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Abstract

A Budgeted Markov Decision Process (BMDP) is an extension of a Markov
Decision Process to critical applications requiring safety constraints. It relies on a
notion of risk implemented in the shape of a cost signal constrained to lie below
an – adjustable – threshold. So far, BMDPs could only be solved in the case of
finite state spaces with known dynamics. This work extends the state-of-the-art
to continuous spaces environments and unknown dynamics. We show that the
solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality
operator. This observation allows us to introduce natural extensions of Deep
Reinforcement Learning algorithms to address large-scale BMDPs. We validate
our approach on two simulated applications: spoken dialogue and autonomous
driving3.

1 Introduction

Reinforcement Learning (RL) is a general framework for decision-making under uncertainty. It
frames the learning objective as the optimal control of a Markov Decision Process (S,A, P,Rr, γ)
with measurable state space S, discrete actions A, unknown rewards Rr ∈ RS×A, and unknown
dynamics P ∈M(S)S×A , whereM(X ) denotes the probability measures over a set X . Formally,
we seek a policy π ∈ M(A)S that maximises in expectation the γ-discounted return of rewards
Gπr =

∑∞
t=0 γ

tRr(st, at).

However, this modelling assumption comes at a price: no control is given over the spread of the
performance distribution (Dann et al., 2019). In many critical real-world applications where failures
may turn out very costly, this is an issue as most decision-makers would rather give away some
amount of expected optimality to increase the performances in the lower-tail of the distribution. This
∗Both authors contributed equally.
†Univ. Lille, CNRS, Centrale Lille, INRIA UMR 9189 - CRIStAL, Lille, France
3Videos and code are available at https://budgeted-rl.github.io/.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://budgeted-rl.github.io/


has led to the development of several risk-averse variants where the optimisation criteria include
other statistics of the performance, such as the worst-case realisation (Iyengar, 2005; Nilim and El
Ghaoui, 2005; Wiesemann et al., 2013), the variance-penalised expectation (García and Fernández,
2015; Tamar et al., 2012), the Value-At-Risk (VaR) (Mausser and Rosen, 2003; Luenberger, 2013),
or the Conditional Value-At-Risk (CVaR) (Chow et al., 2015, 2018).

Reinforcement Learning also assumes that the performance can be described by a single reward
function Rr. Conversely, real problems typically involve many aspects, some of which can be
contradictory (Liu et al., 2014). For instance, a self-driving car needs to balance between progressing
quickly on the road and avoiding collisions. When aggregating several objectives in a single scalar
signal, as often in Multi-Objectives RL (Roijers et al., 2013), no control is given over their relative
ratios, as high rewards can compensate high penalties. For instance, if a weighted sum is used to
balance velocity v and crashes c, then for any given choice of weights ω the optimality equation
ωv E[

∑
γtvt]+ωa E[

∑
γtct] = G∗r = maxπ G

π
r is the equation of a line in (E[

∑
γtvt],E[

∑
γtct]),

and the automotive company cannot control where its optimal policy π∗ lies on that line.

Both of these concerns can be addressed in the Constrained Markov Decision Process (CMDP)
setting (Beutler and Ross, 1985; Altman, 1999). In this multi-objective formulation, task completion
and safety are considered separately. We equip the MDP with a cost signal Rc ∈ RS×A and a cost
budget β ∈ R. Similarly to Gπr , we define the return of costs Gπc =

∑∞
t=0 γ

tRc(st, at) and the new
cost-constrained objective:

max
π∈M(A)S

E[Gπr |s0 = s] s.t. E[Gπc |s0 = s] ≤ β (1)

This constrained framework allows for better control of the performance-safety tradeoff. However, it
suffers from a major limitation: the budget has to be chosen before training, and cannot be changed
afterwards.

To address this concern, the Budgeted Markov Decision Process (BMDP) was introduced in (Boutilier
and Lu, 2016) as an extension of CMDPs to enable the online control over the budget β within an
interval B ⊂ R of admissible budgets. Instead of fixing the budget prior to training, the objective is
now to find a generic optimal policy π∗ that takes β as input so as to solve the corresponding CMDP
(Eq. (1)) for all β ∈ B. This gives the system designer the ability to move the optimal policy π∗ in
real-time along the Pareto-optimal curve of the different reward-cost trade-offs.

Our first contribution is to re-frame the original BMDP formulation in the context of continuous states
and infinite discounted horizon. We then propose a novel Budgeted Bellman Optimality Operator and
prove the optimal value function to be a fixed point of this operator. Second, we use this operator in
BFTQ, a batch Reinforcement Learning algorithm, for solving BMDPs online by interaction with
an environment, through function approximation and a tailored exploration procedure. Third, we
scale this algorithm to large problems by providing an efficient implementation of the Budgeted
Bellman Optimality Operator based on convex programming, a risk-sensitive exploration procedure,
and by leveraging tools from Deep Reinforcement Learning such as Deep Neural Networks and
synchronous parallel computing. Finally, we validate our approach in two environments that display
a clear trade-off between rewards and costs: a spoken dialogue system and a problem of behaviour
planning for autonomous driving. The proofs of our main results are provided in Appendix A.

2 Budgeted Dynamic Programming

We work in the space of budgeted policies, where a policy π both depends on the current budget β
and also outputs a next budget βa. Hence, the budget β is neither fixed nor constant as in the CMDP
setting but instead evolves as part of the dynamics.

We cast the BMDP problem as a multi-objective MDP problem (Roijers et al., 2013) by considering
augmented state and action spaces S = S × B and A = A× B, and equip them with the augmented
dynamics P ∈M(S)S×A defined as:

P (s′ | s, a) = P ((s′, β′) | (s, β), (a, βa))
def=P (s′|s, a)δ(β′ − βa), (2)

where δ is the Dirac indicator distribution.
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In other words, in these augmented dynamics, the output budget βa returned at time t by a budgeted
policy π ∈ Π =M(A)S will be used to condition the policy at the next timestep t+ 1.

We stack the rewards and cost functions in a single vectorial signal R ∈ (R2)S×A. Given an
augmented transition (s, a) = ((s, β), (a, βa)), we define:

R(s, a)
def=
[
Rr(s, a)
Rc(s, a)

]
∈ R2. (3)

Likewise, the return Gπ = (Gπr , G
π
c ) of a budgeted policy π ∈ Π refers to: Gπ def=

∑∞
t=0 γ

tR(st, at),
and the value functions V π , Qπ of a budgeted policy π ∈ Π are defined as:

V π(s) = (V πr , V
π
c )

def=E [Gπ | s0 = s] Qπ(s, a) = (Qπr , Q
π
c )

def=E [Gπ | s0 = s, a0 = a] .
(4)

We restrict S to feasible budgets only: Sf
def={(s, β) ∈ S : ∃π ∈ Π, V πc (s) ≤ β} that we assume is

non-empty for the BMDP to admit a solution. We still write S in place of Sf for brevity of notations.
Proposition 1 (Budgeted Bellman Expectation). The value functions V π and Qπ verify:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a) Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′ | s, a)V π(s′) (5)

Moreover, consider the Budgeted Bellman Expectation operator T π: ∀Q ∈ (R2)SA, s ∈ S, a ∈ A,

T πQ(s, a)
def=R(s, a) + γ

∑
s′∈S

∑
a′∈A

P (s′|s, a)π(a′|s′)Q(s′, a′) (6)

Then T π is a γ-contraction and Qπ is its unique fixed point.
Definition 1 (Budgeted Optimality). We now come to the definition of budgeted optimality. We want
an optimal budgeted policy to: (i) respect the cost budget β, (ii) maximise the γ-discounted return of
rewards Gr, (iii) in case of tie, minimise the γ-discounted return of costs Gc. To that end, we define
for all s ∈ S:

(i) Admissible policies Πa:

Πa(s)
def={π ∈ Π : V πc (s) ≤ β} where s = (s, β) (7)

(ii) Optimal value function for rewards V ∗r and candidate policies Πr:

V ∗r (s)
def= max

π∈Πa(s)
V πr (s) Πr(s)

def= arg max
π∈Πa(s)

V πr (s) (8)

(iii) Optimal value function for costs V ∗c and optimal policies Π∗:

V ∗c (s)
def= min

π∈Πr(s)
V πc (s), Π∗(s)

def= arg min
π∈Πr(s)

V πc (s) (9)

We define the budgeted action-value function Q∗ similarly:

Q∗r(s, a)
def= max

π∈Πa(s)
Qπr (s, a) Q∗c(s, a)

def= min
π∈Πr(s)

Qπc (s, a) (10)

and denote V ∗ = (V ∗r , V
∗
c ), Q∗ = (Q∗r , Q

∗
c).

Theorem 1 (Budgeted Bellman Optimality). The optimal budgeted action-value function Q∗ verifies:

Q∗(s, a) = T Q∗(s, a)
def=R(s, a) + γ

∑
s′∈S

P (s′|s, a)
∑
a′∈A

πgreedy(a′|s′;Q∗)Q∗(s′, a′), (11)

where the greedy policy πgreedy is defined by: ∀s = (s, β) ∈ S, a ∈ A,∀Q ∈ (R2)A×S ,

πgreedy(a|s;Q) ∈ arg min
ρ∈ΠQ

r

E
a∼ρ

Qc(s, a), (12a)

where ΠQ
r

def= arg max
ρ∈M(A)

E
a∼ρ

Qr(s, a) (12b)

s.t. E
a∼ρ

Qc(s, a) ≤ β. (12c)
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Remark 1 (Appearance of the greedy policy). In classical Reinforcement Learning, the greedy policy
takes a simple form πgreedy(s;Q

∗) = arg maxa∈AQ
∗(s, a), and the term πgreedy(a

′|s′;Q∗)Q∗(s′, a′)
in (11) conveniently simplifies to maxa′∈AQ

∗(s′, a′). Unfortunately, in a budgeted setting the greedy
policy requires solving the nested constrained optimisation program (12) at each state and budget in
order to apply this Budgeted Bellman Optimality operator.
Proposition 2 (Optimality of the greedy policy). The greedy policy πgreedy(· ;Q∗) is uniformly
optimal: ∀s ∈ S, πgreedy(· ;Q∗) ∈ Π∗(s). In particular, V πgreedy(·;Q∗) = V ∗ and Qπgreedy(·;Q∗) = Q∗.

Budgeted Value Iteration The Budgeted Bellman Optimality equation is a fixed-point equation,
which motivates the introduction of a fixed-point iteration procedure. We introduce Algorithm 1,
a Dynamic Programming algorithm for solving known BMDPs. If it were to converge to a unique
fixed point, this algorithm would provide a way to compute Q∗ and recover the associated optimal
budgeted policy πgreedy(· ;Q∗).
Theorem 2 (Non-contractivity of T ). For any BMDP (S,A, P,Rr, Rc, γ) with |A| ≥ 2, T is not a
contraction. Precisely: ∀ε > 0,∃Q1, Q2 ∈ (R2)SA : ‖T Q1 − T Q2‖∞ ≥ 1

ε‖Q
1 −Q2‖∞.

Unfortunately, as T is not a contraction, we can guarantee neither the convergence of Algorithm 1
nor the unicity of its fixed points. Despite those theoretical limitations, we empirically observed the
convergence to a fixed point in our experiments (Section 5). We conjecture a possible explanation:
Theorem 3 (Contractivity of T on smooth Q-functions). The operator T is a contraction when
restricted to the subset Lγ of Q-functions such that "Qr is Lipschitz with respect to Qc":

Lγ =

{
Q ∈ (R2)SA s.t. ∃L < 1

γ − 1 : ∀s ∈ S, a1, a2 ∈ A,
|Qr(s, a1)−Qr(s, a2)| ≤ L|Qc(s, a1)−Qc(s, a2)|

}
(13)

Thus, we expect that Algorithm 1 is likely to converge when Q∗ is smooth, but could diverge if the
slope of Q∗ is too high. L2-regularisation can be used to encourage smoothness and mitigate risk of
divergence.

3 Budgeted Reinforcement Learning

In this section, we consider BMDPs with unknown parameters that must be solved by interaction
with an environment.

3.1 Budgeted Fitted-Q

When the BMDP is unknown, we need to adapt Algorithm 1 to work with a batch of samples
D = {(si, ai, ri, s′i)}i∈[1,N ] collected by interaction with the environment. Applying T in (11)
would require computing an expectation Es′∼P over next states s′ and hence an access to the model
P . We instead use T̂ , a sampling operator, in which this expectation is replaced by:

T̂ Q(s, a, r, s′)
def= r + γ

∑
a′∈A

πgreedy(a′|s′;Q)Q(s′, a′).

We introduce in Algorithm 2 the Budgeted-Fitted-Q (BFTQ) algorithm, an extension of the Fitted-Q
(FTQ) algorithm (Ernst et al., 2005; Riedmiller, 2005) adapted to solve unknown BMDPs. Because we
work with continuous state space S and budget space B, we need to employ function-approximation
in order to generalise to nearby states and budgets. Precisely, given a parametrized model Qθ, we
seek to minimise a regression loss L(Qθ, Qtarget;D) =

∑
D ||Qθ(s, a) − Qtarget(s, a, r, s

′)||22. Any
model can be used, such as linear models, regression trees, or neural networks.

Algorithm 1: Budgeted Value Iteration
Data: P,Rr, Rc
Result: Q∗

1 Q0 ← 0
2 repeat
3 Qk+1 ← T Qk
4 until convergence

Algorithm 2: Budgeted Fitted-Q
Data: D
Result: Q∗

1 Qθ0 ← 0
2 repeat
3 θk+1 ← arg minθ L(Qθ, T̂ Qθk ;D)
4 until convergence
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3.2 Risk-sensitive exploration

In order to run Algorithm 2, we must first gather a batch of samples D. The following strategy is
motivated by the intuition that a wide variety of risk levels needs to be experienced during training,
which can be achieved by enforcing the risk constraints during data collection. Ideally we would
need samples from the asymptotic state-budget distribution limt→∞ P (st) induced by an optimal
policy π∗ given an initial distribution P (s0), but as we are actually building this policy, it is not
possible. Following the same idea of ε-greedy exploration for FTQ (Ernst et al., 2005; Riedmiller,
2005), we introduce an algorithm for risk-sensitive exploration. We follow an exploration policy: a
mixture between a random budgeted policy πrand and the current greedy policy πgreedy. The batch D is
split into several mini-batches generated sequentially, and πgreedy is updated by running Algorithm 2
on D upon mini-batch completion. πrand should only pick augmented actions that are admissible
candidates for πgreedy. To that extent πrand is designed to obtain trajectories that only explore feasible
budgets: we impose that the joint distribution P (a, βa|s, β) verifies E[βa] ≤ β. This condition
defines a probability simplex ∆A from which we sample uniformly. Finally, when interacting with an
environment the initial state s0 is usually sampled from a starting distribution P (s0). In the budgeted
setting, we also need to sample the initial budget β0. Importantly, we pick a uniform distribution
P (β0) = U(B) so that the entire range of risk-level is explored, and not only reward-seeking
behaviours as would be the case with a traditional risk-neutral ε-greedy strategy. The pseudo-code of
our exploration procedure is shown in Algorithm 3.

Algorithm 3: Risk-sensitive exploration
Data: An environment, a BFTQ solver, W CPU workers
Result: A batch of transitions D

1 D ← ∅
2 for each intermediate batch do
3 split episodes between W workers
4 for each episode in batch do // run this loop on each worker in

parallel
5 sample initial budget β ∼ U(B).
6 while episode not done do
7 update ε from schedule.
8 sample z ∼ U([0, 1]).
9 if z < ε then sample (a, βa) ∼ U(∆AB). // Explore

10 else sample (a, βa) ∼ πgreedy(a, βa|s, β;Q∗). // Exploit
11 append transition (s, β, a, βa, R, C, s

′) to batch D.
12 step episode budget β ← βa
13 end
14 end
15 πgreedy(· ∼; Q∗)← BFTQ(D).
16 end
17 return the batch of transitions D

4 A Scalable Implementation

In this section, we introduce an implementation of the BFTQ algorithm designed to operate efficiently
and handle large batches of experiences D.

4.1 How to compute the greedy policy?

As stated in Remark 1, computing the greedy policy πgreedy in (11) is not trivial since it requires
solving the nested constrained optimisation program (12). However, it can be solved efficiently by
exploiting the structure of the set of solutions with respect to β, that is, concave and increasing.
Proposition 3 (Equality of πgreedy and πhull). Algorithm 1 and Algorithm 2 can be run by replacing
πgreedy in the equation (11) of T with πhull as described in Algorithm 4.

πgreedy(a|s;Q) = πhull(a|s;Q)

5



Algorithm 4: Convex hull policy πhull(a|s;Q)

Data: s = (s, β), Q
1 Q+ ← {Qc > min{Qc(s, a) s.t. a ∈ arg maxaQr(s, a)}} // dominated points

2 F ← top frontier of convex_hull(Q(s,A) \Q+) // candidate mixtures

3 FQ ← F ∩Q(s,A)
4 for points q = Q(s, a) ∈ FQ in clockwise order do
5 if find two successive points ((q1

c , q
1
r), (q2

c , q
2
r)) of FQ such that q1

c ≤ β < q2
c then

6 p← (β − q1
c )/(q2

c − q1
c )

7 return the mixture (1− p)δ(a− a1) + pδ(a− a2)
8 end
9 return δ(a− arg maxaQr(s, a)) // budget β always respected

Q( , )s
⎯⎯

a
⎯ ⎯⎯

2

Q( , )s
⎯⎯

a
⎯ ⎯⎯

1

β

Qr

Qc

Q
+

 Q

Q( , )s
⎯⎯


⎯ ⎯⎯⎯⎯

Figure 1: Representation of πhull. When the budget lies between
Q(s, a1) and Q(s, a2), two points of the top frontier of the convex
hull, then the policy is a mixture of these two points.

The computation of πhull in Algo-
rithm 4 is illustrated in Figure 1: first
we get rid of dominated points. Then
we compute the top frontier of the
convex hull of the Q-function. Next,
we find the two closest augmented ac-
tions a1 and a2 with cost-value Qc
surrounding β: Qc(s, a1) ≤ β <
Qc(s, a2). Finally, we mix the two ac-
tions such that the expected spent bud-
get is equal to β. Because of the con-
cavity of the convex hull top frontier,
any other combination of augmented
actions would lead to a lower expected
reward Qr.

4.2 Function approximation

Neural networks are well suited to model Q-functions in Reinforcement Learning algorithms (Ried-
miller, 2005; Mnih et al., 2015). We approximate Q = (Qr, Qc) using one single neural network.
Thus, the two components are jointly optimised which accelerates convergence and fosters learning
of useful shared representations. Moreover, as in (Mnih et al., 2015) we are dealing with a finite
(categorical) action space A, instead of including the action in the input we add the output of the
Q-function for each action to the last layer. Again, it provides a faster convergence toward useful
shared representations and it only requires one forward pass to evaluate all action values. Finally,
beside the state s there is one more input to a budgeted Q-function: the budget βa. This budget is a
scalar value whereas the state s is a vector of potentially large size. To avoid a weak influence of β
compared to s in the prediction, we include an additional encoder for the budget, whose width and
depth may depend on the application. A straightforward choice is a single layer with the same width
as the state. The overall architecture is shown in Figure 7 in Appendix B.

4.3 Parallel computing

In a simulated environment, a first process that can be distributed is the collection of samples in
the exploration procedure of Algorithm 3, as πgreedy stays constant within each mini-batch which
avoids the need of synchronisation between workers. Second, the main bottleneck of BFTQ is the
computation of the target T Q. Indeed, when computing πhull we must perform at each epoch a
Graham-scan of complexity O(|A||B̃| log |AB̃|) per sample in D to compute the convex hulls of Q

(where B̃ is a finite discretisation of B). The resulting total time-complexity isO( |D||A||B̃|1−γ log |A||B̃|).
This operation can easily be distributed over several CPUs provided that we first evaluate the
model Q(s′,AB̃) for each sample s′ ∈ D, which can be done in a single forward pass. By using
multiprocessing in the computations of πhull, we enjoy a linear speedup. The full description of our
scalable implementation of BFTQ is recalled in Algorithm 5 in Appendix B.
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5 Experiments

There are two hypotheses we want to validate.

Exploration strategies We claimed in Section 3.2 that a risk-sensitive exploration was required in
the setting of BMDPs. We test this hypotheses by confronting our strategy to a classical risk-neutral
strategy. The latter is chosen to be a ε-greedy policy slowly transitioning from a random to a greedy
policy4 that aims to maximise Eπ Gπr regardless of Eπ Gπc . The quality of the resulting batches D is
assessed by training a BFTQ policy and comparing the resulting performance.

Budgeted algorithms We compare our scalable BFTQ algorithm described in Section 4 to an
FTQ(λ) baseline. This baseline consists in approximating the BMDP by a finite set of CMDPs
problems. We solve each of these CMDP using the standard technique of Lagrangian Relaxation: the
cost constraint is converted to a soft penalty weighted by a Lagrangian multiplier λ in a surrogate
reward function: maxπ Eπ[Gπr − λGπc ]. The resulting MDP can be solved by any RL algorithm, and
we chose FTQ for being closest to BFTQ. In our experiments, a single training of BFTQ corresponds
to 10 trainings of FTQ(λ) policies. Each run was repeated Nseeds times. Parameters of the algorithms
can be found in Appendix D.3.1

5.1 Environments

We evaluate our method on three different environments involving reward-cost trade-offs. Their
parameters can be found in Appendix D.3.2

Corridors This simple environment is only meant to highlight clearly the specificity of exploration
in a budgeted setting. It is a continuous gridworld with Gaussian perturbations, consisting in a maze
composed of two corridors: a risky one with high rewards and costs, and a safe one with low rewards
and no cost. In both corridors the outermost cell is the one yielding the most reward, which motivates
a deep exploration.

Spoken dialogue system Our second application is a dialogue-based slot-filling simulation that
has already benefited from batch RL optimisation in the past (Li et al., 2009; Chandramohan et al.,
2010; Pietquin et al., 2011). The system fills in a form of slot-values by interacting a user through
speech, before sending them a response. For example, in a restaurant reservation domain, it may
ask for three slots: the area of the restaurant, the price-range and the food type. The user could
respectively provide those three slot-values : Cambridge, Cheap and Indian-food. In this
application, we do not focus on how to extract such information from the user utterances, we rather
focus on decision-making for filling in the form. To that end, the system can choose among a set of
generic actions. As in (Carrara et al., 2018), there are two ways of asking for a slot value: a slot value
can be either be provided with an utterance, which may cause speech recognition errors with some
probability, or by requiring the user to fill-in the slots by using a numeric pad. In this case, there are
no recognition errors but a counterpart risk of hang-up: we assume that manually filling a key-value
form is time-consuming and annoying. The environment yields a reward if all slots are filled without
errors, and a constraint if the user hang-ups. Thus, there is a clear trade-off between using utterances
and potentially committing a mistake, or using the numeric pad and risking a premature hang-up.

Autonomous driving In our third application, we use the highway-env environment (Leurent,
2018) for simulated highway driving and behavioural decision-making. We define a task that displays
a clear trade-off between safety and efficiency. The agent controls a vehicle with a finite set of
manoeuvres implemented by low-lever controllers: A = {no-op, right-lane, left-lane, faster, slower}.
It is driving on a two-lane road populated with other traffic participants: the vehicles in front of
the agent drive slowly, and there are incoming vehicles on the opposite lane. Their behaviours are
randomised, which introduces some uncertainty with respect to their possible future trajectories. The
task consists in driving as fast as possible, which is modelled by a reward proportional to the velocity:
Rr(st, at) ∝ vt. This motivates the agent to try and overtake its preceding vehicles by driving
fast on the opposite lane. This optimal but overly aggressive behaviour can be tempered through a
cost function that embodies a safety objective: Rc(st, at) is set to 1/H whenever the ego-vehicle is

4We train this greedy policy using FTQ.
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BFTQ(risk-sensitive) BFTQ(risk-neutral)
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r
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c

Figure 2: Density of explored states (left) and corresponding policy performances (right) of two exploration
strategies in the corridors environment.

Gπ

r

Gπ

c

Gπ

r

Gπ

c

Figure 3: Performance comparison of FTQ(λ) and BFTQ on slot-filling (left) and highway-env(right)

driving on the opposite lane, where H is the episode horizon. Thus, the constrained signal Gπc is the
maximum proportion of time that the agent is allowed to drive on the wrong side of the road.

5.2 Results

In the following figures, each patch represents the mean and 95% confidence interval over Nseeds
seeds of the means of (Gπr , G

π
c ) over Ntrajs trajectories. That way, we display the variation related to

learning (and batches) rather than the variation in the execution of the policies.

We first bring to light the role of risk-sensitive exploration in the corridors environment: Figure 2
shows the set of trajectories collected by each exploration strategy. and the resulting performance
of a budgeted policy trained on each batch. The trajectories (orange) in the risk-neutral batch are
concentrated along the risky corridor (right) and ignore the safe corridor (left), which results in
bad performances in the low-risk regime. Conversely, trajectories in the risk-sensitive batch (blue)
are well distributed among both corridors and the corresponding budgeted policy achieves good
performance across the whole spectrum of risk budgets.

In a second experiment displayed in Figure 3, we compare the performance of FTQ(λ) to that of
BFTQ in the dialogue and autonomous driving tasks. For each algorithm, we plot the reward-cost
trade-off curve. In both cases, BFTQ performs almost as well as FTQ(λ) despite only requiring a
single model. All budgets are well-respected on slot-filling, but on highway-env we can observe an
underestimation of Qc, since e.g. E[Gc|β = 0] ' 0.1. This underestimation can be a consequence
of two approximations: the use of the sampling operator T̂ instead of the true population operator
T , and the use of the neural network function approximation Qθ instead of Q. Still, BFTQ provides
a better control on the expected cost of the policy, than FTQ(λ). In addition, BFTQ behaves more
consistently than FTQ(λ) overall, as shown by its lower extra-seed variance.
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Additional material such as videos of policy executions is provided in Appendix D.

6 Discussion

Algorithm 2 is an algorithm for solving large unknown BMDPs with continuous states. To the best of
our knowledge, there is no algorithm in the current literature that combines all those features.

Algorithms have been proposed for CMDPs, which are less flexible sub-problems of the more general
BMDP. When the environment parameters (P , Rr, Rc) are known but not tractable, solutions relying
on function approximation (Undurti et al., 2011) or approximate linear programming (Poupart et al.,
2015) have been proposed. For unknown environments, online algorithms (Geibel and Wysotzki,
2005; Abe and others, 2010; Chow et al., 2018; Achiam et al., 2017) and a batch algorithm (Thomas
et al., 2015; Petrik et al., 2016; Laroche and Trichelair, 2019; Le et al., 2019) can solve large unknown
CMDPs. Nevertheless, these approaches are limited in that the constraints thresholds are fixed prior
to training and cannot be updated in real-time at policy execution to select the desired level of risk.

To our knowledge, there were only two ways of solving a BMDP. The first one is to approximate
it with a finite set of CMDPs (e.g. see our FTQ(λ) baseline). The solutions of these CMDPs take
the form of mixtures between two deterministic policies (Theorem 4.4, Beutler and Ross, 1985). To
obtain these policies, one needs to evaluate their expected cost by interacting with the environment5.
Our solution not only requires one single model but also avoids any supplementary interaction.

The only other existing BMDP algorithm, and closest work to ours, is the Dynamic Programming
algorithm proposed by Boutilier and Lu (2016). However, their work was established for finite state
spaces only, and their solution relies heavily on this property. For instance, they enumerate and sort
the next states s′ ∈ S by their expected value-by-cost, which could not be performed in a continuous
state space S. Moreover, they rely on the knowledge of the model (P , Rr, Rc), and do not address
the question of learning from interaction data.

7 Conclusion

The BMDP framework is a principled framework for safe decision making under uncertainty, which
could be beneficial to the diffusion of Reinforcement Learning in industrial applications. However,
BMDPs could so far only be solved in finite state spaces which limits their interest in many use-cases.
We extend their definition to continuous states by introducing of a novel Dynamic Programming
operator, that we build upon to propose a Reinforcement Learning algorithm. In order to scale to large
problems, we provide an efficient implementation that exploits the structure of the value function and
leverages tools from Deep Distributed Reinforcement Learning. We show that on two practical tasks
our solution performs similarly to a baseline Lagrangian relaxation method while only requiring a
single model to train, and relying on an interpretable β instead of the tedious tuning of the penalty λ.
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