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Abstract

To better understand the mechanisms behind cells decision-making to differentiate, we

assessed the influence of stochastic gene expression (SGE) modulation on the erythroid dif-

ferentiation process. It has been suggested that stochastic gene expression has a role in

cell fate decision-making which is revealed by single-cell analyses but studies dedicated to

demonstrate the consistency of this link are still lacking. Recent observations showed that

SGE significantly increased during differentiation and a few showed that an increase of the

level of SGE is accompanied by an increase in the differentiation process. However, a con-

sistent relation in both increasing and decreasing directions has never been shown in the

same cellular system. Such demonstration would require to be able to experimentally

manipulate simultaneously the level of SGE and cell differentiation in order to observe if cell

behavior matches with the current theory. We identified three drugs that modulate SGE in

primary erythroid progenitor cells. Both Artemisinin and Indomethacin decreased SGE and

reduced the amount of differentiated cells. On the contrary, a third component called MB-3

simultaneously increased the level of SGE and the amount of differentiated cells. We then

used a dynamical modelling approach which confirmed that differentiation rates were indeed

affected by the drug treatment. Using single-cell analysis and modeling tools, we provide

experimental evidence that, in a physiologically relevant cellular system, SGE is linked to

differentiation.

Introduction

Cell-to-cell variability is intrinsic to all living forms, from prokaryotes [1, 2] to eukaryotes [3].

Such variability originates from many sources, but arguably stochastic gene expression (SGE)

is an important driving force in the generation of cell-to-cell variability among genetically

identical cells [4], although additional regulation layers do exist [5]. Classically, SGE is sepa-

rated into intrinsic and extrinsic sources [6–10] even if in many cases distinguishing between

the two is difficult.
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The very existence of SGE led to the concept of a probabilistic mapping between inputs

(environment) and outputs (cell decisions) [11]. It is therefore clear that SGE has to be pre-

cisely tuned so as to tailor the biological process in which it is involved [12, 13].

As an inevitable consequence of the molecular nature of gene expression process, it is clear

that mechanisms dedicated to its control must exist. For example, it has been discussed that

during the development, to ensure the reliable reproduction of some particular patterns, cell-

signaling devices (e.g. the Wnt pathway) act as a noise-filter [14].

By contrast, numerous arguments suggest that SGE variation plays an important role in a

wide range of biological processes ranging from bet hedging [15] to the fractional killing of

cancer cells [16]. The involvement of SGE in decision-making has been shown in viruses [17–

19], in prokaryotes [20–22] and, more recently, in metazoan cells [22–24]. Evidences of its role

in the differentiation ability began to emerge from literature through different points of view.

First, the theoretical arguments [25–27], based on evidence of cell-to-cell heterogeneity but

without any experimental demonstration, represent differentiation seen from a dynamical

point of view [28]: undifferentiated cells exhibit a stable gene expression pattern corresponding

to a pre-existing self-renewal state. Once differentiation is activated through external factors,

cells could increase their SGE, explore a broader region of their state space and exhibit a mixed

gene expression identity between the original and the destination states. Such an exploratory

behaviour would increase the probability for cells to attain the space region where they stabi-

lize their new gene expression pattern by reaching another pre-existing stable state: the differ-

entiation state [26, 27]. In other words, an increase of SGE would lead to an improvement of

the differentiation dynamic [26]. In addition, it has been described that, in a transition state,

the original state may be removed as the gene expression values change, making the process

irreversible [27, 29, 30]. Collectively, it has been largely discussed that stochastic fluctuations,

associated with extrinsic inputs, appear to be the main means by which cells can change their

state [22, 27, 30]. However, this theoretical point of view needs to be supported by biological

observations.

Secondly, observation of the role of SGE during differentiation emerged, some years later,

through experimental measures of the amount of SGE during differentiation processes [31–

34]. We recently described a surge in cell-to-cell variability that precedes an irreversible differ-

entiation of normal primary chicken erythroid progenitors called T2EC [35], that is fully com-

patible with such a view [31]. Interestingly, these results have been confirmed in various

settings, ranging from the differentiation of murine lymphohematopoietic progenitors [33] to

the differentiation of murine embryonic stem cells [32, 34].

Finally, experimental demonstrations such as studies of artificial modulation of the amount

of SGE [13, 36] started to emerge. These last types of evidences aim at reinforcing the consis-

tency of the relation between SGE and differentiation but a clear demonstration and character-

ization of this link is still lacking. Here, we pave the way toward this demonstration, adding a

new complementary study to the legacy.

To do so, it is necessary to show that pharmacological modulators such as drugs [12, 13, 36]

would on one hand modify SGE and, on the other hand modulate the differentiation process.

It has recently been described that such drugs, identified using a large screening approach,

were able to modulate the noise affecting a LTR-driven reporter gene in human T-lymphocytes

[37]. In addition, drugs that directly inhibit promoter nucleosome remodelling were also

shown to provide fine-tuning of SGE [38].

In order to demonstrate the general aspect of the relation between SGE and differentiation,

we decided to explore the extent to which some of those drugs, that are able to reduce

(Artemisinin and Indomethacin) or to increase (MB-3, [7]) the level of SGE, could alter

differentiation.
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Here we show that the three selected drugs modify, significantly and simultaneously, the

level of SGE and the rate of cell differentiation. We therefore provide a clear evidence that, in a

physiologically relevant cellular system, a pharmacological modulation of SGE is positively

and consistently accompanied by a modification of differentiation, as suggested by existing

points of view.

Materials and methods

Cell culture and treatment

T2EC were extracted from the bone marrow of 19 days-old SPAFAS white leghorn chickens

embryos (INRA, Tours, France). These cells were maintained in a medium called LM1. It is

composed of α-MEM medium supplemented with 10% Foetal bovine serum (FBS), 1 mM

HEPES, 100 nM β-mercaptoethanol, 100 U/mL penicillin and streptomycin, 5 ng/mL TGF-α,

1 ng/mL TGF-β and 1 mM dexamethasone as previously described [35]. T2EC were induced

to differentiate by removing the LM1 medium and placing cells into the DM17 medium (α-

MEM, 10% foetal bovine serum (FBS), 1 mM Hepes, 100 nM β-mercaptoethanol, 100 U/mL

penicillin and streptomycin, 10 ng/mL insulin and 5% anemic chicken serum (ACS)). Differ-

entiation kinetics were obtained by collecting cells at different times after the induction in dif-

ferentiation. For Indomethacin and Artemisinin, cells in the self-renewing medium are treated

at respectively 25 μM and 1 μM 48h before switching into a differentiated medium in order to

optimize their effects. For MB-3 ((2R,3S)-rel-4-Methylene-5-oxo-2-propyltetrahydrofuran-

3-carboxylic acid), cells are treated at 10 μM just after inducing the differentiation. For each

drug, a control treatment (0.1% DMSO) was added following the same conditions.

Counting of cell viability and cell differentiation

Cell population growth was evaluated by counting living cells using a Malassez cell and Trypan

blue staining (SIGMA). This method was also used to assess the toxicity of the drugs in T2EC

(S6 Fig). Cell population differentiation was evaluated by counting differentiated cells using a

counting cell and Benzidin (SIGMA) staining which stains haemoglobin in blue.

Dynamical model for erythroid differentiation

Every detail regarding the design, selection, calibration or identifiability analysis of our

dynamic model can be found in its original paper [39]. All data and pieces of code used for the

curent study are available in a public github repository https://github.com/rduchesn/Drugs-

modulating-stochastic-gene-expression-affect-the-erythroid-differentiation-process. Herein,

we give only the definitions of the useful concepts and methods in this study.

Model definition. Dynamic model The ODE governing the time-evolution of the cell

populations in each compartment of the model are given in Eq 1:

dS
dt
¼ rSSðtÞ � dSCSðtÞ; ð1aÞ

dC
dt
¼ rCCðtÞ þ dSCSðtÞ � dCBCðtÞ; ð1bÞ

dB
dt
¼ rBBðtÞ þ dCBCðtÞ: ð1cÞ
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It is characterized by the set (ρS, δSC, ρC, δCB, ρB) of five parameters, where ρi is the net pro-

liferation rate of compartment i (positive or negative), and δij is the differentiation rate of cell

type i into cell type j, which is positive.

The solution to this linear ODE model is given in the supplementary materials of the origi-

nal paper [39]. We will note fi(tj, y0, θ) the prediction of this model for the ith observable of the

experiment, on the jth timepoint tj, with the initial condition y0 and parameters θ.

Error model In order to properly define the statistical likelihood of our model, we intro-

duce a gaussian model for the distribution of the residuals of the dynamic model:

yi;j;k ,!N ðfiðtj; y0; yÞ; bi:fiðtj; y0; yÞÞ; ð2Þ

where yi,j,k is the experimental measure for the ith observable, at the jth timepoint, in the kth

repetition of the experiment. Here bi is an error parameter which quantifies the variance of the

model residuals, and should be estimated together with the parameters θ of the dynamic

model.

Estimation in the control case. Likelihood From Eq 2, the likelihood of the model natu-

rally follows, and we can estimate the best-fit parameter values of the model by minimizing the

negative logarithm of the likelihood:

� 2 logðLÞ ¼
Xn

i¼1

Xm

j¼1

Xl

k¼1

ðyi;j;k � fiðtj; yÞÞ
bi:fiðtj; y0; yÞ

 !2

þ 2 logðbi:fiðtj; y0; yÞÞ; ð3Þ

where n is the number of observables of the model, m the number of timepoints, and l the

number of repetitions of the measurements.

Algorithmic details We minimized −2 log(L) using the Truncated Newton’s algorithm [40,

41] implemented in the python package for scientific computing scipy [42]. Convergence to

the global minimum was assured by a random sampling of the initial guesses for parameter

values.

Estimation under treatment. Parameter variations The model has seven parameters

(five dynamic parameters: ρS, δSC, ρC, δCB and ρB; and two error parameters: b1 and b2), of

which six are estimated from the data. Under a given treatment, we consider that each esti-

mated parameter could either be estimated from the data, or set equal to its control value. For

each treatment, this defines 26 = 64 different models, with a varying number of additional

parameters to estimate.

Model selection We estimated the parameter values of these 64 models for each treatment,

and selected the best models by computing their corrected Akaike’s Information Criterion

[43]:

AICc ¼ � 2 logðLÞ þ
2kn

n � k � 1
: ð4Þ

where k is the number of parameters of the model and n is the sample size. From the corrected

AIC, we compute the Akaike’s weights:

wi ¼
expð� ðAICci � minðAICcÞÞ=2Þ

PR
j¼1
expð� ðAICci � minðAICcÞÞ=2Þ

; ð5Þ

where wi is the Akaike’s weight of the i-th model, and R = 64 is the number of competing mod-

els. The Akaike’s weight of a given model in a given set of models can be seen as the probability

that it is the best one among the set [43]. In this setting, selecting the best models of a set of

Role of stochastic gene expression during differentiation process

PLOS ONE | https://doi.org/10.1371/journal.pone.0225166 November 21, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0225166


models means computing their Akaike’s weights, sorting them, and keeping only the models

whose weights add up to a significance probability (in our case, 95%).

Single cell high-throughput RTqPCR

Every experiment related to high-throughput microfluidic-based RT-qPCR was performed

according to Fluidigm’s protocol (PN 68000088 K1, p.157-172) and recommendations. All

the following steps from single-cell isolation to high throughput RTqPCR of each cells are

described in [31].

Entropy

We estimated the Shannon entropy of each gene j at each timepoint t as follows: we computed

basic histograms of the genes with N = Nc /2 bins, where Nc is fixed for all tests, which pro-

vided the probabilities ptj;k of each class k. Finally, the entropies were defined by

Etj ¼ �
XN

k¼1

ptj;k log 2ðp
t
j;kÞ:

When all cells express the same amount of a given gene, this gene’s entropy will be null. On

the contrary, the maximum value of entropy will result from the most variable cell-to-cell gene

expression level.

Results

Drugs affect noise

In order to characterize the relation between SGE and differentiation, we first make sure to be

able to change the amount of SGE in T2EC using three drug treatments: Artemisinin, Indo-

methacin and MB-3.

Artemisinin and Indomethacin are known to modify SGE of the HIV LTR promoter in

human T-lymphocytes [37]. MB-3, a chromatin modifier, is known to modify stochastic gene

expression in yeast [7] and in murine embryonic stem cells [13]. At first, we wanted to confirm

that these drugs do indeed modify SGE in our cellular system and to determine the mecha-

nisms associated with this effect.

We treated T2EC with or without drugs and induced their erythroid differentiation. We

then performed single-cell high-throughput RTqPCR on these cells at different time points

after differentiation. We assessed a 92 gene panel, relevant for erythroid differentiation study,

identical to those previously measured in untreated cells [31].

There are various ways of quantifying the amount of so-called “noise” in gene expression.

Unfortunately, no consensus has emerged with authors advocating for the use of normalized

variance (NV = σ2/μ2) and claiming that the use of Fano Factor (F = σ2/μ) might be misleading

[44, 45], whereas others defend the exact opposite position [46]. The use of the coefficient of

variation (CV = σ/μ) is also known to be limited [45, 47–49].

Both we [31] and others [32, 50, 51] have recently proposed the shannon entropy as an

alternative measure, that is dedicated to quantify cell-to-cell variability. For our purpose and

based on its mathematical definition, a deterministic pattern of expression exhibits low

entropy whereas a high entropy indicates a more diverse expression pattern [31, 50]. We there-

fore analyzed our single-cell transcriptomic data using this metric.

We can observe in (Fig 1A) that the entropy was affected by all treatments. Under Indo-

methacin or Artemisinin treatment, entropy significantly decreased after 2 days of erythroid

differentiation. This effect was more pronounced with Indomethacin. The opposite effect is

Role of stochastic gene expression during differentiation process
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observed with the MB-3-based treatment, for which entropy was significantly increased after

12h of differentiation (Fig 1A).

We then assessed whether the same genes exhibit entropy variations under the different

drug treatments or not. To do so, we computed a correlation value between the entropy varia-

tions for each pair of drugs. If the same genes are affected by two drugs, then one would expect

their entropy variations to be correlated. We observed a significant correlation only for the

genes affected by Indomethacin and Artemisinin treatment. MB-3 treatment seemed to affect

the variability of a different set of genes (Fig 1B).

Fig 1. Relative effect of entropy and average gene expression level under drug treatment during differentiation.

(A) Boxplots representing values of entropy per gene for each treatment relative to control values (red dotted line).

Some outliers are not displayed for readability. We assessed the significance of the differences between untreated and

treated conditions through a Wilcoxon test (tests with a p-value< 0.05 are represented by a star above each boxplot).

(B) Correlation plots representing relative values of entropy per gene for each pair of drugs. We assessed the

significance of the differences between values for each drug through a Pearson test (p-value< 0.05). When the

correlation is significant, we displayed the linear regression line for all points (red dotted lines). (C) Correlation plots

representing relative values of entropy as a function of relative values of cell mean expression per gene. We assessed the

significance of the differences between values for each drug through a Pearson test (p-value< 0.05). When the

correlation is significant, we displayed the linear regression line for all points (red dotted lines).

https://doi.org/10.1371/journal.pone.0225166.g001
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The entropy variation could be achieved by modulating the global mean gene expression or

the gene expression variance. Thus we finally wanted to test if our drug treatments affected

entropy through the modulation of the mean gene expression value. If so, one might expect to

see a correlation between the variation of entropy and the mean expression level under drug

treatment.

Indeed for two drugs out of three, Artemisinin and MB-3, we observed a significant inverse

correlation between mean and entropy (Fig 1C). Nevertheless the effect of Indomethacin on

entropy was not related to an effect on mean gene expression.

Here we have found three drugs that modulate SGE in T2EC cells. Indomethacin and Arte-

misinin decreased it whereas MB-3 increased it. MB-3 involved a different set of genes than

Artemisinin and Indomethacin (also shown in S1 Fig) and the effect of drugs was not strongly

related to an effect on mean gene expression value. Entropy modulation is therefore the only

common characteristic of our three drugs.

Even with a weak correlation, it seems that Artemisinin and Indomethacin could affect the

same genes to change the level of SGE. Thus, we decided to get more insight on genes targeted

by each drugs by selecting genes of interest in function of the influence of drugs on them

(Table 1).

We observed that for some of the genes that we studied, the entropy was affected by both

Indomethacin and Artemisinin. We therefore decided to focus our analysis more specifically

on these genes.

From the Shannon entropy value of each gene for each condition, we calculated the relative

value for each treatment compared to the control and reordered these results from the highest

ratio to the weakest. For a given gene in a given treatment, if this relative entropy value is very

different from one, it means that the entropy of that gene was greatly affected by the treatment.

In such a way, genes are represented in function of their entropy ratio values from top to bot-

tom as the most positively affected by drugs to the most negatively affected (Table 1). The gene

expression distributions of the most affected genes (negatively and positively) for each drugs

were represented in S2 Fig. The first quartile of the resulting distribution of relative entropy

indicates genes for the entropy was the most positively affected by the treatment. Conversely,

the third quartile indicates genes for which the entropy was the most negatively affected by the

treatment.

We can observe that for Indomethacin and Artemisinin treatments, the 3 top genes that

are the most positively affected by the drugs in variability are the same: ALAS1, TPP1 and

MFSD2B. Whereas, for MB-3, the relative entropy of TPP1 and ALAS1 genes are negatively

affected (under the third quartile). Such as Indomethacin and Artemisnin, MB-3 affected posi-

tively the entropy ofMFSD2B. We can also find the geneMKNK2 as a common positively

affected gene for Indomathacin and Artemisinin (all their relative entropy values are superior

to the first quartile). Under MB-3 treatment, the relative entropy ofMKNK2 does not seem to

be affected as its value is between the first and the third quartile (Table 1). For the genes that

are most negatively affected by drugs, the results are less clear. Under the third quartile, we can

findMTFR1 and LDHA for both Artenisinin and Indomethacin. For MB-3, LDHA is nega-

tively affected. HRAS1 is also negatively affected by Artemisinin and Indomethacin but its

value is not under the third quartile for the Indomethacin treatment. HRAS1 is positively

affected under the MB-3 treatment but forMTFR1, the relative entropy value is unchanged

(Table 1). Regarding gene expression distributions, the most positively affected genes (in

terms of entropy), show wider distribution in the treated condition than in the control (S2

Fig). The inverse is true with the most negatively affected genes. That supports the relevance of

the indicator used, Shannon’s entropy. Moreover, all the distributions are heavy-tailed, which

is expected from mRNA single cell distributions [52].

Role of stochastic gene expression during differentiation process
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Table 1. Relative entropy values. Here are displayed the gene entropy values across cells for each treatment normalized by the control condition. Bold values represent

entropy ratio strictly superior to the first quartile (q1, top values) or strictly inferior to the third quartile (q3, bottom values). Genes represented are the genes which

RTqPCR quality control passed. The time points used to show these values are the same as in Fig 1A. Values are ordered from the highest to the lowest ratio. Genes in bold

are those on which we have focused. RE = Relative Entropy.

INDOMETHACIN ARTEMISININ MB-3

Genes RE Genes RE Genes RE Genes RE

ALAS1 1.8455 MFSD2B 1.6275 ACSL6 4.7113 WDR91 1.1068

TPP1 1.4769 TPP1 1.5182 AMDHD2 3.1564 HSD17B7 1.1061

MFSD2B 1.4329 ALAS1 1.4970 GPT2 2.8459 GSN 1.1055

AMDHD2 1.3961 MKNK2 1.4845 PLAG1 2.4347 DPP7 1.0989

GPT2 1.3151 CYP51A1 1.4429 SQLE 2.4193 SULT1E1 1.0959

MKNK2 1.3005 PLS1 1.3522 CYP51A1 2.2100 TADA2L 1.0708

EGFR 1.2545 CRIP2 1.3489 EMB 1.8670 PIK3CG 1.0682

FNIP1 1.0539 VDAC3 1.1979 RPL22L1 1.8081 SLC25A37 1.0479

FHL3 0.9916 FDFT1 1.1695 BCL11A 1.7895 BETA-GLOBIN 1.0463

DHCR24 0.9906 LCP1 1.1626 FDFT1 1.7042 STX12 1.0313

EMB 0.9718 HSP90AA1 1.1299 SLC9A3R2 1.6493 NSDHL 1.0148

SMPD1 0.9609 PIK3CG 1.0756 BATF 1.6040 MKNK2 0.9976

HMGCS1 0.9580 q1 TBC1D7 1.5405 RSFR 0.9514

q1 STARD4 1.0726 SMPD1 1.5150 LCP1 0.9367

PIK3CG 0.9183 SLC6A9 1.0507 VRK3 1.4939 q3

SLC6A9 0.8871 EGFR 1.0281 UCK1 1.4604 PPP1R15B 0.8977

SLC9A3R2 0.8849 HMGCS1 1.0235 RFFL 1.4594 STARD4 0.8758

GLRX5 0.8844 FHL3 0.9984 HSP90AA1 1.4416 DHCR24 0.8593

RBM38 0.8261 DCTD 0.9938 HRAS1 1.4317 RUNX2 0.8558

CYP51A1 0.7558 SULT1E1 0.9741 TTYH2 1.4216 ALAS1 0.8556

FDFT1 0.7508 SQSTM1 0.9674 MAPK12 1.4154 BPI 0.8393

BETA-GLOBIN 0.7245 UCK1 0.9656 q1 TPP1 0.8330

STX12 0.7230 GAB1 0.9256 FNIP1 1.4070 LDHA 0.8306

CRIP2 0.7086 EMB 0.9168 GLRX5 1.3965 SCA2 0.8176

CREG1 0.6893 GLRX5 0.9032 HYAL1 1.3823 CD44 0.8141

PDLIM7 0.6750 NCOA4 0.9010 DHCR7 1.3723 SULF2 0.7960

REXO2 0.6438 DHCR24 0.8958 MFSD2B 1.3401 SCD 0.7788

SQLE 0.6427 FNIP1 0.8904 CTSA 1.3288 CRIP2 0.7530

GAB1 0.6423 PDLIM7 0.8738 VDAC3 1.3207 HMGCS1 0.7420

CTCF 0.6247 CTCF 0.8496 PTPRC 1.2901 DCTD 0.7298

HRAS1 0.5975 SULF2 0.8332 CD151 1.2687 SERPINI1 0.7197

HSP90AA1 0.5646 GPT2 0.8289 RBM38 1.2577 PDLIM7 0.6980

VDAC3 0.5511 SMPD1 0.8124 REXO2 1.2559 ACSS1 0.6950

UCK1 0.5481 BETA-GLOBIN 0.7950 PLS3 1.2558 SNX22 0.6351

RPL22L1 0.5424 VRK3 0.7881 EGFR 1.2491 SNX27 0.5169

NCOA4 0.5184 DCP1A 0.7837 MVD 1.2472 FAM208B 0.2530

SULT1E1 0.5174 TBC1D7 0.7654 SQSTM1 1.2446

q3 q3 PLS1 1.2412

TBC1D7 0.5109 CREG1 0.7399 AACS 1.2411

PLS1 0.5022 STX12 0.7391 CREG1 1.2202

LCP1 0.4868 RPL22L1 0.7372 XPNPEP1 1.2014

SCA2 0.4622 MTFR1 0.6919 SLC6A9 1.1889

LDHA 0.4602 HRAS1 0.6778 ARHGEF2 1.1863

SULF2 0.4267 SLC9A3R2 0.5585 FHL3 1.1835

(Continued)

Role of stochastic gene expression during differentiation process

PLOS ONE | https://doi.org/10.1371/journal.pone.0225166 November 21, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0225166


As we have shown previously, to modulate the level of SGE, drugs did not target a specific

set of genes. This is clearer for MB-3 compared with the two others than between Indometha-

cin and Artemisinin. However, the increase of the noise level of ALAS1, TPP1 andMFSD2B
seems to be a common effect of Artemisinin and Indomethacin.

In addition, to support these results, we decided to analyse in silico the connections between

the three drugs’ targets.

To do so, we compared the different targets known in literature. For MB-3, the only target

known is KAT2A protein [7, 13, 53]. Indomethacin targets both Cyclooxygenases (COX-1 and

COX-2 also called PTGS for Prostaglandin-Endoperoxide Synthase) [54]. For Artemisinin, the

task to find its targets is more complex because of the unspecificity of this drug [55]. In 2019,

Heller and Roepe listed targets of Artemisinin-based drugs among three proteomic studies

[56].

All together, known connections between proteins were represented using the STRING

database (http://string.embl.de/) in (S1 Fig). Each edge between two proteins corresponds to a

known association between those proteins. We can observe that KAT2A is alone in the con-

nection network. Both PTGS-1 and PTGS-2 are highly correlated together but poorly corre-

lated with the rest of the network. Each link refers to a co-mention between these two terms in

a PubMed Abstract. None of them [57, 58] shows a direct interaction between these molecules.

All these results suggest that there is no direct interaction between the drug targets reported in

the literature. However, we have to keep in mind that we only compare the data reported in lit-

erature and that a potential interaction between drugs remains possible but not yet discovered.

We next used these drugs to test their effect on the erythroid differentiation process.

Drugs affect differentiation

In order to know if drugs modulating SGE also affect the differentiation process, we measured

the percentage of differentiated cells in treated and untreated conditions during 96h of ery-

throid maturation (Fig 2).

A significant modulation in the percentage of differentiated cells was observed for all three

drugs (Fig 2).

Indomethacin and Artemisinin decreased the percentage of mature cells from 48h of differ-

entiation onward. MB-3 acted earlier: it significantly increased the percentage of differentiated

cells by 24h before returning to somewhat below the control level.

Indomethacin and Artemisinin, two drugs that decreased SGE, reduced the percentage of

differentiated cells. Inversely, MB-3 that increased SGE, enhanced the percentage of differenti-

ated cells.

However, at this stage, we cannot conclude that a modification of the level of SGE by drugs

is associated with a change of the differentiation process itself. Indeed, these effects might have

Table 1. (Continued)

INDOMETHACIN ARTEMISININ MB-3

Genes RE Genes RE Genes RE Genes RE

VRK3 0.4040 AMDHD2 0.5245 MTFR1 1.1724

MTFR1 0.3391 SQLE 0.4894 DCP1A 1.1485

STARD4 0.3304 LDHA 0.4151 NCOA4 1.1460

DCTD 0.2950 SCA2 0.3003 CTCF 1.1279

DCP1A 0.2602 REXO2 0.2303 MID2 1.1165

SQSTM1 0.2276 RBM38 0.1613 TNFRSF21 1.1085

https://doi.org/10.1371/journal.pone.0225166.t001
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several origins including modification in growth or death rates of our cells, which we cannot

measure experimentally. To decipher between these effects, we decided to use a mathematical

model describing the dynamics of the in vitro erythroid differentiation [39].

Cellular basis of drug effect

Our model describes the dynamics of three cell populations related to three different stages of

differentiation [39]. The first one is the self renewing state (S) where differentiation has not

started; the third one is the differentiated state (B) where cells have finished differentiating.

The second one is the committed state (C), comprising intermediary cells that are committed

to differentiation but not yet fully differentiated (Fig 3). The dynamics of these compartments

follow a set of linear ODE. From the size of the cell population in the culture (S3 Fig), it seems

reasonable to use a deterministic framework when modelling the growth and differentiation of

the whole population.

Fig 2. Drugs affect erythroid differentiation. Control conditions were averaged (black line) for readability. Shown is

the percentage of differentiated cells for all conditions. Error bars represent the standard-deviation between

experiments (n = 3). We assessed the significance of the differences between each treated condition with their own

control condition through a student test (p-value< 0.05).

https://doi.org/10.1371/journal.pone.0225166.g002

Fig 3. Schematic diagram of the model.

https://doi.org/10.1371/journal.pone.0225166.g003
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Our dynamic model is characterized by a set of five parameters θ = (ρS, δSC, ρC, δCB, ρB):

• ρi is the proliferation rate of compartment i, involving the balance between cell proliferation

and cell death. This value can be either positive (more proliferation than death) or negative

(more death than proliferation).

• δij is the differentiation rate of cell type i into cell type j, which is positive.

Considering that there remains no self-renewing cells after 2 days of T2EC differentiation (S4

Fig, [31]), δSC is a fixed parameter fully determined by ρS [39].

In order to get the best description of the drugs effects with the fewest parameters, we used

the same approach as described in [39] and in the Methods section.

First, we estimate the parameters of the dynamic model in the control condition, using the

data presented in Fig 2 (living cells and differentiated cells counts in the self-renewal and the

differentiation media). We have already proven that our model identifiable, both theoretically

and practically [39], using the profile likelihood approach [59]. It thus makes sense to compare

the parameter values between the treated and untreated conditions.

For a given treatment, we consider that each parameter could either be equal to its

untreated value, or to another value which should be estimated from the data (thus introduc-

ing a new parameter in the model). We test all the combinations of parameters that might vary

under each treatment, and we select the best ones using Akaike’s weights, that are displayed on

S5 Fig [43].

In the end, the parameter sets that we display in Fig 4 are those that reproduced well, and

with the fewest additional parameters, the cellular kinetics during the in vitro differentiation

(S3 Fig).

For all of those best models, the parameter values for each treatment are displayed in Fig 4.

Under Indomethacin or MB-3 treatment, ρS (net growth rate of the immature cells) was not

affected in all models and slightly decreased under Artemisinin treatment. Therefore, δSC was

not affected by the treatments either, since its value is entirely determined by the value of ρS.
Concerning ρC, the net growth rate of the committed compartment, its values were reduced

compared to the untreated condition for the majority of models under Indomethacin or Arte-

misinin treatment, whereas for MB-3 its value increased in all models.

A more variable change between drug effect was observed with parameter ρB, which

describes the net growth rate of differentiated cells. Under Indomethacin treatment, some of

the best models did not show a different value when compared to untreated condition whereas

Fig 4. Relative parameter values. For each of the models selected by Akaike’s weights (S5 Fig), all the relative

parameter values are represented by a dot for a treatment compared to the untreated condition (black dotted line).

Among all the combinations of parameters that might vary under each treatment, 19 models were selected for the

Indomethacin treatment using Akaike’s weights, 5 for the Artemisinin treatment and 3 for MB-3. The horizontal

spacing between the values of each parameter was chosen randomly for readability.

https://doi.org/10.1371/journal.pone.0225166.g004
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some models displayed a reduced parameter value. Under Artemisinin treatment this value

was unchanged for four models among five and increased for the other one. With MB-3 treat-

ment, ρB decreased in all models.

Finally, we found that the δCB parameter, representing the differentiation rate between

committed compartment and mature cell compartment was affected by all three drugs: both

Indomethacin and Artemisinin reduced this differentiation rate whereas MB-3 increased it in

all best models.

These results demonstrate that all three drugs alter the differentiation process by modifying

all dynamical parameters including the differentiation rate between committed and mature

cells. It is clear that drugs that reduce SGE decrease the differentiation rate T2EC and inversely

that the drugs increasing SGE accelerate cell differentiation, in line with our initial hypothesis.

Discussion

In this study, we highlighted for the first time the existence of a relation between the pharma-

cological modulation of stochastic gene expression and differentiation in both directions

(increase or decrease) in the same cellular system. We first showed that three drugs, selected

from literature [7, 37], increase or decrease the level of SGE in our cells. We therefore tested

their effect on the differentiation ability of avian erythropoietic progenitors. We identified

which differentiation parameters were affected by drugs using a dynamical model of the in
vitro erythroid differentiation [39]. We demonstrated that the modulation of the differentia-

tion process impacted the differentiation rate between the last two compartments. We there-

fore demonstrated that drugs modulating the amount of SGE simultaneously modify the

differentiation process supporting all existing points of view [22, 25–27, 30] and reaching

toward recent experimental evidences [13, 36].

Indomethacin, Artemisinin and MB-3 have clearly different functions. Artemisinin is an

antimalarial drug used against a parasitic infection [53]. Indomethacin is an anti-inflammatory

drug that affects the prostaglandin pathway [54]. These drugs were selected from another

study [37] for their effect on the level of SGE on a HIV LTR promotor in human lymphocyte

line. In this study, Artemisinin and Indomethacin increased the SGE amout of the LTR pro-

motor. The opposite effect between T2EC and the LTR promotor system could have different

origins:

• First, the LTR promotor is the only DNA region analyzed in the original study [37]. In our

study, we analyzed the SGE variation of 92 genes previously selected to be relevant for avian

erythropoiesis.

• Secondly, we analyzed the effect of Artemisinin and Indomethacin on SGE in T2EC as a

sum of each effect on numerous genes. For some of them, the level of SGE was increased

while for the others, the level of SGE was decreased.

• Finally, the cells used in the original study and ours are completely different. The original

study used a line of human T-lymphocytes whereas we used a primary culture of avian ery-

throid progenitors.

MB-3 is an inhibitor of GCN5, a histone acetyl transferase (HAT) that activates global gene

expression [60]. Even in such a seemingly well-defined case, it should nevertheless be remem-

bered that a very complex relationship may lie between the biochemical action of a drug (HAT

inhibition) and its biological effect on SGE [19].

Considering these different functions, it is hard to imagine that all these drugs have in com-

mon anything else than their ability to modulate SGE in T2EC. Nevertheless, it is important to
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note that it remains difficult to be certain that the effect of the drugs on differentiation is due

to a direct effect of the drug on its know target or on some off-target effect. One method to

resolve this issue would be to act on the pathway that the drug targets, without using the mole-

cule (e.g. knockdown a drug’s target). For MB-3, a knockdown of KAT2A was performed in

parallel of the use of MB-3 in mesendodermal differentiation (Moris et al., 2018). Both affected

differentiation and the SGE in the same manner, demonstrating that the results indeed seem

to be directly related to the biological inhibition of KAT2A and not to another independent

pathway. Performing the same experiments for the two other drugs would clearly address this

issue, although this might be more challenging for Artemisinin, for which many targets have

been identified [56].

The question then arises of the mechanisms through which these different drugs modulate

SGE. We first assessed whether these drugs affected the entropy of the same genes. For Indo-

methacin and Artemisinin, we showed that indeed the entropy of some of the same genes were

affected but with a weak correlation. In contrast, MB-3 increased SGE through a different set

of genes. This tends to indicate that the modulation of cell-to-cell variability per se, relatively

independently of the gene function involved, is related to a modification of the differentiation

process (see below).

Even if the correlation is weak, drugs reducing cell-to-cell gene expression variability

seemed to affect the entropy of the same genes. Indeed, Artemisinin and Indomethacin both

increased the cell-to-cell variability of 4 genes: ALAS1, TPP1,MFSD2B andMKNK2. ALAS1
gene encodes for a protein involved in the heme production in red blood cells [61]. TPP1 gene,

previously named CLN2, encodes for a soluble lysosomal enzyme involved in metabolism [62].

MFSD2B is a lipid transporter released by erythrocytes and important in bone homeostasis

[63, 64].MKNK2 encodes the protein MNK2, which is a downstream kinase activated by

MAPK1 [65]. All these genes are related to erythocytes but no common function emerges,

which prohibits the identification of a core network gene, targeted by drugs to reduce simulta-

neously the level of SGE and the differentiation. Moreover, Artemisinin and Indomethacin

decreased the noise of LDHA andMTFR1 genes, whereas MB-3 increased it. These genes are

known to be involved in the metabolic switch that has been shown to be a key for the avian

erythroid differentiation process [31]. Drugs could control SGE and differentiation though the

modulation of the metabolic pathway needed to progress during the erythropoiesis. For fur-

ther analyses, it could be interesting to further investigate these metabolic genes and the influ-

ence of their SGE change on the differentiation process.

It is important to note that our work focuses on genes that encode for erythroid differentia-

tion and might not represent all genes. Overall it is advisable to use more caution when inter-

preting the importance of the role of gene affected by drugs in this study.

Thus, we can not exclude that there may exist another set of genes preferentially affected by

drug that increase SGE.

We then investigated a potential role for variation in the mean gene expression that could

explain the variation of the level of SGE.

Modifying the level of SGE is accompanied by a variation in the mean gene expression level

for two drugs out of three. The decrease of mean gene expression under MB-3 treatment has

been shown not to be significant in a different system [13]. Also, it has not been reported that

Artemisinin affects mean gene expression in any other cellular system. However, the fact that

Indomethacin treatment decreased gene-wise entropy clearly without affecting the mean

gene-wise expression level reinforces the fact that the modification on the differentiation pro-

cess is not associated to a modification in mean gene expression but only to a non-specific

modulation of SGE.
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Collectively, these results suggest that neither common genes nor common mechanisms

could explain the observed effect of the three drugs simultaneously. This reinforces the fact

that modulation of cell-to-cell variability is strongly accompanied by a change of differentia-

tion, independently of a gene function or a specific mechanism involved.

This could be explained by adopting a dynamical systems view on the differentiation pro-

cess, in the wake of Waddington’s proposal [66]. In such a view, we could consider that in the

highly dimensional gene expression space, an equilibrium cell state could be compared to a

valley in an epigenetic landscape [26]. It has been shown that entropy is a useful tool for ana-

lyzing stochastic processes [67] and distinguishes between equilibrium and transition states

[50]. When we reduce SGE using Indomethacin or Artemisinin, we dig the valley, limiting the

ability of cells to escape from a self-renewal equilibrium. Their probability to reach the new

equilibrium state is reduced. Inversely, when we increase SGE using MB-3, we flatten the valley

and improve the ability of cells to explore a larger dynamical landscape, and increase their

probability to reach the new differentiated equilibrium state. Alternatively, we could think that

drugs modulate differentiation dynamics, flattening or digging valleys, allowing cells to

increase or decrease their probability to escape from the valley. Cells will experience a modula-

tion of the amount of SGE as the consequence of their stability in the high dimensional gene

expression space. Once cells achieve their journey, they stabilize their new gene expression pat-

tern (the differentiated genetic profile) and return to a basal level of SGE [25, 26, 28]. In such a

view, stochastic gene expression favours cells making the decision to differentiate, modifying

the structure of the valley in which cells are moving. In a recent perspective, this same process

of actively shaping the Waddington Landscape has been described in terms of a Plinko board,

whose nail configuration, composition, and patterning can be modified towards forward sto-

chastic design [12]. Similarly to our initial description [31], the variation of cell-to-cell gene

expression in other differentiation systems has been recently described [13, 32–34, 68]. Fur-

thermore, a strong evidence of the relation between transcriptional heterogeneity and cell fate

transitions was demonstrated recently through destabilization of the histone acetylation lead-

ing simultaneously to an increase of SGE and differentiation of mouse embryonic stem cells

[13] and myogenic progenitors [36]. This is fully backed up by our own data that also establish

that the inverse (reducing simultaneously differentiation and SGE) can also be demonstrated.

Conclusion

We show in primary erythroid progenitor cells that a pharmacological modification of SGE is

consistently accompanied by a modulation of the differentiation process. Similar experiments

using the design principles described above can be used to help establish the contribution of

variability to biological processes and to separate cause from consequence [45]. It could there-

fore be important to study the potential use of such drugs in differentiation-related diseases

such as tumoral cell progression [69], as exemplified by chronic myeloid leukemia [12, 70, 71],

paving the way to a “treatment by noise” of at least some cancer-related diseases.

Supporting information

S1 Fig. In sillico interaction analysis between drugs’ targets. Representation of connections

among known three drugs’ targets using the STRING database (http://string.embl.de/). Each

edge between two proteins corresponds to a known association between those proteins. In this

figure, the two cyclooxygenases COX-1 and COX-2 are respectively named PTGS1 and PTGS2

for prostaglandin-endoperoxide synthase (their official name).

(PDF)
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S2 Fig. Gene expression distributions. For each treatment, we represent the gene expression

distribution for the genes with the most negatively affected entropy (left panel) and for the

genes with the most positively affected entropy (right panel), as defined in Table 1. We display

the distribution for the treated condition in red and the distribution for the control condition

in black.

(PDF)

S3 Fig. The model reproduces the cellular kinetics observed in vitro. Simulation of the

model in the untreated (black) and treated cases (color). Solid lines represent a simulation of

the best model selected by Akaike’s weights. Dots and triangles are the experimental data

(n = 3). On the left and the center are respectively displayed the total number of living cells in

self-renewing (LM1) and differentiated (DM17) media (in log-scale). On the right are dis-

played the fraction of differentiated cells (in percentage) in differentiated (DM17) medium.

(PDF)

S4 Fig. Drugs do not change the erythroid commitment. T2EC were induced to differentiate

for 24 (solid lines) and 48 (dashed lines) hours and subsequently seeded back in self-renewal

conditions. Cells were then counted every day for 3 days. The data shown are the mean ± stan-

dard deviation calculated on the basis of three independent experiments. The growth ratio was

computed as the cell number divided by the total cells at day 0.

(PDF)

S5 Fig. Model selection by Akaike’s weights. Shown are the Akaike weights of the models,

sorted from best to worst. For readability, the worst models were omitted. For each drug, the

coloured bars represent the models which amount to 95% of the overall Akaike’s weight.

(PDF)

S6 Fig. Drug toxicity in T2EC. Measurements of drug toxicity in self-renewal medium (left

panel) and in differentiation medium (right panel) have been performed. In black are repre-

sented the control conditions. Treated conditions are represented in color. Cell toxicity for

Indomethacin, Artemisinin treatment and their control was performed at 48h of differentia-

tion. For MB-3 treatment and its control, the cell toxicity was performed at 24h of differentia-

tion. Each drugs toxicity has been tested with the adequat concentration used in the study.

Wilcoxon tests were performed between each pair of control and treated conditions. All tests

were negative for a significant difference between control and treatment (p-value < 0.05,

n = 3).

(PDF)
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