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SUMMARY 

Among the different types of cytoskeletal components, microtubules arguably accumulate the 

greatest diversity of post-translational modifications (PTMs). Acetylation of lysine 40 (K40) of a-

tubulin has received a particular attention because it is the only tubulin PTM to be found in the 

lumen of microtubules - most other tubulin PTMs are found at their outer surface. As a consequence, 

the enzyme catalyzing K40 acetylation needs to penetrate the narrow microtubules lumen to find its 

substrate. Acetylated microtubules have been considered as stable, long-lived microtubules, 

however until recently there was little information about whether the longevity of these 

microtubules is the cause or the consequence of acetylation. Current advances suggest that this PTM 

helps the microtubule lattice to cope with mechanical stress, thus facilitating microtubule self-repair. 

These observations now shed a new light on the structural integrity of microtubules, as well as on 

mechanisms and biological functions of tubulin acetylation. Here we discuss the recent 

understanding on how acetylation is generated in the lumen of microtubules, and how this ‘hidden’ 

PTM can control microtubule properties and functions.  
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MAIN TEXT 

Introduction 

Microtubules are hollow, polarized tubes, which dynamically assemble from heterodimers of α- and 

β-tubulin. Their dynamics allow microtubules to constantly switch between growth and shrinkage, 

thus exploring and probing the intracellular space, and to rapidly re-organize into highly specialized 

structures, such as the mitotic spindle during cell division. Consequently, the strict regulation of 

dynamics and stability is of key importance for microtubule functions, and is thus controlled by 

several complementary mechanisms. 

One mechanism expected to control microtubule properties and functions is the posttranslational 

modification (PTM) of their tubulin subunits. Tubulin PTMs have recently attracted a growing 

interest, as the discovery of many modifying enzymes has allowed to determine biological functions 

of these previously barely studied modifications (reviewed in Janke 2014 [1]). While most known 

tubulin PTMs occur on the outer surface of polymerized microtubules, acetylation has been 

identified on lysine 40 (K40) of a-tubulin [2, 3], a residue exposed at the inner microtubule surface, 

i.e. in the microtubule lumen (Figure 1A). 

The luminal localization of the acetylation site has puzzled investigators for many years, particularly 

because acetylation of a-tubulin K40 is only observed in subunits that are incorporated in the 

microtubule lattice, and not in cytosolic tubulin heterodimers. This implied that enzymes catalyzing 

the addition of the acetyl moiety to K40 must somehow enter the narrow, 15-nm-wide lumen of 

microtubules. In addition, it remained unclear to which extent such a luminal PTM could affect 

microtubule properties, or the interaction between microtubules and other factors modulating 

microtubule functions, such as microtubule-associated proteins (MAPs). While an excellent antibody 

directed against K40-acetylated a-tubulin [4] has early allowed to study the distribution of this PTM, 

the tubulin acetyltransferase aTAT1 has been discovered much later [5, 6], thus genetic, cell 

biological and biophysical studies have only recently emerged. Here we discuss current studies that 
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have strongly advanced the understanding of the mechanisms and functions of microtubule 

acetylation. 

 

Molecular mechanisms controlling microtubule acetylation 

For many years, strong biochemical evidence had suggested that a-tubulin acetylation only takes 

place on polymerized microtubules [7-10]. Accordingly, upon the discovery of aTAT1, it was shown 

that this enzyme has an over 100-times higher catalytic activity with tubulin in its polymeric 

compared to its unpolymerized state. The question of how the enzymes that control K40 acetylation 

can reach their modification site inside the microtubules is thus of key importance for understanding 

how the dynamics of this PTM is regulated.  

 

The acetylation enzyme and the challenge of luminal access 

Although aTAT1 has not been formally visualized inside the microtubule lumen, it is likely to be there. 

The presence of so-far unidentified intraluminal material has been demonstrated by electron 

microscopy [11], and strikingly this material was missing inside the microtubules of a C. elegans strain 

with mutations in Mec-17 (aTAT1 [12]). At present, several hypotheses attempt to explain how the a-

tubulin acetyl-transferase could access its luminal K40 target. One possibility is that aTAT1 enters the 

microtubule lumen via irregularities in the microtubule structure [13] (Figure 1B), which is supported 

by the existence of switches in the number of protofilaments and loss of tubulin dimers in 

microtubule lattices in vivo [14, 15]. ATAT1 would use these microtubule defects to locally enter and 

acetylate microtubules (Figure 1C). The drawback of this model is that microtubules would require a 

high frequency of defects in order to spread acetylation over their entire length. Lattice defects and 

protofilament switches have been visualized on microtubules purified under physiological conditions 

using atomic-force microscopy [16, 17], however it is possible that these defects occur only 

transiently and get repaired by the recently discovered microtubule self-repair mechanism [15] 

(Figure 1C). This could provide aTAT1 with transient, but frequent luminal access sites, and result in 
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efficient spreading of K40-acetylation along microtubules. Indeed, aTAT1 binds to the external wall of 

microtubules [18, 19] ideally positioning it to enter the microtubule lumen upon the appearance of 

transient microtubule defects. The externally bound aTAT1 might, similar to other MAPs, scan the 

microtubule surface to channel the enzyme toward its luminal entry sites (Figure 1C). 

Another, non-exclusive possibility is that aTAT1 enters the microtubule lumen from the open 

microtubule ends (Figure 1B). Along this line, Coombes et al. recently showed that aTAT1 has a 

higher affinity for microtubule ends, most likely because of the high density of exposed luminal sites 

at the tapered extremities, which could be used as ‘traps’ for the enzyme [13]. In addition, 

acetylation could be controlled by the contacts between microtubules and aTAT1-enriched 

structures, such as focal adhesions or clathrin-coated pits [20, 21]. To date, several reports provide 

evidence for a preferential entry of aTAT1 at the open microtubule ends [13, 19, 22], however a 

quantitative evaluation of how much of the enzyme enters through open ends versus defects in the 

microtubule lattice is lacking. Moreover, the ends of microtubules may be partially obstructed inside 

living cells, as they bind a plethora of specific tip-binding proteins that could hamper luminal access 

[23].  

The mechanism by which aTAT1 enters the microtubule lumen may have important consequences on 

the dynamics of acetylation by controlling which microtubules are acetylated in cells. The difficulty of 

elucidating this mechanism in vitro could in particular be related to the fact that microtubule 

features, and thus the frequency of microtubule defects, vary dramatically depending on how 

microtubules are polymerized. For instance, microtubules assembled in the test tube from purified 

tubulin seem to be more permissive to lateral entry of aTAT1 as compared to microtubules extracted 

from cells, or purified axonemes [5, 19]. Lateral entry into the lumen of cellular microtubules could 

be obstructed by different factors. One possibility is that the multitude of MAPs binding microtubules 

in cells limit the access of aTAT1 to the lattice. Alternatively, the presence of microtubule 

polymerases and nucleation factors in cells may contribute to the generation of microtubules with 

much fewer defects, and thus a lower frequency of lateral aTAT1 entry. Doublecortin, for instance, is 
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assuring that all microtubules in a cell are homogenously built from 13 protofilaments, thus reducing 

chances to accumulate switches in protofilament numbers [24]. On the other hand, microtubules are 

exposed to mechanical stress in living cell clearly, which favors their buckling and bending. 

Microtubule bending had recently been shown to result in the lateral incorporation of tubulin dimers 

into the microtubule lattice, suggesting that the bent microtubules acquire defects that are 

subsequently repaired [15]. Thus, the relative contribution of open ends and lattice defects to aTAT1 

luminal access is likely to vary depending on the way microtubules are assembled, and which 

mechanical challenges they experience. 

 

The luminal diffusion conundrum 

Szyk et al. were the first to suggest that aTAT1 diffuses in the lumen of in-vitro-assembled 

microtubules [22]. They proposed that once aTAT1 enters an open microtubule extremity, it diffuses 

rapidly throughout the entire microtubule lumen thus stochastically acetylating more and more 

tubulin units. Although the diffusion hypothesis has the merit of simplicity, it was initially ruled out 

by a mathematical model, which had suggested that diffusion in the lumen of microtubules would 

require years to reach equilibrium [25]. However, as this model was dominated by the affinity of the 

protein of interest for the luminal microtubule surface, it did not exclude that proteins with low 

affinity, such as aTAT1, are able to make their way through the lumen. In the model proposed by Szyk 

et al., the fact that K40 acetylation becomes detectable only after aTAT1 diffusion has reached an 

equilibrium results from the very low catalytic activity of this enzyme. Consequently, acetylation was 

proposed to occur randomly all along the length of microtubules [22]. Nevertheless, the conclusion 

that aTAT1 diffusion is fast inside microtubules was derived from fluorescent microscopy 

experiments, which make it difficult to determine whether aTAT1 scans the luminal or the external 

surface of microtubules. In addition, the presence of discontinuous acetylation patterns, as observed 

by the authors [22], are difficult to explain with a stochastic acetylation model, but would better fit 

with the presence of aTAT1 entry sites at microtubule defects as discussed above. Indeed, using a 
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similar in vitro approach, Coombes et al. proposed that aTAT1 luminal diffusion is actually slow due 

to frequent rebinding of the enzyme to nearby non-acetylated K40 residue which impedes luminal 

mobility [13] (Figure 1C). Accordingly, the authors found that acetylation marks accumulate at the 

entry sites of the enzyme (open ends or lateral openings), and not randomly along microtubule.  

These discordant observations on aTAT1 entry into the microtubule lumen may be a consequence of 

the way microtubules were prepared and stabilized in different studies, as we discussed above. Using 

microtubules extracted from HeLa cells, Ly et al. observed that K40 acetylation is biased towards 

open extremities, and spreads longitudinally into the microtubule lumen [19], perhaps because these 

microtubules have less irregularities. Whatever the precise experimental determinants of the 

different observations, the results of Coombes et al. and Ly et al. suggest that aTAT1 diffusion is 

slower than initially proposed [13, 19]. Their observations might be closer to the in-vivo situation, as 

it was shown that acetylated K40 marks are first detected at the extremities of most microtubules 

after releasing cells from nocodazole-induced microtubule depolymerization [19, 21]. In this assay, 

the acetylated microtubule segments progressively extended over time, suggesting a mechanism in 

which aTAT1 slowly diffuses inside the microtubule lumen thereby spreading acetylated K40 marks 

[10, 21]. 

 

The mechanism of deacetylases 

The tubulin deacetylases HDAC6 [26] and sirtuin type 2 (SIRT2) [27] were identified before aTAT1, but 

their precise mode of action is so far less understood. Initial observations in vivo indicated that 

tubulin deacetylation correlates with microtubule depolymerization [9], suggesting that deacetylases 

work on free, cytosolic tubulin dimers. This was contradicted by two studies, which used immuno-

purified HDAC6 to suggest that the enzyme efficiently deacetylates polymerized microtubules in vitro 

[26, 28]. However more thorough in vitro experiments later demonstrated that HDAC6 preferentially 

works on the free tubulin dimer [29, 30].  
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Notwithstanding these controversies, the initial studies have shown that deacetylation of 

polymerized microtubules is possible, implying that HDAC6 should, similar to aTAT1, be able to enter 

the microtubule lumen. Along these lines, HDAC6 was shown to interact with the plus-end tracking 

protein EB1, suggesting that HDAC6 may be funneled to the lumen at this entry site [31]. A recent 

report further showed that incubation of acetylated microtubules with recombinant HDAC6 results in 

random deacetylation all-along the length of microtubules [30]. This feature is reminiscent of the 

stochastic aTAT1-dependent acetylation pattern, and could be mediated by similar mechanisms (i.e. 

holes in the in-vitro-assembled microtubule lattices) as discussed for aTAT1.  

 

Impact and biological functions of microtubule acetylation 

For many years following the discovery of acetylated microtubules, the biological functions of tubulin 

acetylation have remained an intriguing, unsolved problem. After decades of intensive work, the 

impact of K40 acetylation on microtubule properties, and the biological roles of this modification 

only begin to emerge.  

 

Microtubule stability and K40 acetylation: the chicken and the egg  

Soon after the discovery of K40 acetylation, investigators found that this PTM is associated with long-

lived subsets of microtubules in cells [8, 9, 32]. Since then, a central question has been if acetylated 

microtubules are stable because they are acetylated, or if they are acetylated because they are 

stable. For more than two decades of research, the prevailing model was that acetylation is a 

consequence of microtubule stabilization. This was based on observations that chemical stabilization 

of microtubules leads to their acetylation, whereas artificially increasing tubulin acetylation level did 

not stabilize microtubules [33].  

Another mechanism by which tubulin acetylation at K40 might affect microtubule dynamics is to alter 

the structural rearrangement of the lattice, which would most likely modulate its physical properties. 

While structural studies did not find an acetylation-induced changes in tubulin conformation [18], it 
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was demonstrated that K40 acetylation weakens lateral interactions between protofilaments, which 

softens the microtubules [34]. As microtubules in living cells are frequently exposed to mechanical 

forces, which can damage the lattice and subsequently result in microtubule depolymerization 

(Figure 2A), an acetylation-induced increase in their flexibility would allow microtubules to better 

resist mechanical stress [35], and consequently making acetylated microtubules longer-lived. The 

observation that acetylation marks are often found at curved region of microtubules [35], which are 

the very same regions that accumulate lattice openings, or cracks [17], strongly suggests that those 

stress-induced cracks in microtubules lattice are the luminal entry points for aTAT1. The enzyme 

would then locally generate acetylation, which in turn could render the partially damaged 

microtubule regions resistant to mechanical stress, thus allowing their subsequent repair [15] (Figure 

2B). At the same time, longer-lived microtubules are still more likely to experience mechanical stress, 

thus further accumulating acetylation marks, which may reflect to the notion that acetylation is a 

marker of microtubule age.  

 

Functional consequences of K40 acetylation at the cellular and tissue level 

Functional insight into the role of K40 acetylation has mostly been obtained by manipulation of the 

acetyltransferase aTAT1, or of the deacetylases SIRT2 and HDAC6. K40 acetylation has so far been 

linked to cell migration [20, 21], autophagy [36], neuronal-dependent touch sensation in C. elegans 

[6] and mouse [37], intracellular trafficking [38, 39], and cell adhesion [40]. Despite these remarkable 

advances, the precise mechanisms through which acetylated K40 marks could regulate those 

functions had remained completely unknown until recently [34, 35]. For instance, the observations 

that molecular motors preferentially run along acetylated microtubules [38, 39] were correlative and 

not confirmed by in-vitro experiments with purified components. Once differentially acetylated 

tubulin was experimentally available, direct measurements of kinesin-1 on in-vitro polymerized 

microtubules showed that this motor is not affected by the tubulin acetylation of the microtubule 

track [41, 42]. While acetylation of K40 is less probable to affect motor-based transport on 
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microtubules, its recently discovered role in protecting microtubules from mechanical breakage [34, 

35] may actually be the key to most observations regarding functional consequences of microtubules 

acetylation. In the light of these new findings, it will now be possible to re-evaluate a number of 

former studies.  

An intriguing feature of tubulin acetylation is that aTAT1-knockout mice show no gross 

developmental and physiological abnormalities, despite the fact that in these mice, no K40-

acetylated microtubules could be detected. Yet, aTAT1-KO mice exhibit a deformation of the dentate 

gyrus [43], as well as defects in touch sensation [37] and sperm motility [44]. Cells from these mice 

show reduced capacity of contact-inhibition during cell proliferation, and have a lower number of 

focal adhesions [40].  

Additional insights into the impact of tubulin acetylation on microtubule structure and function came 

from the model organism C. elegans, which contains a unique set of 15-protofilament microtubules 

in touch-sensation neurons [45, 46]. The assembly of these unusual microtubules depends on aTAT1 

(Mec-17), as the depletion of this enzyme completely abolishes their assembly and results in 

aberrant touch sensation in this organism [47]. It thus appears that the biological processes 

regulated by tubulin acetylation are not essential for organism development and survival in 

controlled experimental conditions, but might provide robustness in competitive situations, such as 

survival in challenging environments, diseases, or during evolution.  

 

Other sites of acetylation at tubulin 

When talking about tubulin acetylation, we almost invariably refer to acetylation of K40 at a-tubulin. 

However, there are several studies demonstrating the existence of additional acetylation sites on 

both, a- and b-tubulin, which have mostly been identified by mass spectrometry. For instance, a 

study that aimed for a proteome-wide discovery of novel acetylation sites in human cell lines 

identified 8 new acetylation sites on a-, and one on b-tubulin [48]. In this study, tubulin acetylation 

was discovered amongst many other acetylation events, and thus, the novel acetylation sites of 
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tubulin have not been verified with complementary approaches. Another study focused on tubulin, 

and found that almost all lysine residues of a- and b–tubulin can be acetylated [49], a result that 

might need some future verification as some of these potential modification sites are hardly 

accessible in the folded tubulin structure, and therefore the mechanism of their acetylation is 

difficult to envision. Finally, one functional study showed the importance of acetylation of K252 of b-

tubulin for the control of microtubule polymerization [50]. Overall, our current knowledge on other 

acetylation sites on tubulin is rather weak, and a more thorough investigation of these sites will be 

needed to determine their presence in different organisms and cell types, as well as their functional 

implications. Most importantly, the in-vivo acetylation state of these residues has so far not been 

measured, and should be the focus of future explorations of their potential functional and 

mechanistic roles.  

 

Perspectives 

Acetylation of tubulin has been discovered over 30 years ago, and an excellent antibody detecting 

the acetylation of K40 at a-tubulin has paved the way for frequent observation of acetylated 

microtubule species in different cell types. Most of the past studies have used acetylated-tubulin 

staining synonymous for detecting stable microtubules, which, despite the fact that this was a 

simplification, has become a common practice over the years. Only very recently it was found that 

acetylation of K40 does indeed protect microtubules from destabilization, but strikingly by making 

them softer and thus more resistant to damages induced by mechanical bending. The discovery of 

this mechanism, as well as the studies that have investigated the entry of the acetyl transferase 

aTAT1 into the lumen of microtubules have also revived a discussion about the structure of 

microtubules in cells; it seems that there are many more imperfections in the structure of these 

microtubules than our textbook pictures suggest. Even more strikingly, these imperfections can be 

repaired without disassembling and reassembling the microtubules – instead, tubulin units can be re-

added into damaged lattices [15]. All these discoveries confirm a current trend in cell biology that 
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points towards the necessity of rethinking well-established models, and consider the possibility that 

temporal fluctuations in biological systems, together with regulatory events that only gradually alter 

the properties of biological molecules, play important roles in allowing cells to adapt to varying 

environmental conditions or changing functions. Acetylation as a part of the tubulin code might play 

important roles in these processes, and could thus be involved in a number of human pathologies 

linked to dysfunction of the microtubule cytoskeleton.  
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FIGURE LEGENDS 

 

Figure 1: Modes of K40 acetylation by aTAT1. 

A) Modelled structure of the a/b-tubulin dimer. The position of K40 is highlighted in yellow. The 

dimer will insert into microtubules in a way that locates K40 at the luminal surface.  

B) Schematic representation of different entry sites of aTAT1 into the lumen of microtubules. The 

availability of these sites depends on the integrity of microtubules.  

C) A proposed mechanistic model for aTAT1 access to the lumen involving a first step whereby aTAT1 

scans the outer surface of microtubules (1) in order to find accessible K40 modification sites at 

microtubule ends, or at cracks in the microtubule lattice (2). Once in the lumen, aTAT1 modifies 

available K40 sites. Its diffusion is slowed down by the fast rebinding of the enzyme to nearby K40 

residues. Acetylation confers extra flexibility to the microtubule lattice thus allowing for better 

resistance to mechanical stress and potential repair cracks by local addition of new a/b-tubulin 

subunits (3). 

  



18 
 

 

 

Figure 2: K40 acetylation protects microtubules from mechanical stress 

Bent microtubules are subjected to mechanical stress that can damage the microtubule lattice and 

open cracks. The presence of aTAT1 can avoid breakage of the damaged microtubules by rendering 

them more flexible.  

A) In absence of aTAT1 and K40 acetylation, microtubule cracks (1) further lead to the loss of tubulin 

dimers if the microtubule remains in the bent state (2) leading to microtubule breakage (3) which can 

induce the complete depolymerization of the microtubule.  

B) ATAT1 can enter the microtubule lumen via cracks (1) to acetylate K40 of the damaged 

microtubule. This acetylation increases the flexibility of the microtubule, which makes microtubules 

more resistant to mechanical stress, thus avoiding further breakage of the bent microtubule (2). This 

in turn will give the damaged microtubule more time for self-repair, and further accumulation of 

acetylation will keep the bent microtubule intact (3).  


