
HAL Id: hal-02376051
https://hal.science/hal-02376051

Submitted on 3 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spindle asymmetry drives non- Mendelian chromosome
segregation

Takashi Akera, Lukáš Chmátal, Emily Trimm, Karren Yang, Chanat
Aonbangkhen, David M Chenoweth, Carsten Janke, Richard M Schultz,

Michael A Lampson

To cite this version:
Takashi Akera, Lukáš Chmátal, Emily Trimm, Karren Yang, Chanat Aonbangkhen, et al.. Spindle
asymmetry drives non- Mendelian chromosome segregation. Science, 2017, �10.1126/science.aan0092�.
�hal-02376051�

https://hal.science/hal-02376051
https://hal.archives-ouvertes.fr


Spindle asymmetry drives non-Mendelian chromosome 
segregation

Takashi Akera1, Lukáš Chmátal1, Emily Trimm1, Karren Yang1, Chanat Aonbangkhen2, 
David M. Chenoweth2, Carsten Janke3, Richard M. Schultz1, and Michael A. Lampson1

1Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 
Pennsylvania 19104, USA

2Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 
Pennsylvania 19104, USA

3Institut Curie, PSL Research University, CNRS UMR3348, Centre Universitaire, Bâtiment 110, 
F-91405 Orsay, France

Abstract

Genetic elements compete for transmission through meiosis, when haploid gametes are created 

from a diploid parent. Selfish elements can enhance their transmission through a process known as 

meiotic drive. In female meiosis, selfish elements drive by preferentially attaching to the egg side 

of the spindle. This implies some asymmetry between the two sides of the spindle, but molecular 

mechanisms underlying spindle asymmetry are unknown. Here we found that CDC42 signaling 

from the cell cortex regulated microtubule tyrosination to induce spindle asymmetry. Non-

Mendelian segregation depended on this asymmetry. Cortical CDC42 depends on polarization 

directed by chromosomes, which are positioned near the cortex to allow the asymmetric cell 

division. Thus, selfish meiotic drivers exploit the asymmetry inherent in female meiosis to bias 

their transmission.

Genetic conflict is inherent in any haploid-diploid life cycle because genetic elements 

compete for transmission through meiosis. Mendel’s Law of Segregation states that alleles 

of a gene are transmitted with equal probability, but this law can be violated by selfish 

genetic elements through meiotic drive, for example by eliminating competing gametes (e.g., 

sperm killing or spore killing) or by exploiting the asymmetry in female meiosis to increase 

transmission to the egg. Despite the impact of meiotic drive on evolution and genetics (1–4), 

the underlying mechanisms are largely unknown. Female meiosis provides a clear 

opportunity for selfish elements to cheat because only chromosomes that segregate to the 

egg can be transmitted to offspring, while the rest are degraded in polar bodies. 

Conceptually, female meiotic drive depends on three conditions: asymmetry in cell fate, a 

functional difference between homologous chromosomes that influences their segregation, 
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and asymmetry within the meiotic spindle (5). The asymmetry in cell fate is well established 

(6), and chromosomal rearrangements and amplifications of repetitive sequences (e.g., 

centromeres) are associated with biased segregation (7–10). Asymmetry within the meiotic 

spindle was noted in grasshopper in 1976 (11) but not studied further.

Oocyte spindles are positioned close to the cortex and oriented perpendicular to the cortex so 

that cytokinesis produces a large egg and a small polar body. A selfish element drives by 

preferentially attaching to the egg side of the spindle, implying some difference in 

microtubules (MTs) between the egg and cortical sides. To determine how such spindle 

asymmetry is regulated, using mouse oocytes as a model for meiotic drive (10, 12), we 

tested for asymmetry in post-translational modifications that functionally diversify MTs 

(Fig. S1A) (13–15). Only tyrosinated (Tyr) and detyrosinated (dTyr) α-tubulin showed 

asymmetry, with the cortical side enriched for Tyr α-tubulin and the egg side for dTyr α-

tubulin (Fig. 1, A and C; Fig. S1B). Furthermore, we found that spindles were asymmetric 

late in metaphase of meiosis I (MI) when positioned near the cortex, but not earlier when 

positioned in the center of the oocyte (Fig. 1, B to D; Fig. S2). Because the MI spindle first 

forms in the center and then migrates towards the cortex (16–20), asymmetry might depend 

on either cortical proximity or time, or both. To distinguish between these possibilities, we 

manipulated spindle position by treating oocytes with cytochalasin B (CCB) before 

maturation to inhibit actin polymerization. The nucleus drifted to the cortex in 24% of these 

oocytes, with the spindle positioned near the cortex by 3 h after germinal vesicle breakdown 

(GVBD) vs. migration at 6 h under normal conditions (Fig. 1D; Fig. S3A). Cortical spindles 

in CCB-treated oocytes showed asymmetric Tyr α-tubulin staining at 3 h after GVBD, 

whereas β-tubulin staining remained symmetric (Fig. 1, E and F; Fig. S3B). Similar results 

were obtained with cytochalasin D (Fig. S3C). Asymmetry could be created by the spindle 

pole closer to the cortex generating higher levels of Tyr α-tubulin. However, mis-oriented 

spindles parallel to the cortex also had stronger Tyr α-tubulin signals on the cortical side, 

inconsistent with a difference between spindle poles (Fig. S4). Thus, the cortex directly 

regulates MTs to induce asymmetry within the spindle.

The cortex overlying the spindle is polarized through a chromatin-based gradient of 

RANGTP (21, 22) (Fig. S5A) and enriched in multiple signaling factors, including active 

CDC42 and RAC GTPases, and in polymerized actin (called the actin cap) (6, 23, 24) (Fig. 

S5A). To determine whether spindle asymmetry depends on cortical polarization, we 

expressed either constitutively-active (RANQ69L) or dominant-negative (RANT24N) RAN 

mutants. In each case, loss of polarization led to loss of spindle asymmetry (Fig. 2, A and B; 

Fig. S5B). We next tested CDC42 and RAC GTPases by expressing dominant-negative 

mutants. CDC42T17N diminished the Tyr α-tubulin signal overall and prevented asymmetry, 

whereas RACT17N did not affect asymmetry (Fig. 2, A and B; Fig. S5, B and C). 

Furthermore, expressing a constitutively-active CDC42 mutant with the plasma membrane 

targeting CAAX motif removed (CDC42Q61LΔCAAX) (25) significantly increased Tyr α-

tubulin signal (Fig. S7). We next tested whether the actin cap, which depends on CDC42 

activity (24) (Fig. S5A), contributes to spindle asymmetry. Inhibiting the actin nucleating 

ARP2/3 complex, using the small molecule inhibitor CK-666, abolished actin cap formation 

(26) but did not affect spindle asymmetry (Fig. S6). Thus, active CDC42 is sufficient to 
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increase α-tubulin tyrosination and required for spindle asymmetry independent of actin cap 

formation.

Our observations suggest that asymmetric localization of active CDC42 relative to the 

spindle is the mechanism underlying spindle asymmetry. To test this hypothesis, we 

developed an optogenetic strategy to target active CDC42 to one pole of a centered spindle, 

which is normally symmetric, using a photocaged small molecule that heterodimerizes 

Halotag and E. coli DHFR (eDHFR) fusion proteins (27, 28) (Fig. 2C). We used Halotag 

fused to a PACT domain, which localizes to spindle poles (29), to recruit eDHFR fusion 

proteins specifically to one pole by local uncaging of the dimerizer (Fig. S8A). Recruiting 

the constitutively-active CDC42Q61LΔCAAX mutant induced spindle asymmetry by 

increasing Tyr α-tubulin signals on the recruited side, whereas recruiting eDHFR alone had 

no effect (Fig. 2D; Fig. S8B). These results strongly support our model that cortically 

localized CDC42 activity induces asymmetry within the spindle. Several factors may 

contribute to the weaker asymmetry induced by our optogenetic approach, compared to that 

observed normally on spindles near the cortex. CDC42Q61LΔCAAX expression increased 

Tyr α-tubulin overall (Fig. S7), leaving less opportunity to create asymmetry by a further 

increase on one side. In addition, experimentally induced levels of CDC42 at spindle poles 

may be lower than normal levels at the cortex, and other cortical factors may also contribute 

to the asymmetry.

To determine the significance of spindle asymmetry for meiotic drive, we measured the 

biased orientation of selfish centromeres towards the egg pole in hybrid oocytes produced in 

a cross between two strains, CHPO and CF-1. Bivalents in these oocytes have both weaker 

and stronger centromeres, inherited from CHPO and CF-1, respectively (Fig. 3A). Stronger 

centromeres have higher levels of kinetochore proteins and more minor satellite DNA 

containing binding sites for the centromere protein CENP-B (10, 12). Using fluorescently-

tagged CENP-B to distinguish stronger and weaker centromeres in live cells, we showed that 

stronger centromeres preferentially oriented towards the egg pole just before anaphase I (10) 

(Fig. 3B, late meta I). To abolish spindle asymmetry, which we also observed in this hybrid 

strain (Fig. S9), we expressed RANQ69L or CDC42T17N mutants. Biased orientation was lost 

in both cases (Fig. 3B), demonstrating that meiotic drive depended upon spindle asymmetry 

induced by cortical polarization.

Initial MT attachments are established before spindle migration to the cortex (30), while the 

spindle is symmetric, and we did not find biased orientation shortly after migration in CHPO 

x CF-1 hybrid oocytes (Fig. 3B, early meta I). Thus, the bias arose from re-orientation or 

flipping of stronger centromeres from the cortical to the egg side of the spindle while it was 

cortically positioned and asymmetric. Hybrid oocytes remained in MI for 2–5 h after spindle 

migration, likely due to chromosomes positioned off-center on the spindle (12, 31) (Fig. 

3B), which would provide time for these flipping events. Indeed, we found examples of 

bivalents flipping after spindle migration in hybrid oocytes (21 events in 23 cells) (Fig. 4A), 

consistent with previous observations (30). To establish a bias, flipping must preferentially 

occur in one direction, which suggests that one orientation is relatively more unstable than 

the other and implies difference between centromeres of homologous chromosomes and 

between the two sides of the spindle. To test for these differences in hybrid oocytes, we 
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examined cold-stable kinetochore-MT fibers (32). Stronger centromeres had more unstable 

attachments compared to weaker centromeres, particularly when facing the cortical side of 

the spindle (Fig. 4B). Thus, stronger centromeres are more likely to detach, and the cortical 

side is more susceptible to detachment. To test whether the enrichment of Tyr α-tubulin 

makes the cortical side more unstable, we modulated the expression of Tubulin Tyrosine 

Ligase (TTL), which catalyzes α-tubulin tyrosination (33). TTL overexpression increased 

Tyr α-tubulin and destabilized spindle MTs based on sensitivity to low temperature (34), 

whereas depleting TTL decreased Tyr α-tubulin and stabilized spindle MTs (Fig. 4, C and 

D; Fig. S10, A and B). Thus, Tyr α-tubulin asymmetry allows stronger centromeres to 

interact differentially with the two sides of the spindle to preferentially orient towards the 

egg pole (Fig. 4E).

Here we have shown that asymmetry within the spindle is essential for meiotic drive. 

Because signals from the cell cortex regulate MTs to induce spindle asymmetry and the 

cortical side ultimately ends up in the polar body, our findings explain how spindle 

asymmetry is consistently oriented relative to cell fate, providing spatial cues to guide the 

segregation of selfish elements. Moreover, the cortical signals are a product of polarization 

directed by chromosomes positioned near the cortex. This chromosome positioning is 

crucial for female meiosis because it allows the highly asymmetric division that is a 

universal feature of sexual reproduction in animals (6, 21, 23, 35). Thus, selfish drive 

elements exploit the asymmetry inherent in female meiosis to bias their chances of 

transmission to the next generation.
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Fig. 1. Cortical proximity induces asymmetry within the mouse oocyte spindle
(A–F) CF-1 oocytes were fixed at metaphase I and stained for the indicated post-

translational modifications on tubulin. Cortical spindles (A–C) were examined at 6 h after 

GVBD, and centered spindles (B, C) at 3 h after GVBD. Cortical spindles in oocytes treated 

with cytochalasin B were examined at 3 h after GVBD (D–F). Images (A, B, E) are sum 

intensity z-projections showing the whole oocyte (left) or a magnified view of the spindle 

(right); dashed line, cortex; scale bars, 10 μm. Graphs are line scans of tubulin intensity 

across the spindle. Spindle asymmetry was quantified (C, F) as the ratio of the cortical half 

to the egg half (n > 18 spindles for each condition). Each dot represents a single spindle; red 

line, median; *p < 0.0001.
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Fig. 2. Cortical polarization and localized CDC42 signaling induce spindle asymmetry
(A, B) CF-1 oocytes expressing the indicated GTPase mutant were fixed 6 h after GVBD 

and stained for Tyr α-tubulin. Images are sum intensity z-projections showing the whole 

oocyte (left) or a magnified view of the spindle (right), and graphs are line scans of tubulin 

intensity across the spindle. Spindle asymmetry was quantified (B) as the ratio of the cortical 

half to the egg half (n > 17 spindles for each condition). (C) Schematics of the light-induced 

dimerization experiment. The dimerizer is composed of a Halo ligand linked to the eDHFR 

ligand Trimethoprim (TMP), which is photocaged. The PACT domain, fused to EGFP and 

Halotag, localizes to spindle poles, and CDC42Q61LΔCAAX is fused to mCherry and 

eDHFR. The dimerizer covalently binds Halo-PACT at spindle poles, and eDHFR-

CDC42Q61LΔCAAX is recruited to one pole by local uncaging with light. (D) Halo-EGFP-

PACT was co-expressed with either mCherry-eDHFR-CDC42Q61LΔCAAX (top) or 

mCherry-eDHFR (bottom) in CF-1 oocytes. Recruitment of eDHFR fusion proteins was 

induced by uncaging at one spindle pole. 30 min after uncaging, oocytes were fixed and 

stained for Tyr α-tubulin. Images are maximum intensity z-projection showing whole 

oocytes (left) or magnified views of the spindle, and graphs are line scans of tubulin 

intensity across the spindle. Spindle asymmetry was quantified as the ratio of the recruited 

side to the unrecruited side (n > 39 spindles for each condition). Each dot represents a single 

spindle; red line, median; *p < 0.01; **p < 0.0001. Scale bars, 10 μm.

Akera et al. Page 8

Science. Author manuscript; available in PMC 2018 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Spindle asymmetry is essential for biased orientation of selfish centromeres
(A) Schematic of biased orientation assay. A strain with stronger centromeres (CF-1) is 

crossed to a strain with weaker centromeres (CHPO). Bivalents in the hybrid offspring 

contain both stronger and weaker centromeres, which can be distinguished by CENP-B 

levels. (B) CHPO x CF-1 hybrid oocytes expressing CENP-B-EGFP and H2B-mCherry 

were imaged live, either shortly after spindle migration to the cortex (within 30 min, early 

meta I), or shortly before anaphase onset (within 30 min, late meta I). Image is a maximum 

intensity z-projection showing late meta I; white line: oocyte cortex, dashed line: spindle 

outline; scale bar, 10 μm. Insets are optical slices showing two bivalents; arrows indicate 

stronger (white) and weaker (orange) centromeres. The fraction of bivalents with the 

stronger centromere oriented towards the egg was quantified; n=152 bivalents for early meta 

I, 204 for late meta I, 108 for RanQ69L and 143 for CDC42T17N. * indicates significant 

deviation from 50% (p < 0.005).
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Fig. 4. MT tyrosination promotes unstable interactions between selfish centromeres and the 
cortical side of the spindle
(A) CHPO x CF-1 oocytes expressing CENP-B-mCherry and H2B-EGFP were imaged live 

after spindle migration to the cortex (n = 23 cells). Time lapse images show an example of 

bivalent flipping; arrows indicate stronger (white) and weaker (orange) centromeres. (B) 

CHPO x CF-1 oocytes were analyzed for cold-stable MTs at 8 h after GVBD. Enlarged 

insets are optical slices showing individual bivalents with the stronger centromere (arrow) 

either facing the egg side and attached to cold-stable MTs (1) or facing the cortical side and 

not attached (2). Weaker centromeres are attached in both cases. Graph shows the average 

percentage of centromeres without cold-stable attachments. Error bars represent s.d. for 3 

independent experiments (> 50 bivalents analyzed in each experiment). *p < 0.01. (C, D) 

CF-1 oocytes expressing YFP-TTL or microinjected with morpholino against TTL were 

analyzed for cold-stable MTs at 6 h after GVBD. Graphs show integrated α-tubulin intensity 

in the spindle (n > 41 spindles for each condition). Each dot represents a single spindle; red 

line, median; *p < 0.001. Images (A–D) are maximum intensity z-projections; scale bars, 10 

μm. (E) Model for spindle asymmetry and meiotic drive. Top: cortical signals regulate MTs 

to induce tyrosination asymmetry within the spindle, and stronger centromeres (larger blue 

circles) orient preferentially to the egg side. Bottom: bivalent orientation is initially random 

(a), but attachment of a stronger centromere to the cortical side is unstable and tends to 

detach (b), followed by detachment of the weaker centromere, likely due to loss of tension 
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across the bivalent, and re-orientation. This biased flipping of stronger centromeres to the 

egg side leads to biased orientation (c).
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