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Effects of proton versus photon irradiation on (lymph)
angiogenic, inflammatory, proliferative and anti-tumor
immune responses in head and neck squamous cell carcinoma
M Lupu-Plesu1,2,7, A Claren1,2,3,4,7, S Martial1,2, P-D N’Diaye1,2, K Lebrigand1,5, N Pons1,5, D Ambrosetti1,6, I Peyrottes4, J Feuillade4,
J Hérault4, M Dufies1,2, J Doyen1,2,4 and G Pagès1,2

The proximity of organs at risk makes the treatment of head and neck squamous cell carcinoma (HNSCC) challenging by standard
radiotherapy. The higher precision in tumor targeting of proton (P) therapy could promote it as the treatment of choice for HNSCC.
Besides the physical advantage in dose deposition, few is known about the biological impact of P versus photons (X) in this setting.
To investigate the comparative biological effects of P versus X radiation in HNSCC cells, we assessed the relative biological
effectiveness (RBE), viability, proliferation and mRNA levels for genes involved in (lymph)angiogenesis, inflammation, proliferation
and anti-tumor immunity. These parameters, particularly VEGF-C protein levels and regulations, were documented in freshly
irradiated and/or long-term surviving cells receiving low/high-dose, single (SI)/multiple (MI) irradiations with P/X. The RBE was
found to be 1.1 Key (lymph)angiogenesis and inflammation genes were downregulated (except for vegf-c) after P and upregulated
after X irradiation in MI surviving cells, demonstrating a more favorable profile after P irradiation. Both irradiation types stimulated
vegf-c promoter activity in a NF-κB-dependent transcriptional regulation manner, but at a lesser extent after P, as compared to X
irradiation, which correlated with mRNA and protein levels. The cells surviving to MI by P or X generated tumors with higher
volume, anarchic architecture and increased density of blood vessels. Increased lymphangiogenesis and a transcriptomic analysis in
favor of a more aggressive phenotype were observed in tumors generated with X-irradiated cells. Increased detection of lymphatic
vessels in relapsed tumors from patients receiving X radiotherapy was consistent with these findings. This study provides new
data about the biological advantage of P, as compared to X irradiation. In addition to its physical advantage in dose deposition,
P irradiation may help to improve treatment approaches for HNSCC.

Oncogenesis (2017) 6, e354; doi:10.1038/oncsis.2017.56; published online 3 July 2017

INTRODUCTION
Approximately 50% of all cancer patients are subject to
radiotherapy during the course of their illness with an estimation
that radiotherapy contributes to approximately 40% towards
curative treatment.1 The goal of radiotherapy is to deliver
loco-regionally a specific dose of radioactivity that will allow the
destruction of cancer cells, while limiting the exposure of
surrounding healthy tissues. Among the ionizing radiation
treatments, the large majority consists of photons (X) of
high energy (5–20 MeV). However, the main disadvantage of X
radiotherapy is represented by the deposition of radiation also at
the level of surrounding healthy tissues, leading to side effects.
Although the ionizing radiation by proton beams (P) is currently
more expensive and more difficult to produce, it has the physical
advantage of delivering no radiation outside of the intended
targeted area, thanks to the so-called Bragg peak.2

P radiotherapy is mainly proposed for the treatment of uveal
melanoma, skull base and paraspinal tumors due to its high
precision in tumor targeting with a very high irradiation dose next
to radiosensitive structures.2 It is also proposed for the pediatric

tumors based on the advantage to deliver a much lower integral
dose, which significantly reduces the risk of radiation induced
cancers in a long-life expectancy setting.2 Several retrospective
and dosimetry studies have suggested an advantage of P
radiotherapy in other tumors located near organs at risk, such as
the head and neck squamous cell carcinoma (HNSCC).2

The head and neck cancers are among the 10 most common
types of cancer and the seventh cause of mortality from cancer
worldwide. Depending on disease stage, the treatment of HNSCC
consists of either chemoradiotherapy and/or surgical excision.3

However, conventional radiotherapy with X in HNSCC remains
difficult, due to the proximity of numerous organs at risk (that is,
salivary glands, esophagus and larynx). Recent studies have shown
an advantage of P, over X radiotherapy, in inducing lower
toxicities4 and lower dose delivery to organs of risk5 in HNSCC
patients.
Despite of the currently available therapeutic strategies, the

five-year overall survival rate of HNSCC patients is only 53%6

because of a high percentage of a poor response to therapy and
high recurrence rates. Sentinel lymph node metastasis, the first
sign of tumor progression, was directly correlated to prognosis in
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HNSCC patients.7 Vascular endothelial growth factor C (VEGF-C) is
a major pro-lymphangiogenic factor responsible for the metastatic
dissemination of cancer cells.8 A significant correlation has been
observed between intra-tumor lymphatic vessel density and
lymph node metastasis in patients with HNSCC.9 Moreover,
VEGF-C expression levels correlated with lymphatic vessel density
and lymph node metastasis in these patients.10,11 VEGF-C-
dependent development of the lymphatic network might also
be the major route of spread of tumor cells when the patients
become resistant to therapy.8

Beside the physical advantage of P versus X irradiation and the
RBE, few comparative preclinical studies have been conducted
that contrast cellular/biological response to P versus X
radiations.12–15

P irradiation led to distinct gene and protein expression
profiles.12 Mice receiving total-body irradiation with either P or X
had enhanced plasma levels of transforming growth factor-β,
only after X irradiation.13 Moreover, X irradiation promoted
angiogenesis, thus enhancing metastasis by upregulation of
various pro-angiogenic factors.14 By contrast, low dose P
irradiation did not induce the pro-angiogenic and
pro-inflammatory genes, impaired tumor cell invasion in vitro
and attenuated tumor growth rate in mice.14 By downregulating
integrins and matrix-metalloproteinases (MMP), P irradiation also
reduced invasive and migratory properties of tumor cells.15

Therefore, beside the physical advantage in dose deposition, P
may have different biological properties, as compared to X
radiation at a similar dose. The purpose of the present study was
thus to analyze the different biological behaviors of HNSCC cells
when exposed to P versus X radiation. The study focused on
molecules with key roles in the progression and prognosis of
HNSCC, such as the inflammatory cytokines: Interleukin 6 (IL6),16

Interleukin 8 (IL8);17 (lymph)angiogenic factors: VEGF A, C and D
and their receptors: vascular endothelial growth factor receptor
(VEGFR) 1, 2 and 3, Neuropilin (NRP) 1 and 2;18,19 factors involved
in lymphatic vessels development: lymphatic vessel endothelial
hyaluronan receptor 1 (LYVE1), prospero homeobox 1 (PROX1)
transcription factor, and podoplanin (PDPN), a mucin-type
transmembrane protein20; pro-inflammatory chemokine C-C Motif
Chemokine Ligand 2 (CCL2) involved in cell migration21; cell cycle
regulators: polo-like kinase 1 (PLK1)22 and telomeric
repeat-binding factor 2 (TRF2) transcription factor23; immune
checkpoint molecule programmed death-ligand 1 (PD-L1)
involved in anergy and tumor progression.24

The role of the above-mentioned molecules in the
post-irradiation progression of HNSCC has not been elucidated.
Our working hypothesis was that different radiation types would
lead to different intrinsic and extrinsic biological responses,
allowing the adaptation of tumor cells. Therefore, we studied
the impacts of P versus X irradiation on human HNSCC cells
viability; proliferation; whole transcriptome profile and expression
of key genes/proteins implicated in (lymph)angiogenesis/metas-
tasis, inflammation, tumor cell proliferation and anti-tumor
immunity; tumorigenic potential, and depicted the molecular
mechanisms of post-irradiation VEGF-C regulation, to set the basis
for improved therapeutic approaches for HNSCC.

RESULTS
Cell survival/proliferation is in favor of P following single
irradiation, and X following multiple irradiations
Our hypothesis was that irradiation would lead to different cell
viability and proliferation profiles depending on the radiation type
and dose, number of irradiations and time of assessment.
We qualified as the ‘acute response (AR)’ the modifications of
biological parameters (proliferation, survival, gene expression) a
few hours following a single irradiation (SI). The modifications of

the same biological parameters on cells that have survived to
multiple irradiations (MI) and that have been expanded as new
populations were qualified as the ‘chronic response (CR)’.
In order to calibrate our experiments, we first determined a

relative biological effectiveness (RBE) of photons and protons on
our model cell lines following SI. According to the literature, P
therapy treatments are based on a RBE of 1.1, relative to
high-energy X therapy.25 The surviving curve of CAL33 cells
following administration of escalating doses of either P or
X irradiation confirmed a RBE of 1.1 for P, as compared to X
irradiation (Supplementary Figure S1). This experiment confirms
the literature data showing that P kills tumor cells more efficiently
than X irradiation.25

However, patients are irradiated several times to reach a
maximal therapeutic efficacy. Therefore, our next purpose was
to compare the relative aggressiveness of cells that were resistant
to MI by X or P. Hence, we performed our experiments on two
independent cell lines (CAL33 and CAL27). The proliferative ability
along a time course of CAL33 (Figure 1) or CAL27 (Supplementary
Figure S2) that have survived to MI was determined. As compared
to non-irradiated cells, the proliferation of X or P irradiated cells
was reduced in both models and the difference was striking 96 h
following cell seeding (Po0.001 for CAL33; P= 0.049 for CAL27).
However, the difference in proliferation became statistically
significant earlier for X irradiated cells in the CAL33 model
(P= 0.02 for X8 at 48 h; P= 0.014 and 0.009 for X2 and X8,
respectively, at 72 h; Po0.001 for all conditions at 96 h). Whereas
the difference in proliferation did not reach statistical significance
between X2 and X8 irradiated cells, X8 cells proliferated to a lesser
extent, as compared to P2 and P8, at 48 h post seeding (P= 0.006
and P= 0.035, respectively), to P2 at 72 h post seeding (P= 0.018),
and P2 and P8 irradiated cells at 96 h post seeding (P= 0.012 and
P= 0.008, respectively).
Therefore, the overall therapeutic advantage, attested by

reduced cell viability and proliferation capacity following SI
switched in favor of X post MI for CAL33 cells. For CAL27, no
difference in the proliferative ability of MI X and P cells was
observed, suggesting that X and P exert different outcomes,
depending on the HNSCC type.

P irradiation leads to overall lower induction of mRNA coding
pro-inflammatory, pro-(lymph)angiogenic and pro-proliferative genes
The gene expression levels for CAL33 cells following SI or MI,
represented as percentage of control, and the gene expression
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Figure 1. CAL33 proliferative ability following multiple X or P
irradiations. Counts of CAL33 cells following multiple low (2 Gy) or
high (8 Gy) dose(s) of P or X irradiation and cell expansion after
the third irradiation (CR-MI). The values correspond to fold increase,
as compared to the viable cell number at 24 h after cell seeding.
Significantly decreased viable cell counts, as compared to CT: #,
Po0.05; ###, Po0.001. Significantly increased viable cell counts for
comparisons between X and P groups: *, Po0.05; **, Po0.01. CT,
control (non-irradiated cells).
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scores are listed in Table 1a and b. The mRNA levels of the
different tested genes overall increased in a dose-dependent
manner and with the irradiation number after both P and X
irradiation. Genes involved in (lymph)angiogenesis, inflammation
and immune tolerance were overall less expressed after high dose
(s) of P, as compared to X, irradiation in all investigated groups;
the genes involved in (lymph)angiogenesis, inflammation and
immune tolerance were downregulated after P irradiation,
showing significantly lower mRNA levels, as compared to X
irradiation, within the following settings: (i) AR-SI after low dose:
CCL2 (P= 0.035) and high dose: IL-6 (P= 0.0001); (ii) CR-MI after
low dose: VEGF-A (Po0.0001), IL-6 (Po0.0001), IL-8 (P= 0.046),
CCL2 (P= 0.041), PD-L1 (P= 0.002) and high dose: VEGF-D

(Po0.0001) and IL-8 (Po0.0001). By contrast, among these
genes, X irradiation led to downregulation of IL-8 only, within the
low dose CR-MI settings. Notably, VEGF-C mRNA levels were
systematically increased after both P and X irradiation, but they
were significantly lower after P, as compared to X irradiation, after
high dose within the CR-MI setting (po0.001). Among all
investigated genes, IL-8 was the gene whose mRNA was induced
at the highest level after X (79-fold, as compared to control),
but not after P irradiation, within the high dose CR-MI setting
(Po0.0001). Moreover, both P and X irradiation augmented PD-L1
mRNA expression in a dose-dependent manner within the AR-SI
and CR-MI settings, and in an irradiation number-dependent
manner within the AR-SI setting. The generated gene expression
scores showed that P irradiation is associated with a more
favorable profile (reduced proliferation, (lymph)angiogenesis,
inflammation)). A similar gene score, in favor of P irradiation,
was also obtained for CAL27 cells, within the CR-MI setting,
despite an increase in VEGF-C, VEGF-D, NRP1, NRP2, IL-8 and PD-L1
mRNA expression (Supplementary Table S3).

Induction of VEGF-C protein is reduced in P irradiated cells
Because lymph node metastasis is frequent at diagnosis in HNSCC
and in patients who relapse locally after radiotherapy, we focused
our research on VEGF-C, the major growth factor for lymphatic
endothelial cells. Although the mRNA levels of VEGF-C were
increased after both low and high dose(s) of P or X irradiation,
they were lower after high dose(s) of P irradiation. To confirm the
results obtained at mRNA level, we next assessed VEGF-C protein
levels in CAL33 and CAL27 cells.
In CAL33 cells, VEGF-C protein levels increased in a

dose-dependent manner following both P and X irradiation.
Furthermore, they were significantly lower after P irradiation. Within
the AR-SI setting (Figure 2a), VEGF-C protein levels were significantly
increased after a low and high dose of irradiation with either P
(P=0.038 and P=0.046, respectively) or X (P=0.0002 for both dose
types). A significantly lower expression was observed after a high
dose of P, as compared to X irradiation (by 59%, P=0.018). However,
significantly increased levels were observed after a high versus low
dose of X irradiation (3-fold increase, P=0.002).
The VEGF-C protein induction was also maintained at signifi-

cantly increased levels in CAL33 cells of the CR-MI group
(Figure 2b), after both low and high doses of P and X irradiation
(Po0.001), with significantly decreased levels after high doses of
P versus X irradiation (by 50%, Po0.001). In addition, there were
significantly increased levels after high, as compared to low doses
of X irradiation (P= 0.002). These observations were confirmed in
CAL27 cells within the CR-MI setting (Supplementary Figure S2B),
where VEGF-C protein levels were significantly increased after
both P and X irradiations (Po0.001), with lower levels after high
doses of P versus X irradiation (P= 0.001).

X and P irradiations stimulate the VEGF-C promoter activity
Irradiation by either X or P stimulated the activity of the vegf-c
promoter especially in CAL33 cells surviving to multiple X
irradiations (6- and 18-fold increase, respectively, Po0.001,
Figure 2c). This result is consistent with the induction of the
VEGF-C mRNA within the CR-MI setting (Table 1) and suggests a
chronic induction of vegf-c gene transcription, an increase in vegf-c
mRNA half-life or a combination of both mechanisms. Mutation of
the NF-κB binding site (MUT) had no effect on the basal vegf-c
promoter activity in non-irradiated cells. However, in cells
surviving to MI by P and X, the activity of the MUT, as compared
to WT, promoter was significantly decreased (by 33%, P= 0.004
and by 30%, P= 0.027, respectively, Figure 2c) suggesting that the
increase in the transcriptional activation of the vegf-c promoter
depends in part on a constitutive activation of NF-κB. In the CAL27
cell line, the irradiation by either P or X did not stimulate the

Table 1. Quantitative gene expression, as percentage of control
(0 Gy), in either P or X irradiated CAL33 cells belonging to (a) AR-SI and
(b) CR-MI groups

(a) mRNA levels (% of control)− AR− SI X P

Role Gene 2 Gy 8 Gy 2 Gy 8 Gy

(Lymph)angiogenesis and
metastasis

VEGF-A 132 a191 143 160

VEGF-C 130 a227 159 a209
VEGF-D 103 96 105 98

Inflammation IL6 129 136 119 ab72
IL8 147 a436 162 a401
CCL2 104 123 b79 a136

Proliferation TRF-2 88 a112 93 102
Plk-1 85 a108 89 a99

Anti-tumor immunity PD-L1 108 103 91 112

Gene score 4 6 0 3

(b) mRNA levels
(% of control)–CR–MI

X P

Role Gene 2 Gy 8 Gy 2 Gy 8 Gy

(Lymph)angiogenesis
and metastasis

VEGF-A 118 a208 b93 ab107

VEGF-C 281 a626 226 b215
VEGF-D 127 134 b95 b79
VEGFR-1 96 a73 b72 73
VEGFR-2 81 88 76 77
VEGFR-3 116 91 100 80
NRP1 105 90 b92 85
NRP2 133 a169 b102 b129

Inflammation IL6 120 126 b74 ab100
IL8 87 a7916 b75 b90
CCL2 112 a751 b83 b94

Proliferation TRF-2 101 95 95 106
Plk-1 91 97 89 a117

Anti-tumor immunity PD-L1 119 140 b92 a116

Gene score 4 6 − 8 − 4

Highlighted values—significantly different (Po0.05) expression levels, as
compared to control, for genes associated to favorable (dark gray) and
non-favorable (black) outcomes. asignificantly different expression levels
after low, as compared to high dose(s) of either P or X irradiation.
bsignificantly different expression levels after either low or high dose(s) of
P, as compared to X irradiation.
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activity of the WT vegf-c promoter but the activity of the MUT
promoter was completely inhibited in both non-irradiated and
irradiated cells (Po0.001, Supplementary Figure S2C). To further
assess the role of NF-κB on vegf-c promoter, the activity of an
artificial promoter containing three binding sites for human NF-κB
was determined in control and irradiated cells. In CAL33, the
NF-κB-dependent promoter activity was lower in P irradiated cells,
which is consistent with the activity of the vegf-c promoter
having a WT NF-κB binding site (Figure 2d). For CAL27, the
NF-κB-dependent promoter activity is almost equivalent in control
and either X or P irradiated cells (Supplementary Figure S2D).
This result indicates that the vegf-c promoter activity exclusively
relies on an NF-κB-dependent transcriptional mechanism in CAL27
cells, whereas the dependency to NF-κB is partial in CAL33 cells.
Moreover, a reporter gene used to assess VEGF-C mRNA half-life
was not affected by either P or X irradiation in CAL33 cells
(Figure 2e), suggesting that the increase in vegf-c mRNA levels
does not depend on modifications in mRNA half-life.

Cells surviving multiple irradiations by P and X generate tumors
with distinct characteristics
The cells resistant to MI by either P or X served to generate
experimental tumors in mice to test their relative aggressiveness.

The average tumor volume was significantly increased (Po0.05)
for P and X tumors, but no differences were observed between
the irradiation types (Figure 3a and b). These results were
inconsistent with the in vitro proliferative abilities of the cells
surviving after MI with either P or X. To determine whether P and
X irradiated cells ‘educated’ the microenvironment to favor tumor
growth, we performed a whole transcriptomic screening of the
tumors. Indeed, distinct profiles for both the mouse (Figure 3c)
and human (Figure 3d) 10 most up- and downregulated genes
were detected. Among the 10 most up- and downregulated
mouse genes, some (Figure 3c) such as collagen type XVII alpha 1
and carbonic anhydrase 2 (Car2)26 had a shared pattern of
expression in P and X tumors (Figure 3c). In addition, we identified
distinct profiles for the 10 most up- and downregulated mouse
(Supplementary Figure S3) and human (Supplementary Figure S4)
genes involved in angiogenesis, inflammation, metastasis, M1/M2
macrophage transition. Some of these genes had a shared pattern
of expression in P and X tumors.
Furthermore, we identified 70 (26%) common upregulated and

3 (5.8%) common downregulated genes (Figure 3e) between X
and P tumors, with roles in angiogenesis/metastasis, inflammation,
M1/M2 macrophage transition and proliferation (Table 2).
Tumors induced by irradiated cells presented less necrosis and

increased intra-tumor vessels density (P= 0.031 for P and P= 0.002

Figure 2. VEGF-C protein expression levels and regulation in CAL33 cells following P or X irradiation. (a) VEGF-C protein levels at 48 h post-
single irradiation (AR-SI): * and *, significantly (Po0.05) increased levels after a low (2 Gy) or high (8 Gy) dose of P and X irradiation,
respectively, as compared to CT; #, significantly decreased levels after a high dose of P, as compared to X irradiation; §, significantly increased
levels after a high, as compared to a low X irradiation dose; (b) VEGF-C protein levels after cell expansion following the third irradiation
(CR-MI): * and *, significantly increased levels after low and high doses of P and X irradiation, respectively, as compared to CT; Concentration in
ng/ml, normalized to 1 × 106 cells, and represented as percentage of CT. #, significantly decreased levels after high doses of P, as compared
to X irradiation; §, significantly increased levels after high, as compared to low doses of X irradiation; (c) Activity of a short vegf-c promoter
(CR-MI); (d) Activity of an artificial promoter having three binding sites for NF-kB (CR-MI); (e) Activity of a VEGF-C 3′UTR reporter gene (CR-MI).
* and *, significantly (Po0.05) increased promoter activity after P and X irradiation, respectively, as compared to CT; # and #, significantly
decreased activity of MUT, as compared to WT vegf-c promoter after P and X irradiation, respectively; §, significantly decreased promoter
activity after P, as compared to X irradiation. CT, control (non-irradiated cells); MUT, mutated, WT, wild type.
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for X group, Figure 4a and Supplementary Figure S5A). In addition,
irradiation by either P or X led to generation of tumors with
destabilized vessel architecture (Figure 4b), attested by a decrease
in vessels with co-staining for CD31 and αSMA (Po0.001 for both

P and X groups, Supplementary Figure S5B). Lymphatic vessels
were detected in the tumor-skin border of the control and P
groups; however, they were also present in the core of the X
tumors (Figure 4c), finding consistent with the over-expression of
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VEGF-C observed in vitro. Since VEGF-C was particularly discrimi-
native between the two experimental irradiation conditions, we
tested whether it had induced the development of lymphatic
vessels. LYVE1, PDPN and PROX1 markers of lymphatic vessels
were then tested. Density of LYVE1-positive lymphatic vessels was
significantly increased in tumors generated with X-, as compared
to non- and P-irradiated cells (P= 0.006 and P= 0.009, respectively,
Supplementary Figure S5C). LYVE1 and PDPN mRNA were
upregulated (P= 0.015 and 0.044, respectively) in X and
downregulated (Po0.001 for both markers) in P tumors. Lower
mRNA levels of LYVE1 and PDPN were detected in P, as compared
to X tumors (P= 0.003 and Po0.001, respectively). PROX1 mRNA
level was downregulated (P= 0.02) and unchanged in P and X
tumors, respectively (Figure 4d).

Conventional radiotherapy by X increases tumor
lymphangiogenesis in patients with HNSCC
To further correlate the relationship between irradiation-dependent
VEGF-C expression and lymphatic vessels development, we tested
the presence of lymphatic markers in biopsies from primary and
locally relapsed human HNSCC, after conventional radiotherapy.
Recent reports described that the expression of PDNP, one of the
major makers of lymphatic vessels, was not restricted to lymphatic
vessels but it was also expressed in HNSCC cells.27 Expression of
PDPN was indeed detected in tumors from patients with oral and
pharyngeal SCC (Figures 5a–1.a). However, we observed a significant
increase of PDNP labeling, in both tumor and lymphatic cells, in
sections from relapsed tumors after treatment with conventional X
radiotherapy, as compared to the initial tumors (P=0.048, Figures 5a–
1.b, Supplementary Figure S6A). In the same patients, the vascular
network, attested by CD31 labeling, was not modified (P=0.059,
Supplementary Figure S6B) in the relapsed (Figures 5b–1.b), as
compared to the initial tumors (Figures 5b–1.a). In addition, a
tendency for increased mRNA expression of PDPN (P=0.088), along
with significantly increased mRNA expression of VEGF-C (P=0.005),
LYVE1 (P=0.025) and PROX1 (P=0.003) were detected in relapsed
patient tumors after conventional X radiotherapy (Figure 5c).

DISCUSSION
Our in vitro results indicate that P irradiation led to lower
expression of factors involved in (lymph)angiogenesis, inflamma-
tion and immune tolerance. This suggests the acquisition of less
aggressive phenotypes after P therapy. The selection of surviving
cells was still possible after MI, indicating a mechanism of acquired
resistance secondary to irradiation.28 However, the molecular
profiling of the surviving cells suggests a more aggressive in vivo
phenotype after MI with X. Therefore, due to its physical and
biological properties, P irradiation may be more efficient in tumor
size control through dose escalation.
The long-term surviving cells after three irradiations with P

showed a downregulation of the investigated pro-angiogenic/pro-
inflammatory genes, except for vegf-c, while most of these genes
were upregulated after X irradiation. The implication of VEGF-C in
the metastatic dissemination process after irradiation has not been
elucidated. To our knowledge, this is the first report showing P or X
radiation-induced VEGF-C over-expression at both gene and protein
levels in HNSCC cells. The VEGF-C mRNA levels increased in a
dose-dependent manner and with the irradiation number, except in

the cells surviving after three irradiations with P. These observations
suggest that P radiotherapy would lead to less pronounced
lymphangiogenesis/metastasis, as compared to X radiotherapy.
Therefore, we postulated that over-expression of VEGF-C may

represent an extrinsic mechanism responsible for the
post-irradiation tumor dissemination/metastasis in HNSCC.
VEGF-C expression was associated with lymph node metastasis,
recurrence and a poorer five-year survival rate in patients with
HNSCC,11 being an independent prognostic factor.11,29 Moreover,
the online available database cBioPortal (http://www.cbioportal.
org) shows that over-expression of VEGF-C correlated to
significantly lower disease-free (P= 0.0022, Supplementary
Figure S7A) and overall (P= 0.015, Supplementary Figure S7B)
survival rates in patients with HNSCC (n= 517). It has been
reported that gamma rays irradiation induced VEGF-C expression
and endothelial cell proliferation in lung cancer.30 These
observations, corroborated with ours, suggest that VEGF-C may
be an important therapeutic target for HNSCC patients who
relapse after radiotherapy with either P or X.
Because VEGF-C might be a major factor responsible for

post-irradiation disease progression in HNSCC patients, via
promotion of lymphangiogenesis, we further started investigating
the mechanisms involved in its induction, which may serve to its
therapeutic targeting. Regulation of VEGF-C expression has been
poorly addressed.27,31,32 Irradiation-mediated induction of VEGF-C
mRNA suggested stimulation of transcription, stabilization of
mRNA or a combination of these mechanisms.31 Our data indicate
that both P and X irradiation stimulated the activity of a short form
of vegf-c promoter in CAL33 cells. The vegf-c promoter contained a
binding site for NF-κB. The dependency of this site is variable
considering the two cell lines we tested, but nevertheless NF-κB
plays a key role in VEGF-C regulation, as suggested in another
cancer type.32 As these cell lines came from two different patients,
our results highlight the inter-patient variability in VEGF-C
expression and regulation, stressing out the importance of
implementing personalized diagnosis and treatment strategies.
In the cells surviving after three irradiations, the VEGF-A and

VEGF-D genes were downregulated by P and upregulated by X
irradiation. VEGF-A expression significantly correlated with
lymph node metastasis in patients with HNSCC.11 High VEGF-A
expression was also associated with higher clinical stages and
worse overall survival, being a significant predictor of poor
prognosis in patients with HNSCC.33 Furthermore, VEGF-D
expression correlated with lymphatic vessel density and lymph
node metastasis in these patients.10 In addition, VEGFR-2, VEGFR-3
and NRP1, highly expressed by HNSCC cells,34 were
downregulated in the surviving cells selected after three
irradiations with P, but not with X. High NRP1 and NRP2 levels
correlated with poor prognosis in HNSCC patients, NRP2 being an
independent prognostic markers for overall survival.35

Therefore, our study sets the basis for clinical assays investigat-
ing more efficient treatments, combining P radiotherapy with
anti-angiogenic-targeted therapies. Such combinations would
eventually lead to decreased selection of post-irradiation surviving
cells and lower relapse rates in patients with HNSCC, for which the
current treatments include X irradiation.3 A case report describing
the successful treatment of a patient with chondrosarcoma by
combining P radiotherapy with sunitinib, an inhibitor of VEGFRs

Figure 3. Evaluation of tumors generated following xenografting of either non-irradiated, P or X irradiated CAL33 cells in immunodeficient
mice. (a) Average tumor volume (mm3); (b) Representative images of tumor xenografts; (c) Heatmap of 10 most up- and downregulated
mouse genes in tumors generated by non-irradiated cells versus P or X tumors, and in P versus X tumors; (d) Heatmap of 10 most up- and
downregulated human genes in tumors generated by non-irradiated cells versus P or X tumors, and in P versus X tumors; (e) Venn diagrams
showing common upregulated and downregulated human genes between P and X tumors. Framed genes are commonly expressed in P and
X tumors. Selection is adjusted P-valueo0.05 and lofFC41.
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Table 2. Common upregulated and downregulated human genes in tumors generated with either X or P irradiated cells

Common up-regulated genes between X versus 0 and P versus 0

Role Gene abbreviation Gene full name

Metastasis/Angiogenesis
KRT16 Keratin 16
SERPINB3 Serpin family B member 3
CAPNS2 Calpain small subunit 2
GRHL3 Grainyhead like transcription factor 3
CSTB Cystatin B
PRSS27 Protease, serine 27
TLE4 Transducin like enhancer of split 4
TMPRSS11D Transmembrane protease, serine 11D

Inflammation PGLYRP3 Peptidoglycan recognition protein 3
RASGRP1 RAS guanyl releasing protein 1
ENDOU Endonuclease, poly(U) specific
METRNL Meteorin like, glial cell differentiation regulator
S100A8 S100 calcium binding protein A8
S100A9 S100 calcium binding protein A9
A2ML1 Alpha-2-macroglobulin like 1
HCN2 Hyperpolarization activated cyclic nucleotide gated potassium channel 2
CHST2 Carbohydrate sulfotransferase 2

M1/M2 ABCG1 ATP binding cassette subfamily G member 1

Proliferation HPGD Hydroxyprostaglandin dehydrogenase 15-(NAD)
BNIPL BCL2 interacting protein like
PPP2R2C Protein phosphatase 2 regulatory subunit Bgamma
KLK8 Kallikrein related peptidase 8
GJB6 Gap junction protein beta 6
EEF1A2 Eukaryotic translation elongation factor 1 alpha 2
EPHA4 EPH receptor A4
GAS7 Growth arrest specific 7
DSG1 Desmoglein 1
PDZK1IP1 PDZK1 interacting protein 1
TMPRSS11A Transmembrane protease, serine 11A
FLRT2 Fibronectin leucine rich transmembrane protein 2

Other C12orf36 Putative uncharacterized protein C12orf36
FRMPD1 FERM and PDZ domain containing 1
TMEM45A Transmembrane protein 45A
LIPK Lipase family member K
CTC-490G23.2 CTC-490G23.2
HOPX HOP homeobox
PLIN2 Perilipin 2
SDR9C7 Short chain dehydrogenase/reductase family 9C, member 7
STXBP5-AS1 STXBP5 antisense RNA 1
ARRDC4 Arrestin domain containing 4
FRY FRY microtubule binding protein
FAM25A Family with sequence similarity 25 member A [
SCEL Sciellin
GJB2 Gap junction protein beta 2
UNC5B-AS1 UNC5B antisense RNA 1
RP11-21B23.2 Pre-mRNA processing factor
SPRR1B Small proline rich protein 1B
NAV3 Neuron navigator 3
SLC10A6 Solute carrier family 10 member 6
RP11-275I14.4 Pre-mRNA processing factor
RP11-356I2.4 Pre-mRNA processing factor
C9orf169 Cysteine rich tail 1
RP11-321G12.1 Pre-mRNA processing factor
LINC01094 Long intergenic non-protein coding RNA 1094
OR7E62P Olfactory receptor family 7 subfamily E member 62 pseudogene
FAM3D Family with sequence similarity 3 member D
SMIM5 Small integral membrane protein 5
FBXL16 F-box and leucine rich repeat protein 16
RP11-783K16.5 Pre-mRNA processing factor
KCNK7 Potassium two pore domain channel subfamily K member 7
FAM25HP Family with sequence similarity 25, member H pseudogene
WI2-85898F10.1 Uncharacterized LOC107985535
IVL Involucrin
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and platelet-derived growth factor receptor, underlines the
effectiveness of such approach.36

We also showed that P and X radiations differently modulated
the pro-inflammatory gene expression in HNSCC cells. Among the
assessed genes, the highest determined mRNA level was for IL-8.
Stress and drug-induced IL-8 signaling conferred chemotherapeu-
tic resistance to cancer cells.37 Serum and tumor IL-8 significantly
affected the disease-free survival in patients with early stage
HNSCC.38 Therefore, inhibiting the effects of IL-8 signaling in
combination to chemoradiotherapy may be of significant
therapeutic value.
P but not X irradiation downregulate IL-6 expression at

the mRNA level. IL-6 expression predicted a poor response to
radio-chemotherapy and a non-favorable prognosis in HNSCC
patients.39 It was also linked to radiation resistance and
development of chronic toxicities after irradiation.40 Depending
on tumor location, the most common side effects after
conventional radiotherapy of HNSCC include mucositis,
xerostomia, dysphagia requiring short-term or permanent
gastrostomy, soft tissue/bone necrosis, neck fibrosis, and thyroid
dysfunction.41 Although the primary goal in radiotherapy is tumor
control, a parallel essential goal is to spare normal tissues from
radiation toxicity. Therefore, our data bring further pre-clinical
evidence that the use of P irradiation in the treatment of HNSCC
may lead to less inflammatory side effects.
We also showed that, in the cells surviving long-term after three

irradiations, another major pro-inflammatory cytokine, CCL2, was
downregulated after P, while being highly upregulated after X
irradiation. As serum CCL2 levels were associated with HNSCC
progression,42 our data suggest that P therapy might be more
beneficial for these patients.
Our results also showed that PLK1 and TRF2 genes were

differently regulated after P or X irradiation and correlated to the
proliferation patterns. By inhibiting apoptosis, PLK1
over-expression was associated with poor survival in patients
with HNSCC, being an independent prognostic factor.43 Its
targeting with a multi-kinase inhibitor led to encouraging
anti-tumor activity in patients with SCC.44 These data suggest
that PLK1 might be a potential therapeutic target for HNSCC
patients undergoing radiotherapy. TRF2 may also become an
established predictive marker for treatment efficacy and a marker
of survival in HNSCC. We previously showed that the treatment

response was increased in TRF2 knocked-down cells and that TRF2
over-expression had a negative impact on patients’ survival.23

Irradiation leads to adaptive changes in the tumor microenvir-
onment that may limit the generation of an anti-tumor immune
response.24 Indeed, we showed a significant increase of PD-L1
expression after P, and confirmed the X radiation-induced PD-L1
expression in other cancers.24,45 In patients with HNSCC, high
PD-L1 expression in primary tumors correlated with metastasis
and poor prognosis, being an independent prognostic factor.46

PD-L1 was also a significant predictor for poor treatment response
and shorter survival in X radiotherapy-treated patients with
HNSCC.45 A phase II, multi-center, single-arm, global study of
monotherapy with durvalumab, a Fc optimized monoclonal
antibody directed against PD-L1, is ongoing in our institution in
patients with recurrent/metastatic HNSCC and PD-L1 positive
status. Therefore, our data, associated to the progress in the field,
set the basis for the investigation of novel therapeutic strategies
for HNSCC, based on the PD-L1–PD-1 interaction, in combination
with radiotherapy.
We also demonstrated that the aggressiveness of the irradiated

cells was augmented in vivo through increased tumor volume,
density of tumor vessels and blood vessels with destabilized
architecture. These observations suggest that the irradiation-
adapted cells have acquired different transcriptome and
secretome profiles. Indeed, among the common human genes
upregulated in either X or P tumors, but downregulated in
tumors generated with non-irradiated cells, we identified PDZK1
interacting protein 1 (PDZK1IP1, known also as MAP17)47 and
fibronectin leucine rich transmembrane protein 2,48 known for
promoting cell proliferation. In addition, mouse Car2 expression
was downregulated in P and X tumors, while upregulated in
tumors generated with non-irradiated cells. Interestingly, low
CAR2 protein expression has been associated with increased
tumor size.26 In addition, the X tumors showed upregulation of
human genes involved in metastasis, angiogenesis and epithelial
mesenchymal transition, such as MMP2, MMP9, MMP13, MMP16,
MMP28 and vimentin,15 while P tumors showed upregulation of
human C–C Motif Chemokine Ligand 5 chemokine gene involved
in CD8+ T lymphocytes recruitment associated with better clinical
outcomes.49

To get further insights whether tumor cell adaptation following
radiotherapy may contribute to clinical disease progression, in

Table 2. (Continued )

Common up-regulated genes between X versus 0 and P versus 0

Role Gene abbreviation Gene full name

TCN1 Transcobalamin 1
KLHL4 Kelch like family member 4
LRRC7 Leucine rich repeat containing 7
RP11-557H15.3 Pre-mRNA processing factor
TSHZ2 Teashirt zinc finger homeobox 2
OLFM2 Olfactomedin 2
ADH7 Alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide

Common down-regulated genes between X versus 0 and P versus 0

Role Gene abbreviation Gene full name

Proliferation LIF leukemia inhibitory factor
Other RNA5-8SP2 RNA, 5.8S ribosomal pseudogene 2

P2RX5 purinergic receptor P2X 5

In bold are shown genes upregulated in either P or X tumors, but down-regulated in tumors generated with non-irradiated cells. Selection is adjusted P-
valueo0.05 and lofFC41.
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part through lymphangiogenesis, we investigated lymphatic
markers expression in patients with relapsed HNSCC after X
radiotherapy. Biopsies at relapse are very rarely sampled in
radiotherapy-treated patients. However, in this small cohort, all
patients presented increased protein and/or mRNA levels of PDPN,
VEGF-C, LYVE1 and PROX1, bringing evidence that conventional

radiotherapy may promote lymphangiogenesis. It has also been
reported by others that high PDPN expression is associated with
aggressive tumor behavior, poor prognosis and metastatic
regulation through interaction with VEGF-C, suggesting that PDPN
may be used as a potential prognostic biomarker for HNSCC.27

However, our in vitro studies did not reveal increased PDPN
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40x 40x 40x

CD31
αSMA
DAPI
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40x 40x 40x

LYVE-1
DAPI

10x 10x10x

0 Gy P8 GyX8 Gy
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Figure 4. Histology, immunofluorescence and quantitative gene expression of vascular and lymphatic markers in murine xenografts. (a)
Representative images of HES staining, indicating increased necrosis (black arrowhead, delimited by dashed black lines) in CT and increased
blood vessels density (white arrowhead showing collagen surrounding the vessels) in the irradiated cells-derived tumors; (b) Representative
images of CD31 (endothelial cells, green)/αSMA (pericytes, red)/Hoechst (nuclei, blue) staining, showing anarchic blood vessels structures and
lack of pericyte coverage of blood vessels in the irradiated cells-derived tumors; (c) Representative images of LYVE1 (lymphatic endothelial
cells, red)/Hoechst (nuclei, blue) staining, showing different patterns of lymphatic vessels development in X (both periphery and interior of the
tumor), P and CT (periphery of the tumor) groups; dashed white lines delimit the tumor edge; CT, control (tumors generated by non-irradiated
cells); (d) Murine LYVE1, PDPN and PROX1 mRNA quantitative mRNA expression, as percentage of control (0 Gy). HES, Hematoxylin Eosin
Saffron.
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expression in HNSCC cells that resisted to MI (Supplementary
Figure S8).
In conclusion, our study highlighted the differential

gene/protein expression profile after P versus X irradiation in
HNSCC and potential candidate markers for prognosis, efficacy of
anti-tumor treatments and new anti-tumor targets, such as
VEGF-C. Beside the physical advantage of P irradiation in dose
deposition, our observations provide preclinical evidence that
beam therapy with P might be superior to conventional X therapy
in HNSCC patients, due to its biological advantages. P irradiation
could therefore permit dose escalation without increasing the side
effects, while increasing the tumor control. Further work is also

needed to refine the strategies for blocking VEGF-C activity and its
effects on the vascular/lymphatic endothelial or tumor cells with
anti-angiogenic therapies. The implementation of P therapy in
combination with anti-angiogenic or anti-immune checkpoint
drugs for HNSCC will therefore require prospective randomized
clinical trials to measure the toxicity and disease control.

MATERIALS AND METHODS
Cell lines and culture
Two human HNSCC cell lines, CAL33 and CAL27, were provided through a
Material Transfer Agreement with the Oncopharmacology Laboratory,
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Figure 5. Evaluation of vascular and lymphatic markers in biopsies from patients diagnosed with HNSCC. Representative images of
immunohistochemistry for (a) PDPN and (b) CD31 expression: (1) oral and (2) hypopharyngeal localization; Left panels (1.a, 2.a)—primary
tumor; Right panels (1.b, 2.b)—relapsed tumor in the same patient after surgery and chemo-X radiotherapy (brown, PDPN/CD31; blue,
hematoxylin - nuclei); (c) quantitative PDPN, VEGF-C, LYVE1 and PROX1 mRNA expression, as percentage of control (0 Gy); * and **,
significantly increased values (Po0.05 and Po0.01, respectively) post-, as compared to pre-X radiotherapy.
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Centre Antoine Lacassagne (CAL), where they had initially been isolated.50

The cells were cultured in Dulbecco’s modified Eagle's medium
supplemented with 7% fetal bovine serum (Thermo Fisher Scientific,
Waltham, MA, USA).

Cell irradiations
Five million cells were seeded onto 12 cm2 tissue culture flasks, 48 h prior
to the irradiations, which were carried out at CAL (four independent
experiments) with either P (63 MeV Cyclotron MEDICYC, CAL, Nice, France)
or X (6 MeV Dual energy Clinac 21EX Linear Accelerator, Varian Inc., Palo
Alto, CA, USA). For clonogenicity assays, the cells were irradiated once
(single irradiation, SI) with 1, 2, 4, 6 or 8 Grays (Gy; physical dose) and
processed immediately after irradiation. To the purpose of all other
experiments, the cells were irradiated either once or three times, 1 week
apart (multiple irradiations, MI) with either 2 Gy (low dose) or 8 Gy (high
dose), and processed 6 h after irradiation. In the MI setting, cells were
re-seeded after each irradiation and kept in culture until the next
irradiation to reproduce the clinical situation where patients are usually
given several irradiations. The CR was evaluated to determine if the
changes associated with the AR persist late (3 weeks) after irradiation.
Two cell groups were thus generated from each independent irradiation

experiment. They consisted of cells subjected to: (1) SI and analysis 48 h
thereafter (AR-SI); (2) MI and culture expansion (3 weeks) after the third
irradiation (CR-MI). All cell experiments were performed in triplicate wells
for each condition and repeated at least three times.

Clonogenicity assays
They were performed to quantify the radio-induced cell mortality, to
generate the cell surviving curves and to determine the RBE. Owing to
radiation dose-induced differences in plating efficiency, the cells were
seeded at different densities: 3000 cells/dish for 0, 1, 2 and 4 Gy; 6000
cells/dish for 6 Gy and 9000 cells/dish for 8 Gy. On day 10 of culture, cells
were stained for 20 min with Giemsa (Sigma Aldrich, St. Louis, MO, USA).
Stained plates were scanned and the number of cell colonies was
determined with the ImageJ processing software (National Institutes of
Health, Bethesda, MD, USA). The RBE was calculated as ratio of the
biological effectiveness of P versus X irradiation, given the same
dose/amount of absorbed energy.25

Cell counting for viability and proliferation assessment
The cell counting for the CR-MI group was done every day, for 4 days
post-seeding, with an automatic cell counter (Advanced Detection
Accurate Measurement system, LabTech, Tampa, FL, USA), according to
the manufacturer’s instructions.

Quantification of gene expression
Molecular characterization of the irradiated cells was done by using the
quantitative real-time–polymerase chain reaction. Total RNA was extracted
with the RNeasy Mini Kit; first-strand cDNA synthesis was performed by
using the QuantiTect Reverse Transcription Kit (all from Qiagen, Hilden,
Germany). cDNA samples were amplified by using the StepOnePlus
RT–PCR System (Thermo Fisher Scientific) for 40 cycles with the Takyon Rox
SYBR Master Mix, dTTP Blue (Eurogentec, Liege, Belgium) and specific
oligonucleotides (Sigma Aldrich, Supplementary Table S1), to assess mRNA
expression for VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2, VEGFR-3, NRP1,
NRP2, IL-6, IL-8, CCL2, TRF2, PLK1, PD-L1, LYVE1, PDPN and PROX1. mRNA
levels were normalized to a housekeeping mRNA coding for either the
human or murine ribosomal protein, large, P0 (RPLP0). The gene
expression levels were given the individual scores of − 1, 0 and 1 when
they were significantly decreased, not significantly changed and
significantly increased, respectively, as compared to control. For each
irradiation setting, a global gene expression score was then calculated by
cumulating the individual scores allocated to each gene expression level.

Protein quantification
VEGF-C protein was quantified by using an enzyme-linked immunosorbent
assay (human DuoSet ELISA kit, R&D Systems, Minneapolis, MN, USA).
Protein concentration was normalized to the viable cell number.

Luciferase assays
CAL33 cells belonging to the CR-MI group were transfected by using 50 μl
NaCl buffer, 1.25 μl of polyethylenimine transfection reagent (Sigma
Aldrich) and 0.5 μg of total test plasmid DNA-renilla luciferase. The
plasmids encoded either (i) a human vegf-c promoter fragment with either
a non-mutated (wild type, WT) or a mutated (MUT) binding site for the
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),32

(ii) an artificial promoter containing three binding sites for human NF-κB or
(iii) a human VEGF-C 3′UTR reporter (LightSwitch, S803537, Active Motif,
Carlsbad, CA, USA), all cloned downstream of the luciferase reporter gene.
A CMV plasmid was used to control the variability of transfection efficiency
in the reporter assays.

Tumor xenografts
The study was carried out in strict accordance with the recommendations
of the United Kingdom Coordinating Committee on Cancer Prevention
Research’s Guidelines for the Welfare of Animals in Experimental
Neoplasia. Our experiments were approved by the ‘Comité National
Institutionnel d'Éthique Pour l'Animal de Laboratoire’ (CIEPAL, reference:
NCE/2013-97). One million non-irradiated, P or X irradiated CAL33 cells
(CR-MI group) were injected subcutaneously into the flank of 6-week-old
NMRI-Foxn1nu/Foxn1nu female mice (Janvier Labs, Le Genest-Saint-Isle,
France, n=10/group). The tumor volume (v = L × l2 × 0.52) was determined
following measurement with a caliper. When the tumors reached 1 cm3,
the mice were killed and the tumors collected.

Whole transcriptomic screening of tumor xenografts
For the sequencing and secondary analysis, 1 μg of total RNA was
extracted from tumor xenografts, generated with either non-irradiated, P
or X irradiated cells (n= 3/group), by using the AllPrep DNA/RNA/Protein
Mini Kit (Qiagen). Lack of RNA degradation (ratio 28S/18S⩾ 1.6 and RIN47)
was documented (Bioanalyzer 2100, Agilent Technologies, Santa Clara, CA,
USA). The libraries were generated by using Truseq Stranded mRNA kit
(Illumina, San Diego, CA, USA). Libraries were then quantified with KAPA
library quantification kit (Kapa Biosystems, Inc., Wilmington, MA, USA) and
pooled; 4 nM of this pool were loaded on a Nextseq 500 high output
flowcell and sequenced with a 2 × 75 bp paired-end chemistry. STAR
(2.4.0i) was used to map reads versus a STAR database containing: Ensembl
hg19 build (GRCh37.75), Ensembl mm10 build (GRCm38) and the ERCC
spikes-in set, formatted with splice junctions information described from
Ensembl release GRCh37.75 and GRCm38.83. STAR options were set to
the recommended Encode RNA-seq options ‘--outFilterType BySJout
--outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhang-
Min 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04
--alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax
1000000’. Gene counts were obtained with featureCounts (subread-1.5.0-
p3-Linux-x86_64) and ‘--primary -p -s 1 -C’ options, by using the same GTF
files used for STAR splice junctions training. Data were deposited in Gene
Expression Omnibus (accession code GSE90761, https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?token=opybisygbzotvkh&acc =GSE90761).
For the heatmaps gene lists selection, genes involved in angiogenesis,

inflammation, metastasis and cell proliferation were selected by using the
Ingenuity Pathway Analysis (Qiagen) database. To define M1/M2
macrophages-related genes, the GEO data set GSE69607 has been
reanalyzed by using geo2R online resource. Genes up- and downregulated
(Abs (logFC)42) in both M1 versus M0 and M2 versus M0 comparisons
were selected as the ‘M1/M2 macrophages’-related gene list.

Histochemistry and immunofluorescence
Murine tumor sections were handled as previously described.8 To assess
tumor architecture, the sections were subjected to hematoxylin eosin
saffron staining. For immunofluorescence, the frozen sections were
incubated overnight, at 4 °C, with the following primary antibodies:
polyclonal rabbit anti-mouse/human LYVE1 (1:200; Abcam, Cambridge,
UK), monoclonal mouse anti-mouse/human alpha smooth muscle actin
(αSMA, 1:400, Sigma Aldrich) and monoclonal rat anti-mouse CD31 (1:50,
clone MEC 13.3, BD Pharmigen, Heidelberg, Germany) primary antibodies,
then incubated for 2 h at room temperature, in the dark, with the
secondary antibodies: anti-rabbit FP594, anti-mouse FP547 (1:1000,
FluoroProbes, Interchim, Montluçon, France) and anti-rat AF488 (1:1000,
AlexaFluor, Thermo Fisher Scientific); cell nuclei were stained with Hoechst
(1:1000, Thermo Fisher Scientific). Cell and tissue preparations were
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examined under an inverted epifluorescence microscope (Axio
Observer Z1) with an incorporated digital camera system for imaging
(AxioCam Icc1); images acquisition and stitching, as well as the assessment
of tumor vessels density, were performed with ZEN 2.3 software (all from
Carl Zeiss MicroImaging GmbH, Weinheim, Germany).

Immunohistochemistry
Patient biopsy samples were collected with the approval of the local Ethics
Committee, and their use in research was in accordance with the
Declaration of Helsinki. The patient, disease and treatment characteristics
were described in Supplementary Table S2. Sections from formalin-fixed
and paraffin-embedded biopsies from initial and relapsed tumors were
incubated at room temperature with monoclonal, primary mouse
anti-human PDPN and CD31 antibodies, as well as biotinylated secondary
antibodies, by using an automated slide stainer (Ventana Medical Systems,
Inc., Basel, Switzerland). Binding was detected with the diaminobenzidine
substrate against a hematoxylin counterstain. Evaluation of marker
expression was performed by an accredited clinical pathologist (IP).

Statistical analyses
Statistical analysis for all test, excepting whole transcriptomic screening,
was performed by two-tailed unpaired t test on at least three independent
experiments; the results were considered statistically significant when
P-valueo0.05. The error bars were defined as standard error of the mean.
For the whole transcriptomic screening, statistical analyses were
conducted separately for human and mouse gene expression counts.
Quality of libraries was assessed based on the Pearson correlation between
observed versus expected ERCC counts (R240.90 for all samples).
Normalization and differential analysis were conducted within R/Biocon-
ductor environment, by using DESeq2. P-values were corrected for multiple
testing, by using the Benjamini and Hochberg method. Heatmaps were
generated with TMeV software. Heatmaps used the top 10 most up- and
downregulated genes, based on logFC and adjusted P-valueo0.05 for
human genes, and logFC only for mouse genes.
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