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ABSTRACT 22 
 23 

Angiogenesis is a finely tuned process, which is the result of the equilibrium between pro- and anti-angiogenic 24 

factors. In solid tumor angiogenesis, the balance is highly in favor of the production of new, but poorly 25 

functional blood vessels, initially intended to provide growing tumors with nutrients and oxygen. Among the 26 

numerous proteins involved in tumor development, several types of ion channels are overexpressed in tumor 27 

cells, as well as in stromal and endothelial cells. Ion channels thus actively participate in the different hallmarks 28 

of cancer, especially in tumor angiogenesis and metastasis. Indeed, from their strategic localization in the 29 

plasma membrane, ion channels are key operators of cell signaling, as they sense and respond to environmental 30 

changes. This review aims to decipher how ion channels of different families are intricately involved in the 31 

fundamental angiogenesis and metastasis hallmarks, which lead from a nascent tumor to systemic 32 

dissemination. An overview of the possible use of ion channels as therapeutic targets will also be given, 33 

showing that ion channel inhibitors or specific antibodies may provide effective tools, in a near future, in the 34 

treatment of carcinomas. 35 

 36 
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ABBREVIATIONS: HIF, hypoxia-inducible factor; CRC, colorectal carcinoma; ccRCC, clear cell renal cell 41 
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I. Introduction 50 

Carcinoma is a solid cancer developing from epithelial cells and is the most widely spread form of human 51 

cancer. Among the phenomena leading to the development and progression of this type of cancer, one of the 52 

most important is angiogenesis. Indeed, tumor vascularization is essential for a growing tumor to obtain oxygen 53 

and nutrients needed for its ongoing growth, in situ. Tumor neovascularization is also a means for the tumor to 54 

grow away from its primary site towards a remote neo-colonized structure (metastasis). 55 

In the last 10 to 15 years, many efforts have been made on the elucidation of which genes might be directly 56 

involved or affected during the different steps of tumorogenesis, described by Hanahan and Weinberg as the 57 

hallmarks of cancer (95, 96). Multiple studies demonstrated that, among these genes, plasma membrane ion 58 

channels and transporters are clearly modulated during carcinogenesis, in different types of carcinomas (9, 20, 59 

31, 75, 78, 93, 133, 147, 201, 207). Several different roles have been ascribed to ion channels during 60 

carcinogenesis, depending on the step of the tumorization process and on the organ in which it takes place. 61 

In this review, we do not intend to make an exhaustive list of channels involved in cancer development. Instead, 62 

we choose to focus on the involvement and/or alteration of some ion channels in angiogenesis, from the 63 

vascularization of recently formed tumors to the metastasis cascade. Indeed, neo-formation of tumors involves 64 

pH changes, which are associated with proton exchange through the plasma membrane (127, 209, 217) and 65 

water transport (17, 162). The subsequent tumor growth needs neovascularization, associated with Ca2+, K+ and 66 

Na+ channels (5, 61, 201). Finally, Na+, K+, Ca+ and Cl- channels are implicated in the transition to metastasis 67 

(32, 73, 75). 68 

The main ion channels involved in tumor development processes and mentioned in this review are listed in 69 

Table 1. 70 

 71 
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II. Neoangiogenesis 72 

A. The fate of new tumors  73 

In the early steps of its formation, a tumor depends solely on the host blood vessels (104). However, this initial 74 

peripheral vasculature quickly disappears, leaving the tumor and its microenvironment in a hypoxic state (84, 75 

97). Folkman (77) was the first to show that, under these conditions, the tumor growth is limited to a few cubic 76 

millimeters, unless reorganization of a new blood supply is promoted (neoangiogenesis). 77 

The lowered local O2 pressure (pO2) observed near cancer cells and the resulting tumor microenvironment 78 

acidification activate hypoxia-inducible factors, especially HIF-1 (44, 58, 115). HIF-1α is stabilized by 79 

phosphorylation (172) and dimerizes with the constitutively expressed HIF-1β to form the transcription factor 80 

HIF-1, which in turn stimulates a set of genes involved in tumor development. Conversely, recent reports 81 

present HIF-2 as the tumorigenic form of HIF, whereas HIF-1 would be a tumor suppressor (227, 263). 82 

Initially, the cancer cells undergo metabolic changes, among which increased glucose consumption and lactate 83 

production (the Warburg’s effect) lead to acidosis of the cells. In conjunction with the higher need for glucose, 84 

several authors report a HIF-dependent expression of the GLUT-1 glucose transporter in breast or colorectal 85 

carcinoma cell (CRC) models (25, 84, 132) and a repressed mitochondrial function (175). In clear cell renal cell 86 

carcinomas (ccRCC), some isoforms of glucose transporters are equally increased, including the GLUT-5 87 

fructose transporter (240). Moreover, in order to prevent acidosis induced by the accumulation of lactate, cancer 88 

cells increase the amount and/or activity of several families of acid-extruding plasma membrane proteins. In 89 

several carcinoma models, these HIF-1 increased proteins include: NHE1, the Na+/H+ exchanger (79, 170, 231), 90 

the MCT1 and MCT4 forms of monocarboxylate transporters, dedicated to lactate extrusion (62, 184, 246), the 91 

SLC4A4 (NBC) Na+/HCO3
- cotransporter (1, 180), involved in the bicarbonate reabsorption which contributes 92 

to intracellular pH recovery. Acid-sensing ion channels (ASIC1, 2, 3) are also up-regulated in adenoid cystic 93 

carcinomas, following the acidification of the extracellular space (257). Finally, carbonic anhydrases (especially 94 

CAIX, the main carbonic anhydrase found in hypoxic tumors (64)), dedicated to microenvironment pH 95 

modulation are also upregulated (132, 171, 180). The different ion channels involved at this stage are 96 

summarized in Figure 1. Activation of all these transport proteins eventually contribute to a modest elevation of 97 

the tumor cell intracellular pH, while the extracellular medium is acidified. 98 
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Subsequently, the newly constituted tumor will only grow larger if it manages to regenerate a constant blood 99 

supply to provide O2 and nutrients to the tumor cells and to rid the cells of metabolites. Two main families of 100 

plasma membrane ion channels have been proposed to be involved in this tumor developmental stage and 101 

regulated by HIF. Transient receptor potential (TRP) channels contribute to calcium homeostasis and are 102 

upregulated in several cancer cell types, thus playing an important part in Ca2+ influx, regulatory volume 103 

decrease (RVD) and cell cycle progression (63, 254). A variety of K+ channels are also involved in the HIF-104 

induced regulation of proliferation and revascularization, namely the voltage-dependent “ether-à-gogo” 105 

potassium channel (EAG1, KCNH1, Kv10.1) (31, 177), and the two-pore domain potassium channels TASK 106 

(30) and TREK (243). In pancreatic ductal adenocarcinoma (PDAC), the Ca2+-dependent potassium channel of 107 

intermediate conductance, IKCa (KCa3.1) is up-regulated and contributes to cell proliferation (114). 108 

 109 

B. Angiogenic switch 110 

Tumor angiogenesis is the key step for tumor growth, invasion and metastasis. Tumor angiogenesis mostly 111 

relies on the same processes as those involved in physiological angiogenesis (27, 45, 176). Particularly, 112 

ischemia and hypoxia are in both cases, major initiators of angiogenesis processes (“on” switches). Moreover, 113 

tumor angiogenesis and physiological angiogenesis heavily depend on VEGF secretion, as was described 114 

elsewhere and as we will describe here for tumor-depending angiogenesis. The main differences are: 1) 115 

Pathological angiogenesis is more dependent upon VEGF than physiological angiogenesis (45); and 2) 116 

Physiological angiogenesis events recede when vessel perfusion starts and upon disappearance of the stimuli 117 

that gave rise to neoangiogenesis (“off” switch), whereas tumor angiogenesis is a continuous process, fueled by 118 

the steady secretion of tumor-induced angiogenesis factors (45). 119 

The concept of “angiogenic switch” was formulated in order to characterize angiogenesis as a balance between 120 

processes that tend to favor and processes that tend to prevent angiogenesis (94). When tumor cells enter a 121 

hypoxic state, activation of HIF leads to the subsequent activation of a multiple array of pro-angiogenic factors; 122 

thus, the regular balance of angiogenesis is lost: the angiogenic switch has been turned “ON”. The most studied 123 

HIF-regulated pro-angiogenesis factor is probably VEGF, the angiogenesis cytokine that regulates endothelial 124 

cell proliferation and blood vessel formation. Both VEGF and its receptors VEGFR1 (FLT-1) and VEGFR2 125 
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(KDR/FLK1), which are located principally on the surface of endothelial cells, are upregulated by HIF (123, 126 

185). Fibroblast Growth Factor (FGF) is also regulated by hypoxia and may act synergistically with VEGF to 127 

amplify angiogenesis (125). 128 

The “angiogenic switch” is turned “ON”, in several types of cancer cells, including mouse colon carcinoma, 129 

mouse melanoma and human neuroblastoma, when several types of ion channels are modulated. P2X7R, the 130 

non-selective cationic pore, has been shown to promote tumor growth and VEGF release (4, 5, 7). TRPC 131 

channels are functionally coupled to VEGF or FGF, playing important roles in cancer development steps (76, 132 

156). Moreover, in renal cell carcinoma (RCC), the TRPC4 Ca2+ channel expression is decreased, which impairs 133 

Ca2+ metabolism, hence preventing the production of thrombospondin-1 (TSP1), an angiogenesis inhibitor 134 

(238). Numerous studies report overexpression of most families of K+ channels in human cancers. In particular, 135 

the closely related voltage-dependent hERG and EAG1 K+ channels are both involved in the processes leading 136 

to angiogenesis. Indeed, hERG channels regulate angiogenesis in CRC by increasing the HIF-1 activated VEGF 137 

expression and secretion in a β1-integrin-dependent manner and via a PI3K/Akt pathway (46). This regulation 138 

has been confirmed in transgenic mice expressing hERG channels and treated with azoxymethane. These mice 139 

present increased staining for VEGF in immunohistochemistry (IHC) studies and a higher total number of blood 140 

vessels, consistent with neoangiogenesis, as well as colorectal lesions, on the whole showing acceleration of the 141 

colorectal cancer phenotype (74). EAG1, but not EAG2 contributes to tumor progression, as demonstrated by 142 

xenograft tumor formation resulting from implanted MDA-MB-435S breast cancer cells, EAG1-transfected 143 

CHO cells and EAG1- or EAG2-transfected NIH-3T3 cells. Furthermore, EAG1 stimulates VEGF secretion, 144 

measured in CHO- or 3T3-transfected cells. Finally, EAG1 increases HIF-1 amount in EAG1-expressing cells, 145 

thus demonstrating that EAG1 is involved in the angiogenic switch and the subsequent neoangiogenesis (61). 146 

The role of Ca2+ channels in conjunction with angiogenic switch is worth to mention. Indeed, it has been 147 

demonstrated that VEGF utilizes Ca2+ signaling to promote endothelial cell proliferation and subsequent 148 

neoangiogenesis, which we largely discuss in the next section. However, it is noteworthy that some Ca2+ 149 

channels, mostly of the TRP family, are upregulated by hypoxia in cancer cells (76). The subsequent increase in 150 

intracellular Ca2+ concentration is at the basis of cancer cell hallmarks such as cell proliferation or migration 151 

(76).  152 

 153 
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C. Neovascularization 154 

Tumor vasculature is a crucial feature of carcinoma development. New blood vessels develop by sprouting 155 

(angiogenesis) or intussusception from pre-existing vessels (144, 199). They can also emerge from the assembly 156 

of endothelial precursors derived from the bone marrow (vasculogenesis) (189). Sprouting is a very well studied 157 

process, which is involved in tumor blood vessel formation. Angiogenesis is a multistep process that begins 158 

when endothelial cell VEGF receptors are stimulated by VEGF (19, 34) to give rise to new blood vessels 159 

growing towards the avascular tumor that initially secreted the stimulating cytokine. The different steps of the 160 

process are detailed below: 161 

 162 

1. VEGF-induced blood vessel dilatation 163 

Most research on tumor angiogenesis has focused on VEGF-A. VEGF-A signaling occurs through two VEGF 164 

receptors, VEGFR1 and VEGFR2 (19, 144). Although VEGF-A has the highest affinity for VEGFR1, the 165 

higher tyrosine kinase activity of VEGFR2 makes it the primary receptor involved in angiogenesis processes. 166 

VEGFR1, conversely, is involved in macrophage chemotaxis, as well as in tumor cell survival and invasion 167 

(136, 205, 255). Additionally, VEGFR1 may also have a negative role on angiogenesis and tumorogenesis 168 

processes, only acting as a decoy receptor (102, 142). VEGF-A binds to its receptor and this first results in 169 

blood vessel dilatation, as recently shown by in vivo studies of breast tumors, by sonographic examination (41). 170 

Like most mammalian cells, endothelial cells express cell-swelling activated Cl- channels, called the Volume-171 

Regulated Anion Channel (VRAC) (166, 167). Interestingly, receptor tyrosine kinases such as VEGFRs can 172 

serve as mechanosensors (40). As such, they are involved in the VRAC signaling pathway. Thus, one might 173 

infer that VEGF signaling in endothelial cell is mediated by VRAC Cl- channels, as shown by the suppression of 174 

angiogenesis by VRAC inhibitors (146). 175 

 176 

2. Disorganization of the vascular bed 177 

Angiogenesis partly proceeds by the VEGF stimulation of endothelial cell matrix metalloproteinases (MMPs) 178 

(188). Secretion of these MMPs, more precisely MMP-2 and MMP-9 (18, 250), triggers the dissolution of the 179 

basement membrane surrounding these endothelial cells, thus provoking the destabilization of the entire blood 180 
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vessel wall and leading to vessel leak (34). Among the multiple mechanisms that cooperate for the close 181 

regulation of MMP activity, Ca2+ signaling is one of the most important (121). The work, led by Kato, 182 

demonstrates that under extracellular acidification, B16 mouse melanoma cell line displays increased voltage-183 

gated Ca2+ channel expression and activity, resulting in an increase in intracellular Ca2+ concentration and in 184 

MMP-9 induction. Thus, Ca2+ signals and channels are potentially the most important points in the regulation of 185 

the VEGF-triggered blood vessel reorganization. However, the work conducted by Kato and colleagues 186 

addresses the other types of Ca2+ channels that may be involved in the complex processes going from VEGF 187 

upregulation to basement membrane disorganization. Indeed, under a hypoxic stimulus, the formation of a 188 

VEGF-VEGFR complex at the endothelial cell plasma membrane can also result in intracellular Ca2+ increase, 189 

due to the release of intracellular Ca2+ stores (Fig. 2). The depletion of these stores in turn results in Ca2+ influx, 190 

via plasma membrane Ca2+ channels which results in store-operated calcium entry or SOCE (for review, see 191 

(75)). Several Ca2+ channels of the transient receptor potential (TRP) superfamily appear to be involved in 192 

SOCE and help explain how SOCE contributes to VEGF-induced basement membrane disruption. Among the 193 

TRPCs (canonical), TRPC1 activation magnifies the VEGF-induced increase in endothelial cell monolayer 194 

transepithelial permeability (111, 178). Conversely, inhibition of the TRPC1 activity reduces this transepithelial 195 

permeability increase (111). TRPC4 is a necessary intermediate in the response of human pulmonary artery 196 

endothelial cells to VEGF stimulation (71). TRPC6 is also presented as a good candidate in the process of 197 

VEGF-induced vascular permeability increase. Indeed, as shown in individually perfused frog microvessels, 198 

stimulation of TRPC6 generates an increase in the hydraulic conductivity (Lp) of the vessels (186). The Ca2+-199 

release activated Ca2+ (CRAC) channel (composed of the plasma membrane Orai1 subunit coupled with the 200 

endoplasmic reticulum STIM subunit) is also involved in VEGF-dependent SOCE (139). Indeed, in human 201 

umbilical vein endothelial cells, inhibition or disruption of Orai1 reduces VEGF-induced calcium entry, cell 202 

migration and in vitro angiogenesis. The increase in transepithelial permeability may result from both in-cell 203 

and in-between-cell pore creation (43, 98). Finally, VEGF effects can also occur via receptor-operated-calcium 204 

entry (ROCE), as shown on human microvascular endothelial cells (42); TRPC3 and TRPC6 are two examples 205 

of channels involved in calcium-mediated vascular permeabilization. 206 

In conclusion, VEGF-induced calcium-dependent events leading to the basement membrane disorganization, 207 

though resulting in the same final outcome, appear to be the consequence of several calcium entry pathways. 208 
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 209 

3. Endothelial cell proliferation, migration and organization 210 

Breakdown of the blood vessels (i.e. dissolution of the basement membrane) leads endothelial cells to be 211 

released into the extracellular matrix (ECM) where they proliferate and organize to generate new blood vessels, 212 

growing towards the tumor that initially emitted stimulating signals. Angiogenic sprouting is a guided process in 213 

which the vasculature expands outwards from the preexisting vessel, following a gradient of angiogenic factors 214 

such as VEGF-A (85) or soluble VEGFR1 (38). In this regard, Gerhardt and colleagues demonstrated that the 215 

first cell of the column, the so-called “endothelial tip cell,” consists of a single, non-proliferative, highly 216 

polarized endothelial cell, which is the sensor of the emitted elongation signal. The cell migration along this 217 

signal (chemotaxis) paves a path for the cells that follow, the “stack cells”, which undergo high rate mitosis to 218 

form the newly elongating blood vessel. At the endothelial cell level, it is now recognized that VEGFR2 is the 219 

main actor of the angiogenic cascade. VEGF, when binding to VEGFR2, activates a signaling cascade starting 220 

from auto-phosphorylation of VEGFR2, subsequent phosphorylation and activation of phospholipase C-γ (PLC-221 

γ), increased production of inositol 1,4,5-trisphosphate (IP3) and resulting increase in the Ca2+ release from 222 

endoplasmic reticulum. The subsequent rise in calcium influx by the aforementioned SOCE process involves 223 

TRPC channels, as already discussed (see chapter II.C.2) and promotes endothelial cell migration via a 224 

Ca2+/calmodulin/calcineurin pathway (72). The role of SOCE was also established in bovine artery endothelial 225 

cells for the different mechanisms of angiogenesis (i.e., cell sprouting, cell proliferation and cell migration) and 226 

involves the Ca2+/calmodulin/protein kinase cascade (15). 227 

One of the fundamental roles of ion channels in endothelial Ca2+ signaling is the fine-tuning of the 228 

electrochemical gradient for Ca2+ (118). Several types of ion channels cooperate in elaborating the cell 229 

membrane potential, which regulates calcium entry into the endothelial cells (118). Among those, K+ channels, 230 

especially Ca2+-activated K+ channels (251), inwardly rectifying K+ channels (Kir) and voltage-dependent K+ 231 

channels, are the major classes of ion channels involved in setting the membrane potential (165), which in turn 232 

influences the driving force for the Ca2+ via SOCE. Indeed, blockers of K+ channels, as well as plasma 233 

membrane depolarization, stop the cell cycle in G1 phase, thus reducing cell proliferation (153, 165). However, 234 

among the Ca2+-dependent K+ channels, the Ca2+-dependent intermediate conductance K+ channel IK1 (SK4, 235 
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KCNN4) increases cell proliferation with a completely different mechanism, in a HEK overexpressing system. 236 

Indeed, the potassium current itself does not seem to mediate the effect, since a non-transporting mutant of the 237 

channel induces the same proliferation. So it seems that the IK1-induced proliferative effect is not SOCE-238 

mediated (152). The cell membrane potential is partly regulated by Cl- channels (247). Hence, volume-regulated 239 

anion channels (VRAC), Ca2+-activated Cl- channels (CaCC), as well as cystic fibrosis transmembrane regulator 240 

(CFTR) (145) might be important regulators of SOCE, which drives the proliferation step of angiogenesis. 241 

 242 

4. Maturation of the new blood vessel 243 

Two steps are essential for completion of angiogenesis: 244 

(1) A new vessel is formed when the elongating sprout lumenizes to create a tube, which will eventually be able 245 

to transport fluid and the multiple blood components: this step is called tubulogenesis (117, 143). At least two 246 

models of tubulogenesis have been described. The “cell hollowing” model (currently the most studied) evolves 247 

from a chain of single endothelial cells (117). This model involves intracellular vesicle formation, then fusion of 248 

these vesicles into vacuoles, first intracellularly, and then from cell to cell, all along the sprout, when the 249 

vacuoles get bigger. The future lumen vacuole membrane finally acquires hallmarks of an apical membrane, 250 

thus defining the apical-basolateral polarity of the neo-formed vessel. In the less studied “cord hollowing” 251 

model, which happens in a multi-cellular elongated stack, the cells first lose their initial polarity, then 252 

basolateral membrane markers are accumulated at the membrane facing the extracellular matrix, while vesicles 253 

are accumulated and get fused on the opposite membrane, hence forming an initial lumen that expands 254 

afterwards (179, 248). In the “cell hollowing” model, the formation of vacuoles is linked to the activation of 255 

intracellular chloride channels of the CLIC family. The chloride intracellular channel (CLIC) family of proteins 256 

contains six mammalian members (CLIC1-6), from which only CLIC1 and CLIC4 are expressed in endothelial 257 

cells (230). CLIC proteins can change from a soluble state to a membrane-linked state. In the latter case, when 258 

inserted in such organelles as mitochondria, Golgi membranes, nuclear membranes, etc., CLICs function as 259 

chloride channels, although very different in structure from the other known Cl- channels (65, 233). In the “cell 260 

hollowing” model of tubulogenesis, CLIC4 is present in human umbilical vein endothelial cells and promotes 261 

several processes involved in angiogenesis, including lumenal formation (229). Particularly, endothelial cells 262 
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derived from transgenic mice, in which the Clic4 gene has been invalidated, fail to proceed to the vacuole 263 

creation and extension process. Tung and colleagues show that the enlarging vacuoles acidify during their 264 

formation, involving an electrogenic vacuolar proton-ATPase (vH+-ATPase), and propose that CLIC4 supports 265 

this acidification by creating an electrical gradient for the proton transfer. The same article proposes that CLIC1 266 

may partially compensate for the absence of CLIC4 in the process of tubulogenesis, although CLIC1 seems 267 

mainly committed to proliferation and migration processes rather than to morphogenesis of endothelial cells 268 

(230). 269 

(2) The new hollow tube thus created is finally stabilized by the formation of a new basement membrane. 270 

Indeed, in physiological angiogenesis, accessory cells, such as pericytes and smooth muscle cells are recruited 271 

to the newly developed vessel, to form a new basement membrane (54). In tumor angiogenesis, however, the 272 

newly formed blood vessels are very heterogeneous in structure and function (54). Their architecture is very 273 

chaotic and disorganized, with abnormal branching, inflated cells and tortuous courses. Subsequently, the 274 

association between endothelial and mural cells is altered, becoming loose and leading to highly permeable 275 

vessels, which, paradoxically, are not adapted to a fluent and regular irrigation of the tumor, hence favoring its 276 

dissemination to other, supposedly more welcoming, locations (35). The leaky vessels allow the tumor to escape 277 

the noxious environment in which it grows (metastasis). Again, Ca2+ channels of the TRP family, namely 278 

TRPV4 Ca2+ channels, are key determinants in the balance between normal and defective vasculature (2). 279 

Indeed, tumoral endothelial cells naturally contain low levels of TRPV4. Conversely, overexpression or 280 

pharmacological activation of TRPV4 normalizes the vasculature and restores the endothelial cell layer physical 281 

and biophysical properties.  282 

 283 

III. Metastasis  284 

A. The tumor microenvironment (TME): role and ion channel profile 285 

The extracellular environment of tumor cells is viewed as a complex network of stromal cells, deregulated 286 

vasculature, extracellular membrane (ECM) proteins, growth factors and cytokines, all of which generated or 287 

activated by the tumor cells, acting together to influence the growth, behavior and malignancy of the tumor 288 
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(236), and constantly evolving while the tumor grows and becomes more aggressive. The physical and chemical 289 

characteristics of the TME is cancer-type dependent, but there are a number of typical, cancer type-independent 290 

features, among which hypoxia, acidic pH, high levels of lactate and low levels of glucose (21, 82). In this 291 

context, ion channels and transporters are important specialized proteins involved in the regulation of signaling 292 

pathways associated with these properties. All the cells composing the tumor microenvironment (TME) are 293 

laden with several types of missexpressed/overexpressed ion channels, which participate in the crosstalk 294 

described by Arcangeli, between the tumor and its TME (8). These ion channels also contribute to maintain the 295 

harsh conditions that allow tumor growth (33). Concerning the vasculature, we have already discussed the 296 

channels involved in neoangiogenesis and mentioned the importance of endothelial cell Ca2+ homeostasis 297 

throughout this process. Mesenchymal cells (fibroblasts, myofibroblasts, immune cells) also express ion 298 

channels, particularly lymphocytes that infiltrate the tumors express K+ channels of the Kv1.3 and KCa3.1 types, 299 

which are involved in T cell activation via Ca2+ signaling (124). Interestingly, tumor-associated macrophages 300 

express P2X7R non-selective cation channels and inwardly-rectifying KIR K+ channels; both families are 301 

involved in the Ca2+-dependent activation of macrophages (8). 302 

 303 

B. Role of the epithelial-mesenchymal transition (EMT) in the metastasis process 304 

Metastasis of epithelial cancer cells is a multistep process, which involves mobilization of the cells from their 305 

original location, migration of the cells, invasion of surrounding locations, intravasation of cancer cells into 306 

newly formed tumoral blood vessels, cell survival in the blood flow and seeding to more distant new niches, 307 

where the cells start proliferating again, thus creating secondary tumors. Multiple oncogenic signals originating 308 

from the TME convert the cells into their new metastatic and invasive phenotype. These signals lead the tumor 309 

cells to acquire several biological capabilities described as hallmarks of cancer (95, 96) and mediated by an 310 

epithelial-mesenchymal transition (EMT) process, otherwise called the metastatic cascade. During this cascade, 311 

cells, which originally display epithelial cell features (i.e., adhesion to each other and to the basement 312 

membrane, high level of E-cadherin involved in the epithelial integrity (16)) are progressively transformed into 313 

mesenchymal cells (116). Briefly, during this process, polarized epithelial cells acquire a new phenotype, which 314 

includes increased resistance to death, enhanced migratory capacities and invasiveness. The complete spectrum 315 
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of signaling agents that contribute to EMT remains an open question. EMT is a complicated process and ion 316 

channels from several different families play a particularly important role in this transition (249).  317 

 318 

1. Mobilization of the cells: involvement of ion channels 319 

Loss of cell-cell contacts is the first step of EMT. This phenotype is associated with repression of cell junction 320 

proteins, such as E-cadherin, and correlated with stimulation of both vimentin (an intermediate filament protein) 321 

and N-cadherin (neural cadherin, normally expressed in migrating non-tumoral cells) synthesis (107, 164, 226). 322 

This process has been shown in breast cancer cells to be Ca2+-dependent (52). In fact, induction of EMT is 323 

clearly related to the expression of TRPM7, the melastatin-like TRP Ca2+ channel. Indeed, upregulation of 324 

TRPM7 regulates the expression of the EMT marker vimentin. Conversely, downregulation of the channel 325 

prevents EMT induction in breast cancer cells. In colorectal carcinoma cells, the Ca2+-activated KCNN4 326 

(KCa3.1; SK4) channels have been shown to be involved in EMT promotion, probably through participation in 327 

the cell hyperpolarization, subsequent induction of Ca2+ entry via voltage-dependent Ca2+ channels and an 328 

increase in intracellular Ca2+ concentration (129). 329 

Tumor cell mobilization is the next step in the metastatic cascade. This step involves migration of the cells from 330 

their initial site and invasion of the surrounding stroma and vasculature. This is a complex process requiring the 331 

coordination of multiple macromolecules involved in adhesion, cytoskeletal dynamics and digestion of the 332 

ECM. Among the extracellular elements favoring EMT, hypoxia and microenvironment acidification have been 333 

the most studied and are involved in tumor cell mobilization. As discussed earlier in this review, tumor acidity 334 

is a direct result of hypoxia (83, 237). Indeed, low pO2 raises the rate of glycolysis, which produces elevated 335 

levels of lactate and protons in tumor cells. In order to maintain pHi within a tight range (pH 7.2 – 7.4), the 336 

tumor cells upregulate H+ extrusion, which, in turn, results in microenvironmental acidosis, down to pH 6.5 (50) 337 

or even to pH 5.8 as shown in highly metastatic MDA-MB-435S breast tumor cells (208). Extracellular acidosis 338 

increases even more due to hypoxia-induced activation of carbonic anhydrases, especially CAIX (223). 339 

Consequently, tumor cells are equipped with mechanisms that allow them to sense and react to the low pHe to 340 

which they have been exposed. pH sensors of several types are present in the plasma membrane of mammalian 341 

tumor cells and these pH sensors are categorized into G-protein coupled receptors (GPCRs) and non-GPCR pH 342 



 14

sensors (50). GPCR signaling pathways are manifold: ERK pathway/Ca2+ release (105), Gs-protein/cAMP, 343 

G12/13-protein/Rho, and Gq-protein/phospholipase C pathways (140). pH sensing results in reorganization of the 344 

cytoskeleton (e.g. actin rearrangement, stress fiber synthesis, etc.), thus contributing to tumor migration and 345 

eventually to tumor progression (39). Non-GPCR proteins include ion channels of several families and 346 

participate in migration and invasion phenotypes. Indeed, expression of the tumor cell cation-permeable Acid 347 

Sensing Ion Channels (ASICs) is pH-dependent. ASIC1a is associated with tumor cell migration and invasion in 348 

hepatocellular carcinoma cells (112); ASIC2a and ASIC3 have been identified in the plasma membrane of 349 

adenoid cystic carcinoma cells and proposed to be involved in the acquired invasive capabilities of the cells 350 

(257). The Ca2+ channel TRPV1 is also activated by low pH (259) and is correlated with tumor cell proliferation 351 

in human prostate cancer cell lines (159). Both families of channels are involved in cancer-associated pain (57, 352 

259) and plasma membrane phospholipids are proposed to be modulators of ASIC and TRPV1 activities (128).  353 

Other acid-sensitive channels comprise several members of the Ca2+ channel TRP family, ionotropic 354 

purinoceptors (P2X), inward rectifier K+ channels (Kir), voltage-activated K+ channels (Kv family), L-type Ca2+ 355 

channels (Cav, CACN), hyperpolarization-activated and cyclic nucleotide-gated cation channels (HCN), gap 356 

junction channels, and Cl− channels. They are involved in the process of tumor cell migration (217). 357 

Interestingly, the Ca2+-activated, high conductance, BKCa K+ channels are not involved in breast cancer 358 

progression, as shown by the absence of effect of iberiotoxin (an inhibitor of BKCa) in the processes of 359 

proliferation, survival, migration or invasion in several breast cancer cell lines (200). 360 

Migratory cells are polarized along their longitudinal axis, with hypoxia- and TME acidosis-dependent 361 

protrusion of lamellipodia at the cell front edge and coordinated retraction of the rear edge (213). This process is 362 

intracellular Ca2+ concentration-sensitive, thus involving Ca2+ release from intracellular stores and SOCE 363 

channels (228). It creates the amoeboid movement characteristic of migrating tumor cells which is highly 364 

dependent on ion and water flux (210). Indeed, the formation of lamellipodia is accompanied by relocalization 365 

at the leading edge of a number of plasma membrane transport proteins, among which CAIX, NHE, MCT (all 366 

involved in pH modulation), anion exchangers (such as NBC transporters or the anion exchanger AE2) and 367 

water channels (aquaporins; AQP). It is proposed that the coordinated action of all these channels and 368 

transporters makes it possible for the cells to establish the osmotic gradient that subsequently induces AQP-369 

mediated water flux at the leading edge of the cell. Water extrusion by AQP, at the rear end of the cell, is 370 
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mediated by the combined activity of Ca2+-activated K+ channels (KCa3.1) and Volume-Regulated Anion 371 

Channels (VRACs) and leads to regulatory volume decrease (RVD) and shrinkage of the cells (206).  372 

 373 

2. Invasion of surrounding TME and vasculature 374 

Invasion of healthy tissues by tumor cells is critically dependent on the local degradation of ECM and basement 375 

membrane, which otherwise would constitute a barrier to tumor metastasis. The degradation process thus creates 376 

the escape pathway by which single tumor cells leave their primary location and colonize surrounding areas. 377 

This degradation results from the low extracellular pH produced by tumor cells and relies on the secretion or 378 

membrane expression of acid-dependent proteases (MMPs and cathepsins). Soluble (MMP2, MMP9) or 379 

membrane-bound (MMP14) MMPs are key enzymes in tumor cell invasiveness, involved in both ECM and 380 

basement membrane degradation (187, 193, 253) and involved as well in the angiogenic sprouting (18, 53). 381 

MMP activity is promoted by low pHe localized at the front part of migrating cells. As stated above, NHE1 is 382 

one of the main actors of this extracellular acidification. While the acidification process appears as a crucial step 383 

to weaken and break the ECM barrier, the physical progression of aggressive tumor cells relies on the formation 384 

of ECM-degrading protrusions, called invadopodia, at the leading edge of the cells. NHE1 has been localized 385 

within these invadopodia (29) and this localization has been correlated with extracellular acidification and MMP 386 

expression and activity (88), thus suggesting the invadopodia as the major sites of ECM digestion and NHE1 as 387 

the main channel involved in this process.  388 

Voltage-gated sodium channels are highly expressed in epithelial tumors. In the MDA-MB-231 breast cancer 389 

cell line, the Nav1.5 Na+ channel, by driving Na+ influx and depolarizing the cells, greatly increases NHE1 390 

potency to promote extracellular acidification and tumor invasion (23, 24, 86). 391 

Calcium channels are also involved in the migration and invasion processes. Indeed, TRP channels, which 392 

mediate SOCE Ca2+ entry and regulate intracellular [Ca2+], especially TRPV2 (158) and TRPM8 (169), 393 

positively influence carcinoma invasion by upregulating MMP2 and MMP9 synthesis and production. Thus, 394 

MMP production may be an intracellular [Ca2+]-dependent process. Interestingly, high concentrations of ATP 395 

are observed in the TME of most hypoxic solid tumors (181). ATP acts as a signaling agent by activating 396 

plasma membrane ligand-gated receptors of the P2X family, namely P2X7R cation channels promote migration 397 
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and invasion, as shown in T47D breast cancer cells (253). P2X7R cation channels mediate Ca2+ influx in tumor 398 

cells thus contributing to the increase in intracellular [Ca2+]. In the breast cancer cell line MDA-MB-435S, ATP 399 

activation of P2X7R cation channels activates Ca2+-dependent SK3-mediated potassium currents, thus favoring 400 

the elongation of cell protuberances, which, in turn, promote cell migration (110). In this model, the P2X7R-401 

promoted invasive phenotype also relies on the activation of proteolytic enzymes, essentially cathepsin B. 402 

Correlatively, pharmacological inhibition or downregulation of P2X7R channels in PC-3M human prostate 403 

carcinoma-derived cell lines inhibit ATP-driven migration and invasion (193). This Ca2+-dependent process 404 

requires activation of either PI3/AKT or ERK1/2 signaling pathway. It reduces the expression of proteins 405 

involved in the maintenance of cell-cell contacts (e.g. E-cadherin and claudin-1) and correlatively increases the 406 

expression of Snail (an inhibitor of E-cadherin), interleukin 8 (IL-8, a promoter of migration and angiogenesis) 407 

and MMPs, thus contributing to the invasion phenomenon. The metastasis- and malignancy-promoting status of 408 

P2X7R, however, is still an important field in cancer research. Indeed, recent studies have been designed to 409 

explore the effects of P2X7R on tumor development and metastatic outcome in vivo. Hofman and collaborators 410 

demonstrate that colitis-associated cancers (colon adenocarcinoma, colon carcinoma) are favored by P2X7R 411 

silencing or pharmacological inhibition (103). A different study reveals that P2X7R restricts tumor progression 412 

by developing antitumoral immunity (4). 413 

 414 

3. Metastasis: transit in blood vessels and extravasation 415 

Tumor cell metastasis occurs when the cells successfully escape from their primary location, overcome the step 416 

of transit in the circulation as unattached cells and finally disseminate to their secondary sites by extravasation 417 

from the vessels and reattachment to a new ECM support. 418 

Circulating tumor cells do not always survive long enough to metastasize. It is estimated that only 0.01% of the 419 

cells that enter the vasculature will eventually survive the harsh conditions to which they are submitted (87). 420 

Tumor cells must resist anoikis whereby apoptosis is triggered by inadequate or loss of cell anchorage. Among 421 

the multiple signals involved in anoikis resistance, several types of ion channels have been described (137).  422 

Indeed, to effectively resist detachment-induced apoptosis, tumor cells utilize mechanisms that eventually limit 423 

the rise in intracellular [Ca2+]. Ca2+ channels are thus downregulated, especially those acting via SOCE (130). 424 
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Depletion in other Ca2+ channels (TRPM2, TRPV6) also tends to reduce cell apoptosis (211). Activity of 425 

caspases and other DNA-degrading enzymes, as well as a decrease in membrane potential have been linked to 426 

loss of intracellular [K+] by K+ channels. Cell shrinkage involved in apoptotic volume decrease (AVD) results 427 

from a loss of KCl by K+ and Cl- channels, with a concomitant loss of water. Thus, downregulation of K+ (Kv, 428 

KCa, KATP, KIR, K2P) and Cl- channels also prevents apoptosis (26). Alternatively, anoikis-resistant cells can 429 

develop regulatory volume increase (RVI) whereby Cl- channels of the volume-regulated (VRAC) family, 430 

especially prostate cancer cell ClC-3 (138), which are involved in the maintenance of cell volume under 431 

hyperosmotic stress, are upregulated in cells that resist apoptosis. Interestingly, Ca2+-activated Cl- channels 432 

(CLCA) may be either activated or not activated in anoikis-resistant cells, as shown in mammary gland cells 433 

(67, 244), thus suggesting a different function of these channels in cancer cells. 434 

Tumor cells are subjected to mechanical forces resulting from the blood stream, especially in narrow capillaries. 435 

Mechanical stress is the main destruction pathway that tumor cells must avoid in order to be able to form 436 

metastases. To prevent destruction, they develop integrin-involving adhesion processes and eventually get 437 

attached to the endothelial bed of the vessel in which they are traveling (81). This interaction between 438 

circulating tumor cells and endothelial cells is fundamental for the rest of the metastasis process, as it 439 

determines the site where the cells will eventually exit from the vessel, hence initiating the extravasation 440 

process. Gout and Huot have described the whole process of extravasation (87). Briefly, this process involves a 441 

first step of tumor cell adhesion to endothelial cells, utilizing specific receptors. Tumor cells rolling along the 442 

endothelial layer characterize this “light adhesion” step. A second step of firmer cell attachment then takes 443 

place, mediated by cytokines and cell adhesion molecules. Extravasation (or diapedesis) finally occurs when the 444 

cells cross the endothelial barrier through cell-cell junctions. As for several steps of the tumorogenesis process, 445 

the importance of intracellular [Ca2+] and of the associated Ca2+ channels is also demonstrated for metastasis of 446 

tumor cells. Indeed Orai1, the pore-forming component of the store-operated Ca2+ channel and its associated 447 

STIM1 Ca2+ sensor are associated with cell migration, invasion and metastasis in human breast carcinoma cells 448 

(256). In vivo studies in a zebrafish model corroborate the importance of the Orai1/STIM1 partners and of 449 

SOCE Ca2+ entry in the process of cell extravasation (262). Indeed, inhibition of the store-operated Ca2+ entry or 450 

knockdown of Orai1 in nasopharyngeal carcinoma cells prevents extravasation of the cells from vasculature in a 451 

zebrafish hematogenous metastasis model.  452 
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Finally, diapedesis is the result of tumor cells passing in between insufficiently tight endothelial cell junctions 453 

(due to damaged vasculature). The alterations in cell shape necessary for diapedesis are most likely explained by 454 

K+ and Cl- fluxes and by the following water fluxes. Indeed, it has been already shown that glioma cell 455 

migration and invasion are supported by K+ and Cl- channels, which, by governing transmembrane water 456 

movements and the resulting cell shape, are important for glioma invasion through narrow spaces (215).  457 

Colonization of the secondary site by the tumor is not simply a matter of gaining access to this site. Tumor cells 458 

will only be able to colonize compatible target tissues. The host tissue must then adapt to be able to foster the 459 

colonizing tumor cells; this is the concept of “pre-metastatic niche” (212). Tumor cells must also adapt to their 460 

new stroma and become able to secrete all the molecules necessary for their efficient attachment and ulterior 461 

vascularization (91). Hence, there are many barriers to overcome before the tumor actually metastasizes.  462 

 463 

IV. Sigma 1 receptor: the main organizer? 464 

In the present review, we will skip the long history of sigma-1 receptor (Sig-1R), which has been widely studied 465 

on the functional, pharmacological, structural and mechanistic points of view for the last 30 – 40 years (11, 148, 466 

245). Similarly, we will not open this discussion to the sigma-2 receptor, which has not been cloned yet, 467 

although it was shown to be involved in cancer development (234). Instead, we will focus on the specific role of 468 

chaperone of Sig-1R that is of major interest in the context of cancer development. 469 

Sig-1R is a 25 kD, endoplasmic reticulum (ER)-resident, ligand-regulated protein, which is involved in many 470 

diseases, ranging from toxic substance addiction to stroke and cancer (10, 11, 148). It is mainly present in 471 

normal brain, heart and liver, but is highly expressed in tumor cell lines and human cancer tissues of various 472 

origins, including lung, colon, prostate carcinomas, sarcomas, breast tumors, brain tumors, and melanomas (10, 473 

11, 113, 173, 241), in which it interferes with cell cycle and proliferation (10, 197). Interestingly, in breast 474 

cancer cells, Sig-1R positively correlates with the metastatic grade of the cells, i.e. highly metastatic cells 475 

contain higher levels of Sig-1R mRNA and protein than their less aggressive counterparts (10). 476 

Sig-1R is anchored in the ER membrane, in a specific region called mitochondrion-associated ER membrane 477 

(MAM). At rest, it is in a “dormant” state, associated with a chaperone protein, called GRP78 or BiP (100). BiP 478 
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is a main regulator of ER function: it has a high Ca2+-buffering capacity and serves to store Ca2+, which is 479 

essential to many signaling pathways. Under specific ligand stimulation or under prolonged ER stress such as 480 

ER Ca2+ depletion, Sig-1R is up-regulated, dissociates from BiP and becomes able to act as a chaperone (100) 481 

after translocation to other ER areas or to the plasma membrane (101). In the plasma membrane, Sig-1R 482 

interacts with – and regulates the activity of – several ion channels (Ca2+, K+, Na+, Cl-), receptors (NMDA 483 

receptor) or kinases (Src) (148). 484 

In the context of cancer development, as we discussed earlier in this review, many ion channels of diverse 485 

classes (voltage-gated, calcium-gated, volume activated) are involved in a number of tumor cell processes. 486 

Voltage-gated ion channels are involved in cell processes including proliferation, apoptosis, angiogenesis, 487 

adhesion to ECM and migration. Interestingly, Sig-1R interacts with most of these channels, as demonstrated in 488 

several works (12, 13, 126, 197). Patch-clamp studies and western blot assays in the presence of Sig-1R ligands 489 

(e.g. (+)-pentazocine, igmesine, and 1,3-di(2-tolyl)guanidine [DTG]) were conducted in small cell lung cancer 490 

(SCLC) derived cell lines (NCI-H146 and NCI-H209) and in T-cell leukemia-derived Jurkat cells. These studies 491 

demonstrate that ligand-mediated inhibition of Sig-1R results in cell cycle arrest in G1 phase with no stimulation 492 

of apoptosis (197). This effect correlates with the reduction of voltage-operated K+ currents in all these cell 493 

lines, indicating that Sig-1R-mediated cell growth arrest is the result of the negative regulation of K+ channels 494 

(197). Cell cycle arrest also correlates with the negative modulation of Volume-Regulated Chloride Channels 495 

(VRCC), both effects leading to the overall inhibition of the Regulated Volume Decrease (RVD) process, (196), 496 

which is known to govern cell cycle progression and numerous cellular functions such as proliferation, 497 

apoptosis, migration, … (202). The Xenopus oocyte system allowed direct reconstitution (in the absence of Sig-498 

1R ligands) of the interaction that exists between Sig-1R and potassium channels (Kv1.4 and Kv1.5) and 499 

established that Sig-1R directly acts as an auxiliary subunit of a few channels to govern several cell functions 500 

(12). In order to provide further evidence of this direct interaction, I participated in a study (47) showing that in 501 

chronic myeloid leukemia (CML)-derived cells (K562) – which overexpress Sig-1R – the abnormally expressed 502 

cardiac K+ channel hERG co-immunoprecipitated with Sig-1R. In this model, Sig-1R extinction by a specific 503 

shRNA or Sig-1R inhibition by Sig-1R ligands led to the reduction of hERG K+ currents, whereas co-injection 504 

of both hERG and Sig-1R in Xenopus oocytes increased hERG current when compared to oocytes injected with 505 
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hERG alone. This modulation proceeds from the regulation of hERG channel maturation and stability, which is 506 

in adequation with the role Sig-1R as a chaperone of hERG K+ channel in cancer cells (47). 507 

Recently, using the technique of atomic force microscopy, Sig-1R was shown to physically associate, in a four-508 

fold symmetry (1 channel molecule vs. 4 Sig-1R molecules), with the voltage-gated Na+ channel Nav1.5 (13), 509 

previously proven to promote invasiveness in breast cancer cells (24, 86). With the same technique, the same 510 

team demonstrated physical interaction between Sig-1R and acid-sensing ion channels (ASIC1a; (36)) and 511 

provided evidence of Sig-1R association with the heteromeric GluN1/GluN2A NMDA receptor, via specific 512 

binding of Sig1R to the GluN1 subunit (14). 513 

These data raise the following question: how can an ER protein interact with plasma membrane ion channels of 514 

so many different families and govern so many cell functions in oncogenesis? A plausible explanation resides in 515 

the following observations: 1) Sig-1R is localized in ER, a cell area where Ca2+ signaling is crucial; 2) Sig1R is 516 

highly mobile in the ER membrane and Sig-1R overexpression, cellular stress or pharmacological treatment lead 517 

to dissociation of Sig-1R from its chaperone BiP and subsequent translocation to the plasma membrane (100, 518 

149, 221), where it interacts with its client proteins (ion channels, receptors). Indeed, during cancer progression, 519 

the tumor cells undergo harsh conditions (hypoxia, low pH, starvation in nutrients) or even treatments that 520 

create cell stress and alter ER protein expression levels or generate abnormal secretion of ER-resident 521 

chaperones (157). Indeed, inasmuch as ER chaperones such as Sig-1R contribute to the correct folding of newly 522 

synthetized or conformationally distorted proteins, or to protect proteins that are prone to de misfolded, their 523 

role becomes crucial in case of cell stress. Moreover, it is worth pointing out that the BiP-Sig-1R association is 524 

tightly regulated in an ER Ca2+/Mn2+-dependent manner. Any cell signal that results in lowering ER Ca2+ 525 

concentration below physiological concentration (0.5 mM) leads to disassembly the two chaperones, thus 526 

increasing the activity of each (100). Under cell stress conditions, Sig-1R stabilizes the conformation of type3-527 

IP3 receptor in the ER, thus stimulating Ca2+ transport from the ER to the mitochondria (100) and to the cytosol 528 

(252). Hence, Sig-1R orchestrates Ca2+ signaling between ER and mitochondria, by fueling the production of 529 

ATP by the mitochondria, which conversely regulates Ca2+ concentration in the ER (99). Sig1R also maintains 530 

proper folding and proper function of the plasma membrane proteins challenged by cell stress: it thus plays a 531 

major role in cell survival (Figure 3). Sig-1R has since then been proposed as a modulator of inter-organelle 532 

signaling (220).  533 
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Subsequently, several lines of evidence demonstrate that Sig-1R interacts with different types of proteins 534 

including ER stress sensors, cytokines, ion channels and that this interaction constitutes the mechanism whereby 535 

Sig-1R governs cancer cell behavior in response to alterations of the tumor microenvironment. Sig-1R 536 

modulates cell survival (160), apoptosis (60, 151) and cell cycle (196, 197). Recently, I participated in a study 537 

presenting evidence that Sig-1R is a key regulator of the signaling events that occur between the tumor cell and 538 

its microenvironment. Indeed, in chronic myeloid leukemia- and colon carcinoma-derived cells (resp. K562 and 539 

HCT-116 cells), we showed that extracellular matrix triggered a Sig-1R-dependent increase in cell adhesion, 540 

cell migration, cell invasiveness, as well as VEGF secretion (48) and that a hERG K+ channel-β1 integrin 541 

interaction mediated these effects in both cell lines. Silencing of Sig-1R in K562 and HCT-116 cells resulted in 542 

in vivo reduction of angiogenesis, invasion and extravasation (48). Sig-1R thus appears as a major regulator of 543 

tumor development. Further studies are necessary to assess whether Sig-1R might be envisioned as a therapeutic 544 

target and whether Sig-1R ligands might be designed as antitumoral treatments. 545 

 546 

V. Antiangiogenic therapy and therapy resistance 547 

Cancer is one of the deadliest pathologies, with approximately 14 million of new cases and 8 million of cancer-548 

related deaths in 2012; negative WHO predictions expect annual cancer cases to rise from 14 million in 2012 to 549 

22 million in the next two decades. Carcinomas (lung, liver, stomach, colorectal, breast, esophageal) are among 550 

the most common causes of cancer deaths http://www.who.int/mediacentre/factsheets/fs297/en/.  551 

Conventional global anti-tumoral therapies (chemotherapies) are only partly efficient because of the lack of 552 

responsiveness of some cancers and because these therapies sometimes induce systemic toxicity or resistance, 553 

ending up in treatment discontinuation. For vascularized cancers, a more precise strategy of angiogenesis 554 

inhibition has been developed, which focuses on the neutralization of the effects of angiogenic factors (FGF, 555 

VEGF) or on the inhibition of their receptors (70, 122). This strategy leads to vasculature destruction. Given the 556 

drawbacks of such therapies (89, 90), which can lead to more severe condition or even to death (194, 195), solid 557 

tumor therapies evolved towards normalization rather than destruction of the abnormal vasculature, the 558 

objective being to restore a close to normal blood flux and pO2, to favor normal immune cell function and 559 
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finally, to allow efficient delivery of anticancer agents (106, 109, 190, 219). Thus, antiangiogenic therapies were 560 

used to treat several vascularized cancers in the last 40 years. However, too many carcinomas are still refractory 561 

to antiangiogenic-based treatments.  562 

Hence, in parallel to existing therapeutic strategies, it is important to identify predictive biomarkers of stage and 563 

aggressiveness for the different types of tumors, as well as further targets for the development of 564 

complementary treatments to be used in combination with VEGF-targeted therapies. Carcinogenesis is a 565 

multistep process in which each step constitutes a potential angle of attack for a new therapeutic strategy 566 

development. Ion channels are implicated in the growth, migration, invasion and metastasis of tumors and 567 

therefore cancers can be included in the category of “channelopathies” (pathologies characterized by alterations 568 

in channel function). Consequently, recent studies present ion channels as potential targets for the development 569 

of future treatments. Several factors are in favor of the use of ion channels as therapeutic targets: i) cell 570 

expression of ion channels is often modified in cancers; ii) this expression varies with the type of tumor and, in 571 

a given type of tumor, with the specific step of tumor progression; iii) ion channels are accessible from the 572 

extracellular side of the cell and the potential pharmacological tools (available or yet to be designed) are 573 

multiple. 574 

We do not intend here to review how ion channels can be targeted in each step of cancer development or in 575 

different cancers to design potential therapeutic strategies. Several excellent reviews have already been written 576 

from these standpoints (9, 49, 155, 203, 239). Rather, we will take a few examples of global cancer-associated 577 

clinical dysfunctions in which ion channels may be targeted in order to restore normal function or diminish 578 

cancer-associated disagreements and, finally, to improve patient’s condition. 579 

 580 

Restoring a less toxic microenvironment 581 

Concomitant with gradual accumulation of mutations in tumor cells, changes in the physical parameters of the 582 

microenvironment also contribute to reinforce the cell aggressiveness. Among these physical changes, as 583 

discussed in §II.A of this review, the microenvironment undergoes hostile conditions characterized by low pO2, 584 

high interstitial pressure, low extracellular glucose and high extracellular lactate – all of these create high 585 

extracellular acidity. Regulating the establishment of such harsh conditions would reduce the metastatic 586 

potential of tumor cells. Cancer therapies thus include trials based on the regulation of extracellular pH. They 587 



 23

consist of systemic buffering using sodium bicarbonate to increase extracellular pH or take advantage of the 588 

proton transport systems involved in tumor cells (150). For the latter, inhibition of carbonic anhydrases 589 

(especially CAIX), of the Na+/H+ exchanger, using amiloride or EIPA are efficient but have not been developed 590 

for clinical use. Conversely, inhibition of the vacuolar H+-ATPase, using omeprazole (already used to suppress 591 

gastric acidity) was proven efficient as a pH normalizer in cancer treatment. Interestingly, the opposite treatment 592 

consisting in hyperacidification of tumor cells or of their microenvironment is also a promising treatment. 593 

Intracellular hyperacidification promotes tumor cell apoptosis whereas extracellular hyperacidification may 594 

provide an important tool to deliver therapeutic agents directly to the tumor site using acid-accumulating 595 

peptides (69). 596 

 597 

Normalizing the vasculature 598 

Carcinoma progression is associated with the production, by tumoral and stromal cells, of angiogenic factors, 599 

which participate in the development of a non-productive angiogenesis, due to blood vessel disorganization and 600 

to vessel wall high permeability. Antiangiogenic treatments, which tend to block the development of new blood 601 

vessels and harvest the tumor from oxygen and nutrients, are inadequate or even counter-productive to treat 602 

cancers. Other targets are now under scrutiny, which could participate in the emerging process known as 603 

vascular normalization, and among these targets are ion channels. Physical properties of the ECM have been 604 

shown to influence normal and malignant cell behavior. Especially, angiogenic response is influenced by the 605 

stiffness of tumor ECM (134). Ca2+ influx is one of the main responses of endothelial cells to the mechanical 606 

stress resulting from the growth of new vessel tips in such a stiff environment. In a recent paper, it has been 607 

shown that in a model of mouse prostate adenocarcinoma, mechanosensitive transient receptor potential 608 

vanilloid 4 (TRPV4) calcium channels regulate angiogenesis and tumor vessel maturation by the regulation of 609 

tumor endothelial cell mechanosensitivity via the reduction in basal Rho activity (2). This confirms that ion 610 

channels must be included in the set of molecules to be targeted in the design of the new tools aiming at 611 

normalizing vasculature, hence allowing better delivery of complementary antitumoral therapies. To further 612 

reinforce the biological relevance of Ca2+ channels as molecular targets for antitumoral treatments, we can 613 

mention that all the families of Ca2+ channels have recently been the focus point of researches demonstrating the 614 

involvement of these channels in pro-angiogenic processes. Many of these channels are now the object of 615 
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patents that describe the use of modulators of their function in order to treat the symptoms associated with 616 

cancer, i.e., proliferation, angiogenesis and metastasis; for review, see (163). The use of K+ channel or pH 617 

modulators to fight cancer development has been patented as well (49, 198). 618 

 619 

Fighting cancer-induced pain 620 

Cancer-related pain is one of the most devastating side effects of tumor development. Indeed, hypoxia and, 621 

consequently, tumor acidosis are known to be responsible for the generation of pain (108). Cancer-related pain 622 

can also be the result of tumor metastasis especially in the case of bone dissemination. Indeed, cytokines 623 

produced by the tumor cells or by the bone microenvironment activate osteoclasts and thus contribute to the 624 

signaling of cancer-associated pain in bones (225).  Anti-tumoral treatment administration can, by itself, be a 625 

factor of pain, whether the treatment is traditional chemotherapy, radiation, or surgery.  626 

Moreover, it now seems that, except for morphine, for which the study results are not conclusive, conventional 627 

pain-reducing therapies (NSAIDs, cannabinoids, opioids, GABA-ergic drugs) may have a negative impact on 628 

cancer evolution (135). Consequently, the research of other analgesics and their targets is required. Current 629 

research on this topic focuses on ion channels associated with pain, such as ASIC (57, 258), especially ASIC3 630 

(56), and such as TRP channels of several sub-families, especially TRPV1 (192). Indeed, both types of channels 631 

are known to be expressed in sensory neurons and to be activated by an acid load. These channels represent 632 

relevant targets for the future development of new analgesics. Treatments based on TRPV1 pharmacological 633 

inhibitors are already being clinically tested with some showing promising results (22). Voltage-gated Ca2+ 634 

channels and voltage-gated Na+ channels are also under study, especially Cav2.2, Cav3.2, Nav1.7, Nav1.8. 635 

Specific antagonists derived from conotoxins have been developed and now seem to have good results in 636 

clinical tests (242). 637 

This field of research is still wide open and progressing very quickly. It is interesting to note that most of the ion 638 

channels involved in the perception of pain are also implicated in one step or another of tumor development. 639 

This leaves open the possibility that a specific treatment designed against an ion channel in order to treat cancer-640 

associated pain might also be used to prevent cancer progression. In particular, cannabinoids demonstrate 641 

antitumoral effect in several cancer types (hepatocellular carcinoma, ccRCC, etc.), which is not mediated by the 642 

regular CB1 and CB2 cannabinoid receptors (131, 235). Since cannabinoids can bind to many different ion 643 
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channel types, such as GPCR, NMDA receptors, GABAA receptors (182), any of them can mediate the effect of 644 

cannabinoids in tumor cells, thus shedding a new light on the yet unexplained anti-oncogenic effect of 645 

cannabinoids. 646 

In this topic, it is tempting to propose the potential development of Sig-1R ligands as treatments to fight cancer-647 

induced pain. Indeed, as we mentioned earlier, Sig1R promotes the action of ASIC channels, which are involved 648 

with nociception (36). Sig-1R-inhibiting agents might be a way to obtain relief in this matter. 649 

 650 

VI. Conclusion 651 

A new concept in oncogenesis has emerged for the last 20 to 25 years, which states that ion channels and 652 

transporters regulate different aspects of the neoplastic cell physiology. A growing body of evidence now 653 

demonstrates that they govern the so-called “hallmarks of cancer”. As for neoangiogenesis, ion channels are 654 

involved at all stages, in tumor cells, as well as endothelial cells or stromal cells. Ion channels thus represent a 655 

new and promising field of research concerning the development of novel therapeutic agents. TRP channels for 656 

instance, which are highly expressed in endothelial cells and involved in thermosensation, osmoregulation and 657 

mechanoreception, are under current scrutiny for novel therapeutic strategy developments. Similarly, whereas 658 

monocarboxylate transporters (MCT1 and MCT4) have now emerged as anticancer targets, the lactate shuttle 659 

mechanism governing tumor cell pH regulation is still under study (55, 59). However, it is important to take into 660 

account that most ion channels, though overexpressed in many cancer types, still exist in healthy organs. The 661 

use of ion channel inhibitor-based therapies might thus induce many side effects, which will need to be carefully 662 

prevented or minimized. As an example, blocking hERG1 K+ channel prevents the angiogenic switch in 663 

colorectal cancer and, in turn, reduces metastasis (46). However, hERG1 is one of the main heart-expressed K+ 664 

channels, which certainly hinders the use of any of the current hERG1-targeted molecule as a cancer therapeutic 665 

agent. It might thus be important to develop non-cardiotoxic hERG1 blockers to be used as complementary anti-666 

angiogenic treatments. The ion channel-based antitumoral therapies, though very attractive and potentially 667 

powerful, probably need more research time in order to be carefully designed for safe clinical use. It might be 668 

more fruitful to develop pharmacological treatments against Sig-1R, taking into account that this protein is 669 



 26

present in many tissues (CNS, lung, liver, pancreas, spleen), in membrane compartments. Targeted 670 

pharmacological action on Sig-1R at the MAM or at the plasma membrane represents a potential new axis for 671 

the development of therapies against numerous diseases including cancer. 672 
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FIGURE LEGENDS 1320 

 1321 
Fig. 1: Schematic representation of the different transport systems activated in tumor cells by hypoxia. 1322 
Hypoxia induces activation of the α subunit of HIF1 (hypoxia-induced factor), which dimerizes with HIF1β to 1323 
result in HIF1. HIF1, in turn, stimulates a set of proteins involved in membrane ion or solute transport. NHE: 1324 
Na+/H+ exchanger; ASIC: Acid-Sensing Ion Channel; NBC: Na+/HCO3

- cotransporter; CAIX: carbonic 1325 
anhydrase type IX; GLUT: Glucose transporter; MCT: Monocarboxylate transporter. 1326 
 1327 
Fig. 2: Schematic representation of Ca2+ signaling in endothelial cells activated by the tumor environment 1328 
physical and biochemical conditions. In a hypoxic environment, acidification of the microenvironment triggers 1329 
the synthesis and release of VEGF (blue circles) by both tumor and stromal (CAF) cells. VEGF binds to its 1330 
specific endothelial cell receptor (VEGF-R2), which, in turn, activates Ca2+ entry by two main processes. Store-1331 
operated Ca2+ entry (SOCE) results from 1) activation of Ca2+ release from endoplasmic reticulum (ER), 1332 
especially via inositol 1,4,5-trisphosphate (IP3R), and subsequent replenishment of these stores by Ca2+ entry via 1333 
TRPC1 or TRPC4 channels; 2) activation of the stimulating unit (STIM) of the STIM-ORAI complex and 1334 
subsequent Ca2+ influx by the ORAI transporting unit. Receptor-operated Ca2+ entry (ROCE) results from the 1335 
direct activation of TRPC3 or TRPC6 Ca2+ channels. The ensuing increase in intracellular [Ca2+] is the 1336 
mainspring of mobilization, organization and permeabilization of new blood vessels. 1337 
 1338 
Fig. 3: Schematic representation of plasma membrane ion channel chaperoning and Ca2+ signaling enhancement 1339 
by Sig-1R in cancer cells (adapted after Su et al, 2010, Trends Pharmacol. Sci.31: 557-566). During cancer 1340 
progression, tumor cells are submitted to stressful conditions caused by low pO2, low pH, and few nutrients. 1341 
Under these conditions, Sig-1R (blue wide arrow) released from its ER co-chaperone BiP, activates the ER 1342 
IP3R3 Ca2+ channel, thus enhancing Ca2+ flux from the ER to the mitochondria and increasing the production of 1343 
energy by the mitochondria. Sig-1R also stimulates the bcl2 oncogene transcription, which reduces ROS 1344 
production by the mitochondria and is in favor of cell survival. Under prolonged conditions of stress, ER 1345 
chaperones are up-regulated; Sig-1R is overexpressed and translocates to the plasma membrane area where it 1346 
becomes able to chaperone and activate membrane proteins such as ion channels (hERG, Nav1.5, ASIC1a, …) 1347 
or enzymes (e.g. Src kinase). 1348 



Table 1. Main ion channels and solute transporters involved in tumor development and their role in these processes. 
 

TRANSPORT PROTEIN GENE OFFICIAL NAME  FUNCTION IN ONCOGENESIS 
Water channel 

AQP-1 Aqp1 Aquaporin  Angiogenesis, proliferation, migration (66, 68, 
120) 

 
Solute carriers (Na+/solute exchangers) 

GLUT-1 Slc2a1 Glucose transporter Tumor cell glucose metabolism (6, 84, 132) 
GLUT-5 Slc2a5 Fructose transporter Tumor cell glucose metabolism (240, 260) 
NHE1 Slc9a1 Na+/H+ exchanger isoform 1 Cell volume and pH homeostasis (33, 170) 

Tumor angiogenesis (80) 
Metastasis (88, 218) 

Bicarbonate transporters 
AE1-3 Slc4a1-3 Anion exchangers pH homeostasis (222) 

Cell migration (222) 
NBC transporters Slc4a4, 5, 7, 10 Sodium-bicarbonate cotransporters pH homeostasis (180) 

Tumor growth (180) 
Metastasis (180) 

MCT family of monocarboxylate transporters 
MCT 1-4 Slc16a1-4 Solute carrier family 16 members 1-4 Cell migration and metastasis (184) 

 
TRP superfamily of cation channels 

TRPA (ankyrin) family Trpa1 Transient receptor potential cation channel, subfamily A Cell migration and metastasis (63) 
Nociception, inflammation (22) 

TRPC (canonical) family Trpc1-7 Transient receptor potential cation channel, subfamily C Cell migration and metastasis (76) 
Tumor angiogenesis (261) 

TRPM (melastatin) family Trpm1-8 Transient receptor potential cation channel, subfamily M Cell migration and metastasis (63) 
Tumor angiogenesis (75)

TRPV (vanilloid) family Trpv1-6 Transient receptor potential cation channel, subfamily V Cell migration and metastasis (119) 
Tumor angiogenesis (75) 
Nociception (22) 

 
Voltage-gated family of K+ channels 

Kv1.1-1.8 Kcna1-7, 10 Potassium channel, voltage gated, shaker related subfamily A, 
members 1-7 

Proliferation of cancer cells (168) 
Apoptosis resistance (168) 
Immunoresponsiveness (224) 

EAG1, 2 Kcnh1, 5 Ether-a-go-go K+ channels Proliferation of cancer cells (31) 
Migration of breast cancer cells (183) 

hERG 1-3 or Kv11.1-11.3 Kcnh2, 6, 7 Ether-a-go-go-related gene K+ channels Proliferation of cancer cells (214) 
Crosstalk with cell adhesion molecules (183) 
Tumor angiogenesis (183) 



Table 1. cont’d 
    
Two-Pore K+ channel family 

K2P2.1 or TREK Kcnk2 Arachidonic acid-sensitive K+ channel Cell proliferation (243) 
K2P3.1 or TASK Kcnk3 Acid-sensitive two-pore K+ channel Cell proliferation (127, 243) 

Evasion from apoptosis (127) 
 
Calcium-activated K+ channels 

KCa1.1 or BKCa Kcnma1 Large conductance Ca2+-activated K+ channel Proliferation (200) 
Apoptosis (28) 

KCa2.1-3 or SK1-3  Kcnn1-3 Small conductance Ca2+-activated K+ channels Cell migration and metastasis (37, 110, 191) 
KCa3.1 or IKCa or SK4 Kcnn4 Intermediate conductance Ca2+-activated K+ channel Proliferation of cancer cells (141) 

Cell migration (141) 
Tumor angiogenesis (141) 
Evasion from immune destruction (174) 

 
Voltage-gated Na+ channels 

Nav Kcnma1 Voltage-gated Na+ channel Tumor cell migration, invasion, endocytosis 
(32) 
Metastasis (32) 

 
Voltage-gated family of Ca2+ channels 

Cav1.1-1.4 Cacna1s, c, d, f L-type Ca2+ current Tumor angiogenesis (51) 
Cav2.1-2.3 Cacna1a, b, e P/Q-, N-, R-type Ca2+ currents Tumor angiogenesis (154) 
Cav3.1-3.3 Cacna1g, h, i T-type Ca2+ currents Tumor angiogenesis (204) 

 
 
P2X Receptor (P2XR) family of Na+, K+, Ca2+ ion channels 

P2X7 receptor P2rx7 Ligand-gated cation channel Proliferation of cancer cells (3, 103) 
Apoptosis resistance (3, 103) 

 
Acid-sensing ion channel family 

ASIC1-3 Asic1-3 Acid-sensing ion channels pH homeostasis (92) 
Cell migration and invasion (92) 

 
Chloride intracellular channel family 

CLIC1-6 Clic1-6 Nuclear and intracellular organelle Cl- channels Tumor angiogenesis (232) 
 
Calcium release-activated calcium channels (CRAC channels)

Orai1   
(works with STIM) 
 

Orai1 Calcium release-activated calcium channel protein 1 Cell migration and metastasis (161, 216) 
Tumor angiogenesis (139) 
Immunosuppression (174) 
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