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ABSTRACT (253 words) 18 

This study of the seismic geomorphology of riverine deposits describes and discusses the spatial 19 

resolution at which we can detect fluvial features and how the subsequently collected data can 20 

help with our understanding of ancient fluvial reservoirs. For this assessment we use three 21 

dimensional seismic reflection data, borehole data from ancient deposits in the Marañón foredeep 22 

basin of Peru, as well as digital elevation and satellite imagery data from the present day fluvial 23 

systems of the Amazonian Basin in the same area of Peru. Based on seismic stratigraphic 24 

principles on amplitude display we test parameters to highlight the details of the internal structure 25 

of horizons interpreted on continuous wavelets. Seismic attributes such as amplitude, phase, 26 

sweetness and spectral decomposition techniques have been successfully applied to make a 27 

framework of seismic stratigraphic surfaces that highlight the internal architecture and 28 

morphologic details of the studied intervals. This work confirms the presence of a Cenozoic 29 

fluvial system in Peru with straight, meandering and anastomosing channels. The observed 30 

fluvial features are associated with narrow to medium sized channels (10-~700 m). Evolution of 31 

parameters such as sinuosity allows the variation of load in the identified channel features to be 32 

constrained. Cenozoic Marañón Basin rivers/streams size and shape are comparable to those 33 

observed in the present-day fluvial Amazon Basin. The fluvial dynamics in the study area are 34 

identified to be at least present since the deposition of the Pozo-Chambira Formation (Eocene-35 

Oligocene) in the Marañón Basin. 36 

Keywords: Seismic geomorphology, fluvial systems, meanders, channels sinuosity, Amazon 37 

Basin, Cenozoic. 38 

 39 
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1. INTRODUCTION 40 

Paleogeomorphology and drainage organization of fluvial settings has long been of great interest 41 

for resource/energy, life habitat, earth cycle research  (e.g. Martin, 1966; Southwood, 1977; 42 

Fisher et al., 2007) due to the architectural complexity of these types of natural reservoirs and 43 

environments. Observations from present-day earth surface fluvial systems are commonly used to 44 

inform subsurface interpretation of fluvial-system seismic geomorphology (Posamentier, 2003). 45 

Limited publications document ancient river deposits in the subsurface, most of which were 46 

deposited in marine-to-fluvial or lacustrine-to-fluvial transition zone settings (e.g.: Weber, 1992; 47 

Hardage and Remington, 1999; Posamentier, 2001; Miall, 2002; Sarzalejo and Hart, 2006; 48 

Ethridge and Schumm, 2007; Wood 2007; Zeng , 2007; Maynard et al., 2010; Reijenstein et al., 49 

2011; Hubbard et al., 2011; Wang et al., 2012; Qi’an et al., 2015; Zhuo et al., 2015; El-Mowafy 50 

and Marfurt, 2016; Alqahtani et al., 2017). 51 

Despite this effort to address some of the most studied objects in the rock record, rivers and their 52 

deposits continue to be problematic to earth scientists (Miall, 2014). “Big rivers” are the main 53 

arteries that deliver the water and sediment from both orogenic and non-orogenic areas of 54 

continents to the world’s oceans (Potter, 1978; Miall, 2006; Ashworth and Lewin, 2012; Lewin 55 

and Ashworth, 2014). Reconstructing big rivers from ancient deposits is especially challenging 56 

due to difficulties in measuring/identifying (and scaling) the architectural elements composing 57 

past big rivers. Such deposits are often beyond the scale of conventional outcrops. However, 3D 58 

seismic offers the spatial extent to capture the full scale of these elements (Bridge and Tye, 2000) 59 

and enables characterization of many ancient rivers whose scale may rival the ‘big rivers’ of the 60 

modern world, such as the Amazon River. 61 
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The Amazon River (Figure 1A) ranks number one in terms of global mass transfer from the 62 

continents to the oceans (Figure 1B). Indeed, the Amazon River supplies about 20% of the water 63 

(Callède et al., 2004), ~10% of the dissolved load (Gaillardet et al., 1997) and ~3% of the 64 

suspended load (Milliman and Syvitski, 1992) to the world’s oceans. These numbers for transport 65 

are only surpassed by the sediment yield in the rivers of south and south-east Asia such as the 66 

Huanghe or the Ganges-Brahmaputra (Figure 1B). The present day Amazon Basin is covered by 67 

dense tropical vegetation partly protected by nature reserves and is drained by major rivers 68 

(Figure 1C). The detailed architecture of the river and its floodplain can be revealed by modern 69 

airborne data acquisition, such as Uninhabited Aerial Vehicle Synthetic Aperture Radar 70 

(UAVSAR) (Figure 1C). Satellite imagery allows clear discrimination of the two primary 71 

elements of this system: the river loaded by suspended fine sediments and the lateral floodplain 72 

covered by vegetation. 73 

Recent studies of the outer continental shelf and uppermost Amazon deep-sea fan sediments 74 

suggest that the Amazon River initiated as a transcontinental river between 11.8 and 8.7 Ma 75 

(Figueiredo et al., 2009; Gorini et al., 2014; Hoorn et al., 2017; van Soelen et al., 2017), and 76 

reached its present shape and size during the late Pliocene (Figueiredo et al., 2009). Before the 77 

Amazon River transected South America the Middle Miocene environment of the study area was 78 

characterized by a long-lived mega-wetland, the Pebas system (Wesselingh et al., 2009; Hoorn et 79 

al., 2010). Before the Neogene, the drainage of the Amazon River is postulated to have been to 80 

the North with a probable river mouth in the Maracaibo Lake (Roddaz et al., 2010. Hurtado et al., 81 

2018). 82 

The stratigraphy of the Marañón Basin is characterized by two sequences related to the pre-83 

Andean series that consists of Paleozoic–Mesozoic deposits and the Andean series that 84 
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corresponds to Cenozoïc marine to continental foreland successions (e.g. Hermoza et al., 2005; 85 

Roddaz et al., 2010; Baby et al., 2013; Calvès et al., 2018; Hurtado et al., 2018). Stratigraphic 86 

analysis of the continental and fluvial record of the foreland succession (e.g.: Latrubesse et al., 87 

2010) has improved over the past decades with documentation of marine incursion in a globally 88 

continental sequence (Westaway, 2006; Wesselingh et al., 2009; Hoorn et al., 2010; Roddaz et 89 

al., 2010; Rebata et al., 2016; Jallamillo et al., 2017). In contrast, the structural control on 90 

sedimentation and river location in this context has received limited attention (Dumont et al., 91 

1991; Räsänen et al., 1992; Roddaz et al., 2010; Gross et al., 2011; Kröhling, 2017). 92 

The objective of our study is to document the detailed structure of the paleo-fluvial Amazonian 93 

system using 3D seismic geomorphology techniques and compare these images to the present day 94 

surface drainage geometry of the Amazon Basin in order to discuss the evolution and the 95 

preservation of large-scale river deposits in continental drainage areas. 96 

2. MATERIALS AND METHODS 97 

To document the evolution of the present day and paleo-landscape of the Marañón Basin in the 98 

Amazon drainage, we have used two data sets. The main data set is 3D multi-channel, post-stack, 99 

time-migrated reflection seismic. These data have been acquired over the past decades over oil 100 

and gas fields in the Marañón Basin in Peru (Figure 2). The seismic data displayed in this study 101 

are zero phase, and follow the Society of Exploration Geophysicist normal polarity, i.e. black 102 

peaks indicating an increase in acoustic impedance. The areal extent of the 3D cube is from 90 103 

km² to 190 km². The 3D grid is subdivided into in-line and cross-line directions, spaced at 30 m. 104 

The sampling rate is 4 ms two-way travel time (TWT). In the shallow subsurface the frequency 105 

range is 10-70 Hz, with a dominant frequency in the 20-50 Hz range.  106 
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Borehole information has been used to constrain the stratigraphy over this area in conjunction 107 

with standard seismic stratigraphic principles. The seismic data have been interpreted using 108 

various techniques (horizon picking, stratal slicing) and various seismic attributes (Taner and 109 

Sheriff, 1977; Taner et al., 1979; Taner, 2003) such as amplitude, phase, sweetness (Hart, 2008) or 110 

thin-bed indicators have been extracted and used to enhance interpretation (Figure 3). To screen 111 

the data and allow the reader to scroll through the volume, we have extracted seismic amplitude 112 

on stratal horizons, and compiled them to produce an animated movie (supplementary data; 113 

movie: Hor_slice_Amp.mpg and metadata). A seismic facies chart has been established based on 114 

the geometries and acoustic properties observed and quantified on vertical sections and horizontal 115 

displays within the 3D volumes. The seismic facies (SF) identified are summarized in Figure 4. 116 

We interpret the morphologic elements found in the 3D data and compare these to morphologies 117 

observed in present day river systems (Posamentier, 2000). To accomplish the later, we utilized 118 

our second primary data set, satellite images and digital elevation models (DEMs) from the 119 

present day surface of the Amazonian Basin. We have used public satellite images and airborne 120 

radar (https://uavsar.jpl.nasa.gov), as well as digital elevation models from the NASA Shuttle 121 

Radar Topography Mission (SRTM) (https://www2.jpl.nasa.gov/srtm/). 122 

Geomorphological features such as channels (Figure 5) have been quantified following the 123 

scheme developed by previous workers on quantitative seismic geomorphology of fluvial 124 

features (e.g. Miall 2002; Wood, 2007; Ethridge and Schumm, 2007). Measurements are 125 

summarized in Table 1. Parameters of alluvial channels and classification are sourced from 126 

Schumm (1985). Paleocurrent flow direction of the fluvial features (trunk rivers, channel, and 127 

meander) has been determined following the methods of Miall (2000). 128 
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3. RESULTS 129 

3.1. Seismic stratigraphy of the Marañón Basin 130 

The Marañón Basin is a foredeep depozone of the Northern Amazonian foreland basin located 131 

between the Andes to the West and the Brazilian and Guyanan shields on its eastern flank (Figure 132 

2). Part of its eastern side is constituted by the Iquitos forebulge (Roddaz et al., 2005) (Figure 133 

2A). We have focused our study on the Cenozoic infill of this basin (Figure 2B), which 134 

comprises a thick pile (>3500 m) of clastic sedimentary rocks sourced from the Andes and the 135 

South American Cratons. Above the Casablanca-Yahuarango Formation (Cretaceous to lower 136 

Paleogene, Figure 2C), the overlying Pozo Shale and Pozo Sandstone (Hermoza et al., 2005) 137 

marks the initiation of an overall aggrading fluvial sequence (Chambira, Pebas, Marañón and 138 

Corrientes Formations). The seismic images associated to this sequence are characterized by 139 

regional >100 km continuous to discontinuous reflections (Figure 2B). At the field scale (less 140 

than 10 km), these stratal amplitudes show slight vertical discontinuities (<10–20 ms TWT). 141 

These are marked by bright amplitude and high sweetness compared to background values 142 

(Figures 3A and 3B). These discontinuous reflections are marked on their edge by phase changes 143 

(Figure 3C) and tuning effects marked by the thin-bed detector attribute (Figure 3D). 144 

Below we describe the observations made based on calibrated 3D seismic reflection images. We 145 

further interpret these observations in the context of the morphologies that characterize the 146 

sedimentary section and summarize its evolution during the Cenozoic. 147 

3.2. Seismic geomorphology of the Paleo-Amazon drainage system  148 

The main seismic facies observed in the studied interval are summarized in Figure 4. Features 149 

observed in vertical seismic section are associated with their plan view observed on horizon 150 
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amplitude extraction. Discrimination of facies in this fluvial environment cannot be solved only 151 

on 2D vertical seismic display. The conformable and parallel seismic reflection makes the plan 152 

view and amplitude information essential in recognizing sedimentary features interpreted as 153 

channel and streams. Eight SFs have been identified (Figure 4). Seismic facies SF1 to SF5 are 154 

interpreted to represent fluvial meandering features, each with various degrees of sinuosity and 155 

channel widths that flowed without cross-cutting relationship, whereas seismic facies SF6 is 156 

interpreted to reflect deposits from similar types of channels but exhibiting crosscutting 157 

relationships. Seismic facies SF7 is interpreted to represent an anastomosing fluvial network. 158 

Seismic facies SF1-SF7 occur within a background facies of channel-free material, that is herein 159 

interpreted as floodplain overbank sediment (SF8). The peak frequency of these seismic facies 160 

ranges from 15 to 45 Hz. The velocity range of the section based on sonic measurement is ~1850 161 

m/s in the shallower section and up to 3800 m/s in the deepest part of the investigated section 162 

(over 2.5 sTWT). These velocity values enable bed thickness to be estimated (1/4 wavelength; 163 

e.g. Sheriff, 1992) at ~40 m for the higher frequency in the upper section and ~250 m for the 164 

lower frequency in lower section. Channels and related parameters have been quantified in plan 165 

view following the parameters defined in Figure 5. Channel-widths range from 40 to >650 m 166 

(Figure 4). The larger channels show sedimentological features interpreted as channel bars, 167 

meander cut-offs and lateral migration of meanders of various sinuosities. The channels can be 168 

ranked in three categories based upon their width, following the classification of Gibling (2006). 169 

This is as follows: narrow to medium 10s of meters width for individual channels, >100 m wide 170 

medium scale composite channels, and >1000 m – wide fluvial systems. Seismic geomorphologic 171 

analysis of eight sequential decomposition RGB blended stratal horizon slices provides a 172 

temporal history from youngest to oldest stratigraphic levels (Figure 3A; Horizons 8 through 1) 173 

and as shown in Figure 6. The seismic facies are interpreted with three main types of fine grained 174 
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sediment (mostly shale and silt) associated with splay and other flood plains sediments, as well as 175 

two coarse grained lithologies (mostly sand to gravels) associated with channel fills and channel 176 

belts. 177 

The oldest horizon within the Marañón Formation, Horizon 8 (pink, Figures 3A and 6A), 178 

displays a main channel running in a WNW-ESE trend that is connected to narrow, sparsely-179 

spaced linear to low sinuosity streams. The underlying horizon, Horizon 7, is interpreted to be the 180 

Pebas Formation and shows a denser network of parallel medium-to-wide channels associated 181 

with rare meandering narrow channels (red, Figure 6B). Horizon 6 shows the transition from 182 

Pebas to Chambira Formations and is marked by the interconnection of medium-to-wide channels 183 

with N-S to W-E orientations (orange, Figure 6C). Horizon 5, the top of the Chambira Formation 184 

(yellow, Figure 6D) shows well developed densely developed interval of high sinuosity, medium 185 

width meandering channels. The upper Chambira Formation, Horizon 4 (light green, Figure 6E) 186 

shows a greater frequency of wide channels without any characteristic orientation. The channels 187 

in this interval show intricate meandering architecture. The transition from upper to lower 188 

Chambira Formation at Horizon 3 shows sinuous channels with a potentially anastomosing 189 

organization (deep green, Figure 6F). The next underlying interval shown on Horizon 2 is 190 

interpreted as the lower Chambira Formation, and shows isolated NNE-SSW oriented, wide 191 

meandering belts with high sinuosity meander scars (light blue, Figure 6G). Finally, the oldest 192 

Horizon 1, is representative of the Pozo Formation that is characterized by a set of sinuous 193 

parallel W-E channels with narrow to medium in width (marine blue, Figure 6H). 194 

3.3. Quantification of channels and fluvial features properties  195 

Quantification of the channel width (n = 420) from the studied seismic horizons interpreted from 196 

the Pozo to the Marañón Formations allows a frequency analysis to be conducted and illustrated 197 
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by the histogram (Figure 7). The median channel width is 121 m (σ = 107 m). Minimum channel 198 

width is 29 m and the maximum value is 641 m (Figure 7A). Based on fluvial channel 199 

classifications (Gibling, 2006) 36% of the measured population is classified as being narrow 200 

channel. The others are associated to the medium channel group, that have at least of 100 m 201 

width. No individual channel features measured in the study area are wider than 641 m. The 202 

median channel belt widith (n = 83) is 3598 m (σ = 1295 m), with a minimum measured width of 203 

994 m and a maximum of 7187 m (Figure 7B). 204 

The sinuosity of meandering channels has been quantified (n = 84; Figures 5 and 8) on plan view. 205 

The median sinuosity is 1.4 (σ = 0.47) with a minimum value of 1 and a maximum value of 2.9. 206 

About 40% of the measured channels have a sinuosity lower than 1.4. Based on the classification 207 

scheme of Schumm (1985) for channel sinuosity and load, the measured channels can be divided 208 

as follows: with bedload (29.8%) and a sinuosity lower than 1.3, related to a mixed load (53.6%) 209 

and a sinuosity higher than 1.3 but and lower than 2, and to suspended load (16.7%) with a 210 

sinuosity higher than 2 (Figure 8). 211 

 212 

3.4. Temporal evolution and dynamics of Paleo-Amazon drainage system  213 

The Cenozoic evolution of the fluvial architecture of the basin fill is summarized through three 214 

parameters (channel width, channel belt width and sinuosity) and measurements of paleocurrent 215 

directions (Figure 9). Channel width evolves up-sectionwith apparent increasing size from the 216 

Pozo Formation (horizon H1, Figure 9A) to the Chambira Formation (Horizon H2, Figure 9A). 217 

Within the Chambira Formation, the upper member shows an increase in channel width with 218 

peaks up to 400 m between Horizons H3 and H4, and up to >600 m width between horizons H4 219 

and H6 (Figure 9A). The upper units of the Chambira Formation show a decrease in channel 220 
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width that increase again slightly in the upper part of the section, between the Pebas and Marañón 221 

Formations (horizons H6 to H8; Figure 9A). The channel belt width increases in association with 222 

the type of facies and fluvial patterns, especially with the occurrence of high sinuosity streams 223 

(Figures 9B and C). The channel belt width is narrow (~2 km) in the Pozo Formation (H1) while 224 

it increase during the emplacement of the Chambira Formation (up to 7.2 km). Then, it decreases 225 

in the upper part of the Chambira Formation (horizons H5-H6) and in the Pebas Formation (H7), 226 

and finally increase slightly in the Marañón Formation (above H8, Figure 9B). This evolution is 227 

highlighted by the sinuosity parameter (Figure 9C). In the same area, the observed modern 228 

sinuosity is around 2 where there is the transition from mixed to bed load types (Schumm, 1985). 229 

The Pozo Formation fluvial deposits are characterized by sinuosity over 2 and is associated with 230 

suspended load transport (horizon H1; Figure 9C). The sinuosity of the Chambira Formation 231 

shows a lower member (horizons H2 to H4; Figure 9C) with values associated with low to 232 

moderate values (bed load and mixed load) and occasional high values (suspended load). The 233 

Upper Member of the Chambira Formation (horizons H5 to H6; Figure 9C) shows low values of 234 

sinuosity (mainly bed load). The Pebas and Marañón Formations (horizons H7 to H8; Figure 9C) 235 

show mainly low values with some rare high values of sinuosity. The evolution of paleocurrents 236 

follows a two steps evolution with NE and SE flowing streams during sedimentation of the Pozo 237 

Formation. A wide, south-directed flow was observed during deposition of the Chambira 238 

Formation, while a more SE-ward direction of flow was noted for the Pebas and Marañón 239 

Formations (Figure 9D). This sequence of aggrading stacked streams and rivers contains three 240 

main fluvial features, including: straight, meandering and anastomosing channels (Figure 4 and 241 

supplementary data; movie: Hor_slice_Amp.mpg and metadata). 242 

3.5. Present day proximal Amazon drainage and rivers 243 
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The present day surface of the Amazon Basin is characterized by a W to E oriented drainage 244 

(Figure 1A) with rivers that are both controlled by and incising into topographical structures 245 

(Figure 10A) related to the recent evolution of the South American Plate and the Andean 246 

mountain range (e.g.: Räsänen et al., 1987, 1990, 1992; Roddaz et al., 2005; Shephard et al., 247 

2010; Latrubesse, 2015; Stokes et al., 2018). The Marañón Basin sits at the confluence of two 248 

main river networks, one originating from the Napo-Pastaza Fan to the northwest (Figure 10A; 249 

Bernal, et al., 2011) and a second from the Fitzcarrald Arch to the southwest (Espurt et al., 2007). 250 

These two drainages combine at the town of Iquitos to form the Rio Solimões that run to the 251 

Amazon River mouth and from there into the Atlantic Ocean. An SRTM digital elevation model 252 

has been extracted to document the shape and size of the rivers and drainage from the Andes to 253 

Iquitos (Figure 10B to 10E). The NW-SE present river located above the seismic cube is the Rio 254 

Pataza (Figure 6 and supplementary data movie). We have seen that since the Cenozoic the river 255 

network and types evolved in two major steps recorded by the Pozo, Chambira, Pebas and 256 

Marañón Formations. Downstream the rivers are able to incise the edge of the older watershed, 257 

related with the recent rise of the Iquitos Arch along a NW-SE axis (Figure 10C). An incision is 258 

presently filled by highly sinuous meanders and streams that are controlled by kilometer wide 259 

lows (Figure 10C). Laterally the Pastaza-Corrientes transition band (Figure 10A) with its low 260 

land and flood plains shows rivers that are isolated with more linear streams and lower sinuosity 261 

(Figure 10D). Finally, after the connection of the Rio Tigre, Marañón and Ucayali, a wide to very 262 

large river flows to the NE with large point bar and cut off (Figure 10E). All these present day 263 

settings represent the large diversity of rivers and streams along this proximal part of the Amazon 264 

Basin. 265 

4. DISCUSSION 266 
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4.1. Comparing present day and past morphologies of rivers using different images sources 267 

We have documented the seismic geomorphology of the sedimentary infill of part of the Marañón 268 

Basin and the present day fluvial network of the western Amazon Basin. The areal cover and 269 

vertical penetration of the subsurface data allows channels associated to a paleo-river network to 270 

be recognized. Characterization of the vertical resolution of a channel in subsurface imaging is a 271 

difficult task, whereas the lateral extend is easier to achieve. In contrast, measurements of lateral 272 

extent based on downhole wireline logs is challenging (Bridge and Tye, 2000) but thickness is 273 

easy to quantify (e.g.; Gibling, 2006). Here we discuss the sizes, shape recognition and potential 274 

risk when using analogues and various sources of data displayed in plan view analysis, i.e. the 275 

comparison of relative resolution (Figure 11). From a high resolution UAVSAR image, a Landsat 276 

image or a stratal seismic horizon we can try to understand the predictive nature of the 277 

observations. From a giant meander in the Rio Ucayali, a reference 5x5 km box allows a river 278 

and its internal structures such as meanders, bars, oxbow lakes or a portion of them to be framed 279 

regardless of where the box is located (Figure 11A). Using a set of Landsat images (Figure 11B), 280 

we can characterize the shape of various rivers even for the widest meanders, oxbow lakes and 281 

bars. However, the lateral continuity of the channel laterally cannot be described. In contrast, the 282 

3D images of the channels derived from the seismic reflection data allow a mixed perspective 283 

with a lower resolution (Figure 11C). A 5x5 km box applied to a given 3D stratal horizon allows 284 

the definition of the channel and its content, especially when using spectral decomposition and 285 

color blend display (Partyka et al., 1999). Targeting channels and their net infill is the goal of 286 

natural resources exploration if such work is to define good quality reservoirs. Comparison of the 287 

ancient geologic reservoir and its present day analogues can help to assist with reservoir 288 

properties prediction (Alexander, 1993; Clift et al., 2018). The fluvial sedimentary environment 289 
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is a challenge because the shape of a river can be associated with various locations on the 290 

erosional-depositional profile and upstream controls (Schumm, 2005). 291 

4.2. Persistent fluvial landscape 292 

The fluvial features described above characterize most of the Cenozoic infill of the Marañón 293 

Basin and the present day surface of the Amazon Basin. Our study outlines the preservation of 294 

fluvial geomorphic elements in the rock record, as observed in modern sedimentary basins 295 

(Weissman et al., 2015). The difficulty in establishing long-term quantified rates of 296 

sedimentation and related supply from mountain ranges could be solved using the fluvial features 297 

observed in the subsurface. The morphology of the present day Amazon Basin and its 298 

meandering rivers and floodplain are driven by the sediment supply (Constantine et al., 2014). 299 

Thus, investigation of calibrated fluvial features could allow the paleo-sediment supply of the 300 

Cenozoic Andes to the Amazon Basin to be quantified. 301 

The role of deep solid-earth structure on the vertical movements of the Earth’s surface and the 302 

processes related to drainage/fluvial dynamics at continental scale has been investigated (e.g., 303 

Flament et al., 2015; Rodríguez Tribaldos et al., 2017). Limitation of the models mean that the 304 

earlier history of the Amazon Basin cannot be solved in this way. The Late Eocene to Early 305 

Oligocene times are predicted to represent periods of low incision rates over the entire Amazon 306 

catchment (Rodríguez Tribaldos et al., 2017). Incision rates increased in the Early Miocene in 307 

those areas west of the Guyana and Brazilian Cratons. The incision rate near the Cordillera only 308 

increased at 11 Ma. Our observations of the early dynamics of incision and deposition of fluvial 309 

system in the proximal part of the Amazon Basin near the Cordillera are in agreement with this 310 
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timing of uplift. Fluvial systems of continental drainage have existed since the transition from the 311 

Pozo to the Chambira Formations, i.e., at least since the Oligocene. 312 

 313 

5. CONCLUSIONS 314 

Modern techniques of seismic imaging and geomorphology have allowed the sedimentological 315 

evolution of the Marañón Basin in Peru to be reconstructed. We document the fluvial history of 316 

the Amazon Basin at the scale of the Cenozoic for the first time. This sequence of an 317 

aggradational stack of streams and rivers contains three main fluvial features, including straight, 318 

meandering and anastomosing channels. The size and shape of the channels observed are 319 

comparable with present day observations from DEMs or satellite images of Amazon Basin 320 

drainage and its river network. This study represents a first step toward a methodology for 321 

regional exploration of the fluvial record through the use of modern seismic geomorphology 322 

techniques in the Amazon Basin. Yet far from answering all the points raised by other studies of 323 

fluvial geomorphology, further detailed mapping of the Cenozoic sedimentary basins of the 324 

Amazon Basin is needed (e.g. Solimões, Amazonas). These work must stretch from the source to 325 

the sink if it is to depict the sediment routing systems (Allen, 2017), from the foothills of the 326 

Andes Mountains to the Amazon mouth and its slope margin deep-water fan. Specific aspects 327 

that need to be developed and tested included: (1) integration of borehole resistivity imagery to 328 

constrain paleoflow of stream and rivers, (2) quantitative geomorphology and stream flow 329 

orientation, (3) combining tracer techniques of sediments to define the sources of sediments. 330 

Update of the paleogeographic map for this specific period of geological time will allow better 331 

constraints on the evolution of the South American plate that is relatively inaccessible to field 332 
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study compared to other continents. Acquisition of vertical ‘transitional’ subsurface data ranging 333 

from the surface to the youngest resolved seismic reflection image in subsurface could allow a 334 

full and continuous analysis of the evolution of this giant sedimentary basin. 335 
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TABLES 349 

Table 1: Channels morphometry from Marañón Basin Cenozoic infill, Peru 350 

Horizon number Seismic 

Stratigraphy 

Formation 

name 

Depth  Channel Width     Channel length on one 

wavelength (La)  

Meander 

wavelength  

   min max       

   s (TWT)  (m)     (m) (m) 
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1  Maranon 0,479 0,661 200 220 260 140 120 9832 4648

2   0,499 0,681 130 141 87 140 145 6058 4955

3   0,519 0,701 166 147 162 146 167 9328 3606

4   0,557 0,727 113 170 79 120 105 7719 5400

5 H8  0,587 0,757 128 162 205 154 213 7760 6872

6   0,617 0,787 119 125 116 154 190 5611 3204

7   0,659 0,828 188 180 102 148 134 5189 2464

8   0,684 0,845 106 160 125 122 125 2620 2211

9   0,7 0,864 97 120 113 80 97 7842 7067

10   0,72 0,884 144 68 58 74 158 4825 4535

11   0,747 0,902 242 305 88 98 65 8355 7922

12   0,757 0,9112 123 101 155 74 90 5007 3636

13   0,767 0,922 131 94 76 117 44 4279 3400

14 H7 Pebas 0,791 0,947 213 118 85 115 51 4306 3052

15   0,824 0,984 101 121 112 71 146 6987 6271

16   0,843 0,992 73 95 123 46 67 3951 3800

17   0,868 1,019 102 68 70 130 68 7747 5356

18   0,892 1,048 70 64 84 89 149 9423 4264

19   0,902 1,067 76 82 60 91 81 3283 2816

20   0,912 1,077 100 117 124 109 156 6696 5569

21   0,922 1,087 104 50 42 59 54 3901 3121

22   0,94 1,082 65 75 104 88 42 5998 4101

23 H6  0,95 1,092 97 96 118 73 159 10205 9221

24   0,975 1,117 134 95 127 68 88 5050 4084

25   1 1,142 143 71 94 62 46 3227 2687

26   1,004 1,17 109 55 74 29 55 1645 1472

27   1,024 1,19 106 166 88 96 180 4693 3181

28   1,064 1,219 294 223 259 157 293 6877 6015

29   1,084 1,239 99 131 86 50 171 3439 3054

30   1,104 1,259 421 494 350 343 403 15083 14587

31   1,124 1,279 358 288 249 178 282 6435 4260

32   1,144 1,299 527 615 503 301 615 8369 8065

33   1,186 1,327 472 118 159 308 74 7783 4005

34   1,201 1,355 450 222 401 617 439 11117 10459

35   1,221 1,378 97 329 138 197 162 14302 11946

36 H5  1,241 1,395 200 560 312 169 286 6604 3474

37   1,261 1,415 425 149 282 223 235 4427 3258

38   1,296 1,442 293 136 302 204 121 6375 4552

39   1,316 1,462 215 79 79 260 161 5346 2200

40   1,348 1,495 127 94 97 103 145 9842 6420

41   1,377 1,519 627 641 594 550 221 20960 18370

42   1,406 1,543 168 357 262 372 437 13962 12030
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43   1,424 1,566 142 236 246 279 198 7017 6109

44   1,442 1,589 81 98 71 90 64 8471 4552

45 H4  1,46 1,613 250 169 55 74 38 5787 4596

46   1,47 1,623 166 168 262 70 155 5272 4100

47   1,498 1,632 233 333 444 353 404 12693 7015

48   1,532 1,661 169 189 188 222 232 9495 4667

49   1,549 1,677 113 117 101 50 110 10349 5845

50   1,566 1,693 189 249 171 140 306 8724 4582

51   1,583 1,712 168 109 87 136 137 6086 3519

52 H3  1,6 1,73 134 183 95 123 91 5915 3946

53   1,61 1,74 98 156 127 220 109 5158 1952

54   1,62 1,75 310 180 151 202 137 5690 2874

55   1,633 1,761 85 119 94 220 276 4844 3869

56   1,65 1,776 195 99 158 135 278 4849 3462

57   1,684 1,807 103 170 125 106 120 4477 3883

58   1,7 1,825 127 112 168 67 84 4340 2072

59   1,717 1,842 98 47 99 84 75 1996 1976

60   1,734 1,86 334 149 145 110 125 6474 4505

61   1,765 1,896 139 110 103 68 96 4649 2924

62   1,78 1,915 147 90 103 145 161 5792 5031

63 H2 Chambira 1,795 1,933 254 149 116 139 105 8456 5766

64   1,815 1,953 174 203 190 187 203 12707 6842

65   1,832 1,965 200 110 165 140 116 4726 3749

66   1,847 1,991 106 227 152 210 183 7382 4423

67   1,868 2,011 153 70 83 75 207 3740 2843

68   1,888 2,024 113 92 95 96 135 3291 1366

69   1,905 2,042 106 114 121 158 125 9318 6225

70   1,912 2,067 123 66 81 96 97 5089 2733

71   1,947 2,086 146 72 94 93 138 5739 4984

72   1,957 2,096 67 114 119 137 148 14184 6840

73   1,967 2,106 102 86 73 82 72 4829 3395

74   1,977 2,116 165 134 108 139 123 6870 2407

75   1,987 2,126 96 74 118 83 104 4915 3504

76   1,997 2,136 60 66 77 101 44 2707 1930

77   2,019 2,154 41 60 47 41 76 8178 8131

78   2,041 2,157 96 49 82 94 51 2266 1266

79   2,065 2,178 126 94 77 92 80 1945 1759

80   2,071 2,209 123 109 205 101 199 5396 3801

81   2,094 2,24 67 86 88 103 79 2727 1976

82   2,113 2,256 69 42 60 62 72 4323 1484

83 H1 Pozo 2,143 2,28 65 81 98 100 84 1907 721

84   2,158 2,321 128 226 84 127 159 4490 1967
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85  Present day surface       11917 6200

86  Present day surface       43900 21200

 351 

FIGURES CAPTIONS 352 

Figure 1: A. Amazon Basin drainage outline over SRTM digital elevation model and 353 

HydroSHEDS river network (EO, NASA). B. Major world rivers yield (drainage area >103 km²) 354 

as a function of drainage area (Syvitski et al., 2005). C. Comparison of two different satellite 355 

images over the Rio Ucayali (UAVSAR data courtesy NASA/JPL-Caltech, Landsat imagery 356 

courtesy of NASA Goddard Space Flight Center and U.S. Geological Survey), note the resolution 357 

over the UAVSAR image that highlights the detailed architecture of the meanders and lateral 358 

accretion formed by the Rio Ucayali.  359 

Figure 2: (A) Example of the Marañón Basin Cenozoic infill from the (B) seismic line that 360 

illustrates the regional geometry across the Marañón Basin from the foothills of the Andes (SW) 361 

to the Iquitos Arch (NE) and (C) detailed lithologic and stratigraphic information from a well 362 

located south of the regional cross section. Note the thickness of the Chambira Formation that 363 

spans from Eocene to the Upper Oligocene, the aggrading pattern is associated with floodplain 364 

and fluvial channel and sand sheets stacking. The Neogene Pebas, Marañón and Corrientes 365 

Formations show more variations in lithological content. 366 

Figure 3: (A) Seismic reflection amplitude and stratigraphy of the Marañón Basin Cenozoic infill. 367 

(B) The relatively continuous to discontinuous character of the reflection strength is enhanced by 368 

the sweetness attribute, thick sands are associated with high sweetness values (i.e. blue or yellow 369 

colors). (C and D) The phase and thin-bed attribute are used to highlight the pinch-out and tuning 370 
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of the channels and its infill. The colored triangles are selected horizons displayed in Figure 6. 371 

Location of the seismic line is located in Figure 2A and in Figure 6. 372 

Figure 4: Quantitative geomorphologic measures along a horizon slice with sweetness attribute 373 

display. Channel width (W), meander belt width (MBW), channel length on one wavelength (La), 374 

meander wavelength (ML), and radius of curvature (RC). Sinuosity is calculated by channel 375 

length divided by meander wavelength. 376 

Figure 5: Seismic facies observed and interpreted in the Marañón Basin within the Cenozoic 377 

infill. All seismic sections and plan views of the facies are scaled with the same amplitude values 378 

and vertical/horizontal scales. 379 

Figure 6: Evolution of the fluvial patterns observed and interpreted on colored blended spectral 380 

decomposition horizons highlighting the main changes in the stratigraphy of the Cenozoic 381 

sequence of the Marañón Basin. The RGB compositions show frequency 39, 32, and 29 Hz 382 

respectively. The color code for each slice A to H corresponds to the arrows on the seismic 383 

section displayed in Figure 3A. The RBG blend horizons are displayed from shallower part to 384 

deep part of the basin. The white line drawing is associated to features related to fluvial 385 

geometries, main channels and extensive fluvial features are interpreted following facies scheme 386 

in Figure 5. 387 

Figure 7: Statistical analysis of quantified fluvial channel width from the Cenozoic record of the 388 

Marañón Basin. Channel width classification is from Gibling (2006), narrow to medium channels 389 

correspond to 100 m width. 390 
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Figure 8: Statistical analysis of sinuosity from quantified meanders of the Cenozoic record of the 391 

Marañón Basin. Classification of alluvial channels by sediment load is based on Schumm (1985). 392 

The cutoffs used to differentiate the type of channels based on sinuosity are 1.3 and 2. 393 

Figure 9: Stratigraphic evolution of channels width, belt width, sinuosity and paleocurrents from 394 

the Cenozoic record of the Marañón Basin. This reconstruction is based on observation, 395 

interpretation and quantification of 84 seismic stratigraphic surfaces extracted in the seismic 396 

reflection 3D cube. 397 

Figure 10: (A) Present day surface of the western part of the Amazon Basin. Inset of fluvial 398 

systems from the proximal Rio Pastaza and the Napo-Pastaza Megafan to intermediate Rio 399 

Ucayali south of Iquitos. (B) Example of 3D seismic survey used for this study, note the areal 400 

extent of a survey compared to the natural features observed at its edge, the rivers flow from NW 401 

to SE. (C) Example of meandering and laterally incising paleodrainage, in relation to the NW-SE 402 

plunging Iquitos Arch. (D) Low land and flood plain in the Pastaza-Corrientes transition band 403 

north of the Rio Marañón, note the various abandoned splays and the amount of meandering 404 

channels. (E) Encased Rio Ucayali meandering channel with large point bar and cut off loops. 405 

Note the variety of properties of the various channels and their lateral lowland landscapes. DEM 406 

from B to E are at the same horizontal scale, vertical relief is lows for dark and bright for highs. 407 

DEM are sourced from SRTM (NASA), UAVSAR data courtesy NASA/JPL-Caltech, Landsat 408 

imagery courtesy of NASA Goddard Space Flight Center and U.S. Geological Survey. 409 

Figure 11: Comparative fluvial views from detailed (A) UAVSAR over the Rio Ucayali, (B) 410 

Landsat over rivers and streams from the Amazon Basin and (C) 3D seismic interpreted spectral 411 

decomposition images/maps from the Marañón Basin. Note the 5x5 km black square that allows 412 
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comparison of architectural elements from the three different sourced images. DEM are sourced 413 

from SRTM (NASA), UAVSAR data courtesy NASA/JPL-Caltech, Landsat imagery courtesy of 414 

NASA Goddard Space Flight Center and U.S. Geological Survey. Fluvial features: channel, bars, 415 

meanders, lateral accretion, oxbow lake (ox. l). 416 
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