, we analyze the results with respect to single forest layers, i.e., mature
overstory, juvenile overstory, understory and ground vegetation. Then, single forest layers’ AGB
estimates are summed up to assess results at the forest plot level (Section 3.2). Finally, we compare our
results at the forest plot level to those obtained using a traditional lidar-based method that estimates
AGB through a regression model technique (Section 3.3).
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3.1. Aboveground Biomass at the Forest Layer Level

According to the field measurements, 7.9%, 7.7%, 6.2% and 78.3% of the total AGB is stored in
ground vegetation, understory, juvenile overstory and mature overstory. The 40 field plots hold on
average 7.5, 9.7, 23.5 and 99.5 megagrams (Mg) with standard deviations of 6.5, 12.3, 14.6 and 150.0 Mg,
respectively. This is a strong indicator of the large study site heterogeneity. The mean bulk density (bd)
equals 2.5, 1.7 and 1.8 kg·m−3 for ground vegetation, understory and juvenile overstory, respectively.
This means that ground vegetation species have higher bulk densities than those one can find within
either the juvenile overstory or understory. Furthermore, ground vegetation and understory store
a similar amount of biomass, but the latter is more heterogeneous mainly due to clearing activities
(Figure 3a). However, most of the biomass is stored in the adult vegetation layer. Figures 1 and 3a
show the high forest structure variability in the horizontal and vertical component, respectively.

The box-and-whisker diagram illustrated in Figure 3a compares the main AGB statistics derived
from field and lidar estimates at the forest layer level. It shows that the average AGB (white asterisks)
is accurately estimated by the lidar approach for all of the forest layers. A similar conclusion can be
made based on the median shown by the band inside each box. This is valid for mature overstory for
which the mean and average are more than 20 Mg·ha−1 apart from each other. This result indicates that
our method performs well even over heterogeneous layers. The shape of the boxes shows that the AGB
distribution is skewed concerning the juvenile overstory and the understory, whereas no such effect
is visible over the mature overstory and ground vegetation. Nevertheless, the lidar data permitted
capturing such characteristic of the AGB distribution for all forest layers, since boxes’ outlines are
very similar. The extent of blue boxes indicates that mature overstory AGBs estimated applying
the lidar approach show higher variability compared to field estimates. Briefly, by using the lidar
approach, forest plots with higher AGB are slightly overestimated, whereas those with lower AGB
are underestimated. This result is directly related to the under- and over-detection of individual trees.
The extent of yellow and red boxes shows that the distribution of AGB regarding juvenile overstory
and understory is well captured by the lidar approach, even if it tends to estimate higher values
concerning the juvenile overstory. With respect to ground vegetation, lidar tends to estimate AGB with
a lower variability, as the green boxes indicate.

Additionally, we use a scatter plot of the observed versus predicted AGB to quantify the strength
of the relationship between field- and lidar -derived estimates for single layers (Figure 3b). Results are
evaluated analyzing the coefficient of determination (R2), the absolute root mean square error (RMSE,
Mg·ha−1), the RMSE as a percentage (%), the absolute bias (Mg·ha−1) and the bias as a percentage
(Table 2). In fact, we decided to calculate both RMSE and bias in terms of percentage regarding the
mean AGB to control for differences in magnitudes between the different forest layers and to properly
compare results between layers [1]. Accordingly, the percentage values are calculated by RMSE

AGB
and

bias
AGB

where AGB represents the mean field-derived AGB for each layer.
Estimates for mature overstory, calculated as the sum of the individual trees’ AGB, was highly

correlated (R2 = 0.99) with the values derived from the field measurements, and we found a small
bias of 5.9% (Figure 3b and Table 2). However, this result must be handled with caution. The dbh
of the correctly-detected (CD) trees was computed by means of Equation (7) as a function of the
lidar-derived th with R2 = 0.78 and RMSE = 2.1 cm [14]. Then, the AGB of CD trees was calculated using
Equations (1)–(5) (Table 1) with R2 = 0.81 and RMSE = 22.63 kg. Therefore, lidar-derived AGB correlates
better with biomass estimated at the layer level than at the individual tree level. In fact, mature
overstory biomass is computed summing up the biomass from both CD and incorrectly-detected (ID)
trees. It turns out that ID trees, i.e., false positives, generated by the AMS3D somewhat compensate
the biomass held by undetected (UD) trees. Nevertheless, it does not explain the strong correlation
at the plot-level since the percentage of UD trees (32.5%) is much higher than that of ID trees (9.2%).
These results show that the lidar approach is able to detect the trees that hold most of the biomass
within the forest plots. This means that many UD trees in our study area correspond to suppressed
trees that store little biomass and are not meaningful in terms of AGB at the layer level.
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Figure 3. Results for AGB at the single layer level shown (a) using a box-and-whisker diagram
representing the main statistics for single forest layers over the 40 forest plots. The bottom and top of
the boxes (commonly called hinges) correspond to the 25th and 75th percentiles and the band inside
to the 50th percentile or median. The upper whiskers extend from the hinge to the highest value
within the 1.5 * IQR of the hinge value, where IQR stands for the inter-quartile range. The lower
whisker is defined similarly. One extreme value (AGB = 880.6 and AGB 838.0 Mg·ha−1 for field and
lidar, respectively) corresponding to the mature overstory of Plot #12 has been removed from the
box-and-whisker diagram for visual purposes. The asterisk represents the mean; (b) Scatter plot used
to compare field- and lidar-derived AGB (Table 2). A log-log scale was used for visual purposes to
represent Plot #12 (blue rhombus in the upper right part of Figure 3b).

Table 2. Accuracy assessment statistics for field- and lidar-derived AGB both at the single layer level
(rows denoted by mature overstory, juvenile overstory, understory and ground vegetation; Figure 3b)
and at the forest plot level (row denoted by forest plot; Figure 4b). The rows denoted by forest plot*
and forest plot** correspond to the results found by the AGB regression model approach (using a
leave-one-out cross-validation (loocv)) taking into account all forest plots and without taking into
account forest Plot #12, respectively (Figure 5b and Figure S1b). n corresponds to the number of plots,
and the bias is calculated by averaging the differences between field and lidar AGB estimates. Negative
bias values mean AGB under-estimation.

n R2 RMSE Mg·ha−1 RMSE (%) Bias Mg·ha−1 Bias (%)

Single layer level
Mature overstory 30 0.99 18 18.1 −5.8 5.9
Juvenile overstory 10 0.38 13.3 56.7 +5.8 24

Understory 30 0.37 9.9 101.3 −0.8 8.9
Ground vegetation 40 0.65 4.1 53.3 −0.7 9.5

Forest plot level
Forest plot 40 0.99 16.3 17.1 −4.4 4.6

Forest plot level using a traditional regression model approach
Forest plot* 40 0.55 103.2 107.6 −9.4 9.9
Forest plot** 39 0.72 23.32 31.1 0.1 0.1

As explained in Sections 2.4 and 2.5, the AGB of juvenile overstory, understory and ground
vegetation is estimated not at the individual tree level, but directly at the forest layer level (i.e., by
means of Equation (6) instead of Equations (1)–(5); Table 1). Many factors explain the fact that the
strength of the relationship is higher in the case of the mature overstory compared to the remaining
forest layers. First, the field measurements were carried out at the plot level and are much less reliable
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than those of the mature overstory for which each plant specimen was surveyed. Secondly, both
methods (AMS3D and CDM) introduce errors in the AGB estimation because they compute either h or
cc with certain degrees of uncertainty (Section 2.3.2). Nevertheless, the lidar and field AGB estimation
for ground vegetation are strongly correlated (R2 = 0.65), whereas such a relationship is moderate
for juvenile overstory and understory (R2 = 0.38 and R2 = 0.37, respectively). Results, which highly
depend on the forest layer, are discussed individually in the following.

As far as juvenile overstory is regarded, the RMSE equals 56.7%, and a bias of 24% was observed.
The latter is mainly a result of a systematic overestimation of the crown cover (cc, %) by the CDM
method [15], since the retrieval of the juvenile overstory mean height (h) is much more accurate [7].
It is still unclear whether the field-based cc was underestimated by the field crew or if the CDM is
not able to accurately figure out the crown cover of juvenile eucalypti tree plots. With respect to the
understory, the RMSE is very high (101.3%), but the bias is low (8.9%). This means that the results could
be corrected taking into account some factors that degrade the results, namely the so-called shade
effect introduced by the topmost vegetation on the laser beams. As a result, layers underneath may
be under-sampled on the 3D point cloud compared to the topmost vegetation, namely the overstory.
Additionally, many undergrowth-suppressed trees that populated this layer may not be dense enough
to generate the number of lidar reflections needed to characterize the understory properly.

Surprisingly, the results concerning ground vegetation are much better than those of understory
(R2 = 0.65, RMSE = 53.5 and a bias of 9.5% only). The likely reason is that species that populated
ground vegetation have denser crowns that increase the probability to give rise to a laser return. In fact,
as stated in the first paragraph of this section, the species-specific bulk densities are higher for the
typical ground vegetation plants than for those that occupy the juvenile overstory and understory.
Therefore, higher bulk densities indicate denser plant material that increases the probability of causing
a lidar return. Additionally, the average field-estimated cc equals 26.5%, 15.6% and 52.1%, for juvenile
overstory, understory and ground vegetation, respectively. Similarly, because lidar measures forest
structure by means of discrete measurements, the probability of a laser beam hitting a vegetation
feature is higher over layers with higher cc. To sum up, results indicate that better estimates are
achieved with respect to ground vegetation because it is a denser layer composed of plants with denser
crowns. The shade effect seems to have less impact, since the worst results were obtained for juvenile
overstory and understory that occupy higher layers.

Finally, it is worth noting that the results may be impacted as well by the fact that we are using
different values for the bulk density in Equation (6), namely bd and b̃d for field- and lidar-derived
AGB, respectively. The computation of bd implies knowledge about the species that populate each
forest plot, as well as their dominance (Section 2.2). However, species identification from lidar data
has been confined to the overstory layer and its effectiveness limited. Furthermore, to the best of
our knowledge, the discrimination of species in either ground vegetation or understory has not been
studied. Actually, some constraints limit the development of such a technique. Compared to the
overstory, shrubby and herbaceous formations are generally more diverse, which greatly increases
the complexity of the approach. In addition, due to the inability of lidar data to discriminate plants
species in mixed forests, researchers have been discriminating species taking advantage of the synergy
of lidar and hyperspectral imagery [29]. However, the vegetation underneath is not visible in such
passive imagery. As a result, we believe that assessing bd from ancillary data is a reliable solution
concerning the vegetation underneath. We suggest establishing averaged values well adapted to be
applied to a specific forest area or eco-region. The plant species that are expected within an ecosystem
can be assessed either by prior knowledge about the forest or derived from ecological studies, such as
biodiversity mapping or the biogeographical distribution of plant species [30,31].

3.2. Aboveground Biomass at the Forest Plot Level

Single layer results for overstory, understory and ground vegetation were summed up to estimate
AGB at the forest plot level. Figure 4a compares field and lidar estimates over the 40 forest plots
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using a box-and-whiskers diagram. The extent of the boxes and corresponding whiskers clearly
shows that our approach is able to figure out the AGB variability over the study site with great
accuracy. Furthermore, both mean and median AGB derived from the lidar approach are very close
to the ones calculated from the field sampling, even if those statistics are very apart from each other,
which is an indicator of the study site heterogeneity. Additionally, we examined the strength of
the relationship between field and lidar estimates over the 40 forests plots as shown in Figure 4b
and Table 2. The lidar-based approach is able to explain the AGB variability quite well (R2 = 0.99)
with a result similar to when we consider the mature overstory alone (Section 3.1). This result was
expected because mature overstory holds the most biomass in our study area and therefore drives
the AGB variability along the study site. Nevertheless, the absolute error (RMSE) was improved up
to 1.7 Mg·ha−1. More importantly, results in terms of RMSE (%) at the forest plot level were highly
improved regarding the mature overstory: it decreases from 18.1% down to 0.4%. Additionally, a bias
of −4.4 Mg·ha−1 indicates a slight underestimation of the AGB that represents only 4.6% of the mean
AGB for the 40 plots.
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Figure 4. AGB estimation results at the forest plot level. (a) Box-and-whisker diagram (see Figure 3 for
details) in which field and lidar estimates of Plot #12 (905.85 and 877.13 Mg/ha, respectively) have
been removed from the box-and-whisker diagram for visual purposes; In (b), we show a scatter plot of
field- versus lidar-derived AGB used to calculate the parameters show in the row denoted by forest
plot of Table 2. A log-log scale was used to accommodate the visualization of Plot #12 shown in the
upper right corner.

As a result, although results vary depending on the forest layer, our approach is able to retrieve
unbiased estimates of AGB with low error at the forest plot level over a multilayered forest structure.
This indicates that the AGB uncertainty can be highly reduced if forest layers are identified beforehand
in order to estimate AGB at the individual layer level. Note that the widely-used AGB regression
model approaches do not stratify vegetation into individual forest layers, which can explain the
uncertainty observed over many multilayered forests. For instance, Garcia et al. [32] report RMSEs
of 18.48, 15.98 and 9.7 Mg·ha−1 for Spanish forests composed of black pines, Spanish junipers and
holm oaks, respectively. In fact, the presence or absence of a dense underneath vegetation negatively
impacts the lidar metrics’ variability (e.g., mean height, crown cover and height percentiles) and has
an impact on the AGB estimates. More importantly, our approach removes the need for the massive
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field samplings that are required by the regression model approach to convert the lidar metric into
AGB. This fact can highly decrease the cost of collecting accurate AGB baselines with high frequency.
Finally, our approach was validated on very small forest plots, and it is well known that errors decline
with increasing plot size [1].

3.3. Aboveground Biomass at the Forest Plot Level Using a Regression Model Approach

Table S2 shows the uncorrelated predictors, as well as the four most meaningful lidar metrics
used in this study to establish a family of AGB regression models. The model that better explains the
AGB variability was selected according to the minimum corrected Akaike information criterion (AIC).
It is given by:

log (AGB) = 0.11h99− 0.23hkurt− 0.01hcv + 3.41 (8)

where log stands for natural logarithm, h99, hkurt and hcv correspond to the 99th percentile, the
kurtosis metric and the coefficient of variation calculated using the height distribution of lidar returns,
respectively (Section 2.6 and Table S1). Therefore, it turns out that the best model is defined as a
function of three metrics out of the four most meaningful ones (Table S2).

By comparing the box-and-whisker diagrams in Figures 4a and 5a, one can conclude that the
regression model approach finds results very similar to our method in terms of the spread of the AGB
estimates. The main difference is that our approach slightly underestimates the main statistics (mean,
median, 25th and 75th percentiles) compared to the field estimates. Conversely, they are slightly
overestimated by the regression model approach. The row denoted by forest plot* in Table 2 shows the
performance of the AGB regression model approach using the leave-one-out cross-validation (loocv).
It demonstrates that the AGB regression model poorly explains the AGB variability compared to our
approach (R2 = 0.52 vs. R2 = 0.99, respectively). Furthermore, it gives rise to much higher RMSEs
(103.2 and 16.3 Mg·ha−1, respectively). These poor results are mainly due to the fact that the AGB
regression model is unable to deal with the forest structure heterogeneity introduced by Forest Plot
#12 (Figure 5b). The latter holds much more AGB than the remaining ones due to the existence of
old growth eucalyptus trees. Unlikely, our approach deals much better with the forest heterogeneity
because the AMS3D method (i) locally adapts to the forest structure and (ii) is able to correctly extract
individual tree metrics. Therefore, a better strategy for the AGB regression model approach would
require the definition of distinct models for areas displaying different forest structures. It would
require a forest stratification technique to delineate communities of trees uniform in age and structure.

Due to the fact that only one forest plot comprises old growth trees, we decided to develop an
additional AGB regression model that does not take into account Forest Plot #12 (Table S3 and Figure
S1). The latter is similar to the former one (Equation (8)). Furthermore, they are both defined as a
function of the very same lidar point cloud metrics:

log (AGB) = 0.11h99− 0.22hkurt− 0.01hcv + 3.52 (9)

Results calculated using loocv are shown in the row denoted by forest plot** of Table 2.
They significantly improved with respect to the regression model represented by Equation (8) (R2

increases from 0.55–0.77, and the RMSE decreases from 103.2 down to 23.32 Mg·ha−1), but they are
poorer than the findings of our approach (Section 3.2, R2 = 0.99 and RMSE = 16.3 Mg·ha−1).

In summary, the results show that our approach better explains the AGB variability compared
to the AGB regression models. These results may be due to the heterogeneity of our study area
with respect to the forest vertical structure. On the one hand, the spatial heterogeneity in terms of
underlying vegetation can impact the lidar metrics used in the AGB regression models, which limit
their ability to explain the AGB variability. On the other hand, our method calculates the AGB for
single layers and better deals with forest vertical structure variability.
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corner. 

Figure 5. Results for the AGB estimation at the forest plot level using a regression model approach
shown by means of (a) a box-and-whisker diagram (see Figure 3 for details). The field and
lidar estimates of Plot #12 (905.85 and 333.24 Mg·ha−1, respectively) have been removed from
the box-and-whisker diagram for visual purposes. In (b), we show a scatter plot of field- versus
lidar-derived AGB used to calculate the parameters shown in the row denoted by forest plot* of Table 2.
A log-log scale was used to accommodate the visualization of Plot #12 shown in the upper right corner.

4. Conclusions

We show that state-of-the-art lidar processing techniques that apply to high-resolution point
clouds are reliable tools to estimate aboveground biomass (AGB) with high accuracy when compared
to field-derived AGB even over complex structures, such as multilayered Mediterranean forests.
Similarly to field techniques, our approach assesses AGB at the individual tree level for the understory
layer and at the layer level for understory and ground vegetation. Moreover, it applies the very same
allometric equations commonly used by field-based techniques to convert forest metrics estimates
(e.g., tree density, individual tree height, crown size, forest layers mean height, crown cover) into AGB.
It overcomes the limitation of the AGB regression model techniques that require a large number of
sampling plots (of about 1 ha) to locally calibrate the models that have large uncertainty when used
regionally or globally.

We present the first work that estimates AGB for single layers using lidar data. A comparison with
other studies indicates that stratifying the vegetation into single layers (e.g., overstory, understory and
ground vegetation) and further estimation of AGB at the layer level reduces the uncertainty regarding
the AGB estimation over multilayered forests. In addition, this level of detail might be essential for
many other applications. For instance, our approach is able to characterize the ground vegetation
layer, which is crucial for forest fire and fuel study purposes. In fact, a forest fire always starts in this
layer, and the wildfire behavior and severity are highly driven by its characteristics. Furthermore,
our approach has a high potential regarding forest fuel mapping activities, since wildfire behavior
models are fed by metrics that depend on the vertical structure of forests, such as crown base height
and shrubby vegetation mean height [33–37]. Finally, the characterization of the ground vegetation is
crucial for ecological studies, such as the mapping of reptiles’ habitat.

Although the results depend on the forest layer, we proved that suitable lidar processing
techniques are efficient tools to estimate AGB at the forest plot level with high accuracy. This means
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that they are reliable tools to figure out the nature of the vegetation features that hold most of the
biomass, namely the individual trees that populate the mature overstory. Our technique estimated
the AGB of our study site with an RMSE of 17.1% and with a bias of 4.6%. Results are better than
those found by means of an AGB regression model that requires massive field measurements for
calibration and to convert point cloud metrics into AGB. Previous studies assert that satellite remote
sensing missions should meet biomass errors within 20 Mg·ha−1 or 20% of field estimates [3,38].
Therefore, in our opinion, high-resolution lidar techniques should be reconsidered as a reliable tool to
collect reference data over areas where no field sampling exists in order to decrease the uncertainty
associated with AGB mapping activities. Note that, whereas the field inventory of our experiment
provides reference AGB values over limited areas defined by the systematic sampling of 40 forest plots,
the lidar data allow estimating AGB up to over ~7,000,000 m2 (corresponding to the study area covered
by eucalyptus) without the need for time-consuming field measurements. Additionally, because it
covers a larger area, it is expected to better assess the underlying spatial variability of forest AGB.
Indeed, the availability of lidar-derived accurate AGB estimations at key local “hotspots” around the
globe and over time would help to comply with REDD requirements in reliable time. One limitation of
the high-resolution lidar approach is that mapping activities with small-footprint lidar data is restricted
to relatively small areas. However, the survey of well-defined areas around the globe with no existing
field measurements and its integration with low/medium spatial resolution sensors (Landsat, PALSAR
or NISAR data) to upscale estimates to the regional or national level would significantly improve our
knowledge about the amount and change of biomass at the global scale. Note that, even if in a reduced
number, field samplings are still necessary to assess the potential bias and uncertainty to correct the
lidar-based estimations if necessary.

Finally, it is well known that the success of individual tree crown approaches highly depends on
many factors, such as the lidar processing method, the forest characteristics and the lidar acquisition
parameters [25,29,39–41]. Furthermore, they have been validated over limited areas, and more effort
must be put into the development and validation of robust individual tree extraction methods able
to apply to different forest ecosystems. We recently proved that our method is adapted to extract
individual trees over a highly complex and diverse tropical rain forest in Panama [16]. Over tropical
areas, a single AGB allometric equation applies to all species because there are few species-specific
models for tropical trees [42]. However, over mixed forest where species-specific allometric equations
exist, it would be advantageous to take advantage of the synergy between lidar data and hyperspectral
imagery to discriminate tree species in order to select the adequate biomass allometric equations [29,43].
In our opinion, the scientific and technical community has been neglecting the lidar capabilities to
replace or complement field sampling through the direct retrieval of forest metrics. We do not believe
that there is any technological reason why a suitably-designed lidar campaign and a relevant 3D point
cloud processing technique could not be able to extract, for any forest type, the geometry of the most
significant vegetation features in terms of AGB.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/8/653/s1,
Table S1. Metrics derived from the lidar point cloud for the establishment of the aboveground biomass (AGB)
regression models, Table S2. Matrix of Pearson’s correlation coefficients (r) or the lidar metrics selected to establish
the AGB model. The meanings of the acronyms are provided in Table S1, Table S3. Matrix of Pearson’s correlation
coefficients (r) or the lidar metrics selected to establish the AGB model without taking into account Forest Plot
#12 (see the text for more details), Figure S1. Result for AGB estimation at the forest plot level using the AGB
regression model approach without taking into account Forest Plot #12.
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Abbreviations

The following abbreviations are used in this manuscript:

UN-REDD United Nations collaborative initiative on Reducing Emissions from Deforestation and
forest Degradation

AGB Aboveground biomass
AMS3D 3D adaptive mean shift
bd Bulk density
cbh Crown base height
cc Crown cover
CD Correctly-detected trees
CDM Canopy density models
dbh Diameter at breast height
dh Dominant height
ID Incorrectly-detected trees
IQR Inter-quartile range
GPS Global positioning system
KDE Kernel density estimators
MRV Measuring, reporting and verification
th Tree height
UD Undetected trees
UNFCCC United Nations Framework Convention on Climate Change
3D Three-dimensional
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